INTERSECTION PROPERTIES OF BALLS IN COMPLEX

BANACH SPACES WHOSE DUALS ARE L, SPACES

OTTE HUSTAD

INTRODUCTION., In the paper [10] L. Nachbin discovered
and exploited the basic connection that exists between intersection
properties of balls and extension properties of linear operators.
This connection has been most strikingly revealed in the paper [8]
by J. Lindenstrauss. For the aim of the present work, we want to
exhibit the following result of that paper: We say with Lindenstrauss

that a normed space A has the n,k intersection property if for

every collection of n balls in A such that any k of them have
a non void intersection, there is a point common to all the n

balls. If A has the n,k 1ntersection property for any n > k,

then A has the finite k intersection property. It is then
proved in [8, Theorem 6.1 and Theorem 5.5] that for a real
Banach space A, the following three properties are equivalent.
(1). The dual A* of A is isometric to an L, space.

(11) The space A has the 4,2 intersection property.

(1ii) For any 3-dimensional normed space Y and any U4-dimensional
normed space X > Y such that the unit ball of X 1s the convex
hull of the unit ball in Y and a finite number of additional
points, there exists for every linear operator T: Y ~ A a norm

preserving extension T: X » A. .

We remark that it is essential in this characterization that
the space A 1s a real Banach space., Already the space € of all

complex numbers shows that (ii) can not be valid in the complex case.



The starting pecint of the present work was the observation
that it suffices in property (iii) to take just one space Y and
just one space X, namely X = l:CR) and Y = {(xj)e Il:GR);
Exj = 0}. In fact, what we observed was that a normed space A
has the n,2 intersection property if and only 1f every linear

operator T from the space

n
H'(R) = {xy) €1"@): ¥ x, = 0}
1 .j=1 J
intoc A admits a norm preserving extension %: l?GR) + A, (see
Corollary 1.11). With this observation at hand, we define for a

given integer n > 1 that a complex Banach space A 1is an

E(n) space (where E stands for extension) if every linear

operator T from the space

Zj = 0}

ne-—s

HY(E) = {(z;) €1](0): J

into A admits a norm preserving extension T 1%(e¢) + A. And
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if every T: Hn(C) + A admits for any € > 0 an extension
T: 1"(€) » A such that |T| < [|T|] (1+e), then we call A an
. l

almost E(n) space. Finally, if A is an E(n) space for any n > 1,

then we say that A 1is an E space, and similarly we define an

almost E space. We can then formulate our main result (see Theorem

4,9) as follows: If A 1s an almost E(7) space, then the dual
A* of A 1is isometric to an L; space. And conversely, if the
dual of A 1is isometric to an L, space, then A 1is an E space.
For the proof of this result, the followiling intersection property
of balls has been very usefull: A finite family {B(aj,rj)} of
balls (we denote with B(a,r) the closed ball with center a and

radius 1r) has the weak intersection property if for any linear




functional ¢ with norm < 1, the family {B(@(aj),r )} of balls

in ¢ (or in R) has a non empty intersection. We prove

(Theorem 4.9) that the E spaces are Just the complex Banach spaces
where any finite family of balls with the weak intersection property

has a non empty intersection.

Every finite family of balls such that any three of them have
a non empty intersection will have the weak intersection property.
This is a consequence of the Helly theorem on intersection of
convex sets, but it also follows from the description of the extreme
points of the unit ball of Hn(m) given in Theorem 3.6. The converse
is not valid. 1In fact, we get the most important example of fami-
lies with the weak intersection property as follows: Let A, X
and Y Dbe normed spaces with Yc X, let x € X N Y and let
T: Y+ A Dbe a linear operator with norm < 1. Then any finite
subfamily of the family {B(Ty,|x-y|): y € Y} has the weak inter-
section property (see Lemma 2.1), whereas it can happen (we give
an example in section 5) that three balls from this family have an
empty intersection. These facts explain on the one hand why we are
able to get extensions of compact operators into an E space (Theorem
2.3). On the other hand, they clearify why such extensions have
not been established for spaces that have the finite 3 intersection
property. We show (Corollary 4.7) that every E space has the
finite 3 intersection property. It is an unsolved problem whether
the converse is valid.

The present work leans heavily on the paper [8]. It is a

pleasure at this point to acknowledge the great influence of that

fundamental memoir on the paper at hand.



NOTATIONS AND PRELIMINARIES. We will use the following

notations.

the set of all integers n > 1.

the set of all real numbers.

N:
R:
C: the set of all complex numbers.
K: either € or IR.

{

el,ooo,en}: the standard base in I".

zZ = (zj): the generic element of X",

n
B? = vK) = {z €X": ] =z, = 0}.
j= Y
We let r = (rj) € R" denote a multi-radius which means that
ry > 0, J = 1,°s¢,n. On K" we introduce a norm | "r defined by
n

Iel, = L l2gley

and we let (K",|l "r) denote the space K" equipped with the norm
I |.- The notation =", | l.) has a similar meaning. Observe
that if r = (1,°°+,1), then ", || ”r) is just the ordinary
1?GK) space., We let A denote a complex or real normed space,

and we denote the norm in A with | ||. As noted in the introduc-
tion, B(a,R) denotes the closed ball in A with center a and
radius R > 0, that is Bf(a,R) = {p € A: |p-a|| < R}. When deemed
necessary, we shall also use the notation BA(a,R) for this ball.
An operator will always be a bounded linear operator. We follow
[3,p.94] and say that a Banach space B 1is a gzlggggg if for
every normed space Y and every normed space X > Y there exists

for any operator T: Y +- B a norm preserving extension T: X » B.

We say that a Banach space is an L; space if it is an L;(u) space

for some measure uw. It was shown by A. Grothendieck [6] that if
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~ *
A 1is a real Banach space, then the dual A of A 1is isometric
* %
to an L, space if and only if the bidual A of A 1is a f?l
space. It follows from results of S. Sakal [11] that this theorem

is also valid in the case of complex Banach spaces.

§ 1 EXTENSION OF OPERATORS DEFINED ON (H", || "r)'

In the first part of the present section we show how extension
properties of a linear operator T: (H", | Hr)+ A can be expressed
by iIntersection properties of n balls In A. We use this result
to give a quantitative criterion for n balls in A to have the
weak intersection property (as defined in the introduction). In
particular, we get a quantitative condition for n balls in € to
have a non empty intersection. We finish this section with Propo-
sition 1.13, which states that if A 1s an almost E(n)space, then any
family of n balls in A wlth the weak intersection property has

almost a non empty intersection.

Lemma 1.1. Let A be a normed space over XK, 1let n > 1

be an integer and let 1r = (rJ) be a multi-radius. Let ¢ > 0 and

let a;,***,a_€ A. The linear operator

n
n n
T: (H X), || lk) > A (ZJ) + J§1 zyay
admits an extension T: (K, || "r) +~ A satisfying

(1.1) ITh < [Tl C(1+e)

n
if and only if the family {B(aJ,HTH(1+e)rj} has a non empty
J=1
intersection,



Proof. Assume that a € A satisfies

(1.2) la - ayll <lITll(A+e)ry 5 3 = 1,000 ,m.
Let the operator T be defined by
~ n
n . > _a).
T: (X ,] "r) A: (zJ) 321 zj(aj a)

Then T 1is an extension of T, and it follows from (1.2) that

if z € X", then

~ n
Izl < 1 lz,] la,-al< [TliCr+e)] 2] .
521 J J r

Hence (1.1) is valld. Assume conversely that T admits an

extension T: (K ,| "r) + A satisfying (1.1). Put a = a, - Te,.
Then
~ n n
(1.3) T(z) = ) zj(aj-a) s z €eXK .
3=

For any k = 1,¢es,n, we have "rilekﬂr = 1. It therefore follows

from (1.1) and (1.3) that

Io2 (a-a)ll = ITCegd ol < Izl < lizlicase.

This means that a belongs to the intersection of the family
n

{Bla [T (1+edr,)} .
J 37421

Proposition 1.2. Let A be a normed space over X and let

e > 0, Let_ n € N and assume that r = (rj) € R® 4is a2 multi-

radius. Then the following two properties are equivalent.

(i) Every linear operator T: (E"(X),] “r) + A admits an extension

T: CKn," l,) » A such that T < IT]iC1+e).



