A Note on a Problem of Erdös and Hajnal

by

Keith J. Devlin
(Oslo)

Abstract

In [5], Erdös and Hajnal formulate the following proposition, which we shall refer to as Φ : If φ is an order-type such that $|\varphi|=\omega_{2}$ but $\omega_{2}, \omega_{2}^{*} \notin \varphi$, there is $\psi \leq \omega_{0}|\psi|=\omega_{1}$, such that $w_{1}, \#_{1}^{*} \notin \|$. In [2], we showed that if $V=I$, then \rightarrow. . We do not know if the assumption $V=I$ can be weakened to $C H$, or if, in fact, Φ is consistent with CH . However, in this note we show that, relative to a certain large cardinal assumption, Φ is consistent with $2^{\omega}=\omega_{2}$, so that $\neg \Phi$ is not provable in $Z F C$ alone. Our proof has an interesting model-theoretic consequence, which we mention at the end.

Preliminaries

We work in 2FC, and use the usual notation and conventions. In particular, an ordinal is the set of its predecessors, a cardinal is an ordinal not equinumerous with any smaller ordinal, α, β, γ denote ordinals, u, λ, μ denote cardinals, and $|X|$ denotes the cardinality of the set X. We assume considerable acquaintance
with forcing, as described in Jech [6] for example, and also some familiarity with indiscernibility arguments using large cardinals. A set $X \subseteq x$ is said to be homogeneous for the first-order structure $\pi=\langle A, \ldots\rangle$, where $x \subseteq A$, if for all formulas $\varphi\left(v_{0, \ldots, 0} v_{n}\right)$ in the language for π, if $x_{0}, \ldots, x_{n}, x_{0}^{\prime}, \ldots, x_{n}^{\prime} \in X, x_{0}<\ldots<x_{n}$, $x_{0}^{\prime}<\ldots<x_{n}^{0}$, then $\pi \models \varphi\left[x_{0}, \ldots, x_{n}\right]$ iff $\pi \| \varphi\left[x_{0}^{p}, \ldots, x_{n}^{\prime}\right]$. A cardinal x is Ramsey iff whenever $\quad \pi=\langle A, \ldots\rangle$ is a firstorder structure such that $x \subseteq A$ and the language of π has less than x symbols, there is $X \subseteq x,|X|=x, X$ homogeneous for π. For further details, the reader should consult Drake [4]. A cardinal x is weakly compact iff whenever $\varphi\left(U, W_{1}, \ldots, W_{n}\right)$ is a sentence in the language of set theory augmented by the unary predicate letters U, W_{1}, \ldots, W_{n}, such that for some $W_{1}, \ldots, W_{n} \subseteq$ $V_{x},\left\langle V_{x}, \varepsilon, U, W_{1}, \ldots, W_{n}\right\rangle \models \varphi$ for all $U \subseteq V_{x}$, then for some $\alpha<u,\left\langle\mathrm{~V}_{\alpha}, \varepsilon, \mathrm{U}, \mathrm{W}_{1} \cap \mathrm{~V}_{\alpha}, \ldots \mathrm{W}_{\mathrm{n}} \cap \mathrm{V}_{\alpha}\right\rangle \models \varphi$ for all $\mathrm{U} \subseteq \mathrm{V}_{\alpha}$. Again, [4] will provide further details here. For our present purposes we need to know that every Ramsey cardinal is weakly compact, and that every weakly compact is a fixed-point in the sequence of all inaccessible cardinals. (We assume the reader is well aware of what an inaccessible cardinal is, and also what a weakly inaccessible cardinal is. If he doesn't, he would be much better off reading [4] than the present paper.) Changis conjecture, which we shall denote by Δ, is the assertion that if we are given a firstorder structure $\pi=\langle A, U, \ldots\rangle$ where $|A|=\omega_{2}, U \subseteq A,|U|=$ ω_{1}, and the language for O is countable, we can find $B=\langle B$, $U \cap B, \ldots\rangle \prec \pi$ such that $|B|=\omega_{1},|U \cap B|=\omega$. It is known that Δ is not provable in ZFC . In fact, it follows easily from the results proved towards the end of chapter 17 of Devin [1] that \triangle implies the existence of $0^{\# \#}$ (which is defined in
[1], chapter 17.). This was first proved by Kunen. Also, Silver [8] has shown that Con(ZFC + "there is a Ramsey cardinal") \rightarrow Con $(2 F C+\Delta)$.

Basic Forcing Lemmas

We use \mathbb{M} to denote throughout an arbitrary countable transitive model (c.t.m.) of ZFC . For proofs of all of the following lemmas, the reader should consult [6].

Lemma 1 (Lévy-Solovay, et al.)
Let x be inacressible/weakly compact/Ramsey in M. Let P be a poset in M of cardinality less than x. If G is M-generic for P, then x is inaccessible/weakly compact/Ramsey in M[G].

Lemma 2 (Solovay)

Let P_{1}, P_{2} be posets in $M . \operatorname{If} G_{1}$ is M-generic for P_{1} and G_{2} is $M\left[G_{1}\right]$-generic for P_{2}, then G_{1} is $M\left[G_{2}\right]$-generic for P_{1}, G_{2} is M-generic for $P_{2}, G_{1} \times G_{2}$ is M-generic for $P_{1} \times P_{2}$, */is the cartesion product of the sets P_{1}, P_{2} with the ordering $\left\langle p_{1}, p_{2}\right\rangle \leq\left\langle q_{1}, q_{2}, \mapsto \quad p_{1} \leq_{1} q_{1} \& p_{2} \leq q_{2}\right.$. Conversely, if G is li-generic for $P_{1} \times P_{2}$, then $G_{1}=\{p \mid\langle p, 1\rangle \in G\}$ is M-generic for $P_{1}, G_{2}=\{p \mid\langle\eta, p\rangle \in G\}$ is $M\left[G_{1}\right]$-generic for P_{2}, and $G=G_{1} \times G_{2}$. (As usual, we assume our posets have a maximum element, 11 .)

