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NON-COMMUTATIVE SPECTRAL THEORY
FOR AFFINE FUNCTION SPACES ON CONVEX SETS

Part I

By Erik M. Alfsen and Frederic W, Shultz

Introduction.

In this paper we develop a non-commutative spectral theory
and functional calculus for a class of partially ordered normed
linear spaces. The spaces in question can be represented (isome-
trically and order-isomorphically) as spaces of affine functions

on convex sets, and among them are the following:

(i) The space of all self-adjoint elements of a von Neumann
algebra,

(ii) The space of all bounded affine functions on a (Choquet)
simplex.

(4dd) The space of all continuous affine functions dn a rotund

compact convex set (e.,g. the unit ball of T, for 1 <p <9,

These particular cases do not exhaust all possibilities,
Nevertheless, the class of spaces for which our spectral theory is
available, is quite restricted; among affine function spaces those
with spectral theory must be considered the exception rather than
the rule. The stydy of particular examples and applications is
- postponed to Part II, while the general theory is presented in

Part I.
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The theory presented in this paper concerns an affine function
space A defined on a convex set K where A and K are subject
to certain requirements (see below)., Bagic notions are: the col-
lection ZZ of "projective units" wu € A , the collection ﬁﬁlof
"projective faces" F < K , and the collection QD of P -projec-
tions P:A - A ., Between any two of these there is a canonical
bijection; every u ¢ ?ﬁ determines a unique F E€I7 and a unique
P e f¥> , and so on. In the example (i) above, ?@ corresponds to
the (self-adjoint) projections,‘?rl corresponds to certain faces
of the normal state space (the relativization of the annihilators
of one-sided ultraweakly closed ideals), and gP corresponds to
the maps a - pap where p is a (self-adjoint) projection. The
collections % , ¥ ,%P cen also be identified in the examples (ii)
and (iii); in the former they are "very large" in the latter they
are "very small". (This is all treated in Part II, where the pre-
cise statements are given.) Note also that the projective faces
generalize split faces F (cf. [AA;]), that the projective units
generalize in a similar way the corresponding (affine) envelopes
&% , and that the P-projections generalize splitting projections
(W,]. (This will also be treated in Parf II.) The notions of pro-
Jective unit, projective face and P -projection admit various equi-
valent definitions which are presented in § 1 -2 together with the
basic properties of these notions.

In the following sections, §§3 -4, it is assumed that K has

"many" projective faces (specifically that every exposed face is

projective) and also that A enjoys a completeness property (point-
wise monotone o -completeness). Under these hypotheses it is proved
that is a 0 -complete orthomodular lattice in the natural order-
ing and with the orthocomplementation u - e-u where e denotes the
element of A which takes the constant value 1 on K. In particular
it is shown that the center of the
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orthomodular lattice QZ consists of precisely those elements of

@6 which are in the center of the order-unit space (A,e) (cf.
[Wq] and [AA2]). Important new concepts are those of a projective
unit being "compatible" or "bicompatible" with an element of A.
These concepts generalize commutation and bicommutation in operator

algebras, and they are fundamental for the subsequent development

of the theory.

The next section, §5, is the key section of the paper. Here
the "spectral axiom" is introduced and the spectral theorem is
proved., The spectral axiom plays a role similar to Stone's axiom
in ordinary ("commutative') integration theory. Recall that in
the well known Notes on Integration from 1948-49 [81] Stone observed
that such an axiom was needed to connect the linear functional
approach with measure theory. Originally stated in the form
f €L =>fAr1 €L (where I is the vector-lattice of functions
on which the elementary integral is defined), Stone's axiom serves
to guarantee that there are "sufficiently many" measurable sets.
Specifically, for every f € M (the class of measurable functions)
and for every A €IRR the set E = {x| f(x) <\}shall be measurable
i,e, the characteristic function Xz shall again belong to M .

In the present non-commutative setting the characteristic functions
Xy @are replaced by projective units. Now the "weak spectral axiom"
states that for each a € A and each A €IR there shall exist a

projective unit h compatible with a such that:

x eXxln(x) =11 c {xekla(x) <21},
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whereas the complementary unit h' = e~ h shall satisfy:
(x €eX|h'(x) =1} < {x€Kla(x) >} ;

and the word "weak" is omitted if h is unique. (We continue to
assume A 1is monotone o-complete, The assumption made previdusly
of having "many" projective faces is now implied by the weak spec-
tral axiom,) Note that unlike characteristic functions, the pro-
jective units can take intermediate values between O and 1

(even at the extreme points of K ), and that the above inclusions
will be strict in general. Assuming the weak spectral axiom, we
prove in §5 that every a € A admits a spectral integral repre-

sentation:

a(x) = f xdek(x) for all x in K .

Here {ek]XEﬂi is an increasing, right continuous family of pro-
jective units (a "spectral family"). The representation above is
unique if the spectral axiom is assumed.

The next section, §6, contains a discussion of various pro-
perties of spectral families., It is proved that the weak spectral
axiom can be stated in an equivalent form based on decomposition
of elements of A as differences of mutually orthogonal positive
and negative parts., (Compare B,Sz - Nagy's treatment of spectral
theory for operators on a Hilbert space in [N,]. See also [R.N.1].)
It is shown that while the weak spectral axiom implies existence of
"many" projective faces (in the precise sense explained before),
the converse implication does not hold. Also it is proved that
with the spectral axiom all "spectral units" of an element a of
A will be bicompatible with a , and conversely that one may pass
from the weak spectral axiom to the spectral axiom by requiring h
to be bicompatible with a rather than by explicitly requiring h
to be unique.

The next section, §7, treats the functional calculus, which

is defined by means of the spectral integral representation of ele-
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ments of A ., Here the spectral axiom is assumed, and it is shown
that the functional calculus is unique under the natural isomorph-
ism requirements and the additional requirement that it shall take
characteristic functions into extreme points of the order interval
[0,e] of A . (These extreme points are precisely the projective
units.) In standard spectral theory (see e.g. [B1,Ch.1]) one deals
with algebras, and the functional calculus is required to be a mul-
tiplicative isomorphism as well, Then the extreme-point-preserving
nature will follow since the extreme points in Question are precise-
1y the idempotents., In the present setting for the theory, the
extreme-point-preserving property is all that remains of multipli-
cativity, and it is perhaps somewhat surprising that such a proper-
ty, defined only in terms of linearity and order, will suffice to

guarantee uniqueness of the functional calculus.

The last section, §8, is a study of certain subspaces of A ,
called "abelian", which are organized to vector lattices and to
commutative Banach algebras in a natural way. It is shown how the
general spectral theory reduces to Freudenthal's vector lattice
theory for (weakly closed) abélian subspaces ([F]; see also [LZ]),
and it is also shown how notions like functional calculus and spec-
trum reduce to the corresponding ones for commutative Banach alge-
bras., However, the relativization to the abelian subspace M(a)
generated by a given element a of A ; will not provide an alter-
native approach to the general theory, since the very definition
of M(a) seems to require the full strength of the general theory.
In particular, it invokes the notion of compatibility in an essen-
tial way. At the end of §8 it is shown that "all possible" defi-

nitions of center for A will coincide, and there are some charac-

terizations of spectra in terms of notions familiar from commuta- -
tive Banach algebras and operator theory.
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Throughout Part I there are examples illustrating the general
theory and the interrelationship between the various requirements
imposed on A and V . Passing to Part II one will find a more
systematic investigation of some special cases of intrinsic interest,
in particular the application to operator algebras and their state
spaces. In this connection it should be noted that the state spaces
of C*-algebras are compact convex sets with remarkable properties.
In some respects they behave like simplexes (e.g. all Archimedean
faces are split [AAq], [St]). In other respects they behave like
rotund balls (in fact, the state space of the 2 x2 -matrix algebra
is a Euclidean ball in ]RB) . Some of the properties of the state
spaces depend essentially on the spectral theorem, others invoke
more of the algebraic structure. (An example to this effect is the
existence of "sufficiently many" split-face preserving, or "inner",
automorphisms, which depends on Kadison's transitivity theoram[AAql
[K2], [GK].) It is our purpose to investigate those properties
 which depend on spectral theory.

We will now turn to a brief discussion of the historical back-
ground of the subject matter of the present paper.

The classical works on spectral theory by Hilbert [H], von
Neumann [Neul], Stone [82] and others focused on the self-adjoint
operators on a Hilbert space. During the thirties Freudenthal [F]
Riesz [Rq], Nakano [Na] and others proved versions of the spectral
theorem for abstract vector lattices satisfying suitable assumptions
(cf. also [I~Z]). At about the same time Stone proved a spectral
theorem for a class of partially ordered (and necessarily commuta-
tive) linear algebras over the reals [85],

Segal's 1947 paper on axiomatic quantum mechanics [Se] was the

first in a series of works in which a spectral resolution or a
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functional calculus was postulated in a linear and partially ordered,
but non-vector-lattice (or "non-commutative") context.

Recently some finite dimensional versions of a spectral theorem
have been obtained in the non-vector-lattice context by Gunson [G]
and Indwig [L] in works on axiomatic quantum mechanics; and the work
of Ludwig has been slightly generalized by Ancona [An].

There are some remnants of commutative structure in non-commu-
tative operator algebras, for example the two-sided ideals and the
center. The two-sided ideals of a C*-algebra with identity element
correspond to the invariant faces of the state space (cf. [St]), and
these faces are generalized by the "split-faces" of convexity theory.
The notion of a split face of K was independently introduced and
studied by Perdrizet and Combes [Peql, [Pe2], (CP] and by Alfsen and
Andersen [AAq]. The center of a C*-algebra with identity element
was generalized to the "ideal center" by Dixmier [D]. This notion
was in turn generalized to partially ordered vector spaces by Wils
[W] and simultaneously to the (somewhat less general) context of
order-unit spaces by Alfsen and Andersen [AA2]° Every central pro-
Jjection p 1in the enveloping von-Neumann algebra Cl** of a given
C*-algebra (J[ generates a weak® (or ultraweakly) closed two-sided
ideal of (", and the maps a - pap (with p central) can be
order theoretically characterized as "splitting projections'. These
splitting projections form the starting point of Wils' discussion
of the ideal center of a partially ordered vector space. In the
context of the present paper, every splitting projection of A is
a P -projection, and a P -projection is splitting iff it is central.

The center of an order-unit space (or equivalently of an A(K)-
space) is a vector lattice. Therefore one can attempt to apply the

vector lattice version of the spectral theorem to this center (after
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a suitable "completion" of the space permitting "spectral units").
Work in this direction has been done by Rogalski [Ro] and C.M.
Edwards [Ed].

Ta achieve a truly non-commutative theory, one needs to work
with the notions associated with one-sided ideals. These ideals
have been thoroughly investigated by Effros [E] and Prosser [P] and
their properties are very relevant to our work. (See also the sur-
vey [GR].) Every weak ¥~ closed left ideal J in a von Neumann
algebra CZ, is generated by a self-adjoint projection p (which
will be central precisely when J is two-sided). In the study of
such ideals, an important role is played by the maps a - pap from
Czéa into itself. The annihilators (in the predual of (J ) of such
ideals are precisely the norm-closed invariant subspaces, whose in-
tersections with the normal state space will be certain faces.
These projections, maps, and faces can be characterized in terms of
the notions we develop in this paper, as the projective units, P -
projections, and projective faces respectively. The results of
Effros and Prosser have to a great extent motivated our approach
to non-commutative spectral theory in Part I, and we shall return
to them in our discussion of the applications to operator algebras
in Part II.

The second author gratefully acknowledges financial support

from a research grant by Wellesley College while this work was in

progress.
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§ 1. Smooth projections.

We shall first recall some definitions from convexity theory.
We consider two (real) vector spaces X,Y in separating duality
with respect to a bilinear form ¢, >, and we shall use the terms
"weak' and 'weakly" to denote the weak topologies defined on X and
Y by this duality.

Let K be a convex subset of X . A conver set F CcX is
said to be a face of K if for any (),y,z) € (0,1) XxKxK
Ay + (1-A)z € F implies y,z € F . An affine subspace H of X

is said to be a supporting subspace for K if KNH # @ and K\H

is convex. It is easily verified that a non-empty subset F of K
is a face iff it is of the form F = KNH for some supporting sub-
space H . (One may take H = aff(F)). Note in particular that
the whole space X 1is a supporting subspace for X, and that the
whole set K and the empty set @ are both faces of K .

The intersection of all weakly closed supporting hyperplanes
containing a given subset F of K, will be denoted by F. we
shall say that a supporting subspace H of X is smooth if H =
(Kr1H)~, and we shall say that a face F of K is semi-exposed

if F = FNK . Also we shall say that a face F of K is exposed
if there exists a closed supporting hyperplane H such that F =
HNK . (Ncte that these definitions depend on the given duality).
In the pictures below we first show a smooth and a non smooth
supporting subspace, and then a semi—expésed and a non-semi-exposed

face.
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Throughout the rest of this section we shall assume that X,Y
are two positively generated partially ordered vector spaces 1n

separating ordered duality, i.e. for x € X, y €Y

0 <=> (x,y7 >0 all y>0,

v
v

X
¢y
y>20 <=> (x,y7 >0 all x>0.

The supporting subspaces H of the cone X" are necessarily
linear spaces (i.e. O €H), and they are in fact exactly the order
ideals of X (see e.g. [Aq,p,67]). Correspondingly the faces of
X" are the hereditary subcones C = Hn xX* (defined by the require-

ment that O < x' <x € C shall imply x' € C, see e.g. [4,,p.82]).
The supporting subspaces and faces of Y" can of course be charac-
terized in the same way. For the sake of brevity we shall use the

term smooth order ideal to denote a smooth supporting subspace for

X+, and likewise for YV .
For a given subset B of X we shall use the symbol B° +to
1
denote the annihilator of B, and we shall use the symbol PE-* to
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denote the positive annihilator of B . Thus we have:

B® = {yeY|<(x,y) =0 all x€B},

)
(1.2) 5 , :
1B'L {yeY|(x,y> =0 all x€B} .

(The notation B° is not likely to cause any misunderstanding
since no "polars" will be needed in the sequel.)

Note that for a given subset C of x*

(1.3) G =0 - {(xex|{(x,5) = 0 when yEC’L} .

In the sequel we shall study weakly continuous positive pro-
jections P:X - X . (By "projection" we mean any idempotent map).

For such projections we define:

(1.4) ker'P = (kerP)NX', in'P = (imP) NX*

Clearly, ker'P and im"P are subcones of X+, and the former
is also a face of X' .
By hypothesis X 1is positively generated, and this implies

that imP is positively generated, i.e.

(1.5) imP =imn"P-in'P.

Note, however, that kerP will not be positively generated in
general.

For given y € Y the linear functional x - (Px,y> on X
will be weakly continuous. Hence there is a (unique)element P*y

of Y such that

(1.6) (Px,y) = (x,P¥),

and P*:Y - Y is seen to be a weakly continuous positive projec-

tion on Y . We say that P* is the dual projection of P .

We note the following basic formulas:
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(1.7) (ker P)° = imP*, (imP)° = kerP* .

The above discussion is completely symmetric in X and Y .
Hence we may give the similar definitions with X and Y inter-
changed, and obtain the same results. In particular imP* will be

positively generated. Hence by (1.7):

(1.8) (ker P)° = (kerP)" - (ker P)* .