(11) 1If a1,°**,a €A satisfy the condition

n n
. n
(*) ||j;1zja3| < j§1|zj|rj ; z € H (K),
then
n
(1.4) n B(aj,(1+e)rj) 9.
J=1

Proof., (1) =» (11). Assume that a sttcsay € A satisfy

the (*)-condition. This means that the linear operator

: a > : - 5
T: (H X),[ )~ A : (zj) jz1zjaJ

has a norm ﬂT“ < 1. It therefore follows from Lemma 1.1 that

(1.4) 1is satisfied.

(i1) = (i1). Let the linear operator T: (HnGK)," "r) +> A
be given. We can and shall assume that T # 0. Put ajn= T(ej-el);
J=1,°0e,n and let =z € B ®). From the equation =z = .2123(63"61)
we get Tz = % z.aj. Hence in order to prove (1), it g;, by
Lemma 1.1, su%%lcient to prove that the family {B(aJ,"ﬂ|(1+e)rj)}JS1
has a non empty intersection. Let z € H'(K). Then

n . ) -
Izl eyl = ATl T2l < el ..

This means that the set {ﬂTIl-laJ :J =1,°+°,n} satisfies the (*)-

condition. Hence there exists an a € A such that

a - "T"'laj” < (1+e)rJ : J = 1,e0°,n.

It follows that a||T|| belongs to the intersection of the family
{Ba,,|T|(1+e)r )} .
J J J:1



Comment. If the family {B(aj,rj)}jg1 has a non empty inter-
section,then the (*)-condition in Proposition 1.2 1is always
fulfilled. 1In fact, if a € A satisfies Ha-aj Il < Ty j=1,eee,n,
then we get for any =z € HnCK)

n n n
I Lzl 1L ytemal < L Lzl

Corollary 1.3. A finite family {B(ujrj)}jj1 of balls in K
has a non empty intersection if and only if
n n n
(1.5) IJ§1 zjujl < J§1|Zj|rj , z € H (K)

First proof. By the Hahn-Banach theorem, the property (i) in

Proposition 1.2 1is fulfilled for any n € N and with € = 0.

Second proof. We think it is of some interést to give a

proof independent of the Hahn-Banach theorem. In fact, for the case
K = €, such a proof, combined with the Helly theorem for an infinite
family of compact convex sets, can be used to give a direct geo-
metric proof of the complex Hahn-Banach theorem (confer section 2).
The case XK = R is easily handled. Indeed, let k,l1 € {1,¢°¢,n},.
Then, if we choose z = e -e; 1in (1.5), we get luk-ull ST trg.
Hence any two of the n balls have a non empty intersection. Since
R has the n,2 intersection property, it follows that the whole
family has a non empty intersection. Let us now assume that IK = (.
We have to show that (1.5) implies that the family {B(aj,rj)}j:1

has a non empty intersection. By the Helly theorem (see e.g.[5]),

we can and shall assume that n = 3. PFirst we want to verify the



following statement: Let a,b,c € € be given. Assume that ¢
is between a and b 1n the sense that Arg.a < Arg.c < Arg.b
and Arg.b < m + Arg.a. Then there exist complex numbers u,v

such that u + v = 1 and such that

lua + vb + c| = |ufa] +|v[p] + |e].

In fact, putting o = Arg.a, B = Arg.b, vy = Arg.c, it suffices

to choose
_ sin(B-vy) _i(y-o) . _ sin(y=-a) _i(y-B)
u = sin(g-a) € ’ vV = sin(B=a) €

As above, we get fof any k;l € {1,2,3} that |uk-u1]§_rk+rl.

In particular, the intersection S = B(u,;,r;) nB(u,,r,) is non
empty. We have to prove that r; > dist(us,S). Let aq1 and q:
be the two points in € which satisfy the equations Iul—ql =),
luz-q| = r,. (The case that no such q exists is trivial). There

are two possible cases: (i) For some j € {1,2}, dist(u,,S) <

|u3-uJ| - Ty (11) For some J € {1 2}, dist(u,,S) = ius-qJ .Since

|u3-ujl- r'j < r3, the first case 1s settled. As for the second case,

we observe that then ug-qJ 1s between ¢ -u, and - qJ-u2 in the

J

sense defined above. Hence we can find complex numbers =z ,z such
1 2

that Zi + z2 = 1 and such that

IZI(QJ'UI) + Zz(qj-uz) +u; -q | =

J
= 'ZII IQJ'ull + IZZI lqj-u2| + 'u3-qj

Using the definition of ay, we get from this eguation and from (1.5)

lzy|ry + Izzirz + Iua-qjl = lzlul + Z,up; - Uj|
+ +
< |zl|r1 |zzlr2 r,

Hence dist(us,S) = Ius-qjl < rs.
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n
Corollary 1.4. A family {B(aj’rj)}1=1 of n balls in a

normed space A has the weak 1lntersection property (as defined in

the introduction) if and only if

(%) I ? z,8,| < ? lz lr, ; z € H"

E3
Proof. Assume that (%) 1s satisfied. Let ¢ € A and assume

that ||| < 1. It follows from (*) that if z € H", then

n n

n
L, zgetepl <ol I Legal < 1 Izley.

n

Thus we conclude, by Corollary 1.3, that the family {B(w(aj),rj)}
J=1
has a non empty intersection. Assume conversely that the family

{B(a )} has the weak intersection property. It then follows

3773
from Corollary 1.3 that for any ¢ € AY with lell < 1, and for any

zZ € H

n n n
,w(JZ1 jagll = g zj¢(aj)l < J§1|zjlrj .

By the Hahn-Banach theorem, we conclude that (*) 1s fulfilled.

Definition 1.5. A family 5?;{B(aj,rj)}J€J of balls in A

has the almost intersection property if for any ¢ > 0 the family

g J+e)}J€J

empty intersection, then we say that .f' has the intersection

{B(e,, has a non empty intersection. If 5Z has a non

Qrogerty.

The almost intersection property is stronger than the weak

Intersection property. In fact, we have the following



n

Lemma 1.6. If a family {B(aj,rj)} has the almost

J=1
intersection property, then it has the weak intersection property.

Proof. It suffices, by Corollary 1.4, to show that:the (¥*)-

condition is satisfied. Let =2z € g and let € > 0 be given.

Choose a €A such that
-l
la-a,ll < rytelzl] J o= 1,000,n.

(We can clearly assume that 2z # 0). It follows that
n n n p
= - + = +
1Lzl =15, gtegmell < Jleglerpdian e v o

Since this holds for any € > 0, we conclude that the (*)-conditibn

1s fulfilled.

For a complex Banach space A we defined in the introduction
what it means that A is an E(n) space or an almost E(n) space.
In the case of a real Banach space we shall adhere to the analogous
definitions. We then have the following characterization of an

E(n) space.

Proposition 1.7. Let n € IN be given. Then a Banach space A

. n

is an E(n) space if and only if every family {B(a,,R)}j=1 of n
JIntersection property whenever it h&s the weak,

balls with common radius R has the¥intersection property. And A

n
is an almost E(n) space if and only if every family {B(aj,R)}

J=1
of n balls with the weak intersection property has the almost

intersection property.

Proof., If R = 1, +this follows immediately from Proposition
1.2 and Corollary 1.4. And since the family {B(aj,R)}' has the
weak intersection property if and only if the family {B(ajR't1)}
has the same property, the general case follows from the special

case R = 1.
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We shallnow show that if the bidual A of a Banach space A
is a €7i space, then A 1is an almost E space.In fact,we shall show

that A has the following formally stronger property.

Proposition 1.8. Let A be a Banach space such that the

* %
bidual A of A 1is a 6a space. Then every finite family of

talls in A with the weak iniersection property has the almost

intersection property.

Proof. Let {B(aJ,rj)} be a family of balls in A with

Jj=1
the weak intersection property. It then follows from Corollary 1-4
that the operator
n n
T: (H,] Hr) + A: z»Jz Z42y

** 78 .

has a norm ||T| < 1. Since A is a 1, space, T admits a

_— n % %
norm preserving extension T: (K ,| ”r) - A . Let € >0 be
given. According to the local reflexivity theorem of Lindenstrauss
and Rosenthal [9, Theorem 3-1], there exists an operator
S: range T + A such that S is the identity on A n range T and
such that ||S| <1 +e. Put T =S o T. Since range T c A, it
follows that T 1is an extension of T. Furthermore,

NTl < ITH(1 +e) = |T|| (1+e). Since ||T|| < 1, we conclude from

(1+e)r,)} © has a non empty

Lemma 1.1 that the family {B(aJ, 3
. u-1

intersection.