Lemma 3 (Solovay)
Let P_{1}, P_{2} be sets in M Let s_{1} be a partial ordering of P_{1} in \mathbb{M} and let \leq_{2} be a term of the ($\mathbb{H}_{9}\left\langle\mathrm{P}_{1}, \leq_{1}\right\rangle$)-forcing language such that $\pi H_{1} " \mathrm{P}_{1} \leq_{2}$ is a partial ordering of $\stackrel{r}{P}_{2} "$. Define,
*) and $M\left[G_{1}\right]\left[G_{2}\right]=M\left[G_{2}\right]\left[G_{1}\right]=\mathbb{M}\left[G_{1}, G_{2}\right]=M\left[G_{1} \times G_{2}\right]$, where $P_{1} \times P_{2}$
in M, a partial ordering on $P_{1} \times P_{2}$ by $\left\langle p_{1}, p_{2}\right\rangle \leq\left\langle q_{1}, q_{2}\right\rangle \mapsto$ $p_{1} \leq 1 q_{1} \& p_{1} H_{P_{1}} \quad{ }^{\circ} \stackrel{r}{2}_{2} \leq \underline{q}_{2} "$. If G_{1} is M-generic for P_{1} and G_{2} is $M\left[G_{1}\right]$-generic for P_{2} (ie. the poset $\left\langle P_{2}, \leq 2\left[G_{1}\right]\right.$, in $M\left[G_{1}\right]$), then $G_{1} \times G_{2}$ is M-generic for $P_{1} \times P_{2}$. Conversely, if G is M-generic for $P_{1} \times P_{2}$, there are sets G_{1}, G_{2} such that G_{1} is M-generic for P_{1}, G_{2} is $\mathbb{M}\left[G_{1}\right]$-generic for P_{2}, and $G=G_{1} \times G_{2}$. Recall that a poset P has the x chain condition ($x-c . c$) if there is no pairwise incompatible subset of P of cardinality k, and that $0_{1}-c . c$ is refered to as the countable chain condition (c.c.c.) . (We say $p, q \in P$ are compatible if there is $r \in P$, $r \leq p, q$, and write $p \sim q$ in such a situation.)

Lemma 4
Let P be a poset satisfying c.c.c. in \mathbb{M}, and let G be $M-$ generic for P. Then M and $M[G]$ have the same cardinals and cofinality function.

Martin's Axiom for ${ }^{(1,}$ _ is the assertion that if P is a poset with c.c.c. and D is a collection of 0_{1} dense open subsets of P, there is a ∞-generic set G for P. We denote this statement by MA. It is easily seen that MA $\rightarrow 2^{\omega} \geq \omega_{2}$.

Iemma 5 (Solovay-Jennenbaum)
Suppose $\mathbb{M} \mid=2^{\omega}=\omega_{1}$. Then there is a poset $P \in \mathbb{M}$ of cardinality ω_{2}, satisfying c.c.c., such that for any set G II-generic for $\left.P, M^{[} G\right] \vDash M A+2^{\left.()^{(}\right)}=\omega_{2}$.

That completes our list of prerequisites. It is convenient at this point to set out our plan of attack.

The Strategy

In [2], we prove the following theorem:

Theorem 6 (Devin)
Assume \triangle. If $\neg \Phi$, then there is an ${ }^{\left(\omega_{2}\right.}$-Aronszajn tree.

It thus suffices, for our purposes, to show that Con(ZFC + "there is a Ramsey cardinal" $) \rightarrow \operatorname{Con}\left(Z F C+2^{(1)}=\omega_{2}+\Delta+\right.$ "there are no $\omega_{2}{ }^{-}$ Aronszajn trees"). Now, in [8], Silver proves Con(ZFC+"there is a Ramsey cardinal" $) \rightarrow \operatorname{Con}\left(Z F C+2^{(\omega)}=\omega_{1}+\Delta\right)$. Since $2^{\omega}=\omega_{1}$ in Silver's model, it contains an ${ }^{(12}$-Aronszajn tree (which remains an ω_{2}-Aronszsjn tree in any cardinal preserving extension of it.) Hence Silver's model does not help us here. Again, in [7], Mitchell proves Con(ZFC + "there is a weakly compact cardinal") \rightarrow Con(ZFC + $2^{\prime \prime}=\omega_{2}+$ "there are no ω_{2}-Aronszajn trees"). The idea behind aur proof is to combine the proofs of Mitchell and of Silver. In order to do this, we have to make some considerable changes in both proofs, so, even though the overall plan remains a combination of the Mitchell argument and the Silver argument, we see no alternative but to give most of the proof in full. In several places, the argument will be exactly parallel to Mitchell's (in particular), and at such points we shall leave it to the reader to check that Mitchell's argument indeed works in the present situation. This will not require that the reader is familiar with all of Mitchell's paper; indeed, he should be able to simply read the proof concerned and see that, with a few minor changes, it does what we require. For readers who are familiar with [7], let us state now that the difference between our model and Mitchell's lies in the way the continuum is collapsed to ω_{2} •

The Proof

From now on, we fix x as the first Ramsey cardinal in M. Define C in M as the poset of all finite functions p such that $\operatorname{dom}(p) \subseteq x$ and $\operatorname{ran}(p) \subseteq 2$, ordered by $p \leq q \mapsto p \supseteq q$. Thus, C is the usual poset for adding u Cohen reals to M. If G is M-generic for P (which it will be from now on), then $2^{(0)}=x$ in $M[G]$. Also, as C satisfies c.c.c. in M, M and $M[G]$ have the same cardinals and cofinality function. In particular, \varkappa is weakly inaccessible and is the limit of a x-sequence of weakly inaccessibles. In fact, if $\langle x(\nu)| v<x$; enumerates (monotonically) the weakly inaccessible ccrdinals below x in \mathbb{M}, then each $x(v)$ is weakly inaccessible in $M[G]$. Note also that the definition of C is absolute for transitive models of ZFC containing x. For $\gamma<x$, we set $C_{\gamma}=\{p \in C \mid \operatorname{dom}(p) \subseteq \gamma\}, C^{\gamma}=$ $\{p \in C \mid \operatorname{dom}(p) \cap \gamma=\varnothing\}$. Since we clearly have $C \cong C_{\gamma} \times C^{\gamma}$, by a canonical isomorphism (in M), we see that $G_{\gamma}=G \cap C_{\gamma}$ is $M-$ generic for $C_{\gamma}, G^{\gamma}=G \cap C^{\gamma}$ is $M\left[G_{\gamma}\right]$-generic for C^{γ}, $\operatorname{Mr}\left[G_{\gamma}\right]\left[G^{\gamma}\right]=M[G]$, and all of the other properties in lemma 2 hold. Let \mathbb{B} be the complete boolean algebra determined by C, isomorphed so that C is a dense subset of \mathbb{B}. For each $\gamma<x$, let \mathbb{B}_{γ} be the complete boolean algebra determined by C_{γ}, isomorphed so that $\gamma<\delta<x$ implies that \mathbb{B}_{γ} is a complete subalgebra of \mathbb{B}_{g} is a complete subalgebra of \mathbb{B}.