From this we obtain

ker P= (kerP)%° = (kerP)*°> (ker+P)J'°,

which gives the general formula:

(1.9) kerP > ker'D .

Definition. A projection P:X - X 1is said to be smooth

(with respect to the given duality) if it is weakly continuous and
positive and also satisfies tThe requirement:

(1.10) vy€Y, y=0 on ker'P => y =0 on kerP .

A smooth projection on Y is defined analogously.
The requirement (1.10) may be restated in the following con-
densed form:
(1.11) (xer'P)" © (xerP)° .
Clearly, one may write (ke:rP)'L in place of (kerP)® in

(1.11); and since the opposite inclusion is trivial, one shall act-

ually have the following equality for any smooth projection P

(1.12) (ker+P)l = (kerIﬂl .
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The definition of a smooth projection is motivated by the

following:

Proposition 1.1. A weakly continuous positive projection

P:X =X is snooth iff kerP is a smooth order ideal, i.e.

/\_T_J
(1.13) kerP = ker P

Proof. By virtue of (1.9) the non-trivial half of (1.13) is

the inclusion

—~—
(1.14) kerP € ker P .

Assumirg (1.11) we obtain

tondo T F
kerP = (ker P)°° ¢ (ker'P)~° = ker'P,

and (1.14) is proved.

Conversely, we assume (1.74) and get
h L +5y 4700 _ foFHq0 J
(ker"P) <[ (ker'P)7] = [ker'P]”c (kerP)” .

Hence we are back to (1.11). D

By virtue of (1.5) and (1.13) a smooth projection P is com-
pletely determined by in'P and ker'P , and so the dual projection
P* will also be determined by these two cones. We now proceed to
give an explicit formula for P* in terms of im*P and ker'P .
(One may give a similar formula for P, but it will not be needed
in the sequel.)

In this connection we shall need the following restatement of
the basic requirement (1.10) for a smooth projection, obtained by

the equality (kerP)® = inF :
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(1.15) vy €Y', y=0 on ker'P =>Py=y.

Proposition 1.2. If P is a smooth projection, then for

Y.y €Y :
ey | y' <y on im'P, y'=0 on ker'P =>y' <P’y
1.16 |
y' 2y on im™P , ¥y'=0 on ker'P =—> y' > P*y
Proof. We assume y' <y on im+P, y' =0 on ker'P .

For an arbitrary x € x*

(x,P'y') = (Px,y') <(Px,y) = (x,P*y) .

By (1.15) P'y' =y', and so (x,y') < (x,P*yd . This proves the
first implication of (1.16), since x € Xt was arbitrary. The se-
cond implication is proved in the same way. D

From Proposition 1.2 one easily obtains the following:

Corollary 1.%3. If P:X = X is a smooth projection and

v € y* , then P*y is the unique positive element of Y which

. . . .+ . . +
coincides with vy on im P and vanishet on ker P . Moreover

one has the explicit formula:

*

(1.17) Py = sup{y' €Y' |y'<y on im*P,y'=0 on ker'P}

inf{y' €Y' |y'>y on im*'P,y'=0 on ker'P} .

Note that if the cones im'P and ker™ are replaced by the
subspaces imP and kerP , then the uniqueness statement of Corol-

lary 1.5 will subsist for any weakly continuous projection P .
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Note also that in the uniqueness statement for smooth projections
given in Corollary 1.3, the term "positive" is essential. There
may be non-positive elements other than P*y coinciding with ¥
on im™P and vanishing on ker'P . This can be seen from the pic-
ture below where P is the (smooth) orthogonal projection onto the

Z - axis.

Fig. 2.

We now proceed to characterize projections P:X = X with
smooth dual P*: X - X . In this connection we shall need a few
simple formulas valid for an arbitrary weakly confinuous and posi-
tive projection P . By (1.5) and (1.7), kerP* = (imP)° = (in'P)°,

and so
(1.18) ker™P* = (in™P)T .

Passing to annihilators we get:

At
(1.19) (ker™P*)° = in'P .
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Proposition 1.4. Let P:X —» X be a weakly continuous posi-

~tive projection. The dual projection P*:Y -~ Y is smooth iff

.+ . . + .
im'P is a semi-exposed face of X' , i.e,

S
(1.20) im™P = im'Pn X’

Proof. By (1.11) P* is smooth iff
i
(1.21) (ker™P*)" < (kerP*)°.

The space imP is weakly closed. Hence by (1.7) (ker P*)° =
(imP)®° = imP, and so we may replace (1.21) by the equivalent for-
mula

(ker+P”)l C imP .
By (1.19) this is equivalent to
P~
(in"P)N X" ¢ in'P ,
which is the non-trivial half of (1.20) and the proof is complete.t]

For the sake of later references we shall also present the

above result in a dual setting where the given projection is de-

fined on Y .

Corollary 1.5. Let R be a positive and weakly continuous

projection on Y . Then R is a smooth projection on Y iff

4
(kerR)” is a semi-exposed face of X' .

Proof. Let P =R" . Since imP is weakly closed, we have
L 1
(kerR)" = (kerP*) = (imP)°°nx* = in™pP ,

and the corollary follows from Proposition 1.4. O
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Definition. Two weakly continuous positive projections

P,Q: X = X are said to be guasicomplementary if

(1.22) ker'P = in'Q , in'P = ker'qQ .

We shall also say that Q is a quasicomplement of P, and

vice versa.

It is not hard to give examples (in IRB) of a weakly contin-
uous positive projection with no (positive) quasicomplement, and of
one with infinitely many quasicomplements. However, our next two
lemmas will provide a necessary condition for the existence of a
quasicomplement, and a sufficient condition for uniqueness.

In this connection we first observe that for every weakly con-

tinuous and positive projection P:X - X the formula (1.9) entails

—

(1.23) ker'P = ker'PNXx*

and so ker'P will always be a semi-exposed face of xt .

Lemma 1.6. If a weakly continuous positive projection P: X- X

admits a quasicomplement Q, then P* is necessarily smooth.

Proof. By the above remark, in*P = ker'Q is a semi~exposed face

of )CL, and by Proposition 1.4 the dual projection P° must be smooth.U

Lemma 1.7. If a weakly continuous positive projection P: X =X

admits a smooth quasicomplement Q, then Q is the only quasicom-ﬁ'

plement of P .

Proof, Let R:X - X be any quasicomplement of P . We shall

prove that imQ ¢ imR and kerQ@ € kerR, which will give Q =R .
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By assumption
im+Q = ker'P = im+R,
and since imQ and imR are positively generated, they must be
equal.
Next we use formula (1.13%) for the smooth projection Q and
formula (1.9) for R (i.e. the "trivial half" of the same formula),

and we obtain

kerQ=ker' Q = im P = ker R € kerR

This completes the proof. D

Theorem 1.8. TLet P,Q:X = X be two weakly continuous posi-

tive projections. Then the following three statements are equiva-

lent:

(i) P,Q are smooth and quasicomplementary

(ii) P*,Q" are smooth and quasicomplementary

(iii) P,Q are guasicomplementary, and so are P',Q".

Proof. It suffices to prove (i) <==> (iii) since the state-
ment (iii) is completely symmetric in X and Y .
1) We first assume (i). Using the general formula(1.18) and

the formula (1.12) for the smooth projection Q, we obtain
1
ker'P* = (in™P)' = (ker'Q)" = (kerq)' = in"Q* .

Similarly we prove ker+Q* = im*'P*. Hence P*,Q* are quasi-
complementary.

2) We next assume (iii). By Lemma 1.6 the quasicomplemented

projection P* will have a smooth dual P** =P . Similarly we

prove that Q** = @ 1is smooth, and the proof is complete. []



§2. Projective units and projective faces

Henceforth we shall consider an order-unit space (A,e) and
a base-norm space (V,K) (for definitions see e.g. [A;,Ch.II,§1]),
and we assume that they arc in separating order and norm duality,
i.e. we shall assume (1.1) together with the following redquirement
in which a € A , x € V ¢

lall <1 <=> |(a,x)| <1 whenever |x| <1,

(2.1) {

Izl <1 <=> |{a,x}] <1 whenever Ja|| <1 .

From this it easily follows that <(e,x; =1 for all x ¢ K ,

and more generally that <(e,x) = |lx|| for all x ¢ V' .

Note that the space A can be identified with a subspace of
the space A(K) of all bounded, weakly continuous affine functions
on K . Specifically, the restriction map is an isometric, linear-
and order- isomorphism of A into A(K) , but it need not be sur-
jective, In fact, every affine function a, on K can be unique-

ly extended to a linear function a on V satisfying
(2.2) a(Ax-py) = ra_(x)-ua (¥)

for X,u €IR ; but a, need not be weakly continuous, and hence
not in A , even if a, is bounded and weakly continuous. (If
V = A*, then A is a dense subspace of the complete space A(K),
and the two spaces will coincide iff A 1is complete; see e.g.
[A;,p.741).

We shall often find it convenient to think of the elements of
A as affine functions on K , and we shall prefer the notation
a(x) for the more "symmetric" notation <(a,x; wused in §1.

In this section we shall be concerned with weakly continuous
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positive projections on either A or V and with norm at most 1,
For such a projection the dual projection P* will also be of
norm at most 1 by virtue of (2.1). We also note the following
simple formula valid for a weakly continuous positive projection

P on V :

(2.3) IPx]| = e(Px) = (P¥e)(x) , all x € vV .

Definition. If P 1is a projection on either of the two

spaces A or V which is smooth with norm at most 1 and admits
a smooth quasicomplement with norm at most 1, then P is said

to be a P -projection.

By Lemma 1.7 the quasicomplement of a P -projection P is
unique; and we shall denote it by P' . Clearly P' 1is also a
P -projection.

It follows from Theorem 1.8 +that a weakly continuous posi-
tive projection P on one of the two spaces is a P -projection
iff the dual projection P* is a P - projection on the other
space, It also follows from the same theorem that a weakly con-
tinuous positive projection P of norm at most 1 defined on one
of the two spaces will be a P -projection iff P and P* both
admit a positive quasicomplement of norm at most 1 and these
quasicomplements are duals of each other. The last mentioned pro-

perty of P -projections can be stated in a formula:

(2.4) (P*)r = ()" .

We shall now characterize P -projections on ‘A and V in
various ways. In particular we shall see that they are completely

determined by their ranges, and in this connection it will be es-
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sential that the projections are of norm not exceeding 1 and that
there are certain conditions imposed on the spaces to relate order-
ing and norm.

The following observations will be useful:

If P:V -V 1is a weakly continuous positive projection with
|P|l <1 and x € V", then (P¥e)(x) = ||Px| < ||zl = e(x) ; from

which it follows that

(2.5) 0 <Pe <e .

If P 1is a smooth projection with ||P|| < 1 , then for given
a € (ker+P)l with O <a <e , we can apply formula (115) to ob-
tain a = P*a < P¥e < e .

Hence the following explicit formula is valid for any smooth

projection P on V with |[|P|| <1 :
(2.6) P*e = supfacA|0O<a<e, a=0 on kerTP} .
Note also that it follows from the results of §1 that for a

P-projection P on V or A the sets in™P and kertr will

be semi-exposed faces of the cone of positive elements.

Pinally we note that if P and Q are weakly continuous po-

sitive projections on V , then the following three statements are

equivalent:

(2.7) P e+ Q¥e = e ,

(2.8) Ilpx + Qx| = x| , all x e vt ,
(2.9) (P+Q)(K) = K .

Proposition 2.1, If P,Q are quasicomplementary P~ projec-

tions on V , then P*e+Q'e = e .
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Proof. By Theorem 1.8 P*,Q* are quasicomplementary. By
(2.5) e-P¥e > 0 , and clearly P*(e-P*e) = 0 . Hence e -P*e ¢
ker P* = im*Q* , so

Q*(e-P*e) = e -P*e .
Also P¥e ¢im™P* = ker™Q* , so Q¥P*e = 0 . Hence Q¥e =

e -=P*e , and the proof is complete. LJ

Lemma 2,2, If P is a P-projection on V , then for

x e v,
(2.10) Ipxl| = x| => x ¢ in™P
Proof. ILet x € V' and ||Px| = ||x|| . Then (P*e)(x) = e(x),

and by Proposition 2.1 (Q*e)(x) = (e-P¥e)(x) = 0 . Hemce [Qx|=0,

and so x € ker'Q = im*P . [}

Clearly the opposite implication of (2.10) is valid, so we

have the following formula' for a P- projection P on V :

(2.11) im™P = {x ev' | |Px| = ||x||} .

Definition. A weakly continuous and positive projection P

on V is said to be neutral if it is of norm at most 1 and the

implication (2.10) is valid when x € V' ,

The term neutral is motivated by physics. The implication
(2.10) is a property of physical filters which are "neutral" in
the sense that if a beam passes through with intensity undiminished

(I|Px]| = ||xl]) , then the filter is "neutral" to the beam (Px=x) .
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Lemma 2.3. Let P be a weakly continuouspositive projection

on V., If P is neutral, then P* is smooth.

Proof. We assume that P is neutral, and by Proposition 1.4
it suffices to prove that im'P is semi-exposed, i.e. (im ™ P)~nv't
c in™P ,

Let x € (im'P)~nVv' be arbitrary, and consider the function
b =¢e-P%e >0 (see (2.5)). Clearly b ¢ (im'P)* , and so

b(x) = 0 . Hence
el = 2] = e(x) - (B%e)(x) = 0,

and this gives x € im*P , Since P was assumed to be neutral,. f]

Proposition 2.4. Let P,Q be weakly continuous positive

projections on V of norm at most 1. Then P,Q are quasicom-

plementary P - projections iff P and Q are neutral and P¥,Q%

are quasicomplementary.

Proof. The necessity follows from Theorem 1,8 and Lemma 2.2,

and the sufficiency follows from Theorem 1.8 and Lemma 2.3. []

The next result is a characterization of P - projections P
on V in terms of "neutrality" and uniqueness of functions, in AT
with prescribed values on kertP and vanishing on im*P , and

likewise for the quasicomplement of P .,

Theorem 2.5. Let P,Q be weakly continuous positive projec-

tions on V with norm at most 1. Then P,Q are quasicomplemen-

tary P -projections iff they are both neutral and for given a cA"

the functions b = P'a and c¢ = Q¥a are the only elements of AT
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such that

(2.12) b=2a on ker'Q, b=0 on im'Q

1l
1

(2.13) c a on ker'p , c 0O on im'P .

Proof. 1) If P,Q are quasicomplementary P -projections,
then ker'Q = im™P and im™Q = ker™ . Hence (2.12) follows from

Corollary 1.3. Similarly for (2.13).

2) By Proposition 2.4 it suffices to prove that P*,Q* are

quasicomplementary.

If a € ker'P* , then a2 >0 and P¥a =0 . Hence a =0
on im™P , and since Q*a 1is supposed to be the only element of
AT which vanishes on im'P and coincides with a on ker'P , We
must have a = Q*a . Thus we have proved ker P* < im'Q* .

If a € im'Q*¥ , then a >0 and Q*a = a . By hypothesis
a = Q¥a will vanish on im'P . Hence for any X € vt 5
(P*a)(x) = a(Px) = 0 . Thus P¥a = 0 , and we have proved
im*Q* < kertp*

Combining the results, we get ker™P* = im*Q* , and in the

same way we prove kertQ* = im*P* ., This completes the proof. E

We shall now see that for a P-projection P on A or V
either one of the two comes im'P X ker'P will determine the
other, and hence the projection P . We have already mentioned
that this result will not prevail for arbitrary partially ordered
normed spaces in separating order and norm duality and arbitrary
pairs of quasicomplementary smooth projections of norm not exceed-

5.)

ing 1. (One may give counterexamples in R
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The clue to this result for order-unit and base-norm spaces

is the fact that P- projections on V are neutral.