If K 1is a convex set, we let ExtK denote the set of all

extreme points of K.

n
Lemma 1.9+ A family 9’ {B(aJ, j of n balls in the

normed space A has the weak intersection property if and only if
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5 n
(**) ||Jz1zjajll < 13 z€Ext{z€H : [z], < 1}.

(—‘
Proof. The family J has, by Corollary 1.4, the weak inter-

section property if and only if the operator
n n
T: (H,] “r) + A: (ZJ) > 321 zy2y
has a norm |T| < 1. Now the number ||T|| is the maximum of the
function z > |T(z)ll on the unit ball of (H",| | ). That unit
ball 1s, however, the closed convex hull of its extreme points.

Hence 1t follows that |T|| < 1 1f and only if the condition (**)

is satisfied.

Corollary 110 If A 1s a real normed space, then a family

n

{B(a,,r,)}
SR R
perty if and only 1f any two of the balls have a non empty inter-

of n balls in A has the weak intersection pro-

section.

Proof. It is well known (confer section 3) that the set of
extreme points of the unit ball of (HnGR),HIIr) consists of all
points of the form (rk + rl)-l(ek - el), where k # 1 and
where k,l1 € {1,*+¢,n}. Hence the condition (**) of Lemma 1-9
means that [la, - a;| < r +r, whenever k # 1 and k,1 € {1,++¢,n}.
But this 1s just the condition that any two of the n balls have

a non empty 1ntersection.

Comment . Another (and even simpler) proof of Corollary 1-10

proceeds as follows: Since R has the finite 2 intersection
n

J:

*
property, the family {B(w(aj),rj)} has for a given o€ A
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a non empty intersection if and only if
lota,-a)| = |o(a)) - ola))] < rtT s K,l€ {1,209,n}.

It follows from the Hahn-Banach theorem, that {B(aJ,rJ)} has
the weak intersection property if and only if Hak—alﬂ < r ot

whenever k,1 € {1,°+¢,n},

Corollary 1+11. Let n € N be given and let A be a real

Banach space. Then A is an E(n) space if and only if A has

the n,2 1ntersection property.

Proof. It follows from Proposition 1-7 and Corollary 1-10
that A is an E(n) space if and only if every family {B(aJ.,R)}J_r:1
of n balls in A with common radius R has a non empty inter-
section whenever any two of the balls have a non empty intersection.

Thls property 1s what Lindenstrauss has defined as the restricted

n,2 intersection property, and he has shown [8, Theorem 4.3] that

this property is equivalent with the n,2 intersection property.

The complex analogue of the theorem of Lindenstrausss just
referred to would be a theorem stating that in a complex E(n) space
every family of n balls with the weak intersection property has

the intersection property. The next lemma is the first step toward

a result of this kind.

Lemma 1+12. Let A be a complex Banach space and let

a s°*rsay € A. Let r = (rJ) € R® be a multi-radius and let e > O.
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Assume that

n .
(1-6) 321 B(aj,rj+ e) =0 .

Let R be a number such that R > max{rj :J = 1,000,n}. Then

there exist n elements b1’°"’bn in the unit Dball of A such

that

B(a,+(R-r,)Db

(1:7) . P

Hogs

R+ %) = ¢ .

3 37°5°

Remark. If we discard the -%- term in (1.7), then the lemma

above 1s contained (in the case of real Banach spaces) in [8 ,Prcof
of Theorem 4-§L As remarked in that paper, the basic idea of the
proof is due to O.Hanner [7]. The proof we are going to give is

Just a modification of that given in [8].

Proof. We shall construct the elements bl,-n,bn inductively.

Let j €{0,1,**-,n-1}, and let us assume that we have constructed

elements b ,eee,D in the unit ball of A such that

J

(1.8) ( 2 B( +e)) fi B(a, +(R-r, )b R+ ) = g

* a’r € h a -r - = .
peger D BT N 2

. the,
(This means, by convention, that if j = 0, then (1.8) is the saﬁavgé
«same as they
n, then (1.8) is the¥equation (1-7).)

Starting from (1.8) we shall construct an element bj+1 in the

condition (1.€), and if J =

unit ball of A such that (41.8) is valid with J+1 instead of j.

We define
J e n
(1-9) K., = (n B(a,*+(R-r )b, ,R+ =)) n B(a ,r *e) .
J k=1 k k’"k 2 Kk=j+2 k" k )
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. + i
Thus (1.8) means that KJ and B(aj+1,rj+1 e) are disjoint. By
the separation theorem, there exists a continucus linear functional
f on A with Ref # 0 and such that

d
(1-10) s = sup{Ref (x) : x € B(aj+1,rj+1+e)} < inf{Re f (x): xE:Kj}

Let S be the supremum of Ref on the unit ball of A. Then S > 0,

and for any ball B(a,ro) in A we have the equation

(1.11) r. S+ Ref(a) = sup{Ref(x) : x € B(a,ro)}.
In particular, the equation

(112) (r

+1¥¢)s = s-Ref(aJ+1)

J

is valid. Let & » 0 be a number to be fixed later. Choose

-

b € B(0,1) such that
(1.13)  Re £(-b) > 8 - &,

and put yy.q = ay.q* (R-ry )b, Let x € B(yj,.,R* 5). By the
definition of yj+1 and by (1<11) and (1.13), we get

+ £ - -
Tt follows from these inequalities and from (1.12) that

) > Ref(x-a )+ (R-r

Re f(x) < (R+ %)S + Re f(aj+1) + (R-rj+1)(6-s) z

(1-14)

-1 £

((r,j+1+ 'é' )0

)s + % Re f(a

te) )) + §(R-r

(ry4q 3+ 3+

Since it follows from (1+12) that s > Re f(aj+1), we can choose
§ so small that the right hand side of (1+14) is less than s.
With this choise of § we put b.+1 = b. It then follows from

J
(1-10) and (1-14) that
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B( +(R-r R,+~§>n1< =0,

23417 B 00 P50 3

and this 1s exactly (1.8 ) with J+1 instead of .

Proposition 1.13. Let n €N, let A be a complex Banach

space and assume that A 1s an almost'E(n) space. Then any family
of n balls in A with the weak intersection property has the

almost intersection property.

n

j’rj)}J 1 be a family of n balls in A

with the weak intersection property. Assume that there exists

Proof. Let {B(a

an € > 0 such that

D

n
(1415) n B(a,,r,+e)
g0 37

Put R=1 +max{ r, : J = 41,00e,n}, and choose, by Lemma 1.12,

J

elements D ,--o,bn in the unit ball of A such that
1

(1-16) 381 B(a, + (R-r,)b,,R+ 3) = 8.
We now show that the family {B(aJ.+(R--rJ)bJ,R)}J:11 has the weak
intersection property. In fact, let 1z € Hn(c). Then, by
Corollary 1.4,
n n n
sz1 zj(aj+(R-rj)bj)H illjg1 zjaju + “321 zj(R-rj)bﬂli
n n n
2 321lzjlr‘j + jZ=1|ZJ|(R-I'J) = JZ1IZJIR.

This proves, by Corollary 1.4 , our assertion. It follows from
Proposition 1+7 that (1+16) can not be valid. This contradiction

shows that (1¢15) can not be true,
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§ 2 EXTENSION OF COMPACT OPERATORS

From now on, every normed space will be a complex normed
space.
- We have defined an almost E space as a Banach space A
with the property that if n € IN, then every operator
T : (Hn," n1)4+ A admits for any e > 0 an extension
T . 1M 5> A such that ”5“ < (1+e)|T|. Since H” has co-

dimension 1 1in 1? s Wwe say that T is an immediate extension

cof T. In the present section we shall show that this immediate
extension property remains valid whenever T 1is a compact operator
from an arbitrary Banach space into an almost E space. From

this result, together with a theorem of J. Lindenstrauss, we get

our first main result, namely that the bidual of an almost E space

1s a 6? space.

Lemma 2+1. Let A, X, Y be normed spaces with Y c X. Let

T: Y > A be an operator, let x € XNY and let y1’°°°’yn €Y.

Then the family
By LITH Ix-yyl): g = 1,000,n}

has the weak intersection property.