In M, let F be the set of all functions f such that:
(i) $f: x \times\left(\cos _{1} \times x\right) \rightarrow \mathbb{B}$;
(ii) $\quad \gamma \neq \gamma^{\prime} \rightarrow f(\gamma,(\alpha, \beta)) \wedge f\left(\gamma^{\gamma},(\alpha, \beta)\right)=0$;
(iii) $\gamma \geq 8 \rightarrow f(\gamma,(x, 3))=0$;
(iv) $\left|\left\{z \in u \times\left(0_{1} \times u\right) \mid f(z)>0\right\}\right| \leq \omega_{1}$;
(v) for some ordinal $\varphi(f)<\omega_{1}, \alpha \geq \varphi(f) \rightarrow f(\gamma,(\alpha, \beta))=0$;
(vi) for all ordinals $\delta<\mu, \operatorname{ran}\left[f[\delta] \subseteq \mathbb{B}_{\delta^{+}}\right.$, where $f \upharpoonright \delta$ abbreviates $f\left\lceil\left(\delta \times\left(w_{1} \times \delta\right)\right)\right.$ and where δ^{+}denotes the first cardinal greater than δ.

Using F, we define a poset P in $M^{[G]}$ as follows. For $f \in F$, define \bar{f} (in $M[G]$) by $\bar{f}=\left\{(\gamma,(\alpha, \beta)) \mid(\exists p \in G)\left[p \leq_{\mathbb{B}} f(\gamma,(\alpha, \beta))\right]\right\}$. Let $P=\{\bar{f} \mid f \in F\}$, and partially order P by $f \leq p g \mapsto \bar{f} \supseteq \bar{g}$. Clearly, if $f \in P$, then f is a function such that:
(i) $\quad \operatorname{dom}(f) \subseteq \omega_{1} \times x$;
(ii) $(\alpha, \beta) \in \operatorname{dom}(f) \rightarrow f(\alpha, \beta) \in \beta$;
(iii) $|f| \leq \omega_{1}$;
(iv) for some ordinal $\psi(f)<(\|),(\alpha, \beta) \in \operatorname{dom}(f) \rightarrow \alpha<\psi(f) ;$
(v) for all ordinals $\delta<x, f i \delta \in M\left[G_{\delta^{+}}\right]$, where $f \upharpoonright \delta$ abbreviates $f \uparrow\left(\omega_{1} \times \delta\right)$.
[Note: P does not, however, contain all such functions. This was pointed out to us by Mitchell in a private communication. However, it is easily seen that P is closed under simple set-theoretical operations such as the union of two compatible members.]

For future use, notice that if $\lambda>0_{1}$ is a regular cardinal in M, then for $f \in P, f\left\lceil\lambda \in \mathbb{N}\left[G_{\lambda}\right]\right.$ and for $f \in F, \operatorname{ran}\left[f\lceil\lambda] \subseteq \mathbb{B}_{\lambda}\right.$. (Both of these hold because f is only non-trivial at (") places.)

Recalling lemma 3, we define a poset Q with domain $C \times F$ by setting, in $M(p, f) \leq_{Q}(q, g) \mapsto p \leq_{C} q \quad \& \quad p \|_{C} " \bar{f} \leq_{p} \bar{g}^{\prime \prime}$ (ie. iff $p \geq q$ \& $\left.p \mathbb{H}_{C} " \bar{f} \geq \bar{g}^{i}.\right)$ Dy lemma 3, if K is M-generic for Q with $G=\left\{p \in C \mid\left\langle p, O_{F}\right\rangle \in \mathbb{K}\right\}$ (where $O_{F}=\{\langle\mathcal{O}, z\rangle \mid z \in \pi \times$ ($w_{1} \times x$) \}) (which we may assume as lemma 3) and H is defined by $\{\bar{f} \in P \mid\langle\varnothing, f\rangle \in K\}$, then I is $M[G]$-generic for P and $\left.M_{-}^{[} K\right]=\mathbb{M}[G][H]$.

Define a partial ordering \leq_{F} on F, in M, by $f \leq_{F} g \mapsto$ $\pi \vdash_{C} \| \vec{f} \geq \bar{g} "$. Clearly $f \leq_{F} g$ iff for all $z \in x>\left(w_{1} \times x\right)$, $f(z) \geq B(z)$.

Suppose that, in $M, \delta<\omega_{1}$ and $\left\langle f_{\alpha} \mid \approx<\delta\right\rangle$ is a sequence of members of F such that $\alpha<\beta<\delta \rightarrow f_{\beta} \leq_{F} f_{\alpha}$. Define $g: x \times\left(\omega_{1} \times x\right) \rightarrow \mathbb{B}$ by $g(z)=V^{\mathbb{B}}\left\{f_{\alpha}(z) \mid \alpha<\delta\right\}$ for each $z \in$ $x \times\left(\omega_{1} \times x\right)$. (Since $\left\langle f_{\alpha}\right| \alpha\langle\delta\rangle \in \mathbb{M}$, this supremum in \mathbb{B} always exists.) We write $g=\Lambda_{\alpha<\delta}{ }^{f}$, since it is easily seen that $g \in F$ here, and that $g \leq f_{\alpha}$ for all $\alpha<\delta$.

Lemma 7

Let $f, g \in F$ and suppose that $p\left\|\mathcal{C}_{C}\right\| \bar{f} \supseteq \bar{g}$ for some $p \in C$. Then there is $h \in F$ such that $h \leq_{p} g$ and $p \|_{C} " \bar{f} \geq \bar{f}^{\prime \prime}$.

Proof: For each $z=(\gamma,(\alpha, \beta)) \in x \times\left(\omega_{1} \times x\right)$, define $h(z)=$ $g(z) \vee\left\lceil f(z) \wedge p\left\lceil\beta^{+}\right]\right.$。

Lemma 8

Suppose $D \in \mathbb{M}[G]$ and that D is a dense open subset of P. Then, for any $f \in F$ there is $g \in F$ such that $g \leq_{F} f$ and $\bar{g} \in D$. Moreover, suppose $p H_{C}^{\prime \prime D}$ is a dense open subset of $\dot{P}^{\prime \prime}$. Then, for any $f \in F$ there is $g \in F$ such that $g \leq_{F} f$ and $p H_{C} " \bar{g} \in \operatorname{D} "$ 。

Proof: The first part of the lemma follows both from lemma 7 and from the second part of the lemma. We prove the second part of the lemma by an argument due to Easton. Working in M, we inductively define a sequence $\left\langle\left(p_{\alpha}, f_{\alpha}\right) \mid \alpha<\delta\right\rangle$, for some $\delta<\omega_{1}$, such that:
(i) $p_{\alpha} \in C, f_{\alpha} \in F, p_{\alpha} \leq p$, each $\alpha<\delta$;
(ii) $f_{\beta} \leq_{F} f_{\alpha} \leq_{F} f$, each $\alpha<\beta<\delta$;
(iii) $p_{\alpha} \mathbb{H}_{C} " \bar{f}_{\alpha} \in \dot{D}^{\prime \prime}$, each $\alpha<\delta$;
(iv) $p_{\alpha} \nsim p_{\beta}$, each $\alpha<\beta<\delta$.