Lemma 2,6, If P is a smooth neutral projection on V ,

then the following are equivalent for x € v" and a,b € A :

(i) x € im™P ,
(ii) (P¥e)(x) = e(x) ,
0 on ker'P} s

(iii) e(x) sup{a(x) |0 <

A
o

IA

‘CD
o
1}

t

(iv) 0 inf{b(x) | 0 <D e on ker'p} .

IA
(O]
o’
1}

Proof. (i) <=> (ii) Application of (2.11).
(i1) <=> (iii) Application of (2.6).

(1ii) <=> (iv) Substitution of b = e-a . U

Proposition 2.7. If P dis a P-projection on V , then

ker+P consists of those x € V+ such that for b € A

(2,14) inf{b(x) /0 <b <e, b=e on im'P} =0 .

Proof. Application of Lemma 2.6 ((i) <=> (iv)) with ©P' in

place of P . D

Corollary 2.8. If P,,P, are two P- projections on V

.+ .+ _
and im Pi=1im P, %,then P1=Po .

Proof. Apply Proposition 2.7 and remember that by the re-
sults of §1 a smooth projection P is completely determined by

im™ and ker™® (cf. (1.5) and (1.13)). []
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Note that it follows by passage to quasicomplements that the

conclusion of Corollary 2.8 will remain valid if we substitute

+

+ for dim’ .

ker

We shall now dualize to obtain similar results for A .

Corollary 2.9. If R,,R, are two P - projections on A and

im'R,_= im'R, , then R, =R, .

Proof. By formula (1.18)

4
ker*R? = (im+R1) = (im*Rz)l = ker+R§ .

Since Rff and R; are P -projections on V , they must be

equal, and so R, = R, . 0

We shall state a few simple formulas valid for a P - projection
R on A.
First we note that by Proposition 2.1:

(2.15) R'e = e~-Re .

Next we note that (ker R)'L = (kerR)°NV' = in"R* , and simi-
larly (im R)l = ker'R* . Applying this and Lemma 2.6 (ii) we get
the first of the following two formulas. The second equality of
the second formula follows when we apply the first with R' in the

place of R and use (2.4):

(2.16) , (kerR)J' im*R* = {XEV‘FI(RGII)(X) =e(x)}
) 1 (imR)l = ker'R*= {x €V | (Re)(x) =0

. L ) L . X :
We shall have (imR") (im*R*)” since imR* is positively

L
generated, and (kerR")™ = (ker+R*)l by (1.12).
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Hence by (2.16):

ker'R = (imR"‘)l = {xeV" | (Re)(x) e}t

2.
(2.77) { in'R = (xerR*)' = {(x €V |(Re)(x) =0 i

Definition. For a given P-projection R on A the element

Re will be in the order interval [0,e], and such elements Re

will be called projective units of A . Moreovey, the set FR =

(imR*) NK will be a face of K, and such faces Fp will be cal-

led projective faces of K .

The following two propositions are stated for a P-projection
R on A , and they are phrased in terms of its associated projec-
tive unit and projective face. DBut the proofs will only depend on
the fact that R 1is weakly continuous, positive and of norm at

most 1, and on the fact that in'R is a face of AT,

Proposition 2.170. If R is a P-projection on A, then

(2.18) imRN [-e,e] = [-Re,Re],

and so (imR,Re) is an order-unit space with the relativized order-

ing and norm.

Proof. If a is in the left side of (2.18) then a = Ra < Re
and a = Ra > -Re, so a 1is also in the right side.

If a is in the right side of (2.18) then -e < -Re < a <Re<e.
The set imR is an order ideal of A since im'R is a face of AT,

Hence a € imR , so a belongs to the left side as well. []
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Corollary 2.11. If R is a P-projection on A, then imR

is the order ideal of A generated by the projective unit Re .

Corollary 2.12. If R is a P-projection on A , then the

projective unit Re is an extreme point of [0,e] .

Proof. Suppose Re = Aa+ (1-A)b where O <X <1 and a,b €
[0O,e] . Then O < Xa <Re and O < (1-A)b < Re . Hence a,b€imR.
M so a,b € [0,e] © [-e,e], and by (2.18) a,b € [-Re,Re] . But
then the relation

Re = xa+ (1-A)b < ARe + (1-A)Re = Re

will imply Re =a =b . U

Proposition 2.1%., If R is a P-projection on A , then

(2.19) imR* N co(RU-K) = co(FpU - Fp) ,

N * . . .
and so (imR ,F,) is a base-norm space in the ordering and norm

relativized from V .

Proof. We only have to show that the left side of (2.19) is

contained in the right. Assuming
x = Ay~ (1-\)z € imR",
where 0 <A <1 and y,z € K, we conclude that

x = B'x = AR’y - (1-\)R"z € co(Fu-F) . [

We noted in §1 that a face F of X is exposed if there is
a weakly closed affine hyperplane H in V such that F = HNK .

This means that there shall exist an a € A and an & € IR such
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that
a(x) =a for x €F, a(x) »a for x € K\TF .

If F is a proper face of K (i.e. F #¢@ and F #K), then
it determines a proper face, coneE} of V+, and every proper face
of V' other than {0} is of this form. Moreovey, if F is an
exposed face of K and a and & are as above, then the function

b =a-ae € AT will satisfy
coneF = {x€V'|b(x)=0} .

Hence coneF will be an exposed face of V' .
Conversely, if coneF is an exposed face of vt , then it 1is
easily seen that F must be an exposed face of K . Hence

F - coneF maps the proper exposed faces of K biuniquely onto the

proper exposed faces of V' other than {0} . (However, {0} is

always an exposed face of V' since {0} = {(xev?t | e(x) =01.)
Note that similar arguments will give the same result for

semi-exposed faces.

Proposition 2.14. If R is a P-projection on A , then

(2.20) Fp = {x€K| (Re)(x) =1}

hence every projective face of K is exposed.

Proof. Application of Lemma 2.6 (ii). []

It follows that im'R* (and ker'R*) are exposed faces of V'
for every P-projection R on A . Howevér, we only know imR

(and ker'R) to be semi-exposed faces of AT .

It will be an important feature of the spaces we shall consider
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later on, that every exposed face of K 1is a projective face and
that every extreme point of [0O,e] is a projective unit. But these
properties will not characterize projective faces and projeckive
units in the general case.

In our next picture we have shown a base norm space (V,K)
where V =ZR3. The corresponding order-unit space (A,e) shall
be the space of all linear functionals on V where e is deter-
mined by K C e-q(ﬂ) (as usual). Here it can be verified that the
linear functional a which assigns to every point z of V its
z-goordinate, will be extreme in [O,e], but it will not be a pro-
jective unit. In fact, a is extreme in [0O,e] since it is the
only function in A(K) with values in [0,1] which assumes the
extreme values O,1 on the x-axis and 2z - axis, respectively.

If a = Re for a positive projection R, then R* must leave the

z - axis pointwise fixed and vanish on the x,y-plane. Hence R"

is the orthogonal projection onto the 2z -axis. This projection is

smooth, but it will not admit any smooth quasicomplement. (In fact,
*

R" admits many quasicomplements, but none of them are smooth.)

Hence R 1is not a P-projection,

Z /N
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If R is a P-projection on A , then we may use Proposition
2.7 to obtain an explicit formula for FR' in terms of F, . For

x €K and b € A we shall have

(2.21) x € Fp, <=> inf{b(x) [xy <b<1 on K} =0 .
R

This motivates the following:

Definition. To an arbitrary face F of K is associated a

set F#, called the gquasicomplement of F, consisting of all x €K

such that_

inf{b(x) |xp < <1 on K} =0.

Hence by definition Fp, = (FR)# .

Note that F# need not be convex for an arbitrary given face
F . Hence F# is not always a face. It is not hard to verify that
F# is a union of faces in the general case; hence it is a face when-
ever it is convex. But we shal;,not need these results in the sequel.

Note also that the definition of F# closely resembles a known
characterization of the ordinary complement F' of a closed face F
of a compact convex set K [Aq,p.155]. The only difference is the
occurence of the upper bound 1 for the variable function b € A,
but this difference can be quite essential as shown in the picture

rd

below.

~
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Fig. 4.
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It is clear from Corollary 2.8 that a P-projection R on A
is completely determined by its associated projective face FR , and
it is clear from Corollary 2.9 and Corollary 2.11 that R will
also be determined by its associated projective unit Re . We are
going to make these results more explicit, and in this connection
we shall need some notation.

The set of all P-projections on A will be denoted by ‘@,
the set of all projective units of A will be denoted by %, and
the set of a2ll projective faces of K will be denoted by ?J.

Each of these sets is endowed with a natural operation of comple-
mentation, respectively R ~* R', Re " e-Re , and F - F# . The

two sets IZZ and g;are also endowed with a natural partial order-

ing, respectively the ordering relativized from A , and the inclu-
sion ordering of subsets of X . We complete the picture by giving

the following:

Definition. If R,S € % and imR c imS , then we shall

write R=<S .

The relation R=<S is antisymmetric since a P -projection

is determined by its range, and thus it is a partial ordering.

Lemma 2.15. If R,S GQ then the following are equivalent:

(i) R=% S
(ii) SR = R
(iii) Re < Se
(iv) imR* < img*

(v) Fp © Fg
(vi) RS =R

(vii) S'=XR'
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Proof. (i) ==> (ii) If R=S then imR < imS, so SR=R.
(ii) => (iii) Generally Re < e and SRe < Se . If B8R =R,
then Re < Se .
(iii) => (iv) Application of (2.16).
(iv) <=> (v) By the definition of Fp and Fg .

(iv) => (vi) If imR* < imS* then S*r* = RrR*

, which gives
RS =R .

(vi) ==> (vii) If RS =R then 8'R* = R* , and so imR*cim8".
By (2.17) ker's c ker'R , and so im*S' < im'R' , which means
S'<XR' .

(vii) => (i) We have already proved (i) => (vii). Now we

use this implication with S',R' in place of R,S and recall that
R" =R and S§"=85. []

We shall find it convenient to restate some of our previous
results in terms of projective units and projective faces.

If R € 5D then it follows from Corollary 1.3 and the equali-
ty Fﬁ = (im"YNK = (ker+H3r1K, that for a given a € AT

#*

Ra =0 on FR ,

(2.22) Ra = a on Fp,
and that Ra 1is the unique element of A" with these properties.

More specifically, we get by (1.17):

(2.23) Ra:sup{b€A+|b_<_a on Fp, b=0 on Flﬁ}
- inf{b€A* |b>a on Fy, b=0 on Fp}

Applying the sbove result with a = we conclude that

e 9
Re =0 on F# ,

(2.24) Re =1 on F R

R?
and that Re 1is the unique element of AT with these properties.
In fact, by (2.6) we get the explicit formula:
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(2.25) Re = sup{fb€A|0<Db<e,b=0 on Flﬁ}

Note that (2.25) is not a mere specialization of (2.25), since
in (2.25) we have assumed b < e and not only b <e on Fp -
Applying (2.25) to R' and using Re = e-R'e and Fp = (FR.)#,

we get the alternative formula:

(2.26) Re = inf{c€A|xy <c <1 on K}.
R

We shall close this section with a theorem. It contains no
new information but may be considered a summary of some of the main

results of the preceding pages.

Theorem 2.16., The map R - F_, is an order isomorphism of @

onto fj—: carrying the map R =» R' into the map F - F# , and its

inverse is given by (2.2%). Similarly the map FR - Re given by

(2.25) is an order isomorphism of 197 onto U carrying the map

F - F# into the map Re - e-Re, and its inverse is given by (2.20).

In the next section we shall show that under an additional
hypothesis c@ (and hence also 5’7' and (M) is an orthomodular

lattice.
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§3. The lattice of P -projections.

Throughout this section we shall keep the assumptions of §2,
i.e. (A,e) and (V,K) shall be respectively an order-unit space
and a base-norm space in separating order and norm duality. In ad-

dition we shall impose the following two requirements:

(3.1) A is pointwise monotone 0 -complete.

(%.2) Every exposed face of K is projective.

The requirement (3.1) means that if {an} is an increasing
sequence from A which is bounded above, then there exists a € A
such that a(x) = supnan(x) for all x € K. In this case we shall
write a = sup_a_ . (Clearly (3.1) implies the same statement for

nn

the pointwise infimum infnan of a descending sequence).
Note that (3.2) is a strong requirement which imposes severe
restrictions on the convex set X . However, it will be implied by

the "spectral axiom" we will assume later.

The I’-projections mentioned henceforth will be defined on A
unless otherwise specified. We have previously endowed the set
of P-projections on A with a partial ordering =< , and we now
agree to write \O/.Poc and /C\LPa respectively for the least upper
bound and the greatest lower bound of a family {Pa} from 317, when

these elements exist,

Lemma 3.1. If {P } is a sequence from % then P = [P, exists
o n

in 5D , and its associated projective face is given by

(%.%) Py = Q FPn
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Proof. It follows from the pointwise monotone o -completeness
of A that a =Z, o 1 PI;eGA . The function a takes values in
[0,1], and the set KN a_q(O) must be an exposed face of X .
Hence there exists P €Y’ such that Fp = KN a"/I(O) .

For x € K one has a(x) =0 iff (P1:16>(X> =0 for all n,
which is equivalent to (Pne)(x) =1 for all n, and in turn to

x € F% for all n . Hence (3.3.) is valid.

It remains to prove that P 1is the greatest lower bound of
{p,} . Clearly PP,  for all n, since Fp < F% for all n .
Also if Q= P, for all n, then FQ c II’IIFP = Fp ; and so Q=<P.

n

Hence P =£Pn° 0

Proposition 3.2. The setwg) of P -projections on A ordered

by =X, is a 0 -complete lattice.

Proof. The proposition follows from Lemma 3.1 since P - P'

is an order reversing involution on ? . D

We will now extend the notations V and /N to the lattices
gand % of projective units and projective faces respectively.
(We shall continue to use sup,a, and ini‘aaa to denote pointwise
suprema and infima, when they exist, for families {a,} from A.)

For convenience we shall also write h' = e~h when h € % , but
we shall continue to denote the bquasicomplement of F € 7 by the
symbol F# (since F' might be confused with the customary comple-
ment of F in K).
#

Since F —» F' is an order reversing involution on 94 , we have

the following general formulas for Fa € ?‘:
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~By these formulas and (3.3.) we get the following expressions

. for the lattice operétions for a sequence {Fn} from _577::
AP, = Q F,

(3.5) -
[y gtyf
n n

Vp
n n

Definition. Two P -projections P and Q are said to be

orthogonal if P Q', ‘and we then write P 4 Q.

Note that if P<<Q' then Q =Q"=<XP', so Q L P . Hence
the relation .l is symmetric. Clearly P 1 P' always holds.
We list some simple conditions for orthogonality, and we note

that the last one depends on the equivalence of P Q' and

in*P € in*Q' = ker'q .

(3.6) PLQ <=> Pe+Qe < e

(3.7) PLQ <=> PFpc Fz.é <=> FQ, c Flﬁ
(5-8) P1 Q@ => PQ = 0O <=> QJ_D =0 .