Proof. Let 2z € Hn. Then

n n n n
I e R S R TP AN LIRE

Hence the desired conclusion follows from Corollary 1.4.
f\d
We shall say that a family a of balls in A has the finite

—
almost intersection property if every finite subfamily of # has
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the almost intersection property. Similarly we define the finite

‘intersection property. It was proved in [8, Theorem 4.5] that if

A 1s a real Banach space with the finite 2 intersection property,
and if gz'is a family of balls in A with the finite intersection
property, then QF'has the intersection property provided the centre
set of 607 is relatively compact. In the next lemma we prove that
if we are given such a family gr in an arbitrary normed space A,
then gz.will always have the almost intersection property. We
prove this lemma with the same "modification of radii" technique as

was used in [8] and in [2].

Lemma 2.2. Let A Dbe a normed space and let ¥ - {B(aJ,rJ)}JEJ
7
be a family of balls in A such that s has the finlte almost
intersection property. Assume that the centre set {aJ: jed} of

9? is relatively compact. Then %; has the almost intersection

property.

Proof. Let F be a flnite, non empty subset of J and let

e > 0. Then, by assumption, the set

I = n B(a +g)

F,e JEF J’PJ

is non empty. For any a€ A, we put

rF’s(a) = inf{]|x-al|: x:eIF’E}.
Then
(2.1) Ivp, (@) - vp ()] < [a-b]l 5  a,b €A

and

(2.2) B(a,rF,E(a) + 6) N IF,e £ 0 ; a€A; § >0,
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Let a € A. We then observe that if §&§ < g, then r_ . (a)>r, (a).

Since for any x €I, _ and any JEF

3

rp,c(a) <llx-al < 7 te Hlay-al,
we conclude that the limit
(2.3) ro(a) = lim r (a)

F e+0 F,e

exists. Hence, by (2.1),

(2.4) |rp(a) - rp(d)| < Ja-b] ; a,peA.
Define
(2.5) rgz(a) = sup{rF(a) : F a finlte subset of J}.

Let jJ € J and let € > 0. Then,by assumption,

B(aJ,rJ+e) n lF,e # @, and therefore rF,e(aJ) < rj+e. Hence
2.6 '

(2.6)  rplay) =7,

and so

(2.7) rgr(aj) <y

. (aj)) to the family 5?; and denote

r

this new family 5?(5). We then claim that é?kj) has the finite

We now add the ball B(aj,r

almost Intersection property. Indeed, let F be a finite non empty

subset of J, and let ¢§ > 0. Choose € > 0 such that € < § and

é
such that rF,e(aJ) < rF(aJ) t 5. It then follows from (2.2) that

P # B(aj’rF,e(aj)+ gQ nIF,Ec:B(aJ,qgr(aj)+6)n IF,G: s

and this proves our claim. Since the set {aJ:j € J} 1s relatively

compact, we can choose a sequence {Jk}k=1 c J such that



(2.8) {aJ: J €T} = {ajk: k € IN}

Let R, = r,(a, ) and let & = &(3,). Then ¥ has the
finite almost intersection property, and it follows from (2.7)

that
R1_<_r'

Ja

Inductively, we define for k > 2

R

r (as,)
k ~ "F _q Jk
and

73 o
F.=F v By ROT .

Then every 3Fk has the finite almost intersection property, and

from (2,7) we conclude that

(2.9) Rk _<_er ’ "k 1,2’ Y

Finally, we put

o 73

£,= FuiBlay ,R) : k €N},
We then note that 521 has the finite almost intersection property.
Let € > 0 Dbe given. 'By compactness, it follows from (2.8) that

there exists a natural number n(e) such that
n(e) c
(2.10) {aJ : J €J} e 21 B(ajk,H).

-
Since JQP has the finlte almost intersection property, we can find
an

n(e)

(2.11) a€ n  Blay, R *+ ).

Let J € J be given. Choose, by (2.10), k < n(e) such that
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"aj-aJk” < %. We then get from (2.11)

(2.12) ua-aJH < Ha-ajkn + Hajkﬁan <R+ %.

By the definition of Rk we can find a finite subset F of the

index set of the family &, _, such that R_< rp(aj) + f. It

follows from (2.12), (2.4) and (2.6) that

Ila-aJH < rpag,) + %—e < |rF(a3k)-—rF(aJ)| +
+ rF(aJ) + %-e g_Hajk-ajH T % €.

However, by the choice of Jk’"aJk-aJH < %. We therefore get

Ha-aJH <rytoe, J e J.

*%
Theorem 2,3, The bidual A of an almost E space A 1is

a 62 space.

Proof. It is sufficient, by {8, Theorem 2.1, proof of
(4) » (1)] (this proof is equally valid in a complex Banach space),
to prove that A has the following property: For every pair of
Banach spaces X,Y such that Y <X and dim X/Y = 1, for every
compact operator T: Y - A and for any € > 0 there exists an

~

extension T: X » A of T such that |T] < (1+e)|T|

. Let then
X,Y,T and € be given as above. We can and shall assume that
T} = 1, and that € < 1. Choose x € X~Y such that |[x|| = 1.
The operator T admits, by a basic lemma of Nachbin (see [8,
Lemma 5.2]), an extension T: X » A satisfying "%H <1+ € if

and only if
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(2.13) n B(Ty,[|x-y|(1+e)) # 0.
yeY

The family {B(Ty,HX—y")}§€§ has, by Lemma 2.1 and Proposition

1.13, the finite almost intersection property. Let M > 2 be

glven. Since the set {Ty: |ly| < M} 1is relatively compact, the

family {B(Ty,llx-yl):lyll < M} has, by Lemma 2.2, the almost

intersection property. Let R = inf{||x-y|J: y € Y}. Then R > 0.

Hence we can find an ay € A such that
(2.14) HaM-TyI < ||x-y|| + Re < |x-y](1+e); vy € BY(O,M).

In particular, if we choose y = 0, then HaMﬂ <2, Let y €Y
be such that |y| > M. Then ||x-y| > |yl - 1 and [lay-Tyll < 2+|lyll.

Hence
(2.15) Ix—YH—IHaM-TyH < (-0 Ayl +2) < (u=1)"t (m+2),

Therefore, 1f we choose M so large that (M-1)'1(M+2) <1+ ¢,

then it follows from (2.14) and (2.15) that (2.13) is valid.

Remark, The final part of the proof above l1s almost the same

as in [8, Theorem 5.4, proof of (a) = (b)].
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§ 3 THE EXTREME POINTS OF THE UNIT BALL OF (H™(€),]|| ).

The need for finding the extreme points of the unit ball in
(E™(e), || ) stems from Lemma 1.9. 1In clear contrast to the real
case, we show in Theorem 3,6 that the set of all extreme points
of the unit ball in (H(C),|| {|,) 1is "almost" the surface of that
ball. 1In general, roughly said, a point on the surface of the
unit ball in (Hn(@),ﬂ Hr) is an extreme point if and
only 1f at most three of its coordinates are different from zero. We
finish this section with some applications to ZE(n) spaces.

Pix n € N . For a given multi-radius r = (rj) e R , we

define the following hyperplane in e .

n
(3.1) H,=H,={2€¢" : g z.r, =0} .
Furthermore, we let r~!  denote the multi-radius (r;1,...,r£1) .

The following lemma has an obvious proof.

Lemma %,1. The linear map

S s (Hi_iyn H1) - (Hnyu “I') : (ZJ) - (I'EI'ZJ.)

is an isometry onto gt .

Hence, in order to find the extreme points of the unit ball
in (Y, lp) s it suffices to find the extreme points of the unit
ball in (2°_,,| lI,) .

-

Lemma 3.2. Let n > 2 and assume that z € (07, l4) has

a norm |z|; = 1 . Assume that z = %(p+q) , where p,q € ¢t

satisfy ||p[lqsllall4 £ 1 . Then there exist n real numbers
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Tireeest € [-1,+17 such that

(3.2) {pj: 37

j=1’...,n.

-

Proof. Since 1 lzlly = 2(pll4+ llally) =1 , we must have

(3.3)  laly = liolly = 7 .
Put
(3.4) @y = pj.-zj 3 4= 1,000, .

Since 2z = p+4q , we get

(3»5) Q-=Z--a- ; j

J J J 1,0.o,no

Hence, by (3.3),

n n n
N |Z-+u-| + 3 |z.—a.{ =2 =73 2|z.l <
3=1 Jd j=1 Jd d j=

<

—
.