The ordinal δ will be determined by the termination of the definition, which will occur at some stage before ω_{1} (by virtue of condition (iv) and the c.c.c. for C), when $\left\{p_{\alpha} \mid \alpha<\delta\right\}$ is a maximal pairwise incompatible subset of $\left\{q \in C \mid q \leq_{C} p\right\}$.
Suppose $\left\langle\left(p_{\beta}, f_{\beta}\right)\right| \beta\langle\alpha\rangle$ is defined. Let $q \leq_{c} p$ be incompatible with each $p_{\beta}, \beta<\alpha$, and set $h=\Lambda_{\beta<\alpha} f_{\beta}$. Since $q H_{C}{ }^{\prime \prime D}$ is a dense subset of $\dot{P}^{\prime \prime}$ and $\eta H_{C} " \bar{h} \in \mathcal{P}^{\prime \prime}$, we can find $p_{\alpha} \leq_{C} q$ and $h^{\prime} \in F$ such that $p_{\alpha} \mathbb{H}_{C} "^{\prime \prime} \bar{h}^{\prime} \in D^{\prime \prime}$
and $p_{\alpha} \vdash_{C}{ }^{\prime \prime}{ }^{\prime} \supseteq \bar{h}$ ". By lemma 7, pick $f_{\alpha} \in F$ such that $f_{\alpha} \leq F h$ and $p_{\alpha} \Vdash_{C} "_{\alpha} \supseteq h^{\prime} "$. Since $p_{\alpha} \Vdash_{C}{ }^{\prime \prime D}$ is open
 required.

When the definition terminates, set $g=\Lambda_{\alpha<\delta}{ }^{f} \alpha$. Thus $g \in F, g \leq_{F} f$. We show that $p \Vdash_{C} " \bar{g} \in \operatorname{D} \|$. It suffices to show that $\left\{q \in C \mid q\left\|_{C} " \bar{g} \in \mathbb{D}\right\|\right\}$ is dense below p in C. Let $q \leq p$. Thus $q \sim p_{\alpha}$ for some $\alpha<\delta$. Let
 $g \leq_{F} f_{\alpha}, q^{\prime} H_{C}{ }^{\prime \prime} \bar{g} \in \mathbb{D}^{\prime \prime}$, and we are done.

Corollary 9

If $\lambda<\omega_{1}^{\mathbb{M}}$ and $s: \lambda \rightarrow \mathbb{M}, s \in \mathbb{M}[K]$, then $s \in \mathbb{M}[G]$. In particular, $\rho^{M[K]}(\lambda)=\rho^{M[G]}(\lambda)$ and $\omega_{1}^{M[K]}=\omega_{1}^{M[G]}\left(=\omega_{1}^{M}\right)$.

Proof: Suppose $p \in G,(p, f) H_{Q} \stackrel{\circ}{S}: \grave{\lambda} \rightarrow \dot{V}$. For each $\alpha<\lambda$, define D_{α} in $M[G]$ by $D_{\alpha}=\left\{\bar{f} \in P \mid(\exists x \in \mathbb{M}) \Gamma \overline{\mathrm{I}} \Vdash_{P}\right.$ "is (α) $\left.\left.=\dot{x}^{\prime \prime}\right]\right\}$. Clearly, $p H_{C} \|_{\alpha}^{D_{\alpha}}$ is a dense open subset of $\stackrel{i}{P}^{\prime \prime}$, here, so we can use lemma 8 to define, in M, a sequence $\left\langle f_{\alpha} \mid \alpha<\lambda\right\rangle$ from F so that $\alpha<\beta<\lambda \rightarrow f_{\beta} \leq_{F} f_{\alpha}$ and $p \|-"_{\alpha} \in D_{\alpha} " \cdot$ Set $g=\Lambda_{\alpha<\lambda}{ }^{f_{\alpha}}$. Clearly, $(p, g) \leq_{Q}(p, f)$ and $(p, g) \|_{Q} " s \in \dot{V}[G ْ] "$.

Lemma 10
Assume $V=M[G]$. Then P satisfies the $x-c . c$.

Proof: The argument is a slight modification of the usual one for the Levy collapsing poset on an inaccessible. Clause (v) in the definition of F was designed partly to make this
argument work, even though x is only weakly inaccessible here.

Let X be a set of pairwise incompatible elements of P. We define, inductively, sequences $\left\langle X_{\alpha} \mid \alpha<v_{2}\right\rangle$,
$\left\langle\nu_{\alpha}\right| \alpha\left\langle w_{2}\right\rangle$, such that
(i) $\alpha<B<\omega_{2} \rightarrow X_{\alpha} \subseteq X_{\beta} \subseteq X$ and $\alpha<\omega_{2} \rightarrow\left|X_{\alpha}\right|<x ;$
(ii) $\alpha<\beta<\omega_{2} \rightarrow \nu_{\alpha}<\nu_{\beta}<x$;
(iii) $f \in X_{\alpha} \rightarrow \operatorname{dom}(f) \subseteq v_{1} \times \nu_{\alpha}$.