The notation L will also be extended to % and . By (3.6)
the relation g 1L h holds for two elements g and h of U irr
g+h < e, and by (3.7) the relation F L G holds for two elements
F and G of & iff F c G#, or equivalently G < F# .

We now record some simple observations which will be useful.

If a and b are in A with a <b, then the set
(b-2)7"(0) = {x€X | a(x) =b(x)}

is an exposed, therefore projective, face.
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Thus if F and G are projective faces, we have

(3.9) ~a<b, a=b on FUG=>a=>b on FVG.

Immediate consequences of this are:
(3.10) 0O<a, a=0 on FUG=>a=0 on FVG

and

(3.11) a<e, a=1 on FUG=>a=1 on FVG.

The results above can be extended to any finite or countably

infinite union of projective faces.

Lemma 3.%. Let P,Q € @ and P L Q. Then

(3.12) Pe+Qe = (PVQ)e

Proof. By (%.6) Pe+Qe < e . Clearly (Pe+Qe)(x) =1 for

x € FPUFQ’ and by (3.9) Pe +Qe

on the face Flﬁﬂ Fg = (FPVFG># . This implies (see (2.22)) Pe +Qe

= (®vQe . 0

e on FPVFQ. Also Pe +Qe =0

Proposition 3.4. Let LPi} be a finite sequence from 42 .

Then the following are equivalent

(1) P; L P, for i #j
(ii) g-Pie = (:\{Pi)e
(iii) ZP.e < e

i -

Proof. (i) => (ii) The proof goes by induction on the number

n of elements of {Pi} . For n =1 the statement is trivial. We
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assume the statement valid for n-1 and consider a finite sequence
{P1"°°’Pn] such that (i) holds. Let Q = P,Veo.VP, 4 . We have

] . i
En=$ Pi for 1 =1,...,0-1 . Hence Pn§$Pqu..APn_1 =Q', and so
Pn L Q. By Lemma 3.5 and the induction hypothesis:

(P4V,..VPn)e = Qe+P e = Pie+...+P e .
This completes the induction.
(ii) => (iii) Trivial.

(iii) => (i) TFollows from (3.6). U

In view of the preceding result we will write P,+...31P, in
place of P V..,..VPn when P19’°-’Pn are mubtually orthogonal. Note
however, that in general Pqi...an # P%+‘°°+Pn . (We shall give

conditions for equality in §4. )

Turning to a finite sequence {81’°"’8n} from ?ﬂ , we get the

following useful formula:

(3.13) B VeeoVB, = Bqteeot By s if gy L ¥ when i # 3J .

We are now ready to show that 99 is in fact an orthomodular
lattice. In Theorem 3.5 below (3.14), (3.15), (3.16) state that
the map P - P' is an "orthocomplementation' on éi), and (3.17) is
the "orthomodular identity".

L
Theorem %.5. The 0 -couplete lattice £Z> is orthomodular; that

is, for P and Q in SQ:

(3.14) P" =P

(3.15) P=Q implies Q'=X P'
(3.16) PAP' =0 and PVP' =1
(3.17) P =< Q implies Q = P+ (QAP')
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Proof. Statement (3.14) follows at once from the fact that P
is the quasicomplement of P', and (3.15) follows from Lemma 2.15.

In order to prove (3.16) we consider Q E@ such that Q=P
and Q=<XP' . By Lemma 2.15 Q =PQ =P'Q . Since P L P' we al-
so have PP' =0 (compare (3.8)). Hence

Q=PQ =P(P'Q) = (PP')Q =0 .

Thus PAP' = 0, and by complementation also

PVP' = (P'AP)' =0' =1.

The orthomodular identity (3.17) is most conveniently proved
in the lattice (. If gh € ¥ and g<h then gLlh', soby

(3.13)
hag' = (h'vg)' = (h'+g)' =e~-h'-g =h-g .

Since hAg' <g' we have (hAg') L g . Hence we may apply

(%3.13) once more and obtain the desired equality:

gV (Arg') =g+ (hrg') =g+ (h~-g) =h . (0

We close this section by a proposition involving the analogue
of the range projection in a von Neumann algebra. For the statement
and proof of this proposition it is conveniemt:f to use the short no-
tation face(a) to denote the smallest face of At containing a

given element a of AT

Lemma %.6. Let F €9 ., say F =F_. where P €9 . Then

L
F" = face(h) where h 1is the projective unit defined by

(3,18) h =P'e = supfa€A|0<a<e,a=0 onF}
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Proof. Writing Q = P' we shall have F = (ker'Q*)NK , and

by application of (1.12) also
L + 1 1
F = (ker'Q")” = (kerQ")” = im'Q.

By Corollary 2.11, im'Q is a face of A’ generated by Qe =
P'e . Hence F'L = face(P'e) .

The last equality sign of (3.18) is Jjustified by virtue of
(2.25). [I

We shall also need the following simple equivalence valid for

projective units h and k :

(3.19) h<k <=> {x€K]k(x)=0}c {x€K|n(x)=0}.

In fact, h <k iff k' <h', and the projective faces associated
with k''=e-k and h' =e-h are {x€K|k(x)=0} and
{x€K|n(x)=0}, respectively, (see (2.20)).

Proposition 3.7. For each a € AT there exists a smallest

projective unit h such that a € face(h), and h is the unique

element of Qﬂ such that for x € K :

(3.20) h(x) =0 <=> a(x) =0 .

Moreover, a < |lalln .

Proof. The set F = {XGEKI a(x) =0} is an exposed, hence pro-

fective, face of XK . Let F = F_, where P e<90 s aﬁd define

P
h =P'e. Then Pe =e-h, and so

(3.21) F=Fp={x€K|n(x)=0} .

Hence the equivalence (3.20) is valid.
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Clearly we may assume a £ O . Then O S,Han_qa‘i e, and
lal""a =0 on P . Hence (3.18) gives |la]Ta <P'e =h, and so
a < lalln .

Clearly a € Fl, and Fl = face(h) by Lemma 3.6. Hence
a € face(h) . Now suppose a € face(k) for a projective unit k .

Then a < Ak for some M\ € R . Hence

(3.22) (x€K|x(x)=0} cF .

It follows from (%.21) and (3.22) that the inclusion at the right
side of (3.19) is valid. Hence h <k . [

Definition. For given a € A" we shall denote the projective

unit h of Proposition 3.7 by rp(a) ..

The following consequence of Proposition 3.7 will be useful
later:

(3.23) 0O<a<e => ac<rpla).



§4. Compatibility

Our assumptions in this section will be the same as those of
the preceding section, i.e. (A,e) and (V,K) shall be order-unit
and base-norm spaces in separafing order and norm duality, satisfy-

ing (3.1) and (3.2).

Definition. A P -projection P on A and an element a of

A are said to be compatible if Pa+P'a = a . (We shall also say

that P is compatible with a and vice versa).

To motivate this definition we will anticipate a result to be
proved later: If A is the self-adjoint part of a von Neumann al-
gebra and V its predual, then the P -projections on A are ex-
actly the maps a - pap where p is a projection in A, and the
orthocomplementation P - P' in ,_@ will correspond to passage to
orthogonal complements p —* p' = I-p for projections in A . Now
it can be easily checked that a and p commute iff pap'+ p'ap'
= a . Hence the notion of compatibility will correspond to the

notion of commutation.

Proposition 4.1. A P -projection P on A is compatible

with an element a‘ of AY iff Pa<a .

Proof. If P and a are compatible, them a = Pa+P'a > Pa.
Conversely, if Pa < a, then a-Pa >0 and P(a-Pa) =
Pa-Pa = O . Hence a-Pa € ker'P = im'P' .

Thus
a-Pa = P'(a-Pa) = P'a,

and so a = Pa+P'a . [
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The next proposition provides the explicit expression PAQ =
PQ when P and Q commute. Thus in this case the product of the
two P -projections P and Q 1is again a R-projection; this pro-
perty also serves to characterize compatibility of P and the pro-

jective unit associated with Q and vice versa.

Proposition 4.2. Let P and Q be P -projections; then the

following are equivalent:

(i) PQ is a P -projection
(ii) PQ = PAQ
(iii) P is compatible with Qe
(iv) @Q is compatible with Pe
(v) PQ =QP .

Proof. (i) <=> (ii) Assume PQ is a P -projection, and
write PQ =R . Then PR=PQ =R, so R=<P . (Lemma 2.15).
Also RQ =PQ =R, so R=<Q . Hence R=<PAQ .

Now suppose S € P and S <P and S=<Q . Then SP = S
and SQ = S . Hence

SR = SPQ = SQ = 8,

and so S=<{ R . This proves R = PAQ .

The reverse implication is trivial.

]

(ii) <=> (iii) If PQ = PAQ, then

P(Qe) = (PAQ)e

1]

(Pe) A (Qe) < Qe

and by Proposition 4.1, P is compatible with Qe .
Conversely, assume that P is compatible with Qe . Then

0 < P(Qe) < Qe by compatibility, and O < P(Qe) < Pe since Qe<e.
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It follows that rp(PQe) is below Qe and Pe, and by (3.23):
O < PQe < rp(PQe) < (Pe) A (Qe) = (PAQ)e .

It follows that for every a € A with 0 <a <e, O <PQa < (PANQ)e,
and so PQa is in the order ideal generated by (PAQ)e, which is

equal to im(PAQ) . Combining this with Lemma 2.15 (vi), we get
PQa = (PAQ)(PQa) = (PAQ)Qa = (PAQ)a,
and so PQ = PAQ .

(iii) <=>@Gv) Assume that P is compatible with Qe , and write
h 1in place of Pe and g for Qe . We will show that h 1is com-
patible with Q .

Since h = Pg+ (h-Pg), we shall have

(4.1) Qh = QPg + Q(h-Pg) .

By Proposition 4.1. it suffices to prove Qh < h, and we shall do
this by showing that QPg <h and Q(h-Pg) = O .

Since P is compatible with g, one has O < Pg < g . Hence
Pg belongs to the order ideal generated by g = Qe, and so Pg €
imQ (Corollary 2.11). It follows that

(4.2) QPg = Pg < Pe =h .,

Since P is compatible with g, one also has Pg = g-P'g .
By substitution of this expression for Pg and by use of the in-

equality P'g < P'e = h', we get
h-Pg =h-g+P'g<h+h'-g=e-g=g" .

Thus O < Q(h-Pg) < Qg' = O ; and so we have proved

1]

(4.3) Q(h-Pg) = 0,

as needed.

The converse statement follows by interchanging P and Q .
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(iv) <=>(v) Assume Q compatible with Pe . Going back to
(ii) we conclude PQ = PAQ . By the equivalence of (iii) amd (iv)
we also have compatibility of P and Qe , and the same argument
with P and Q interchanged gives QP = PAQ . In particular
PQ = QP .

Conversely, if PQ = QP then Q(Pe) = P(Qe) <Pe, so Q is

compatible with Pe . D

Definition. Two P -projections P and Q are said to be

compatible if they sétisfy the equivalent conditions (i) - (v) of

Proposition 4.2 ; and this notion of compatibility is also trans-

ferred from ;?9 to the lattices ‘2@ and gz—:isomorphic with 90.
o,

Note that the notion of compatibility for two P -projections
P and Q can be considered an extension of the previously defined
notion of compatibility for a P -projection P and an element a
of A, by virtue of statements (iii) and (iv).

Note also that by Lemma 2.15 and by formula (3.8) the follow-

ing implication is valid:

(4.4) P<XQ => P and Q are compatible,

(4.5) PLQ=> P and Q are compatible.
Observe that if P is compatible with a, then
(4.6) a =Pa+P'a=(P)a+P'a,

and thus P' is compatible with a . Now if P and Q are compa-
tible then P is compatible with Qe , so P' is compatible with Qe,
and thus P' and Q are compatible. It follows that the following

statements are equivalent:

(4.7) P and Q are compatible
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(4.8) P and Q' are compatible
(4.9) P' and Q are compatible
(4.10) P' and Q' are compatible.

We next state a condition characterizing compatibility of P
and Q in terms of a decomposition property of the lattice QD . In
this connection we shall need the following simple consequences of
Proposition 3.4:

(4.11) P,LP, => PP iP,,

and

(#.12) Py 1Py, Py LB, Py LPy => Py L (PyiP) .

Proposition 4.3. Two P -projections P and Q are compatible

iff there exist mutually orthogonal P -projections R, S, T such that

(4.13) P=RiS, Q=siT,.

If such a decomposition exists it is unique, in fact

(4.14) R =PAQ', S =PAQ, T =QAP'.

Proof. 1.) Assume first that (4.13) holds. By (4.11) S<XP
and S=<Q, and by (4.12) PLT and QLR . By Lemma 2.15 and
formula (%.8):

(4.15) PS =8P =8, Pr=TP =0,

I

(4.16) Qs RQ = O .

5Q

i
n
B

]

This implies P(Qe) = Se < Qe , and by Proposition 4.1 P and Q
must be compatible,

Now that P and Q are known to be compatible, we can write
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(PAQ)e = PQe = P(Se+Te) = Se,

and so PAQ =S .
We also know that P and Q' are compatible (see (4.8)).

Hence

(PAQ')e = PQ'e = P(e-Se-Te) = Pe-Se = Re,

and so PAQ' =R . Similarly we prove QAP' =T .
2.) Conversely, assume P and @Q compatible, and define R,S,T
by (4.14). Since P and Q' also are compatible, we shall have
Re = (PAQ')e = PQ'e = Pe-PQe = Pe- (PANQ)e = Pe-Se .

Hence Pe = Re+ Se . By Proposition 3.4, R and S are oi‘thogonal

and P =R+S . Similarly we prove S L T and Q = S+T . Finally
Re+Te = (PAQ')e+ (QAP')e < Pe+P'e = e,

which proves R L T . [I

Observe that if P and Q are compatible P -projections, then
(4.17) PVQ =P+QAP' =P1QP' .
In fact, the relation PVQ > P+QAP' will hold for any two P -

projections, and if P and Q are compatible then by Proposition

4.3
PVQ = RVSVT =P+QAP' .

The last equality of (4.17) follows since P' and Q also are com-—

patible.

We will now study the connection between compatibility and
Boolean algebras, and we recall that the notion of a Boolean algebra

may be defined as a distributive orthocomplemented lattice (cfr.§3).
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Proposition 4.4. Let L be a subset of cQD conteining O

and I and assume that L is closed underlthe operations of¢99 .

that is P,Q € I, shall imply PAQ € L, PVQ €L and P' €L .

Then with these operations L is a Boolean algebra iff every pair

of projections in L are compatible.

Proof. 1.) Assume first that every pair of elements of L
are compatible. Since P - P' is an order reversing involution

on L, it suffices to prove the distributive law

(4.18) P A (QVR) (PAQ) V (PAR) .

The inequality
PA(QVR) > (PAQ) V (PAR)

is valid in any lattice. We will show that the opposite inequality

also holds in the present case. By (4.17)
PA(QVR)e = P(Q+RQ')e = PQe + PRQ'e .
Hence (by Proposition 3.4):

PA(QVR) = PAQ + PARAQ' < (PAQ) V (PAR) .