J

I ™MB
-—

n
A - .
|z3 aJI +j£1lZJ aj|

We therefore conclude that

=2|Zj‘ ’ j=1,oco,no

But these equations tell us that every a is located on the
degenerated ellipse with foci in zj and —zj . Hence there
exist tq,...,t, € [-1,11 such that 1y = tjzj for any
J=1,00.yn ., When we combine this result with (3.4) and (3.5),
we get (3.2),

The next lemma is crucial for the development in the present

section.
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Lemma 3.3, Let n >3 and let r = (rj) € R® be a multi-

radius, For any z € ¢* and any J = 1,...y0n , we define
Rj(z) = (lzj\rrjRe zj,rjIm.zj) eIR3 ,

and we put
J(z) = {jelW : j <n and 75 + 0} .

Let =z € Hg and assume that |lz|l; =1 . Then 2z 1is an extreme
point of the unit ball of (H?,“ “1) if and only if the set
{Rj(z): j€ J(2)} is linearly independent in R’ .

Proof. Assume that 2z 1is not an extreme point. Then there
exist p,q € H? with p 4 g and with lielly = llajly = 1 and such
that 2z = 3(p+q) . By Lemma 3.2, there exist Typeeeyty € [-1,1]

such that
(3.6) {pj B F1+tj)zj s J=1,...,n .
1y = (1-t3)z
Hence
1=F (14t |z:] = 1 + 2 tslz.] .
521 i’ =1 973

It follows that

n
. O = -t . . = 2 ‘t 3 ) .
(3.7) s ER s () slz51

Purthermore, since z,p € H? , it follows from (3.6) that

n n n
0=3%r:p; =X r.:zZ; + 3 r.t.2.= t

= T .Z.
j=1 J7d j=1 J J j=1 Jd JJ jGJ(Z) J JJ
Taking real parts and imaginary parts in this equation, we get

(3.8) 0= ¢ t.r.Rez.= % t.r.Im 2. .
jed(z) J d J jeJ(z) J J J
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Since p 4 q , we conclude from (3.6) that at least one tj 40 .
Thus, by (3.7) and (3.8), the set {Rj(z) : jeJd(z)} 4is linearly
dependent in IR3 . Assume conversely that this set is linearly
dependent in IR3 , say

3.9 t.R. =0 ;
( : j€§(z) J J(Z)

where at least one 1, 4+ 0 . By dividing this equation with
max{ltjl} s, We can and shall assume that each tj € [-1,1] .

Put tj =0 if j € {1,.4.4n}~J(2) , and define p = ((1+tj)z§?;1

and q = ((1-tj)zj ?=1 « Then 2z = %(p+q) , and since it follows
from (3.9) that .g1tjrjzj = 0 , we conclude that p,q € H? .
Furthermore, sincg: by (3.9), .g tjlzjl =0, we get
n =
”P”1 =jz1(1+tj)lzjl = HZ“1 =1= ”q”1 .

Finally, since at least one tj 4 0, we must have p + q . Hencg

z can not be an extreme point of the unit ball in (H?,H ) -

Corollary 3,4. If =z € H? is an extreme point of the unit

ball in (H?,H 1) , then the set J(z) = {J: Z 5 4 0} can at most

contain three elements.

Proof., Obvious.

Lemma 3,5. Let r = (rj)62R3 be a multi-radius and let
z € H) . Let R(z) , 3=1,2,3 be defined as in Lemma 3.3.
Then the set {Rj(z) : 3 =1,2,3} 1is linearly iﬁdependent in ]R3
if and only if 2z, and 2z, are linearly independent in ¢ (when
we consider @ as a linear space over R) . And if T1Zq+ Ty2, = 0
and |z,| + |z,| > 0, then R.(z) and R,(z) are always linearly

independent in 133 .
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Proof. Since 1rqzq + TpZy + Tzlz = 0, we get
R3(2)= (r§1\r1z1+ T2y |, ~Re(rq2q+ Tp35), - In(rqz + r5Z5))

An easy calculation then shows that if Z4 and Z, are linearly
independent, then so are R1(z) , Rz(z) and R3(z) . And an even
easier calculation shows that if r,zy + roz, = 0 and
\z1l+ |22| > 0 , then R1(z) and Rz(z) are linearly independent.
Conversely, if z1' and z, are linearly dependent, then we can
assume that there exists a real number s such that Zo = SZq .
Since R3(z) =0 if ry + r,s =0, we can and shall assume that
ry + 158 3 0,
If rqt ro8 > 0, put

ty = -rpys- rBlsl, ty =Ty + T3, By = r3(r1+ r2s)-1(rzs-r1\s\).

If ry+r1y8 <0 and v, 4 rs , put

ty = r3|s| = Ip8, Ty =Ty - Iy, ts r3(r1+ TQS)—1(T1\S‘— r,s).

And if T+ o8 < 0 and Ty =Tz, put

-1
tp =1, % =0, t3 = r3(r1+-r23)
In any of these three cases, we get

t1R1(z) + tQRZ(z) + tBRB(Z) =0 .

Theorem 3.,6. Let n >3 and let r = (rj) e R® be 2 multi-

radius. Then the set of all extreme points of the unit ball in

(H2,]| |l4) consists exactly of all points z of the form
r 1
(%3.10) z = uk(rmek-rkem) + ul(rmel-rlem) ,

where k,1,m € {1,...,n} are mutually different, and where the
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complex numbers Uy and uq satisfy the equation

(3.,11) rm(luk|+ \ull) + \rkuk+-rlu1| =1,

and where furthermore U, and uy either are linearly independent

or rpu + rqug = o .

Proof. Let 2z ¢ H? be an extreme point of the unit ball in
(H?,n l4) . Then |lz||; = 1, and there exist, by Corollary 3.4,
three different elements k,l1,m ¢ {1,2,...,n} such that 25 = 0
whenever j is different from k,1 and m . We can and shall
assume that 2, and z, are different from zero. Then

z, = —r;1(rkzk+ r1z,) and hence

N
|

-1 _
= 28 + 2169 - T (rkzk+ rlzl)em =

_ -1 -1
=rp zk(rmek-rkem) + Ty zl(rmel-rlem) .

1 1

If we let wuy = r 'z, and u; =T z, , the equation above gives

us (3.10), and (3.11) follows from the equations.
T = |z |+ |zq |+ }%n{;§rm(\uk|+|ul|)+ |rkuk4jrlu1| .

Assume that Tl + ToUq # 0 . This means that Zp, 4 0 , and hence
J(z) = {j: zj4=0}= {ky1,m} . It follows from Lemma 3,3 that
Rk(z), Rl(z) and Rm(z) are linearly independent, and we there-
fore conclude, by Lemma 3.5, that z, and zy7 are linearly inde-
pendent. Hence Uy and u; are linearly independent.

Assume conversely that z is given by (3.10), and that the
requirements following (3.10) are satisfied. Then 1z € H? , and
it follows from (3.11) that |z||; = 1 . Therefore, in order to
prove that 2z 1is an extreme point of the unit ball in (H?,H H1) ’

we have, by Lemma 3,3, to prove that the set {Rj(z): 3€J(z)} is
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linearly independent in R’ . TNow {k,1} < J(2) < {kx,1,m} , and
we note that the requirements posed on Uy and Uy imply that
Zy and Zq either are linearly independent or T2 t T2 = o .
Since this equation is satisfied if and only if J(z) = {k,1} ,

we get, by Lemma 3.5, that {Rj(z): j€J(z)} is linearly inde-

pendent in IR3 .

Corollary 3.7. A finite family of at least three balls in

a normed space A has the weak intersection property if and only

if any subfamily of three balls has the weak intersection property.

Proof. We have only to prove the if-part. Assume therefore
that {B(aj,rj)}jil.] is a family of n balls in A such that
any subfamily of three balls has the weak intersection property.
. By Lemma 1.9 we have to prove that = zjajH & 1 whenever =z is
an extreme point of the unit ball in (H",|| l.) . But if 2z is
~such a point, then it follows from Lemma 3,1 and from Theorem 3.6
that the set J(z) = {j: zj=¥0} can contain at most three elements.

By assumption, we therefore get

|= zjaj“ <zl =1.

Comment. The Corollary 3.7 can also be given a simple proof
with help of the Helly theorem on intersection of convex sets.,
On the other hand, if we start with Corollary 3.7 and choose
A =@ , then we get, by Corollary 1.3, a proof of the Helly theorem
(but only for olosed balls in €). We find this connection bet-

ween Theorem 3.6 and the Helly theorem to be of some interest.
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Corollary 3,8. Let n > 3 and let A Dbe a Banach space.