Let $f_{0} \in X$ be arbitrary. Set $X_{0}=\left\{f_{0}\right\}$, and let ν_{0} be the least cardinal such that $\operatorname{dom}\left(f_{0}\right) \subseteq w_{1} \times \nu_{0} \cdot$
Suppose X_{α}, ν_{α} are defined. Let X_{α}^{\prime} be a maximal subset of X such that $\left[f, g \in X_{\alpha} \& f i \nu_{\alpha}=g\left\lceil\nu_{\alpha}\right] \rightarrow f=g\right.$. By definition of $P,\left\{f\left[\nu_{\alpha} \mid f \in X_{\alpha}^{\prime}\right\} \subseteq M\left[G_{\nu_{\alpha}^{+}}\right]\right.$. By lemma 1, \because is inaccessible in $M\left[G_{\nu}^{+}\right], \stackrel{\alpha}{\text { so }}\left|\nu_{\alpha}^{\nu}\right|^{M\left[G_{\alpha}\right.} \nu_{\alpha}^{+}$ $<x$. Hence $\left|X_{\alpha}^{\prime}\right|<x$. Set $X_{\alpha+1}=X_{\alpha} \cup X_{\alpha}^{\prime}$ and let $\nu_{\alpha+1}<x$ be the least cardinal such that $\nu_{\alpha+1}>\nu_{\alpha}$ and $f \in X_{\alpha+1} \rightarrow \operatorname{dom}(f) \subset{ }_{1} \times \nu_{\alpha+1}$. If $\lim (\alpha)$, set $X_{\alpha}=$ $U_{B<\alpha} X_{B}, \nu_{\alpha}=\sup _{\beta<\alpha} \nu_{B}$. Since x is weakly inaccessible, $\left|X_{\alpha}\right|<x$ and $\nu_{\alpha}<x$ here also. This completes the definition. Set $Y=U_{\alpha<\mathrm{H}_{2}} X_{\alpha}$. Thus $|Y|<x$. We finish by showing that $X \subseteq Y$. Let $f \in X$. As $\left\langle\nu_{\alpha}\right| \alpha\left\langle\omega_{2}\right\rangle$ is strictly increasing and $|f| \leq \omega_{1}$, we can find $\alpha<\omega_{2}$ such that $f \uparrow \nu_{\alpha}=f \uparrow \nu_{\alpha+1}$. By construction of $X_{\alpha+1}$, there is $g \in X_{\alpha+1}$ such that $f \int_{\nu_{\alpha}}=g\left\lceil\nu_{\alpha}\right.$. By (iii), $\operatorname{dom}(g) \subseteq \omega_{1} \times \nu_{\alpha+1}$. Hence $f \sim g$, which means $f=g \in Y$, as X is pairwise incompatible.

Corollary 11

Assume $V=M$. Then Q satisfies u - c.c.

Proof: A standard argument for two-step forcing. See Jech [6], for example.

Lemma 12
$w_{2}^{M[K]}=x$.

Proof: By corollary 9 and lemma 10, it suffices to show that if $\omega_{1}^{M}<\lambda<x$ then $|\lambda|^{M[K]}=\omega_{1}^{M[G]}$. By definition of P in $M[G]$, this clearly reduces to showing that if (in M[G]) $f \in P$ and $\gamma \in \lambda<\chi$, there is $g \in P, g \supseteq f$, such that for some $a \in \omega_{1}, g(\alpha, \lambda)=\gamma$. But look, $\psi(f)<\omega_{1}$, so if we pick $\alpha>\forall(f)$ then $g=f U\{(\gamma,(\alpha, \lambda))\} \in P$ is clearly as required. |

In \mathbb{M}, for $\gamma<u$, set $\mathbb{F}_{\gamma}=\left\{f^{T} \gamma \mid f \in F\right\}, F^{\gamma}=\{f-f|\gamma| f \in F\}$, $Q_{\gamma}=C_{\gamma} \times F_{\gamma}, Q^{\gamma}=C^{\gamma} \times F^{\gamma}$. Again, for $\gamma<u$, let $K_{\gamma}=K \cap Q_{\gamma}$, $K^{Y}=K \cap Q^{\gamma}$. In $\mathbb{M}[G]$, for $\gamma<x$, set $P_{\gamma}=\{f|\gamma| f \in P\}$, $P^{\gamma}=\{f-f|\gamma| f \in P\}$. Note that whenever $\lambda>\omega_{1}^{M}$ is regular in \mathbb{M}, then $P_{\lambda} \in M\left[G_{\lambda}\right]$, and P_{λ}, P^{λ} are related to $F_{\lambda,} F^{\lambda}$ in the same way that P is related to F. Partially order Q^{γ} in $\mathbb{M}\left[G_{\lambda}\right]$ by $(p, f) \leq_{Q} \gamma(q, g) \mapsto p \leq_{C} q \& \quad\left(\exists p^{\prime} \in G_{\lambda}\right)\left[p^{\wedge} \cup p\left\|_{C} " \bar{f} \supseteq \bar{g}\right\| \cdot\right]$. Then:

Lemma 13
Let $\lambda>\omega_{1}^{\mathbb{M}}$ be a regular cardinal in M. Then K_{λ} is M-generic for Q_{λ}, K^{λ} is $\mathbb{M}\left[K_{\lambda}\right]$-generic for Q^{λ}, and $M\left[K_{\lambda}\right]\left[K^{\lambda}\right]=M[K]$.

Proof: Set $H_{\lambda}=H \cap P_{\lambda}, H^{\lambda}=H \cap P^{\lambda}$. Since $P \cong P_{\lambda} \times P^{\lambda}$ in $\mathbb{M}[G]$, lemma 2 tells us that H_{λ} is $\mathbb{M}[G]$-generic for P_{λ} and H^{λ} is $M[G]\left[H_{\lambda}\right]$-generic for P^{λ} and $M[G]\left[H_{\lambda}\right]\left[H^{\lambda}\right]$ $=\mathbb{M}[G][H]=\mathbb{M}[K]$. Again, $C^{\lambda}, P_{\lambda} \in \mathbb{M}\left[G_{\lambda}\right]$, so by lemma 2, $M[G]\left[H_{\lambda}\right]=\mathbb{M}\left[G_{\lambda}\right]\left[G^{\lambda}\right]\left[H_{\lambda}\right]=\mathbb{M}\left[G_{\lambda}\right]\left[H_{\lambda}\right]\left[G^{\lambda}\right]$, where G^{λ} is $\mathbb{M}\left[G_{\lambda}\right]\left[H_{\lambda}\right]$-generic for C^{λ}. Hence, by lemma $3, \mathbb{M}\left[K_{\lambda}\right]\left[K^{\lambda}\right]$ $\left.=\mathbb{M}\left[G_{\lambda}\right]^{[} H_{\lambda}\right]\left[G^{\lambda}\right]\left[H^{\lambda}\right]=\mathbb{M}[K]$, etc. 1

The next lemma shows that under certain circumstances there is an element which will play the role of $\Lambda_{\nu<\delta} f_{\nu}$ for decreacing sequences of members of F which do not lie in M. (In such cases, we will abuse our notation by writing $\Lambda_{\nu<\delta} f_{\nu}$ to denote such an element.)