2,) Assume next that L is a Boolean algebra, and let P and
Q be any two elements of L . The decomposition (4.1%) with R,S,T
defined as in (4.14) follows at once from the distributive law. It
is also easily checked that R=X8', R<XT' and S=T' . Hence
R,S,T are mutually orthogonal. Then it follows by Proposition 4.3
that P and § are compatible. D

We shall now prove that if P and @ are orthogonal P -pro-
jections, then P+Q and P+Q will agree on elements a € A which

are compatible with P and Q . (This will generalize Proposition
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3.4 where the same result is proved with a =-e) .

We first observe that the set of elements of A compatible
with a given P -projection P, is a linear subspace of A contain-
ing the order unit e (in fact it is just ker(I-P-P')). It fol-
lows that for P €% and a € A :

. P and a are compatible iff P and a + Ae

(4.19)

are compatible for one (hence all) X €IR .

We shall also need the following lemma which is independent of

any orthogonality requirement for the occuring P -projections.

Lemma 4.5. Let P and Q be compatible P -projections. If

a € A is compatible with P and Q then a is compatible with

PVQ and PAQ .

Proof. By (4.19) we can assume a > O . Since a is compat-
ible with P and Q we shall have Pa < a and Qa < a (Proposi-

tion 4.1), and since P and Q are compatible we shall have

PAQ = PQ (Proposition 4.2). Hence
(PAQ)a = P(Qa) < Pa < a .

Thus PAQ is compatible with a .
By (4.6) a is compatible with P' and Q' , and also with

PVQ=(P‘AQ,')'.. U

Proposition 4.6. If P,,...,P are mutually orthogonal P -

projections and a € A is compatible with each of them, then

(4.20) (P,]-T-...iPn)a=P,]a+.e.+Pna .
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Proof. 1.) We first assume n =2 . The P -projections P,
and Pé are compatible with a by (4.5) and (4.6), and with each
other by (4.10). Then it follows from Lemma 4.5 that P%/\Pé is
compatible with a, and this means that a = (P%APé)a-k(P%APé)'a g
Hence

° ] 1 1 1 1
(P1+P2)a = (quPz)a = (PqAPg) a8 = a-(PqAPg)a =

= a-—P%Péa = a-—PA(a—Pza) = (a—PAa)-rP%Pza =Pa+Pra .

2.) The proposition for n > 2 follows by induction. (Note

that the relation P, i.(EH-l...<lI5ﬁ1) follows from (4.12)).

Definition. A projection P on A will be said to be central

~if it is a P -projection compatible with all elements a of A .

Now the following corollary will be an immediate consequence of

Proposition 4.6:

Corollary 4.7. If Pq,...,P are mutually orthogonal central

projections on A, then

(4-.21) P1+¢.a+Pn=P,I+oa.+Pnc

Clearly O and I are central projections, and any two central
projections are compatible. By (4.6) P' is a central projection
whenever P is, and by Lemma 4.5 PVQ and PAQ are central pro-
jections whenever P and Q are. It then follows from Proposition

4.4 that the collection of central projections is a Boolean algebra.

Definition. The Boolean algebra of central projections on A

will be called the Boolean center of A .
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It will follow from the next proposition that this concept is
(up to a canonical isomorphism) the same as Wils' Boolean center
[wa. Note, however, that Wils' definition applies to much more

general spaces than those of the present section.

Proposition 4.8. If P is a weakly continuous projection on

A, then the following are equivalent:

(i) P is central.

(ii) P is a P -projection such that P' = I-P .

(iii) 0 <Pa <a for all a € At

Proof. (i) => (ii) Assume P €9’ and P compatible with
all a €A . Then P'a =a-Pa for all a €A, so P' =I-P.

(ii) => (iii) If P € JP and P' = I-P, then P and I-P
are both positive. Hence (iii) follows.

(iii) => (i) Assume (iii), and note first that P > O .
Also Pe < e, and so ~e <Pa<e when -e <a<e . Hence

IPll <1 . Similarly (I-P) >0 and ||I-P|| <1 .

Clearly P and I-P are quasicomplementary, as are P* and
(I-P)* = I~-P* . Thus by Theorem 1.8 P is a P -projection.
Finally, by Proposition 4.1, (iii) implies that P is central. U

The notion of centrality has a lattice theoretic analogue. In
an orthomodular lattice L one says that two elements are compatible
if they admit a decomposition into orthogonal parts as describedein
(4.13) (cf. [M,p.70]). The center of the lattice L then is de-
fined to be the set of those elements of I which are compatible

with all elements of L ; this is always a Boolean algebra.
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Observe that the central projections we have defined are always
contained in the lattice center of éﬁj. It will follow from the spec-
tral theorem (proved in §5 under an additional hypothesis) that the
converse holds, i.e. that every projection in the lattice center of

P is central.
We next define a concept which will play an important role in

the spectral theory.

Definition. A P -projection P 1is said to be bicompatible

with an element a of A if it is compatible with a and with all
P -projections compatible with a . The collection of all P -projec-

tions bicompatible with a is called the QZLbicommutant of a and

is denoted 3(a) .

The term "£¥Lbicommutant“ is motivated by the application to
von Neumann algebras. Here the SDJbicommutant will be (canonically
isomorphic to) the Boolean algebra of projections in the customary
bicommutant. (See the motivating remarks for the definition of com-
patibility at the beginning of this section.) A partial justifica-
tion for the term "(-bicommutant” is also provided by the fact that
an element P of 63(a) will actually commute with all P -projec-

tions compatible with a .

We will show that (3(a) is a o0 -complete Boolean algebra for
every a € A, and we shall need the following lemma which is of

some independent interest.

Lemma 4.9. If {P } is an increasing sequence of P -projec-

Ll

tions all of which are compatible with a € A, then P = VPr is
n .y

compatiblé with a . If a =20, then
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(4.22) Pa = sup P a .

Proof. Note first that by observation (4.19) we may assume
a 2 0 throughout the proof.

Let Fn be the projective face associated with PIl and F
the projective face associated with P . By (2.22):

N _ #
(4.23%) P,a =a on F_, Pa =0 on F .

Note that P =P 4P, since P =P

n+1™n n+1» nd Ppa <a

since Pn is compatible with a .
Hence

Pna = P

n+’anaf-P

n+1 &

and it follows that {PIl a} is increasing and bounded above by a .
We write

b =sup P ac<a.

o
E" . Hence xept implies xept

# #
By Lemma 3.1, F' = (I\;Fxll) = n

n
f all n
én%.rby (41325) also (% a)(x) =0 f

or all n . Thus

(4.24) b=0 on BT,

For fixed n we consider an arbitrary point y € Fn . If
m>n then y €F cF , and by (4.23) (Pm a)(y) = a(y) . Hence
b=a on F . Since b <a, the set {x€K|b(x)=a(x)} is an
exposed, hence projective, face. We have just seen that this face

must contain all Fn , and therefore also F = V% . Thus
n

(4.25) b=a on F.

By (4.24) and (4.25) (and by the uniqueness statement, concern-
ing (2.22)), we shall have b = Pa, and (4.22) is proved.
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By the inequality Pa = b<a (and by Proposition 4.1) the P -

projection P 1is compatible with a . D

Theorem 4.10. For each a € A the @—bicommﬁtant ﬁg(a) con-

tains O and I, it is closed under the map P - P', and it is

closed under finite and countable lattice operations. F‘tli'themore,

every pair of elements of (3(a) is compatible, and thus Ba) is

a 0 -complete Boolean algebra.

Proof. Clearly O and I are in (3(a) .

Assume P € (3(a) . Then P is compatible with a, and it
follows that P' is compatible with a (see (4.6)). If Q is com-
patible with a, then P is compatible with Q, and it follows
that P' is compatible with Q (see (4#.9)). Hence P' € @(a) .

Assume next that P € @(a) and Q € (B3(a) . Since Q is com-
patible with a and P is compatible with all P -projections com-
patible with a, P must be compatible with Q . By Lemma 4.5,
PvQ and PAQ are compatible with a . If R € e@ is compatible
with a, then P and Q will be compatible with R and hence with
Re . By Lemma 4.5, PVQ and PAQ are compatible with Re and
hence with R . This shows that @(a) is closed under finite lat-
tice operations. By Proposition 4.4, @(a) is a Boolean algebra.

Finally we consider a sequence {Pn} in (3(a) . We shall
prove that P = ;Pn is in @(a) . By the preceding part of the
proof we can assume {Pn} increasing, and it follows by application
of Lemma 4.9 that P is compatible with a, and that P is com-
patible with Re for all R E@ compatible with a . Hence P €
(3 (a) . since Ir;\li11 = (l\fl%')' , this completes the proof. []
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We will also transfer the definition of compatibility from the
lattice ,@ to the lattices % and SZ-. We define two projective
units h =Pe and g = Qe , respectively two projective faces
to be compatible if P and Q are compatible.

F=F, and G =F

P Q"

Similarly we shall say that an element a of A is compatible with

a projective unit h = Pe , respectively with a projective face F =

F if a is compatible with P . (Note that the two definitions

P 9
above are consistent if a happens to be a projective unit, say a =
Qe) . Finally we shall say that a projective unit Pe , respective-

ly a projective face Fp, is bicompatible with a if P € Og(a) .

It is not difficult to give alternative expressions for compati-
bility in terms of projective units and projective faces. For b ex
we denote the order ideal generated by b by [b], and we recall that
for P € @ one has imP = [Pel, (Corollary 2.11); and since im P’

C kerP and imP < kerP' we conclude that an element a of A is

compatible with a projective unit h = Pe iff

(4.26) a € [hl+[n17.

Next we note that an element a of AY is compatible with a
projective face F = FP iff it admits a decomposition into positive

elements a, and a2 such that

(4.27) a=a;+a,, a,; =0 on F#, ay =0 on F.

In fact, the necessity of this condition follows from (2.22), and the
sufficiency follows from the uniqueness statement accompanying the
same formula (2.22).

Finally we note that by (4.19) an arbitrary element of A will
be compatible with F = F iff a+Ae admits a decomposition of the

P
type (4.27) for some A such that a+ie >0 .
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We shall give several concrete examples later, but we feel that
at least one simple example should be presented here to illustrate
the notions studied in the last two sections. For this purpose we
return to the circular cone in the second figure of §1. ILet (V,K)
be the base-norm space shown in this picture, and let (A,e) be the
order-unit space of all linear functionals on V, with e(x) =1
for all x €KX . Now K is a plane circular disk, and A can be
identified with the (% - dimensional) space of all affine functions

on K with pointwise ordering and uniform norm.

It is easily verified that the requirements (3.1) and (3.2) are
satisfied in this case. In fact, the only proper faces of K are
the extreme points, and each extreme point is a projective face
whose quasicomplement is the diametrically opposite extreme point.
Applying the definitions and results of the last two section, one
will observe that the only projective faces compatible with a proper
projective face F, are @,K,F itself, and F# . (One way to see
this is to note that for all other projective faces G, F #
(FAG) + (FAG') = @ ; hence one does not have a decomposition of the
type (4.13)). One will also observe that a non-constant function
a € A(K) will be compatible with F iff the lines a(x) = const
are parallel with the tangent to K at F . (One way to see this
is to note that a decomposition of the type (4.27) into positive
components is possible in this case only.)

In the picture below we have shown a projective face F = FP’
its quasicomplement F# = FP" and the corresponding projective

unit h=Pee
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Fig. 5.

In this example every element a € A(K) is of the form

xoe + Ah  for some Xo,h €R and some projective unit h (and tri-
vially h € &3(8) ) . This is due to the extreme simplicity of the
present example, and it will not hold for more general cases. How-
ever, in the next section on spectral theory we shall give conditions

such that every a € A can be uniformly approximated by linear com-

binations of projective units in OB(a) .
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§ 5. The spectral theorem

We shall keep the assumptions of the preceding sections unless
otherwise stated. Thus (A,e) and (V,K) shall be order-unit and
base-norm spaces in separating order and norm duality satisfying
(3.1) and (3.2).

We begin by proving a general result (based on pointwise mono-
tone 0- completeness) which will be needed in the treatment of the

spectral theoren.

Proposition 5.1. The space A is norm complete.

o~

Proof. Let {an}f=o be a Cauchy sequence from A, and assume

without loss of generality that Han-an_,lu <2™ for n=1,2,... .
Writing

(5.1) b, = ag+ [(aa.—aa._,])+2-je] =a, + (1-2"Me

J

nm™MB

1

we get an increasing sequence {bn}io:/l such that b -Db 4l <o nH,
In particular, {bn} is bounded above, so it has a pointwise limit

b in A. In fact, {bn} is norm-Cauchy, and

(5.2) Ib-p,ll <27 .

By (5.1) and (5.2)

[(b-e) - a |l = [[(b-b ) -27"e| < 3-27" .

Hence {an} converges in norm to the limit b-e . |]

As was discussed in the introduction, to achieve the spectral
theorem we shall impose a condition which will play a role similar

to that of Stone in ordinary ("commutative") integration theory.
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Definition. The spaces A and V will be said to be in

weak spectral duality if for every a € A and every X €IR there

exists a projective face F compatible with a such that

(5.3) a<\x on F, a>\ on F#.

If in addition F is unique, then A and V are said to be in

spectral duality.

Note that weak spectral duality makes the requirement (3.2)

redundant. More specifically, one has:

Proposition 5.2. If (A,e) and (V,K) are order-unit and

base norm spaces in separating order and norm duality and if every

a €AY admits an F € 5;7 such that (5.3%) holds with A = O, then

every exposed face of K 1is projective.

Proof. Let G be an exposed face of K, say G =a (0)NK
for some a € AT, By hypothesis there exists an F € EF' such
that Fc G and a(y) >0 for y € F#. We claim F = G.

Let P be the P-projection corresponding to F, so F =
(imP*)NK. Observe that a =0 on F implies P'a = a (cf. e.g.
(2.22)), so for x € G we have

]

0 =a(x) = (P'a)(x) = a((P'")*x) = a((P*)'x).

Since im"(P*)' = cone(F'), and since by assumption a(y) > O for
v € cone(F#)\\{O] , we conclude that (P*)'x = O and thus x € F.

Hence we have shown G <C F, and so G =TF. []

It will be useful to have the first inequality of the definition
(5.3) stated in a slightly different form. If F is a projective

face corresponding to a P -projection P, i.e. if F = (imP*)NK,
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then a <2 on F iff a(x) < ie(x) for all x € coneF, which
is equivalent to a(P*x) < re(P*x) for all x € vt , and this in

turn is equivalent to Pa < APe. Hence

(5.4) a<\A on F <=>DPa< A\Pe.

Applying this inequality to -A,~-a and P', we also get

Jj
(5.5) a>x on FT'Jc <=> P'a > AP'e .

(Note that the left side of (5.5) is not the same as the right side
of (5.3). However, one may change to strict inequality at the left
side of (5.5) if the inequality at the right is required to be strict
on cone(F#)\{O}.)

We now proceed to prove the existence and uniqueness of spectral
decompositions of elements of A wunder the assumption of spectral
duality. In fact, weak spectral duality will suffice for the exis-

tence, and the proof is based on the following crucial lemma.

Lemma 5.3, Let A and V be in weak spectral duality, let
a € A and let }"l <X2§__)\_3 « If P’I-?£5 are P -projections compatible

with a such that P,I-.<, P, and

a

' '
(5.6) P;a < M;P;e , Pia > kiPie y

for i = 1,%, then one can choose a P -projection P, compatible
o

with a such that (5.6) holds for i = 2, and such that P,,-—%PgﬁP}:_

Proof. By considering a + Ye for large Y we can assume with-
out loss of generality that a >0 and O < )‘i for i=1,2,3.
Since P,'-s P5 , these two P -projections are compatible, and so
P,P,' € ZF (Proposition 4.2).