Then A is an E(n) space if and only if for any Biyeserd, € A

there exist a € A , k,1,m € {1,...,n} and u,v € € such that

( lu| + |[v| + |jutv| =1,
(%3.12) < and ,
] mgx{”a-aj“} = |lu(ay-ay )+ v(aq-a_)|| .

J

If (3.12) holds, then either

e

(3.13) mﬁx{ la-ay I3 = rin?:jc{%llai-ajll}
or
(3.14) mﬁx{ﬂa-ajﬂ} = |la~ay |l = |la-aq|| = [a-a | .

Proof. By Proposition 1.7, the space A 1is an E(n) space
if and only if for any a1,...,én € A there exists a € A such
that ‘

m?x{“a—ajn} < “TH d max{ ||Z zjajﬁ:zeHr1 and |z|; <131 .
But the maximum on the right hand side of this inequality is attained
in an extreme point of the unit ball in (Hn,H H1) (confer the

proof of Lemma 1.9). Hence it follows from Theorem 3,6 that there

exist indices k,1,m and complex numbers u,v with

ful + vl + |u+v] = 1 such that

hal

u(ay~a )+ v(ag-a )|l .

Now we observe that if a € A and if 2z € HY , then
Iz zjajl = |z zj(a—aj)“ < =4 m?x{na—ajﬂ},
Hence we always have

(3.15) |7 < max{fla~all} ; ach .
o d
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Thus we have proved the first statement of the corollary. As for

- the second statement, we note that if wu,v € ¢ , then

lu(ay-a,)+ v(ag-a) | < lulla-al + Ivijag-a] + |usv|lla,-a] <

< (ul+ v+ jusv]) max{na-—ajlz j=k,1l,m} .

Hence it follow from (3%.12) that if u.ve(u+v) £ 0 , then (3.14)
must be valid, And if w.v.(u+v) = 0 , then it follows easily

from (3%.12) and (%.15) that (3,13) is true.

Comment. The equations (3.13) and (3.14) correspond to

classical properties of triangles in the complex plane.

§ 4 THE CHARACTERIZATIONS OF THE E SPACES.

In the present section we show that a Banach space is an E space
if and only if its dual is an L, space. The main step in order
to provwe this equivalence is the proof of Lemma 4.%. This lemma
says (though we have not stated it in this way) that an almost
E(n+1) space is an E(n) space. Once we have established this
result, the stated characterization follows from the results of
section 1 and section 2,

Let n > 2 and let gfz {B(aj’rj)}j21 be a family of n
balls in A with the weak intersection property. If a € A,
then there exists R > 0 such that the family Fu {B(a,R)} has
the weak intersection property. In fact, if 2z € ¢h , then it

follows from the identity

_ =1 -1
¥ 78y = E.(zj n ' ¢ zk)a. +n (% zk); a.
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and from Corollary 1.4 that

lz z

-1
Bagay - (@ zpal < Blagley ¢ I oyl Qe @ T o).

Hence
R=llall + o7 (2 v, + 12 a,])
g 4 Ty
wlll have the stated property.
We define
(4+1) Rg.(a) = inf{R > 0 : ¥u {B(a,R)} has the w.i.p.}

(here w.i.p. stands for weak intersection property). We note that
if A is a real normed space, then, by Corollary 1.10,
R_(a)-= {lla-a,| - »,}.
?() maxj_ll 4=z
In the complex case, the function a + R_(a) 1s much more involved.
However, in the next lemma we show that it has an important

continuity property.

n
Lemma 4.1- If the family QT; {B(aj’rj)}j=1 has the weak

intersection property, then the function
3?52 A->TR.a » %gja)
has the following continuity property : For any € > 0 there

exlsts a 6 > 0 such that if a € A satisfies
"a'aJ" _<_I'3 + 4, J = 100,03

then Rg—(a) < €.
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Proof. It follows from Corollary 3.7 that for any a € A

Rgz(a) = max{ﬁ%/(a):: Hc ¥ and card H- 23,
We can therefcre, without loss of generality, assume that n = 2.

Since gr-has the weak intersection property, it follows that

(4.2) la ~al]j< r +r.
1 2'— 1 2

For any a € A and any complex numer a # - 1 we define

(4.3) f(a,u) = Ila1 - a+ (u+1)'1(a2 -al)H - |u+1l-1(|u|r1 tr)).

We then claim that

(4.4) R__(a) = max{O,supfka,u)}.

5r- u#z-1
R
In fact, by Corollary 1.4, the family gfu{B(a,R)} has the weak

intersection property if and only if

2
(4.5) "Zl(al-a) + Zz(az-a)H -lzllrl-lzzlrzilzl+zle, z€ €.
Therefore, if (4.5) holds and if we choose 2 = u # - 1 and
22 = 1, then we get
(4.6) sup f(a,u) < R,
uz-1
and thus

max{0,sup f(a,u)} < R_(a).
u#~1 - F

Assume conversely that R > 0 satisfies (4.6). Letting |u| tend
to infinity, we get IIaI-aH-r1 < R; and this is the inequality (4.5)
with z = 1 and z, = 0. Since (4.2) implies that (4.5) is always

satisfied when z + z, = 0, we conclude that (4.6) will imply (4.5).
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Hence, if sup f(a,u) > 0, then 0 < Rg?ia) < sup f(a,u), and if
u#-1 : u#-1

sup f(a,u) < 0, then 0 < Rgr(a) < R for any R > 0. This proves
u#-1 - - -

(4.4). Therefore, in order to prove the lemma, we have to verify
the following statement.

(U) For any € >0 there exists a § > 0 such that if

a €A and |a-a,| <r, +8, J =1,2; then f(a,u) <e for

LIRS

any'iuve e~{-1}.
We note that it follows from (4.2) that
(4.7) f(a,u) < Ha-alH + |u+1|'1(1—|u|)r1, ‘a € A,

Now, given € > 0, there exists a K > 0 such that if |u| > K,
then

|u+1| (1-|u|)_~’;-1 +—2—r—l'.

Therefore, if a € A satisfiles "al—a" <r o+ % and if |u| > K,

then, by (4.7),

; £ - £y =
fa,u) < o ot r1( T+ 2r €

It 1s therefore, by a compactness argument, sufficient to prove (U)
locally. At this point we observe that if a € A and if u #-1,
then

(4.8) f(a,u) §_|u+1|'1(|u|(Hal-aH-r1) * la,-a]-r,).

Therefore, if & > 0 is given and if

(4.9) la-a, |l < r +s, J=1,2;

J
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then for any u # -1
-1 -
(4010)  fla,u) < [urt|™ (Jul+1)6 < s(1+2|u+1|™ 1),

Let uOEGJ\{-ﬂ and let € > 0 Dbe given. Choose

§ = 8u) = §|uo+11(|u0|+1)“. We can then find,by (4.10), a
nelghbourhood V of ug such that if u€V and if a€ A satisfies
(4.9), then f(a,u) < e. It follows that the proof of (U) will be

finished, once we have proved the following statement.

(Ul) For any € > 0 there exists a § > 0 and a neighbourhood V
of -1 such that if ”a—aJH LR P 1,2; then f(a,u) <ce
whenever u €V~{-1}.

This statement shall first be proved in the case where (4.2)
1s a strict inequality, that 1s 1in the case where
(4.11) la,-a,ll < r +r,.
By (4.3), we get for any a€ A and any u€C~{-1}

(4.12) f(a,u) < |la,-all + [ut1| " (Jla,-a,)|-|u]|r,-r,).

Let t = 2(r,*r,-Ja,-a,|). Thus (4.11) means that t > 0. Hence

there exists a neighbourhood V, of -1 such that
(4.13) la,-a,l|l-r,|lul-r, <-t, u€ev,.

Define
V= {uev,: |ut1] <t(r,+1)7 "},
Then V 1s a neighbourhood of - 1. Let a.eB(al,rl+1) ‘and

let u€ V~{-1}. It then follows from (4.12), (4.13) and the

definition of V that
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fla,u) <r +1-t|ur1|"' < 0.

Therefore, in the case |la,-a,|][<r +r,, we have proved a much
stronger statement than (U1)' Hence it remains to prove (Ul)

in the case where we assume that
(4.14) la,-a,ll= r +r,.