Iemma 14

Let $\gamma \geq \omega_{1}^{M}, \quad \delta<\omega_{1}^{M}$, and let $\left\langle f_{V}\right| \nu<\delta ;$ be a sequence of members of F^{γ} in $M\left[K_{\gamma^{+}}\right]$such that $\nu<\tau<\delta \rightarrow f_{\tau} \leq_{F} f_{\nu}$. Then there is a $g \in F^{\gamma}$ such that $\mathbb{M}\left[X_{\gamma^{+}}\right] \|(\forall \nu<\delta)\left(\eta \|_{C_{\gamma}} " \bar{g} \supseteq \bar{f}_{\nu} "\right)$.

Proof: By corollary 9, $\left\langle f_{\nu}\right| \nu\langle\delta\rangle \in \mathbb{M}\left[G_{\gamma}+\right]$. Let $\underset{\sim}{\underset{\sim}{f}}\left[G^{\circ}\right.$ be a term
 (Thus $\underset{\sim}{f}$ will contain constants of the form \dot{x} for $x \in \mathbb{M}$ and possibly the constant \dot{G} which represents $G_{Y}+$ in $\left.\mathbb{M}\left[G_{\gamma}+\right]_{.}\right)$Pick $p \in G_{\gamma}$. such that $p \mathbb{H}_{C} \gamma^{+}{ }_{\sim}^{\circ} \underset{\sim}{\circ}$ is a δ-sequence of members of F^{Y} such that $\nu<\tau<\delta \rightarrow \underset{\sim}{\dot{f}}(\tau) \leq_{F}$ $\underset{\sim}{f}(\nu)$ ". Work in M. Define a function g by setting, for $z=(1,(x, \beta)) \in u \gamma\left(\omega_{1} \times u\right)$ with $\beta \geq \gamma, g(z)=p \wedge$ $\left.\forall \mathbb{B}_{\{f(z) \wedge}\|\stackrel{\vee}{f}=\underset{\sim}{f}(\nu)\| \mathbb{B}_{\gamma+} \mid f \in \mathbb{F}^{\gamma} \& \nu<\delta\right\}$. We show that $g \in F^{\gamma}$; We must therefore verify that g satisfies clauses (i)-(vi)
in the definition of F. Clause (i) holds by definition. For clause (ii), suppose $\xi \neq \zeta$ and that $g(\xi,(\alpha, \beta)) \wedge$ $g(\zeta,(\alpha, \beta))>\mathbb{D}$, some α, β. Thas for some $\nu<\tau<\delta$,
 $f^{\prime}(\zeta,(\alpha, \beta))>(1)$ But look, by choice of p, this means $\left\|\tilde{f}^{\prime} \leq \mathbb{F}_{\mathrm{F}} \tilde{f}\right\| \wedge f(\xi,(\alpha, \beta)) \wedge f^{\prime}(\zeta,(\alpha, \beta))>0$. Hence, clearly, $f^{\prime}(\xi,(\alpha, \alpha)) \wedge f^{\prime}(\zeta,(\alpha, \beta))>0$, contrary to $f^{\prime} \in F$. Hence clause (ii) holds for g. For clause (iii), note that if $\imath \geq \theta$, then $f(\imath,(\alpha, \beta))=0$ for all $f \in F$, so $g(1,(\alpha, 3))=0$. Since $C_{\gamma^{+}}$satisfies c.c.c., $\mid\{f \mid(\exists \nu<\delta)$ $(\|\stackrel{v}{f}=\underset{\sim}{f}(v)\|>0)\} \mid<w_{1}$, whence clause (iv) clearly holds. This last fact also implies that clause (v) holds. Finally, note that clause (vi) holds for g, since we are only working "above" γ here, and g is defined from members of F^{Y} and certain elements of $\mathbb{B}_{\gamma^{+}}$. Hence $g \in F^{Y}$. Now we place ourselves in $M\left[K_{\gamma^{+}}\right]$. Let $\nu<\delta$. Thus $\left\|{\underset{\nu}{\nu}}^{v}=\underset{\sim}{f}(\stackrel{v}{\nu})\right\| \in G_{\gamma^{+}}$. Also $p \in G_{\gamma}$, of course. Clearly, therefore, $\eta H_{C} \gamma^{+} \| \bar{g} \supseteq \overline{\mathrm{f}}_{\nu} "$, as required.

Lemma 15

Let $\lambda>{ }_{1}^{M}$ be a regular cardinal in M, and let γ be a limit ordinal in $\mathbb{M}, c f^{\mathbb{M}}(\gamma)>\omega$. Let $t \in \mathbb{M}[K], t: \gamma \rightarrow \mathbb{M}$, and suppose that for all $\delta<\gamma, t\left\lceil\delta \in \mathbb{M}^{\Gamma} K_{\lambda}\right]$. Then, in fact, $t \in$ $M\left[K_{\lambda}\right]$.

Proof: Almost identical to the proof of lemma 3.8 of [7].

Using lemma 15, it is now very easy, using the fact that x is weakly compact in \mathbb{M}, to prove the following result:

Theorem 16
$M[K] \vDash$ "There are no w_{2}-Aronszajn trees."

Proof: Just as in theorem 5.8 of [7].

That completes the first part of the proof. Now we turn to the problem of adapting Silver's argument to the present situation, in order to establish that Δ holds in $M[K]$.

From now on, we shall assume that $M 1=M A+2^{\omega}=\omega_{2}$, By lemmas 5 and 1, this causes no loss of generality.

We require a result essentially due to tos and Sierpinski. They proved, long ago, that if 0 were any infinite structure with a countable language, then one could find a single binary function f on the domain of $o r$ such that all of the functions, relations, and constants of 0π could be defined in terms of f. For a proof of this, the reader should see Theorem 3.3 of Devlin [3]. For our part, this gives us the following useful formulation of Δ.

Lemma 17
ZFC $\vdash \Delta$ iff whenever $f: \omega_{2} \because \omega_{2} \rightarrow \omega_{2}$, there is $X \subseteq \omega_{2}$, $|X|=\omega_{1}$, such that $f^{\prime \prime \prime} X^{2} \subseteq X$ and $\left|X \cap 0_{1}\right|=\omega$.