3
We now consider the element b = PBP,]'a €AY, By weak spectral
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duality there exists a P -projection Q compatible with b such
that
(5.7) @ < AQe, Q' Z rQ'e
By compatibility Q' <b, and thus (5.7) implies
AR'e QD <D = PBP"Ia < HaiIPBP,']e .
Since A, > 0, then Q'e € [PBP"Ie] , which implies
(5.8) Q,'-;{PBP,'. = PEAP,'I

Thus Q'=\P; and Q' =\<P,'| ; from this it follows that P,, Py, and

Q are compatible. We now define Py = QP5 , and obtain

P,]-4P2-4P5

Using (5.8) and compatibility of Q' with b, and compatibi-
lity of a with P,'l and Py :

Q'a = Q'(PBP,']a) =QD <b = PBP,"a < a.

Thus Q' (and therefore Q ) is compatible with a . By Lemma 4.5,

Py = QAP, is also compatible with a.

3

There remains to prove that

(5.9) Poa < M Pre ,  Poa > A,Ple.
Observe that by (5.7)
P,Pja = QI’BP,']a = Qb < A Qe,
and so since P,Pj=% PBP"l
(5.10)  PyPja = (P;P4)(PyPja) < A PsPiRe = AP Pje.
Since P =P, then P, = P,+P, /\1:','l , and so by Proposition 4.6
and (5.10)
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Poa = (P, % PZP,'])a = Pja+ PZP,'Ia
] 1
<A Phe+ A PoPes M (P etPoPie) = A Pse

which establishes the first half of (5.9).

Observe that by (5.8), Q'a = Q'(PBP,']a) = Q'b, and that Pé =
(QAPB)' = Q'35 Pé . Using these facts together with Proposition 4.6
and (5.7), we have

Pla = Q'a+P

5 =Q'b+P

%a éa
> )\2Q'e+)\5Pée3 xg(Q'e+Pée) = A,Ple.

This establishes the last half of (5.9) and completes the proof. U

Temma 5.4. Let {F } be an increasing sequence of projective

faces such that each Fn is compatible with a € A, If a > A on

4 \/
each T , then a > A _on n-En—'-

Proof. We assume without loss of generality that A = 0. TLet
F =§/Fn and let {Pn} be the sequence of P -projections corres-
ponding to {Fn} and P the P -projection corresponding to F.

Observe that Pna >0 for all n. By Proposition 4.6 for

m<n:
- 1 - 1 ,
(5.11) Pa= (PFP!P )a =P a+PPa>Pa.

We now apply Lemma 4.9. (Note that although Lemma 4.9 was
stated with the restriction a > 0, it remains valid for all a€ A
if we replace "sup" with pointwise limit.) Thus for x € K,

(Pa)(x) = 1lim (Pna)(x) , and by (5.11)
n->c0

(Pa)(x) = supn(Pna)(x) >0.
Here the equality sign is wvalid iff a(P;x) =0 for all n, i.e.iff

x € QFI%; = F#. For x€F we therefore have a(x)=(Pa)(x)>0. []
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Temma 5.5. Assume a € A and A NMMA. If {P } is a descen-

ding sequence of P -projections compatible with a such that

(5.12) Pa<APe, Pla>\Ple, for n-=1,2,...,

then P = 4};} will be compatible with a and satisfy

(5.13) Pa < \Pe, P'a > APe .

If A > A for n =1,2,..., then we shall have strict inequality

a>\A on F#, where F = (imP*)NK.

Proof. By Lemma 4.9, Pa and P'a are pointwise limits (onK)
for the sequences {Pna} and {Pﬁa}, and likewise with e in place
of a .

By compatibility of Pn and a:

Ve s ) be s o _
Pa+P'a = llmnPna-kllmnPna = 11mn(PnaTPna) = a .

Hence P and a are compatible°
By (5.12) :
| Pa = lim P a < lim A P e = APe
and
P'a = lim Pra > lim A P'e = AP'e .
Hence (5.1%) is satisfied.

Observe that each Pn will be compatible, not only with a,

but with Pa and with P'a, since
Pa = P(Pna+P£a) = Pn(Pa)-rPﬂ(Pa),
and likewise with P' in place of P,

For each n we denote by Fn the projective face corresponding

to P, (i.e. F, = im+P£). Then {Fﬁ} will be an increasing se-
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quence of projective faces compatible with P'a. For each n and

each xEFn.

(P'a)(x) = (Pljla)(x) > A, >

By Lemma 5.4, P'a >\ on XFﬁ = (é\Fn)# , and thus a = P'a > A
on F#o [

Theorem 5.6. Assume A and V are in weak spectral duality.

Then for each a € A there exists a family {P)\-}-)LE]P of P -projec-—

tions compatible with a such that for A,p €R:

(1) Pya < A\Pye, Pa > XP)'\e ,

(ii) P)\-.$ PlJ- when X < u

(iii) P, = ){/<\ Pu
1

If A and V are in spectral duality, then {P)\-}-)LEJP is uniquely

determined by the requirements (i), (ii), (iii).

Proof. Without loss of generality we assume O < a < e, and
we denote by A the set of dyadic fractions in [0,1].
By Lemma .-5.%2 we can find a family {Rp}pEA of P -projections

compatible with a such that Rpag,RO when p < ¢ and such that

(5.14) Rpa < pR.e, R'a> pr'Je , for p € A.

p P

Since 50 is a 0 -complete lattice we can define a P -projection

Py for each \ € [0,1] by writing P, =TI and

(5.15) P, = for 1 € [0,1) .

A<pEA Pp

We also define P, =0 for A <O and P, =1 for A > 1.
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It is clear from this definition that (ii) and (iii) are satis-
fied. |

If A2 1 or A <0, then (i) is trivially satisfied. For
given A € [0,1) we extract a sequence {pn} from A such that
gﬁ& A end p, >\ for all n =1,2,.... Then {pn} is cofinal
(to the left) in {p€s]|p>1r}, and so P, = /n\Rp . By Lemma 5.5,
we conclude that P, 1is compatible with a and tﬁat (i) is satis-
fied.

We also conclude from Lemma 5.5 ~that a > A on F# where

F = (imPk*)nK. By (5.4) and (5.5) this means

(5.16) a<\A on F, a>\ on F#,

If A and V are in spectral duality, then there is just one
F € %% ywhich is compatible with a and satisfies (5.16), and then

P, must be the unique P -projection corresponding to this projective

A
face. ,D

The following definition is motivated by the preceding theorem.

Definition. Assume A and V are in weak spectral duality.

A family {eh}XEIl of projective units is said to be a spectral

family if for A,pn € R

(1) e = e, when X\ < u
(i1) e, = /ﬁ\ e
A U>A M
G11) Noe, =0, Ve =e
AER AER

We shall say that such a family has compact support if there exist
®,B € R such that e, =0 for all A<a and e, =e for all

A > B
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If {PA}XGI{ is a family of P -projections compatible with an
element a € A such that (i), (ii), (iii) of Theorem 5.6 are satis-
fied, then the family {ek}AEIZ of projective units ey = Pxe is
said to be a spectral family for a. If A and V are in spectral

duality, then the elements of the unique spectral family {ek}hEI{

for a will be termed spectral units for a . More specifically,

we shall call ey the spectral unit for a corresponding to the

value A, or briefly the spectral A -unit for a.

Note that in the proof of Theorem 5.6 there was proved slightly

more than stated in the theorem. If A and V are in weak spectral
duality and {ex} is a spectral family for a € A, then by the argu-

ment leading up to (5.716) :

(5.17) a<h on F=e (1), a>r on ¥ -e1(0).

Here the non-trivial part of the statement is the strict inequality
at the right side, which depends in an essential way on requirement
(iii) ("right-continuity").

Note also that under the same hypotheses :
(5.18) e, =0 for A <-llall, e =e for > llall .
We shall now prove some simple, but useful, facts on approxi-

mation of elements of A by linear combinations of projective units.

In this connection it is convenient to use the term partition of [a,fl

to denote a finite sequence Yy = {Ki}?=o such that
(5019) a=)\o<>\/'<ooo<)\n=Bo

Also we shall use the symbol |y|| to denote the norm of the parti-

tion, i.e. Y| = max |A. = A, .
ceee I = max g -0
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Proposition 5.7. Assume A and V are in weak spectral dua-

lity and that {e,} is a spectral family for a € A. TFor a given

partition y = {A.}% of [-llall-¢,llalll, €>0, the elements

i=i=0
n - n
(3:200 gy = Thalamey v oy = IMleamay )
will satisfy
(5.21) 5,52 §>§Y
and
(5.22) (ENES-N I

Proof. Let ey = P,e where the P -projections Pk are compa-

—_— A

tible with a and satisfy (i), (ii), (iii) of Theorem 5.6. Then we

have the following two inequalities

A P! e < P, a P, a<A\ P, e.
I T e e
Applying PX to the first and Pi to the second, we find
i i-1
(5.23%) A, Py, Py e <P, Pl a<\P, P e .
=TT T T A Mg T A T g
Since Pk = Ph I Pk /\Pi and since the occuring P -pro-
i i-1 i i-1

Jjections are compatible with a, we may apply Proposition 4.6 to

get Plha = PX aa—PX_PK. a . Clearly also PA e = Pk e+]%;ﬁ_ e .

i i-1 i "i-1 i i-1 i34
Hence by (5.23) :

. (P, e=-P e) <P, a-P a< (P, e-P e)
S T T e R o A - R

Adding, we obtain (5.21).
Finally by (5.20) and (5.18) :

n n
S = Z (A:=\. ,)(e, -e ) < ”Y” ~ (e, -e ):‘fy”e

-s
YTy i i<

and the proof is complete. E
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By Proposition 5.7, Ha-—gYH - 0 and Ha-—§YH - 0 when
lvll = 0. Hence it is natural to express a as a Riemann-Stieltjes
integral with respect to the given spectral family. Thus we shall

write

(5.24) a = [rae, .

This formula can be interprated as an ordinary Riemann-
Stieltjes integral with respect to a real valued increasing function
when the occuring elements of A are evaluated at a given point x

of K .

Proposition 5.3. Assume A and V are in weak spectral

duality and that {ek} is a spectral family for a. For each

x € K the function A - ex(x) is increasing, right continuous,

e (x) =0 for A <-|la]l , and ey(x) =1 for A > |lall . Moreover

(5.25) a(x) = | de, (x).

Proof. As in the preceding proof, we write ey = Pxe. Then
it follows by (ii) of Theorem 5.6 that A - ek(x) is increasing,
and it follows by (iii) together with Lemma 4.9 that this function
is right continuous. By (5.18) e,(x) = 0 when X <-|a|l and
e,(x) =1 when X > lall .

As before we define Sy and EY by (5.20). By the definition,
of the Riemann--Stieltjes integral, §Y(x) and EY(X) will both
converge to Ik.dex(x) when ||y]| = 0. Hence (5.25) will follow

from (5.21).

Proposition 5.9. Assume A and V are in weak spectral dua-

lity. Let {ehikEI’ be a spectral family of compact support. Then
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there exists a unique element a € A such that {ex} is a spectral

family for a.

Proof. If thereexists such an a, then it is unique by (5.25).

Let {PA}LEI{ be the family of P -projections corresponding to
the family {ex} of projective units {eA}AEIl° For each partition
Y of a fixed interval [a,p] with e, =0 for A <a and e, =e
for X\ > B, we define Sy and §Y as in (5.20) . We note that
formula (5.22) will be valid since the proof of this formula only
depended on those properties of {ek} which are assumed as hypo-

theses in the present proposition. We now define a real valued

function a on K by

= lim s,(x) = 1lim s_(x),
vl - 07Y Ivll-o ¥
By well known results on the Riemann-Stieltjes integral, these

limits exist and for each partition y +the common limit a(x) will

satisfy

(5.26) §Y(X>-§ a(x) < §Y(X)°

Note also that a is bounded and affine. By (5.22) and (5.26)

5, -2l < 15, -5l < I,

and so §Y - a when |v]] » 0 (norm convergence). By norm comple-
teness of A we conclude that a € A.

It is easily verified that sy = Pys, +P;s, for every X g
[a,B], and that this equality also holds for X € [a,B] if A\ is
included among the "dividing points" for y . Passing to the limit
we obtain a = Pha-+Pia. Hence Ph is compatible with a.

Finally we observe that if y 1is a partition including A
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among its "dividing points", then Png_f AP, e and PiEY'z LPy e

Passing to the limit, we obtain anlg kPXe and Pia > APie for

all X € [a,8]. These inegualities hold trivially for A € [a,B].
This shows that {ek} is the spectral family for a. []

Combining Theorem 5.6 and Proposition 5.9, we get

Corollary 5.10., If A and V are in spectral duality, then

there is a 1 -1 correspondence of spectral families {eh} of com-

pact support and elements a € A, given by :

a = |Ade, .
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§6. Properties of spectral families

In the present section we shall study spectral families for
spaces A and V in (weak) spectral duality, and we shall also
give various alternative definitions of weak spectral duality and of
spectral duality. Unless otherwise is stated, we shall assume that
(A,e) and (V,K) are order-unit and base-norm spaces in separating

order and norm duality satisfying (3.1) and (3.2).

Definition. Two elements a,b € A" are said to be orthogonal,

in symbols a L b, if rp(a) 1L rp(b).

Observe that for a,b,ao,bO € A" one has the implication

(6.1) a<a , D<b_, a Lb => alb

0o o

From this one can easily obtain the following implication wvalid for

a €At anda P,qe P

(6.2) PLQ => PalQ@Qa.

In fact; we may assume a < e without loss of generality and then

apply the previous inequality with a, = Pe and bo = Qe .

Proposition 6.1. A and V will be in weak spectral duality

iff every element a of A admits a decomposition a = 2= 25 with

29285 €A and a, 1 8o e

Proof. 1.) Assume first that A and V are in weak spectral
duality. TFor given a € A we choose a P-projection P compatible
with a such that (5.3) holds with F = (imP*)NK and A = 0.

By (5.4) and (5.5), Pa <0 and P'a > 0. By compatibility
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a =Pa+P'a, and clearly (-Pa) L P'a. Writing a, =P'a and
as =-Pa, we get a decomposition of the desired type.

2.) Assume next that every a € A can be decomposed as a 4if-
ference of two orthogonal elements of AT . We shall prove that for
a given a € A and X € R there exists a projective face F ‘com-
patible with a such that (5.3) holds.

Without loss of generality we assume a >0 and A >0. By

assumption we may decompose
(605) a—)\.e = b/l"'bz

_I“
where ‘D,l,b2 € A and b’l L b2 .

Now we consider the projective face
(6.4) F = {x€K|b,(x)=0}

together with the corresponding P-projection P, i.e. F = (imP*)NK.
By Proposition 3.7 (especially (3.20),one has b, (x) =0 iff
rp(b,l)(x) =0. Hence F = {x€K| rp(b,])(x) =0}, and after passage

to quasicomplements

(6.5) P - (x€K | rp(b,)(0) =] .