In this case we notlce that the inequality f(a,u-1)<e 1is

egulvalent with the inequality
(4.15) la,-a-u"*(a,-a,)ll< e +|u] " (Ja,-a,ll+r, (Ju-1}-1)).

Thus, if a€ A satisfies (4.9), then 1t follows from (4.10)

that for any u # 0
(4.16) lla,-a-u""'(a,-a )l <s(1+2|u| ")+ |u| "' (|a,-a,|[+r(lu-1]-1)).
Let t€<0,1], then we have for any u # 0 and any a€aA
Hal-a-(tu)"(al-az)"i"al-a-u'l(al-az)”+(t"1—1)|u|'1“al-a2”.
Hence, 1f u satisfies (4.15), then
(4.17) Hal-a-(tu)-l(al-az)"ie+Itu|-lﬂax-a2"+|u|-lrl(|u-1|—1) =

se+[tul ™ (2, -2l +r, (Jbu-1] 1))+ &

£ o (Jul 7 (Ju-1]-1) = [tu] 7 (Jeu-1]-1)).

Therefore, if we can make the last term on the right hand side of
(4.17) small, then tu will satisfy the inequality (4.15), say

with 2e¢ 1instead of €, whenever it is satisfied by u.

We shall therefore have need for the following simple
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Lemma 4.2. For every €, > 0 there exists a § > 0 such

that 1f u is a complex number with |u| = §, and if t€ <0,11,

then

(4.18) ~‘Iul"(|u-1|-1)—|tu|'1(ltu-1|-1)' L€y

Let us assume that Lemma 4.2 is proved. Let € > 0 be given.

Let €, = 3 er‘l"'1 and choose &, 1in accordance with Lemma y,2.
Let & = 3¢ (1+ éL)'l, and let a€A satisfy (4.9). Choose
1

uecC such that |u| = §,. It then follows from (4.16) that
ﬂal-a-u"l(al-az)ﬂi6(1+26:l)+ lul " (la,=a,ll+r, (Ju-1]-1))
= 5+ Jul7 (e, -a,l+r, (Ju-1]-1)).

This means that u satisfies (4.15) (with % instead of ¢€).

Let t€<0,1]. We then get from (4.17) and (4.18)

£

- € -1
lla,-a-(tw) ™! (a -a,l < s+ tul T (Ja, —a, [+, (Jtu-1]-1)) + 5 .

We have therefore proved the inequality (4.15) for any u€ € such
that O0<|u|l <§, and for any a€A satisfying (4.9). Thus we

have proved the statement (U,).

Proof of Lemma 4.2. We define the function h on

[-m,7] x <0,1] Dby the formula
n(e,t) =t~ (|te®-1]-1)

It is sufficlent to prove that h 1s uniformly continuous, and
hence 1t will suffice to prove that h admits a continuous extension

to [-m,m] x[0,1]. But we have
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VIFE(E-2cos8) 4 _ -
h(e,t) = Z cos 1 - t-2cos8 ,

VIFETE=-2cos0)" +1

and it is therefore immediate that h admits a continuous

extension to [-m,m]x[0,1].

The next lemma 1s cruclal for the characterization of the

E spaces.

Lemma 4.3. Let n€IN and let A be a complex Banach space

with the property that any family of n+1 balls in A with
the weak intersection property has the almost intersection property.
Then it is true that any family of n balls in A with the weak

Intersection property has the intersection property.

Comment., The hypothesis of this lemma concerns families of
n+1 Dballs, whereas the conclusion is about a family of only n
balls. In the real case, Lindenstrauss [8] was able to improve a
result of Aronszajn and Panitchpakdl [2] and could show that the

(%ﬁ n+1 balls. It follows from Proposition 4.8 that
conclusion above is valid for a familyYif n > 6, then this stronger

conclusion is also valid in the complex case. It is probably true
that this holds for any n > 1, but we have not been able to prove

this.

n
Proof. Let gz; {B(aj,rj)}J=1 be a family of n balls in A

with the weak intersection property. If we choose € = 3 1in Lemma

4.1, we can find a §, < 2 such that if a€A satisfies

(’4.20) “a—a:j“irj"' 51, J = 1,00,n;

then Rgf(a) <%. Since % nhas the weak intersection property, it

follows, by hypothesls, that there exists an element a(1)€1l

satisfying (4.20). Hence Rgg(a(1))< 3, and so the family
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930{8(3(1),%)} has the weak intersection property. Choosing

e = 2% 1in Lemma 4.1, we can find a §, < 2”% such that if

a€A satisfies

(4-21) ”a-aJ"f_r + 82’ j:1’oca’n;

J

then Rgz(a) <272, Since QEU{B(a(1),%)} has the weak inter-

(2)€1X

section property, we can, by hypothesis, find an a such

that ||a(2)—a(1)n_i% and such that a2’ satisfies (4.21).

Let us assume that we have constructed a(1),---,a(k)€.A and

positive numbers 61"'°’6k such that

(1) &M C et s 1= 1,000 k-1

1413
(4.22)

la*?

(11) - ajﬂ STyt8 3 J = A,eeeung 1= 00k,

Let us also assume that every Gi is less than 2~ ° and that

-1

6y is chosen such that if € = 2 in Lemma 4.1, then the

conclusion of that lemma is valid with § = § In particular,

il
we assume that the family 5ZG{B(a(k),2'k)} has the weak inter-
section property. Choose 6k+1< 2-k-1 such that the conclusion
of Lemma 4.1 1is valid when e = 2°°' and with & = § 4. By
+
hypotheslis, there exists an a(k 1)6 A such that
(k+1) (k) -k
B -2 2w,
and
(k+1)
la - aj”irj + ‘Sk+1’ J = 1,000,n.

We have therefore, by induction, constructed a sequence

{a(i)}i___1 c A and a sequence {61} of positive numbers such that

6, <277, 1=1,2,--+, and such that (4.22) is valid for any i€ N.
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o0
In particular, we get, by (4.22) (1), that the sequence {aJ}J=1
(1)

is a Cauchy-sequence. Hence a = lim a exlsts in A. From

{0

(4.22) (11) we then get

aca,ll <r, +1im 6, = v, ;3 4 = 1,°c%,n.
II J"— J PR i J’ E) F)
This shows that a belongs to every member of the family 5Z.

Corollary 4.4, Assume that A fulfills the hypothesis

of Lemma 4.3. Then every family of n balls in A with the

almost intersectlon property has the intersection property.

Proof. This follows at once from Lemma 1.6 and Lemma 4.3.

Corollary 4.5. Let A be a complex Banach space such that

* K
the bidual A of A 1is a E?? space. Then every finite
family of balls in A with the weak intersectilon property has the

intersection property. In particular, the space A 1is an E space.

Proof. By Proposition 1.8,the hypothesis of Lemma 4.3 is

fulfilled for any n € N. Hence the desired conclusion follows from

Lemma 4.3 and Proposition 1.7.

Corollary 4.6. Let n €IN and assume that the complex

- Banach space A 1s an almost E(n+1) space. Then every family of
n balls In A with the weak iIntersection property has the inter-

section property. In particular, the space A 1is an E(n) space.

Proof. By Proposition 1.13, the hypothesis of Lemma 4.3 is
fulfilled. Hence the statement follows from Lemma 4.3 and

Proposition 1.7.




- Lo -

Corollary 4.7. Let n >3 and let A be an almost E(n+1)

space. Then A has the n,3 intersection property.

Proof. Let 95 be a family of n balls in A such that any
three members of gf have a non empty intersection. It then follows
from Corollary 3.7 that 23' has the weak intersection property.

Hence g? has, by Corollary 4.6, the intersectiorn property.

Let k > 1 Dbe an integer. We say that a Banach space A has
k .
the C, property if for any family {B(aj’rj)}j=1 of k balls in A
with a non empty intersection there exists for any € >0 a 6 > 0

such that if
k
a € nB(a,,r,+8),
=1 J

] J

then

k
dist(a, n B(a,,r.)) < €.
321 J3

Every Banach space has trivially the C, property. When k > 2 we do
not know if it 1is true that every Banach space has the Ck property.
However, 1f A 1is an almost E(k+2) space, then it.is true that A
has the C property. In fact, if A 1s an almost E(k+2) space,

k

then it follows from Corollary 4.6 that a family of k+1 balls in A
(if and only if it has the weak intersectiq%J Kk
has a non empty intersectionYproperty. Hence, 1 §F= {B(ajrj)}3-1

is a family of k Dballs in A wlth a non empty intersection, then

k
Rgr(a) = dist(a,jg1B(aJ,rJ)), a € A,
where Rgf' is the function defined by (4.1). It therefore follows
from Lemma 4.1 that A has the C, property.

