A NOTE ON INTERSECTION MULTIPLICITIES

Tor H. Gulliksen

Let R, \mathcal{M} denote a local (noetherian) ring and let M and N be R-modules such that M \otimes N has finite length $1(M \otimes N)$.

If R is regular we can define the intersection multiplicity:

$$\chi^{R}(M,N) = \Sigma_{i}(-1)^{i}1(Tor_{i}^{R}(M,N))$$

as in Serre [2]. The purpose of this note is to prove the following theorem which shows that there is a natural way to extend the notion of intersection multiplicaties to the theory of modules over arbitrary local rings R. The R/m - vectorspace dimension of M/m^2 will be called the imbedding dimension of R.

THEOREM. Let C be an arbitrary local (noetherian) ring, and let M and N be C - modules of finite type such $M \otimes N$ has finite length. Assume that $A \to C$ and $B \to C$ are surjective ringhomomorphisms, A and B being regular local rings of minimal dimension, that is the dimension of A and B equals the imbedding dimension of C. Then

$$\chi^{A}(M_{\bullet}N) = \chi^{B}(M_{\bullet}N)_{\bullet}$$

PROOF. We may assume that A, B and C are complete local rings. Hence so is the fiber-product $A \times_{C} B$. By Cohen's structure theorem $A \times_{C} B$ is a homomorphic image of a regular local ring R, thus we have a commutative diagram of surjective ringhomomorphisms

$$\begin{array}{ccc}
R & \longrightarrow B \\
\downarrow & & \downarrow \\
A & \longrightarrow C
\end{array}$$

Put \mathcal{O} := Ker (R \rightarrow A) and \mathcal{L} := Ker (R \rightarrow B). Let \mathcal{H} be the maximal ideal of R. Since A,B and R are all regular, the inclusions

 $\mathcal{O}l \subset \mathcal{M}$ and $b \subset \mathcal{M}$ give rise to injections $\mathcal{O}l / \mathcal{M} \mathcal{O}l \to \mathcal{M} / \mathcal{M}^2$ $b / \mathcal{M}b \to \mathcal{M} / \mathcal{M}^2$

By means of these maps we will consider Ol/MOl and $black{black}/Mbl$ as subspaces of ll/m^2 . Put

$$s = dim R - dim A$$

Since dim A = dim B both \mathcal{O} t and \mathcal{L} are minimally generated by s elements. Let $\delta_1, \ldots, \delta_r$ $(r \leq s)$ be a basis for \mathcal{O} t/ma $\cap \mathcal{L}$ /mb. Let a_1, \ldots, a_r respectively b_1, \ldots, b_r be elements in \mathcal{O} respectively \mathcal{L} representing $\delta_1, \ldots, \delta_r$. Now extend these two sequences to minimal sets of generators

for OL and A respectively. For each i $(0 \le i \le s)$ the elements

$$a_1, \ldots, a_i, b_{i+1}, \ldots, b_s$$

represent linearly independent elements in m/m^2 . Hence they are part of a regular system of parameters for R. Let \mathcal{O}_i denote the ideal they generate and put

Then each A_i is a regular local ring. Observe that $A_0 = B$ and $A_s = A$. In the following let $1 \le i \le s$. To prove the theorem it clearly suffices to prove

$$x^{A_{i-1}}(M,N) = x^{A_{i}}(M,N)$$

Here we will use a technique which was used in [1] for a similar purpose. To simplify the notation we put $P := A_{i-1}$ and $Q := A_{i}$. Let L be the ring R/C where C is the ideal generated by

Observe that L need not be regular. We have exact sequences:

$$0 \to P \xrightarrow{a_{\underline{i}}} P \to L \to 0$$

$$0 \to Q \xrightarrow{b_{\underline{i}}} Q \to L \to 0$$

where a_i and b_i denotes multiplication by a_i and b_i respectively. From the sequences above we obtain standard spectral sequences

$$\operatorname{Tor}_{p}^{L}(M,\operatorname{Tor}_{q}^{R}(N,L)) \Rightarrow \operatorname{Tor}_{p+q}^{P}(M,N)$$

and

$$\operatorname{Tor}_{p}^{L}(M, \operatorname{Tor}_{q}^{Q}(N, L)) \Rightarrow \operatorname{Tor}_{p+q}^{Q}(M, N)$$

where $\operatorname{Tor}_q^P(N,L)$ and $\operatorname{Tor}_q^Q(N,L)$ equals N for q=0,1 and equals zero for $q\neq 0,1$.

Hence we obtain exact sequences

$$\bullet \bullet \bullet \mathsf{Tor}^{\mathsf{L}}_{\mathtt{i}}(\mathtt{M}, \mathtt{N}) \, \Rightarrow \, \mathsf{Tor}^{\mathsf{P}}_{\mathtt{i}+1}(\mathtt{M}, \mathtt{N}) \, \Rightarrow \, \mathsf{Tor}^{\mathsf{L}}_{\mathtt{i}+1}(\mathtt{M}, \mathtt{N}) \, \Rightarrow \, \mathsf{Tor}^{\mathsf{L}}_{\mathtt{i}-1}(\mathtt{M}, \mathtt{N}) \, \Rightarrow \, \bullet \bullet \bullet \bullet$$

$$\bullet \bullet \bullet \mathsf{Tor}^{\mathsf{L}}_{\mathbf{i}}(\mathsf{M},\mathsf{N}) \to \mathsf{Tor}^{\mathsf{Q}}_{\mathbf{i}+1}(\mathsf{M},\mathsf{N}) \to \mathsf{Tor}^{\mathsf{L}}_{\mathbf{i}+1}(\mathsf{M},\mathsf{N}) \to \mathsf{Tor}^{\mathsf{L}}_{\mathbf{i}+1}(\mathsf{M},\mathsf{N}) \to \bullet \bullet \bullet \bullet$$

from which it follows that

$$\chi^{P}(M,N) = \chi^{Q}(M,N)$$
.

References

- 1. M.-P. Malliavin Brameret, Une remarque sur les anneaux locaux réguliers, Seminaire Dubreil Pisot (Algèbre et Théorie des Nombres), 1970/1971 no.13.
- 2. J.P. Serre, Algèbre Locale Multiplicités, (Lecture Notes in Mathematics 11), Springer Verlag, 1965.