Thus we have P'e = rp(b,l) . By assumption rp(b,]) 1 rp(bz) s
and so rp(bg) < rp(b,!)' = Pe. Hence

(606) P'b/' = b/l ’ Pb2 = b2 ’ P'b2 = Pb,] = O .

Thus, Pa = kPe-b2 and P'a = )J?'e+b,l , Which implies

Pa+P'a = )Le+b,]—-b2 = a.

This proves that a is compatible with P, and then also
with F.
By (6.6)

a-ie = P(a-Ae) =-b,<0 on F,

2
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and

a-ie = P'(a-he) = b, >0 on FT.

(Observe that b,(x) > 0 for x € F' c K~F). Combining these two

inequalities, we get the desired formula (5.3). []

Note that unlike the original definition of weak spectral dua-
lity, the existence of an orthogonal decomposition of every a € A
into positive components does not make the requirement (3.2) redun—
dant. In fact, we used this assumption in an essential way to con-

clude that the face F of the above proof was projective.

The following lemma will be useful later.

Lemma 6.2. If F and G are two orthogonal faces compatible

with a €A and if a>\A € R on FUG, then a>\A on F i G,

Proof. Let F and G correspond to the (P—projections P
and Q. We assume without loss of generality that X = O. Then

for x € F £+ G Proposition 4.6 yields

a(x) = (P1Q)(a)(x) = (Pa+Qa)(x) = a(P*x) +a(Q*x) .

Since a >0 on F U G, the rightmost expression is > O and
equals zero only if P*x =Q*x =0, i.e. only if x € F#r1G# =

(FiG)#. Therefore since x € F+G, a(x) >0. D

We shall now investigate the spectral family {eX} of an ele-
ment a € A in the case where A and V are in spectral duality.
When specification of the element a 1is needed, we shall indicate
it by a superscript attached to the spectral units. Thus ei shall

denote the spectral A-unit of a € A. TFor the sake of convenience




we shall also use the symbol r}\(a) to denote the complement of
ei in % Thus

(6.7) r,(a) = (e‘;’f)' = e-ei

If a€A", let F = {x€K|rp(a)(x)=0}. Then a =0 on F

L
and a >0 on F'. Since A and V are in spectral duality it

follows that F = (eg)-/](’l)nK, and so rp(a) = ro(a) . For all

A >0 we also have r,(a) < rp(a).

Lemma 6.%. Assume A and V in spectral duality. If a,b € A"

and a .l b, then rk(a)+r>\@) = rk(a+b) for every A > 0.

Proof. Let P and Q be the P -projections corresponding to
the projective units ei and e?\, so P'e = rh(a) and Q,'e=r)\(b),
Also we denote by F and G the projective faces corresponding to
P and Q, i.e. F = (imP*)NK and G = (imQ*)NK. Since a 1l b,
we shall have rp(a) L rp(b), and since rk(a) < rp(a) and rk(b)
< rp(b), it follows that rk(a) 1 rk(b) . Hence F# 4 Gr.Tl‘é .

By definition of spectral units, F and G are both compatible
with a, and a > A on F# and b > A on G#, Then by appli-

cation of Lemma 6.2 :

(6.8) a+b >\ on F#lG# = (FN G)#.

Next we make the following observation of a rather general
nature

(6.9) Pa < APrp(a), Qb <AQrp(b).

To verify the first of these inequalities, we consider the P -projec-

a

tion R corresponding to rp(s), i Re = rp(a) . Note that e

oo
<e. It follows that

and e‘;’: are compatible since ei
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Re = rp(a) = ro(a) = e- eg is compatible with Pe = ei , and thus
R and P commute. Applying R to both sides of the inequality
Pa < APe (cf. (5.4)), we obtain the first inequality of (6.9).
The proof of the second inequality is similar.

Since P' 1 Q' +the P -projections P and Q commute, and

since rp(a) L rp(b) we have rp(a)+rp(b) < e. Hence by (6.9):

PQ(a+b) = QPa + PGb
A QP rp(a) + )LPQ rp(b) < A PQe ,

IA

which gives

(6.10) a+b <\ on FNG.

Since

Re = rp(a) < rp(b)' < r,(b)' = Qe,

then Qa = Q(Ra) = Ra = a, and similarly Pb =D.

Thus we have
PQ(a+b) = PQa+QPb = Pa+Qb < a+b,

which proves compatibility of a+b with the P -projection PQ,
and hence also with the projective face F N G.

It is now seen from (6.8) and (6.10) that F N G has all the
properties characterizing the projective face associated with eiwb .
Hence F#i G# is the face corresponding to rk(a+b) , and it follows

that I'}\(a)+r>\(b) = r)\(a+b) . U

Lemma 6.4. Assume A and V in spectral duality. If a € At

and Q is a P -projection compatible with a, then 'rx(Qa) = Q;')‘(a)
for every A > 0.

Proof. Applyihg Lemma 6.3 with Qa and Q'a in place of a

and b , WwWe obtain



(6.11) rk(Qa) + rA(Q'a) = rx(a) .

Now Qa € im'Q = face(Qe) , and so rx(Qa) < rp(Qa) < Qe.
Hence rx(Qa) € face(Qe) = im'Q. Similarly r)\(Q'a) € im'Q' =
ker'Q . By application of @ to both sides of the equation (6.11),

we now obtain r,(Qa) = Qr,(a). 1

Theorem 6.5. If A and V are in spectral duality, then for

every a € A the spectral units of a will be bicompatible with a .

Proof. Without loss of generality we assume a > O and con-
sider M -spectral units for A > O only. By definition the spectral
units of a are compatible with a. To prove bicompatibility, we
consider an arbitrary P -projection Q compatible with a. By

Lemma 6.3 and Lemma 6.4 :

r\(a) = r,(Qa) +r,(Q'a) = Qry(a) +Q'ry(a) .

Hence Q 1is compatible with r}\(a) , and then also with ei = r}\(a)'

for every A > 0. []

By Theorem 6.5 the uniqueness of spectral units implies bicom-
patibility with the given element. a € A. We shall now establish
an opposite result to the effect that bicompatibility with a im-

plies uniqueness.

Proposition 6.6. Let a € A and AN € R, and assume that

there exists a projective face F Dbicompatible with a such that

#D

(6.12) a<ix on F, a>\ on T

Then for every G compatible with a and such that a < Aon. G, we

shall have G < F, If in addition & >X on G# , then G =F.
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Proof. 1.) Assume first that G is compatible with a and
that a <A on G. BSince F is bicompatible with a, it will be

compatible with G. Hence by Proposition 4.3 :

¢ =FNG L FNG.

However, F#n G=¢g, since x € F# implies a(x) > A and x € G
implies a(x) < A. Hence G =FNGCF, as claimed.
2.) Assume next that G satisfies the same requirements and

in addition a > A on G# . Now we consider the decomposition
F-FNG 3 FNGT.
1L
Here FNGT = @, since x € F implies a(x) <X and x € ot im-

plies a(x) > A. Hence F =FNGc G, and we are done. [J

From Theorem 6.5 and Proposition 6.6 we obtain the following

two corollaries :

Corollary 6.7. A and V are in spéctral duality iff for

every a € A and every A € R there exists a projective face F

#

bicompatible with a such that a <A on F and a > A on F .

Corollary 6.3. If A and V are in spectral duality, then

the spectral A\ -unit ey of an element a € A is determined by the

fact that the corresponding P -projection P is the supremum of all

Q Ec@ which are compatible with a and satisfy the inequality

Qa £ A Qe .

We will now give an  example showing that the assump-

tions (3.1) and (3.2) will not guarantee spectral duality.
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Proposition 6.9. TLet A consist of all sequences a =

{0 ,0,,8,,... } with §3a§ < @, and let V consist of all sequences
mmmm——a | l-

x = {§ ,%1,..,,§r,0,0,,,.} which are eventually zero. Also let

e € A be defined by e = {1,0,04...}, and let K &V consist of

all x = {§i} €V such that § =1 and L E? < 1. Then (A,e)
1i>1""

is an order unit space with positive cone:

- fa€ala >0, T o2<df)

i>1

and norm:

lall = |e .+(2a2)%, for a € A.
1_ﬂ

Also (V,K) is a base norm space with positive cone:

- {xev]g >0, 2§<§2}
x | o= 1>11

and norm:

I<ll = mex{lg,|,C 5 8P for x € V.
i>1

The spaces (A,e) and (V,K) are in separating order and norm

duality under the form:

<a,X> = jz-aigi o

(In fact A can be identified with V*). Now the requirements

(%3.1) and (3.2) are satisfied, but A and V are not in weak spec-

tral duality.

Proof. It is routine to verify that (A,e) and (V,K) are
order-unit and base-norm spaces, and that A can be identified with
V* . It follows that A and V are in separating order and norm
dvuality, and that (3.1) holds: A is pointwise monotone 0 -complete.

By considering the natural affine embedding of K in the unit



ball of l2 we observe that K has no proper faces other than the
extreme points, and they are exactly the points satisfying
g, =1, -
1>1
For agiven extreme point y = {1,n1,.°.nn,0,0,.., } we also con-
sider the "antipodal" extreme point y' = {1,—n1,.,.,—nn,0,0,.,.}
and the elements h,h' € A defined by h = %{’I,T]/l,.“,nn,0,0,.“ }

and h' = %{1,-n1,,,.,—nn,o,o,,“ } . Now the formulas

Px = ¢(h,x)y, P'x = <(h',x)y'
are seen to define weakly continuous positive projections of norm 1
with

in™P = ker P’ {\y [A_EI{*},

im*P' = ker'P = {Ay' | AER"}.

Thus P and P' are quasicomplementary projections.

To prove that P is smooth we consider a € A% such that
(a,y'> = 0 and we shall show <{a,Px) = {a,x) for all x €7V
(ef. (1.15)).

By assumption a = {ai} satifies

]

a - I amn ={a,y') =

i=1 1 +
and so
a = 2 a,n; < ( Z a; ) ( 2 nz)% < Q
S i=1 7 = 0°
Thus the sign of equality holds in Schwartz' inequality. Therefore

lag,eee, n} = y{nq,..o,n } for some y € R. By the equality o =

n
; we must have vy = &

1N oy and so a = anh. Using the de-

i=1
finition of P and observing that <h,y? =1, we get

<3.,PX> = (h,X><a,3’> = 2ao<hex><h9y> = <a9x>

as claimed.
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The same argument shows that P' is smooth. Hence P,P' is
a pair of quasicomplementary P -projections. Thus we have proved
that every proper face of K is projective, and (3.2) is satisfied.
It remains to prove that A and V are not in spectral duality,
and we shall do tiis by showing that for a € A with infinitely
many non-zero components, there can not be any proper projective
face compatible with a.
Let a = {ai} €A with a; # 0 for infinitely many indices i,
and let F be a proper face of K. We shall prove that F can
not be compatible with a.
By the above remarks the P -projection P corresponding to F
is of the form Px = <(h,x)y where y € K and h € A are as above;
in particular at most the first n+1 components of h are non zero.

For arbitrary x €V
<P*a,X> = <a,P:X> = <h,X><8-,y> = <<a)y>h‘)x> 9

and so P*a = {a,y>h. Hence only the first n+1 components of
P*a can be non-zero.
Similarly we prove that only the first n+ 1 components of
(P')*a can be non-zero. Therefore
P*a + (P*)'a #£ a,

and P is not compatible with a. ﬂ



- 60/'1 -

We now proceed to prove that the assumptions (3.1) and (3.2)
will suffice for spectral duality in the finite dimensional case.

In this connection we shall need a general result of some indepen-
dent interest: For every a € AT, rp(a) is bicompatible with a .
The key point in the proof of this result is the observation
that Lemma 6.3 can be stated and proved without spectral duality.
More specifically we have the following lemma in which A and V
only are supposed to satisfy the standing requirements of this sec-
tion (i.e. we assume separating order and norm duality together with
(3.1) and (3.2), but we do not assume spectral duality or weak spec-

tral duality, and we do not yet assume A and V finife dimensional).

Lemma 6.10 If a,b € A" and a 1l b, then rp(a)+rp(b) =

rp(a+b) .

Proof. Clearly rp(a) < rp(a+b) and rp(b) < rp(a+b). Since
rp(a) and rp(b) are two orthogonal projective units, we shall
have

rp(a) + rp(b) = rp(a) Vrp(b) < rp(a+b) .

On the orher hand, a € face(rp(a)) and b € face(rp(b)), so
a+b € face(rp(a) +rp(b)). Now rp(a)+rp(b) is a projective unit
which generates a face of AT containing a+b, and then by defi-
nition

rp(a+b) < rp(a)+rp(b).

This completes the proof. []

TLemma 6.11., If a € AY and Q is a P -projection compatible

with a, then rp(Qa) = Q(rp(a)).
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Proof. Similar to the proof of Lemma 6.4, with rp(a) in

place of r)\(a). D

Proposition 6.12. If a € A' then rp(a) is bicompatible

with a.

Proof. Similar to the proof of Theorem 6.5. ]

Proposition 6.1%3. Let (A,e) and (V,K) be finite dimensional

spaces in separating order and norm duality. Then K is compact

(in the unique Hausdorff vector space topology for V), .a.nd the con-

dition (3.1) is satisfied. DMoreover, for every increasing net {Laal

from A Dbounded above there exists a sequence a,léggégaé oo

such that sup a, = sup 2, A.
n

Proof. The first part of the proposition is easily verified.
(See e.g. [A,I,ChGII°§ 1].) To prove the last statement of the pro-
position we consider an upper bounded increasing net {aa} from A .
Clearly the pointwise supremum a = sup,a, is an affine function.
Hence a € A. By finite dimensionality we can find points
Xgseee Xy € X such that K is contained in their affine span.

Now we choose a ~ inductively such that & <a , and

/'
a(xk) - aan(xk) <3 for k=1,...,m.

Then a(x) = sup &, (x) forall x €K. []
n

Theorem 6.14. Let (A,e) and (V,K) be finite dimensional

spaces in separating order and norm duality and assume that every

exposed face of K is projective., Then A and V will be in

spectral duality.
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Proof. We shall prove that for given a € A and A € R there
exists a projective face F Dbicompatible with a such that a < F
on F and a>X on F# . Without loss of generality we assume
A =0, and we denote by j the collection of all F € Cf_" such that
F is bicompatible with a and a <A on F.

We claim that the collection 5 has a largest member.

If F,G € g and if P,Q are the corresponding P -projections,
then P,Q € (3(a). Hence P and Q are compatible (Theorem 4.10),
and by (4.17) PvQ = P+P'Q. By (5.4) we shall have Pa < O and

Qa < 0, and hence by Proposition 4.6
(PvQ)(a) =Pa+P'Qa < 0.

This implies a <0 on FVG, and since FVG is bicompatible
with a (by Theorem 4.10), we shall have FVG € 3 . It follows
that «g is directed, and by Proposition 6.1% (applied to the corre-
sponding projective units) and by Lemma 4.9 there exists a projec-

tive face FO bicompatible with a such that

F = VG and a <O onFO.
°  ge4

Now Fo € QE‘]Q , and by definition Fo must be the largest member

of 50

It remains to prove that a >0 on F

#
o °

We assume the contrary and define

(6.13) B =inf ,a(x) 0.

x€ER
o)

Let PO be the P -projection corresponding to Fo and note that
i

(6.13) gives a-Be> 0 on Fy, which will imply the following re-

lation on all of K=

(6.14) P(')(a—Be) >0.
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In fact, if x € F = KNker(P"x) then P!(a-ge)(x) =0, and if
x £ F, then )\ = ”Pé*XH 20, ¥ = X_qPé*x € Ff, and P! (a~ge)(x) =
Ma-ge)(y) Z 0.