Using lemma 17, we shall show that Δ holds in $M[K]$. Let $t \in \mathbb{M}[K], t: x \times x \rightarrow x$. Pick $\left(p_{0}, f_{o}\right) \in G \times F$ so that $\left(p_{0}, f_{0}\right) \|_{Q} " t: x^{\circ} x_{x}^{r} \rightarrow \dot{x}^{\prime \prime}$. In $\mathbb{M}[G]$, for each $\alpha, \beta<x$, let $D_{\alpha \beta}=\left\{\bar{f} \in P \mid \bar{f} \leq_{P} \bar{f}_{0} \& \quad(\exists \gamma \in x)\left[\bar{f} \|_{P} " \dot{t}\left({ }_{\alpha}^{\alpha}, \hat{\beta}\right)=\gamma^{\prime} "\right]\right\}$. Clearly, each $D_{\alpha \beta}$ is a dense open subset of P below \bar{f}_{0}. We may assume that $p_{0} H_{C}{ }^{\prime \prime}\left\langle\dot{D}_{\alpha \beta}\right| \alpha, \beta \in \dot{Y}$, is a sequence of open subsets of $\stackrel{\circ}{P}$ and for each $\alpha, \beta \in \dot{x}, \stackrel{\circ}{D}_{\alpha \beta}$ is dense below $\bar{f}_{0} "$. In \mathbb{M}, for each $\alpha, \beta<x$,
let $E_{\alpha \beta}=\left\{f \in F \mid f \leq_{F} f_{0} \&\left(p_{O}, f\right) H_{Q} " \dot{t}(\dot{\alpha}, \stackrel{\gamma}{\beta})=\gamma^{\gamma \prime \prime}\right.$ for some $\left.\gamma<x\right\}$.
 $E_{\alpha \beta}$ is a dense open subset of the poset, F^{*}, which has domain $\left\{f \in F \mid f \leq_{F} f_{0}\right\}$ and ordering \leq_{F}. Let R be the relation defined by $R(f, \alpha, \beta, \gamma) \mapsto f \in \mathbb{F}^{*} \quad \& \quad\left(p_{0}, f\right) \|_{Q} " \dot{t}(\underset{\alpha}{\gamma}, \dot{\beta})=\gamma^{\gamma} "$. Thus $R \in M$. Work in M from now on.

Lemma 18

F* satisfies the $x-c . c$.

Proof: By an argument as in lemma 10. \|

Consider the first-order structure

$$
M=\left\langle V_{x}+, \epsilon, x_{9} \omega_{1}, F, F^{*}, \leq F, \varphi, R,\left\{p_{0}\right\},\left\{f_{0}\right\}\right\rangle,
$$

where $\varphi: F \rightarrow \omega_{1}$ is the function involved in the definition of F. Let U^{*} be a skolem expansion of \mathbb{M}.

As x is Ramsey, there is $X \subseteq x,|X|=x, X$ homogeneous for Ω^{*}. Let Y consist of the first w_{1} members of X.

Let W be the universe of the substructure of Ω^{*} generated by Y. Thus W is the universe of a unique $b<\sigma$.

Let $U=W \cap x$. Since the language of Π^{*} is countable, $|U|=\omega_{1}$.
Lemma 19
The poset $F^{*} \mid W=\left\langle F^{*} \cap W, S_{F} \cap \mathbb{W}^{2}\right\rangle$ satisfies c.c.c.

Proof: Suppose not, and let J be a collection of ω_{1} pairwise incompatible elements of $F F^{*} \mid W$. Since the language of M^{*} is countable, we can assume that for some fixed (skolem)
term $\tau, J=\left\{\tau^{\alpha^{*}}\left(x_{1}^{\alpha}, \ldots, x_{n}^{\alpha}\right) \mid x_{1}^{\alpha}, \ldots, x_{n}^{\alpha} \in Y \& x_{1}^{\alpha}<\ldots<x_{n}^{\alpha}\right.$ $\left.\& \alpha<\omega_{1}\right\}$. By a well known combinatorial argument (see Jech [6], for instance) we can assume that for some integer $m, 1 \leq m<n, x_{1}^{\alpha}=x_{1}, \ldots, x_{m}^{\alpha}=x_{m}$, where x_{1}, \ldots, x_{m} are independent of α here, and for all $\alpha<\beta<y_{1}, x_{n}^{\alpha}<x_{m+1}^{\beta}$. Pick elements $x_{m+1}^{\alpha}, \ldots, x_{n}^{\alpha}$ of X for ${ }^{(1)} 1 \leq \alpha<x$ now so that $\alpha<\beta<x \rightarrow x_{n}^{\alpha}<x_{m+1}^{\beta}$, with $x_{m+1}^{\alpha}<\ldots<x_{n}^{\alpha}$ for each α. Since J is pairwise incompatible in F^{*}, a simple indiscernibility argument shows that $J^{\prime}=\left\{\tau^{M^{*}}\left(x_{1}, \ldots, x_{m}\right.\right.$, $\left.\left.\mathrm{x}_{\mathrm{m}+1}^{\alpha}, \ldots, \mathrm{x}_{\mathrm{n}}^{\alpha}\right) \mid \alpha<x\right\}$ is a set of x incompatible elements of F^{*}, contrary to lemma 18. \mid

Lemma 20
$\left|U \cap \omega_{1}\right|=0$.

Proof: Suppose not. As above, we can find a (skolem) term τ such that $U \cap \omega_{1} \supseteq\left\{\tau^{\pi^{*}}\left(x_{1}, \ldots, x_{m}, x_{m+1}^{\alpha}, \ldots, x_{n}^{\alpha}\right) \mid\left(x_{1}<\ldots\right.\right.$ $\left.\ldots<x_{m}<x_{m+1}^{0}\right) \&\left(\alpha<\beta<\omega_{1} \rightarrow x_{m+1}^{\alpha}<\ldots<x_{n}^{\alpha}<x_{m+1}^{\beta}\right) \&\left(\alpha<\left(\omega_{1}\right)\right.$ $\left.\&\left(x_{1}, \ldots, x_{m} \in Y\right) \&\left(\alpha<\omega_{1} \rightarrow x_{m+1}^{\alpha}, \ldots, x_{n}^{\alpha} \in Y\right)\right\}$, where for each $\alpha<\beta<\omega_{1}, \tau^{i t^{*}}\left(x_{1}, \ldots, x_{m}, x_{m+1}^{\alpha}, \ldots, x_{n}^{\alpha}\right) \neq \tau^{\alpha}\left(x_{1}, \ldots\right.$ $\left.\ldots, x_{m}, x_{m+1}^{\beta}, \ldots, x_{n}^{\beta}\right)$. Pick elements $x_{m+1}^{\alpha}, \ldots, x_{n}^{\alpha}$ from X for ${ }^{\omega_{1}} \leq \alpha<x$ as before. For each $\alpha<\omega_{1}, \quad \pi^{*} \vDash$ $\tau\left(x_{1}, \ldots, x_{m}, x_{m+1}^{\alpha}, \ldots, x_{n}^{\alpha}\right)<\omega_{1}$, so by indiscernibility $\left\{\tau^{\alpha}\left(x_{1}, \ldots, x_{m}, x_{m+1}^{\alpha}, \ldots, x_{n}^{\alpha}\right) \mid \alpha<x\right\}$ is a set of x distinct ϵ-predecessors of ω_{1}, which is absurd.