Let n,k €IN and assume that n > k. We say that a Banach
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space A (real or complex) has the almost n,k intersection

property if every family of n balls in A has the almost inter-
section property whenever any k balls c¢f the family have a non
empty intersection. We now observe that almost exactly the same

proof as in [8, proof of Theorem 4.1] 8glves us the following

Lemma 4.7. Let k > 2 be an integer and let n be an

integer such that

(4.23) n > 3(4k-5+ Vg(k-1)2+1").

Let A be a real or complex Banach space with the Ck-1 property.

If A has the almecst n,k intersection property, then A has the

finite k 1intersection property.

Proposition 4,8, If A 1is an almost E(7) space, then A 1is

an E space.

Proof. It follows from Corollary 3.7 and Proposition 1.13
that A has the almost 7,3 intersection property. Since 7> 3(7+V33)
and since A has the C, property, we get from Lemma 4.7 that A
has the finite 3 intersection property. Now let 95 be a finite family
of balls in A with the weak intersection property. We then conclude
from Corollary 4.6 that any three members of QE have a non empty

e
intersection. Thus f’ itself has a non empty intersection.

We summarize the main results of the present paper in the

following

Theorem 4.9. Let A be a complex Banach space. Then the

following properties are equivalent

x*
(1) The dual A of A 1is an L, space.

o kK
(i1) The bidual A of A 1is a ff? space.
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(1i1) A is an E space.

(iv) Every finite family of balls in A with the weak
intersection property has the intersection property.

(v) Every family of seveﬁ balls in A with the weak inter-
section property has the intersection property.

(vi) A 1s an almost E(j) space.,

Proof. Weremarked in the preliminaries that the equivalence

of (1) and (il) follows from a theorem of S. Sakai [11]-

(11) =» (111)  Corollary 4.5.

(111) = (iv) Corollary U4.6.

(1v) = (v) ~_Trivial.
(v) = (vi) Proposition 1.7
(vi) = (ii) Proposition 4.8 together with Theorem 2.3.

§ 5 SOME EXAMPLES AND OPEN PROBLEMS.

We stated in the introduction that it is possible to find an
example of three normed spaces A, X and Y with Y < X and of a
linear operator T: Y+ A such that for some x € X ~ Y there

exist y,, ¥,» y, € Y wlth the property that

(5-1)

Ca
noOw
-

By (Ty It D x-y 1) = 9

The following example may be considered as the complex analogue
of an example in [1,p.125]. We want to thank Erik M., Alfsen for

some suggestive remarks on this subject.
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Example 5.1. Let X = 1.(C), Iet A = Y = (H*(€),] II,)

and let T: Y > A Dbe the identity map. Furthermore, let
vy = ek-ej, J =1,2,3, and let x = e, . Then (5:1) is
satisfied.

Proof. We note that |T| = 1. Let us assume that for some

z € H* it is true that

(5'2) ﬂz'yJII i ”eu‘yjuls J = 132’3'
Since 2, = ~Ip., Z,, 1t follows that
3
(5-3) Y oz | + lz v+ |1+ ) oz | <1 j = 1,2,3.
k#,j,)-l k J k=1 k! — 3 [ )

Adding these inequalities, we obtain

3 3 3
(5-4) Y oz +t] + 2 Y|z, + 3|1+ z,| < 3.
b s shl

However, if J = 1,2,3, then

3
1 < |z, #+1] + |z,| < |z,+1| + 2|z,| + |1+ | 2
<zl s degl < lzgnl w2leg] e eyl
and the last inequality is a strict one if zj # 0. It follows
that if some Zy # 0, then
g | | § |z, | f
3« z,+1| + 2 z,| + 3|1 + z,].
J=1 J J=1 J J=1 J

By (5-4) we therefore conclude that =z =12z, =z, = 0. But (5:4)

will not be satisfied with this choice of =z z_ and Z,. Hence

1?2 2

(5-2) can not be valid for any =z € H",

It follows from Corollary 4.7 that an E space always has the

finite 3 intersection property. We pose the converse of this as the



following
Problem 1. If a complex Banach space A has the finite 3
intersection property, does it follow that A 1is an E space ?

We remark that it suffices in this problem to show that A

is an E(3) space, or to show that A 1s an almost E(4) space.

We think, at least when A 1s a finite dimensional space,
that the following example gives some weight to a conjJecture that

Problem 1 has a positive solution.

In what follows, D 1is the closed unit disc in the complex

plane C.

Example 5.2. Let f: [0,1]1+1R be a concave, monotonely

decreasing, non negative ¢! -function different from 0. Let

< £(lz, )}

|

K = {(z,,2,): 2, €D,z, €€ and |z

Then K is the unit ball of anorm | | on €2, and if the space
(¢2,] |) has the 4,3 dintersection property, then f is a constant

and hence (€2,] |) 1is isometric to (€2,] |_).

Proof. The first statement follows from the fact that K 1s
a closed convex set with interior points and with the property that
uz € K whenever 2z € K and u € D. Assume therefore that
(€2,]l |) has the 4,3 intersection property. First of all we remark
that if a = (al,az) and ay = (al,J’az,j)’ J = 1,¢¢0,r are given
elements of €2, then

r

a € n {K+a,}
j=1

if and only if
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o €

r
{D+ a, } and o € n
1Ty 2 -

1 sJ 3=1

uoH

B(aZ,J,f(]al—al’J|)).

Now let t€ [0,1] and B € [O,%] be given. We define
a £ttsinf = - o ; a = 1t sine = - a
1,2 ) 1,1 1ot 1493
and

o = o =03; o =a = f(t)+ f(t|sine- cosd| ).
2,51 232 254 2353

We note that the point x =tcos 6 belongs to any of the three

balls D+a g0 3= 1,2,3, and we find that Ix—ocl 2|= t|sin6-cos6|
3 2
whereas Ix-a1 3| = Ix-a1 u! = t. Hence the three balls
2 H
B(a2 J,f(lx-a JI)’ J = 1,2,3 have a non empty intersection. By
) 1,

symmetry we therefore conclude that any three members of the

family {K+(cx1 09, J)};’1 have a non empty intersection. Hence
s ’ -

{D+o_ ,} such that

there exists, by assumption, a number p € L,
1 H

nHosr

J
the family

Y
{B f -
:{ (02,3, (lp alsjl))}3=1
has a non empty intersection. .This means that
(5.5) f(t) + £(t|sin6 - cos B |) <

< min{f(lp-al’ll),f(lp—al,zb}+-min{f(|p-a1,3|),f(|p-al,u|)}.

Since p €n {D+a }, it follows by a simple argument that the

IsJ
right hand side of (5.5) is less or equal 2f(tsin®). Hence f must

satisfy the inequality
(5.6) £(t)+f(t|sin6-cos|) < 2f(tsine) ; te [0,1], 6€ [0,7]

We shall show that (5.6) implies that f 1s a constant. Let t€ <0,1>



48
and let 6€ L% g>. It then follows from (5.6) that

f(t) - f(tsinb) < f(tsind)-f(t(sinb-cosb))
t=-tsind - t-tsinbd

Hence we get

(5.7)  £'(t) < lim(-£'(tsine)+s ' (t(sine-cos6))(1+ Z22))
B+

If f'(t) < 0, then the right hand side of (5.7) 1s -», Since
f'(t) > -, it follows that f£'(t) > 0, and since f 1s decreasing,
we conclude that f'(t) = 0. Hence f 1is a constant. It is then

clear that (€2%2,] ||) 4is isometric to (C%,|| | ).

©

In connection with Lemma 4.3, we remarked that it is probably
true that the conclusion of that lemma can be strengthened to a

statement about n+1 balls. We pose this as the following

Problem 2. Let n < 6. If A is an almost E(n) space, does

it follow that A 1is an E(n) space ?

This problem is akin to the following

Problem 3. What is the smallest natural number n < 7 such that

if A 1is an almost E(n) space, then A 1is an E space ?

We remark that problem 3 is closely connected with a problem
raised by Lindenstrauss in [8,p.32], namely the problem whether 7 is
the smallest number n with the property that 1f a Banach space A
has the n,3 intersection pfoperty, then A has the finite 3 inter-

section property.
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