Now, for each $\alpha, \beta \in x$, the fact that $E_{\alpha \beta}$ is a dense subset of F^{*} may be expressed in $\left(\mathbb{Z}\right.$ by the sentence $\left(\forall f \in F^{*}\right)\left(\exists g \in F^{*}\right)(\exists \gamma$ $\in \chi)\left[g \leq_{F} f \& R(g, \alpha, \beta, \gamma)\right]$. So, as $\mathcal{A}<G$, for each $\alpha, \beta \in U$
we have $\left(\forall f \in F^{*} \mid W\right)\left(\exists g \in F^{*} \mid W\right)(\exists \gamma \in U)\left[g \leq_{F} f \& R(g, \alpha, \beta, \gamma)\right]$. Thus, if $E_{\alpha \beta}^{\gamma}=\left\{f \in F^{*}\left\{W \mid\left(p_{0}, f\right) \|_{Q} " \dot{t}(\stackrel{v}{\alpha}, \hat{\beta})=\gamma \quad \gamma^{\prime \prime}\right.\right.$ for some $\left.\gamma \in U\right\}$ for each $\alpha, \beta \in U$, then $E_{\alpha \beta}^{\prime}$ is a dense open subset of $F^{*}\lceil W$. Let $\mathcal{F}=$ $\left\{E_{\alpha \beta}^{\prime} \mid \alpha, \beta \in U\right\}$. Since $|\mathcal{Y}|=|U|=\omega_{1}$, by lemma 19 and $M A$ we can thus find an 7 -generic subset, S, of $F^{*} \mid W$. Since S is compatible in F^{*}, we can define $h: x \times\left(\omega_{1} \times x\right) \rightarrow \mathbb{B}$ by $h(z)$ $=V^{\mathbb{B}}\{f(z) \mid f \in S\}$. Since $|S| \leq \omega_{1},|\{z \mid h(z)>0\}| \leq w_{1}$. It is easily seen that h satisfies clauses (i), (ii), (iii), (iv), (vi) in the definition of F. Moreover, h satisfies clause (v) also. For, $\quad \alpha \vDash \varphi: F \rightarrow \omega_{1}$, so as $\mathscr{G}<\mathcal{L}, \varphi: F * W \rightarrow U \cap \omega_{1}$. And by lemma 20, $\left|\mathrm{U} \cap \omega_{1}\right|=\omega$. Hence, if $\rho=\sup \left(U \cap \omega_{1}\right)$, then $\rho<\psi_{1}$ and for all $f \in F^{*} \mid W$, if $\alpha>\rho$, then $f(\gamma,(\alpha, \beta))=0$. So, $\alpha>\rho \rightarrow h(\gamma,(\alpha, B))=0$, as required. Thus $h \in F$. And clearly $h \leq_{F} f$ for all $f \in S$. (In particular, $h \in F^{*}$.) Thus, as $S \cap \mathbb{E}_{\alpha \beta}^{p} \neq \emptyset$ for all $\alpha, \beta \in U$, we see that if $\alpha, \beta \in U$, then
 $\left(p_{0}, h\right) H_{Q} " \dot{t}{ }^{\prime v} \tilde{U}^{2} \subseteq \dot{U} "$. We have therefore shown that if $p_{0} H_{C}$ $\left." \bar{f}_{0} \|_{P} " \dot{t}: \check{x} \times \bar{x} \rightarrow \check{x}^{\prime \prime}\right] "$ then there is $h \leq f_{0}$ and $U \subseteq x$,
 Hence, as $p_{0} \in G$ and $f_{0} \in F$ was arbitrary such, we have proved:

Theorem 21

$M[K]:=\Delta$ 。

Corollary 22

$M[K] \equiv 2^{()}=\omega_{2}+\Phi$.

Postscript

The model $\mathbb{M}[K]$ constructed above has the following model-theoretic property. In $\mathbb{M}[K]$, there is a countable first order theory T with a two-cardinal model of type $\left(\omega_{1},(\omega)\right.$ but no model of type $\left(\omega_{2}, \omega_{1}\right)$, and yet any model of type $\left(\omega_{2}, \omega_{1}\right)$ (with a countable language) has an elementary substructure of type ($0_{1},(0)$. These two properties are, in a sense, precisely oounter-intuitive from a model-theoretic point of view; ie. one usually regards it as "almost true" that every countable T with an ($\mu_{1},(\omega)$ model has an $\left(\omega_{2}, 0_{1}\right)$ model and as "almost false" that Δ holds. (The first of these two is, of course, provable under the assumption either that ω_{2} is accessible in $\left[\lceil A]\right.$ for some $A \subseteq 0_{1}$, or else that $2^{i "}=w_{1}$.)

References

1. K.J. Devlin. Aspects of Constructibility. Springer: Lecture Notes in Mathematics, Vol 354 [1973].
2. K.J. Devlin. Order-Types, Trees, and a Problem of Erdös and Hajnal. Submitted to Periodica Hungaricae [1973].
3. K.J. Devlin. Some Weak Versions of Large Cardinal Axioms. Annals of Math.Logic 5 [1973], pp 291-325.
4. F.R. Drake. Set Theory: An Introduction to Large Cardinals. North Holland [1973].
5. P. Erdös \& A. Hajnal. Unsolved and Solved Problems in Set Theory. To appear.
6. T.J. Jech. Lectures on Set Theory. Springer: Lecture Notes in Mathematics, Vol 217 [1971].
7. W.J. Mitchell. Aronszajn Trees and the Independence of the Transfer Property. Annals of Math. Logic 5 [1972] pp 21-46.
8. J.H. Silver. The Consistency of Chang's Conjecture. (Unpublished, as far as we know.)
(Page 5.) Strictly speaking, this result is due jointly to Mitchell and Silver. However, most of the proof is due to Mitchell. What Silver actually proved was the analogue of our Theorem 16.