By (6.14) Pla > pPle > Be, which gives the non-trivial part
of the equality

B = inf p (Pla)(x).

By the compactness of K and the continuity of all the functions
in A the set
H = {x€K | (Pla)(x) = 8]

is a non-empty exposed, therefore projective, face of K. Since the
continuous function a will attain its minimum on the (necessarily

Jd]
compact) face Fﬁ, the definition (6.13) of B will give

(6.15) "N Ff L d.

By Proposition 6.12 H is bicompatible with Péa. We will
show that HNF' is bicompatible with a.

Let R be the P -projection corresponding to H. Since Pé
is compatible with Péa and R is bicompatible with Péa, R
must be compatible with Pé. Hence RPé = R/\Pé is the P -projec-
tion corresponding to HrlFﬁ.

Since P a < 0, the equality (RPé)(POa) = 0 will imply BRP]
compatible with Poa. Since H and Ff both are compatible with
Péa, their intersection will be so (Lemma 4.5); hence RPé is com-
patible with Péa. It follows that RP& is compatible with a =
Poa + P(')a o

Now let Q@ be compatible with a. Then Q@ is compatible

with P! € (§(a), and so

Q(Pla) +Q'(Pla) = P (Qa+Q'a) = Pla.
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Hence Q is compatible with Péa. Since R is bicompatible with

Péa, R and Q mnust be compatible. Thus we obtain
1 —_ ] —_ (]
RPOQ = RQPO = QRPO.

Hence RPé is compatible with Q, and so we have proved
!
RP) € G (a) .
Since F € g? we have Poa < 0. Also we have Péa =8 <0

on Hle# It follows that

o
#

- ]
a =Pa+Pla<O w.Hn%

Hence Hf\Ff € é? . This gives the desired contradiction since

Hr\Fﬁ is non-empty and disjoint from Fo . ﬂ

Remarks. Theorem 6.14 can be stated in more general terms,

the essential requirements being:
(i) The members of A attain their maximum on K.

(ii) A is pointwise monotone complete (not only o-complete).

Note also that in Theorem 6.14 +the two spaces A and V are
shown to be in spectral duality and not only in weak spectral duality.

The general question if weak spectral duvuality implies spectral
duality is still up in the air. We do not know of any counterex-

ample.
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§ 7. Functional calculus

In this section we will assume that (A,e) and (V,K) are

order-unit and base-norm spaces in spectral duality.

Proposition 7.7 If a is an element of A with spectral

family {el} and if o dis a bounded Borel function of a real vari-

able, then there exists a unique element b of A such that for

all x €X:

(7.1 b(x) = [e(M)de, (x) .

Proof. Assume first that ¢ is continuous. Then (7.1) is a
Riemann-Stieltjes integral with respect to a probability measure on
R for every x € K. In fact, the Riemann-sums will converge uni-
formly with respect to x. By Proposition 5.1, A 1is norm complete.
Hence there exists b € A satisfying (7,1), and clearly b is
unique.,

Next, denote by 630 the set of all bounded Borel functions ¢
for which there exists b € A satisfying (7.1). By the monotone
convergence theorem and the pointwise monotone o -completeness of A,
650 is closed under pointwise limits of bounded monotone sequences.
Since 630 contains all bounded continuous functions, it must con-

tain all bounded Borel functions. D

For the formulation of our next proposition we recall some
elementary facts concerning the o-complete orthomodular lattice of

projective units in A. If {gn} is an orthogonal sequence from'zz



(i.e. g, -8, for n Zm), then by formula (3.13) and Lemma 4.9 :

o
(7.2) ( \L]gn)(X) = agn(x) for x € K.

n n

Thus, if we interpret the elements of ‘ZZ as functions on X, then

Xgn becomes the ordinary pointwise sum of the functions &, - Ac-

cordingly, we shall use the symbols Vgn and Zgn interchangeably
n

n
when {gn} is an orthogonal sequence.

Proposition 7.2. Let a be an element of A with spectral

family {ex} o Then for every Borel set E € R the element Pr

of A defined by

(7.3) pp(x) = J de, (x) for x € K,
E

is a projective unit bicompatible with a. DMoreover, E - Pr is

a mapping from the Borel sets into U satisfying:

(7.4) Pr= ©>»

(7.5) »pg

Zpg for a disjoint sequence {E_} with E =UE_.
n n n n n

Proof. TLet 070 be the collection of all Borel sets E ¢ R
for which Py is a projective unit bicompatible with a.

By definition p<uoo,>\] = € and so fj contains all half-open
intervals of the form <(-o9,A] . Also pp=¢, and so R € cj? .
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By definition PRrg= ©€-Pp = pﬁ for every Borel set E, and
so RX\E Ecr')p for all E € cﬂ) . Hence 070 is closed under comple-
mentation.

Now assume E,l and E2 are in 070 and let F’l and F2 be
the projective faces corresponding to pE’l and pE2 . Observe that
0 < pE,lUEz < e and pE,IUE2(X) =1 for x €F, U F, . Therefore by

(3.11)

pE’IUEE(X) =1 for x € F, VF2 .

. & . _
On the other hand if x € (quFg)# = F} N Ff; then qu (x) = pEE(X) =0.

Since E - pE(x) is a probability measure for every given x, then

2(x) =0 for x € (F,}VFE)#

By (2.24) Py Vpp 1s the unique element of A* which is 1 on
1 2 ;
F,VF, and O on (F,]VFE)#; therefore pE,]UEE

= Pg, Vpp - By
Theorem 4.10 we conclude that E, UE2 is in Qja

2
Assume next that {En} is a disjoint sequence from ij , and

let E = UEn . For every x € K, we obtain
n

(7.6)  pg(x) = Jde,(x) =] de,(x) = T py (x).
E n E, n *n

From this we first conclude that pEn + pEm < pyp X e when
m #£n, and so by Proposition 3 4 {pE } is an orthogonal sequence
from ?ﬁ . Next we conclude by means olJ;.‘l (7.2) that Prp = VPR » and
SO DPp is a projective unit bicompatible with a. Hencrel ZEI)l € 070 .

Now Qja is a o0 -algebra containing all intervals {(-X\] .
Hence it contains all Borel sets.

The statements (7.4) and (7.5) are proved above. ]]

A mapping E - Pg from the Borel sets of IR into the orthmo-
dular lattice (Z@ of projective units satisfying (7.4) and (7.5),
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will be called a @K—valued measure. The particular Qﬂ—valued

measure studied in Proposition 7.2, will be called the (U -valued)

spectral measure for the element a € A; and we shall denote it p%

when we want to specify the element a.
For every x € K the mapping E - p%(x) will be an ordinary
(i.e. regular Borel) measure. We shall call this measure the (sca-

lar valued) spectral measure for a at the point x, and we shall

denote it by p; or simply by My e Thus, by definition

(7.7) W@ = pBx) = | aed(x) .
E

In particular pi((—d%k]) = ei(x). Hence the spectral measure
for a at the point x will have the distribution function

-
A eh(x).

The spectral integral formula can now be restated in the form:
(7.8)  a(x) = [ rawd() for all x €K .

We shall see that we can also restate the uniqueness property
of spectral families in terms of a uniqueness statement for repre-

sentations of the form (7.8).

Proposition 7.3. Let a €A end let E - p, be a W —valued

measure such that with pX(E) = pE(x) we shall have

(7.9)  a(x) = j‘xdux(x) for all x € K .

Then E - pE_fmust be the spectral measure for a.

Proof. Without lack of generality we assume a > O. For an
arbitrary A € R we write E_ = (-O%xo] and we consider the de-

composition a = a4+ a5 where
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aq(X> = J Map (M), as(x) = J M (M) .

E o IR\EO

By hypothesis P is a projective unit. Let the correspond-
o
ing face of K be F. Then x € F means pX(EO) = DPp (x) =1.
o}

Hence Mo lives on Eo when x € F. Therefore as must vanish

#

on E. On the other hand, x € F' means UX(EO) = DPp (x) =0.
o

Hence “x lives on JR\EO when x € F’Jf. Therefore ay must

vanish on F#. By the criterion (4.27), a is compatible with F.

For x € F we have

s I

a(x) = [rau, (0) = [ran (A) <A,

E
¢

and for x € F#

j Nau (A) > A .
R\E,

a(x) = [ xauw ()

Hence F is the unique projective face compatible with a satis-

a

fying (5.%). Therefore pp =€, , and so pE(x) = p%(x) for all
o)

: (o]
x € K and all Borel sets E . U

If E - P is a 9 -valued measure, then the intersection of
all closed F c R for which PR\F = O will be called its support.
By means of this notion one can define the general concept of spect-

rum:

Definition. The support of the spectral measure for an element

a of A will be called the spectrum of a, and it will be denoted
by o(a).

Note that o(a) is the intersection of all closed sets Fc R
such that ui(]R\F) =0 for all x € K.

Hence
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(7.10) o(a) = U Supp(nd).
x€K

By the definition of the spectral units ei we shall have

. a
O for A <a = 1an€Ka(x) and ex(x) =1 for

a

ey (x)
A > B
u;(m\[a,ej) -0 for all x€K, and so 0(a) € a(X). It follows

supXeKa(x), (Cf. the argument leading up to (5.718)) Hence

that o(a) is compact for every a € A,

By virtue of (7.8), a(x) is the barycenter of the probability
measure ui for every x € K. Since Supp(ui) c og(a) for all

x € K, we can replace the inclusion o(a) € a(kK) by the equality
(7.11) a(k) = co(o(a)),
and from this we obtain

(7.12) lall = sup |A], for all a € A.
rEo(a)

Returning to formula (7.1) we note that the integral only de-
pends on the values of ¢ on the compact set o(a). In fact, ¢

need only be defined on o(a).

Definition. For every a € A and every ¢ in the class

dS(G(a)) of bounded Borel functions on o(a) we shall denote by
¢(a) the element b of (7.1), i.e.

(7.13)  @(a)(x) = u(e) = Jo(\)aed(x)  for x € Kj
or briefly

(7.74) p(a) = Jﬁp(k)de‘il .

Lemma 7.4. If a €A and o € (3(c(a)), then the spectral

family for b = ¢(a) is given by
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(7.15) D _ 2
T P (-0 0)

a
-1

o (E)
measure such that for every x € K:

Proof. The mapping E - p is seen to be a Qf—valued

-1
(7.16) p:_q(E)<x> = 2o (B)) = () (B .

(Here mui denotes the "transported measure'" defined by the equality
at the right side of (7.16).)
By the definition of b, we have

(7.17) b = Jead) = [ra@d o).

Now (7.15) follows from the uniqueness statement of Proposition

It follows from Lemma 7.4 +that under the same hypotheses

(7.18) p(a) .
o PE T P

for all Borel sets E. This in turn gives the equality ui(a)(E) =
u2(e™ " (E) = (9u)(E) for all Borel sets E and all x € K. Hence

(7.19) W03 L g2

for every o € @B(O(a)) and x € K.

We shall now prove the following 'spectral mapping theorem':

Proposition 7.5. For every a € A and every o € 43(0(a))

one has
(7.20) o(e(a)) < pla(a)),

and for ¢ in the class %?(O(a)) of all continuous functions on

o(a) the equality o(w(a)) = o(0(a)) holds.
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Proof. Let A € o(9(a)). For every natural number n the
open set U, = <x-%,x-+%> must satisfy w_q(Un)rlo(a) £ @, for
otherwise m—q(Un) would be a Borel set disjoint from o(a) and
then by (7.18)

0 = p2_ - p2(a)
o (v TUn

which in turn would give Uhj\c(m(a)) = ¢, which is impossible

?

since this intersection contains X.
For every n we choose §n € m-q(Uh)f1G(a), and we note that

by the definition of Un:

(7.21) © 1lim cp(fén) = A,
n =+

and thus M\ € ®(o(a)) .

Now assume @ € Q;(G(a)). Since o(a) is compact, the se-
quence [En} will have an accumulation point § € o(a). By (7.21)
and the continuity of ¢, ®(8) = A. Hence X € ®(o(a)).

Assume next X £ o(p(a)). By the definition of spectrum there
is an open set U containing A such that Pg(a) = 0. Then it
follows from (7.18) that pa~1 = 0. Since @"1(U) is open, we
must have m"q(U)fIU(a) =¢. Then w-q[k]r10(a) = ¢, and so
A€ o(o(a)). ]

We are now in the position to list all the basic properties of
the functional calculus given by (7.14). For convenience we shall

denote by t+ and Yy the unit function and the identity function

on R, i.e. t(A) =1 and y(A) =1 forall A € R.

Proposition 7.6. For given a € A the mapping o - o(a) from

G3(o(a)) into A will have the following properties:
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(7.22) 1(a) = e, y(a) = a,
(7.23)  (ap+By)(a) = a(a) + By (a) for a,B €R,
(7.24) © >0 => o(a) >0,

(7.25)  |lo(a)l < sup |o(A)| with equality if o € %(o(a)),
reo(a) ,

(7.26) cpnM 0 => infncpn(a) =0

Moreover, if o € 3 (s(a)) anda 1y € d3(micla55) then

(7.27)  (Yep)(a) = y(e(a)) .

Proof. The statements (7.22), (7.23) and (7.24) follow at once
from the definitions.
Since ui is a probability measure with no mass outside o(a),

we have

le(2) )] = |ug@)| < sup lo(A)|  for all x €K.
A€o (a)

This gives the general inequality of (7.25).
If o € %g(o(a)), then o(e(a)) = 9(o(a)) by Proposition 7.5.
Hence formula (7.12) will give the desired equality:

leadll = sup A = sup Jo(M)].
reo(p(a)) A€E0(a)

Statement (7.26) will follow from the definition (7.13) by the
monotone convergence theorem,

Finally by (7.13) and (7.19)

(o@)(a) = u3(e@) = (@) (W) = uPB) () = y(aa))
for all ¢ € (3(o(a)) and ¥ € BGEG@N. [

For given a € A we shall often have to study the element ¢(a)

with o)) = Ag, and we shall denote this element by a(2). Thus
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(7.28) a(3) _ [x2 ae® .

Note that a(g)(x) is different from a(x)2 in general. In
fact, since a(x) is the barycenter (or "mean value") of ui, one

has for every x€ K:

(7.29)  a®@ @ -a@? = NPt - (adMF = [-aG@Fand)

Thus, a(g)(x)--a(x)2 is the dispersion (or "variance") of
the probability measure ui. In particular a(Z)(x) i_a(x)2 for
all x € K, with equality iff the measure u; has all the mass in
the barycenter.

In other words:

(7.30) a(2)(x) = a(x)2 iff ui = €o(x) *

We saw in §2 that every projective unit is an extreme point
of the order interval [0,e] (Corollary 2.12), and we shall now
prove that the opposite statement also holds when A and V are

in spectral duality.

Proposition 7.7. lLet a € A, Then the following are equi-

valent:
(7.31) a 1is a projective unit

(7.32) a is an extreme point of [0,e]

(7.33) al®) - a.

Proof. (7.31) => (7.32) is already proved.

(7.32) => (7.33) Let a be an extreme point of [0,e], and

2

consider the two functions o(A) = A° and §(A) = 27A =A% defined

for X € [0,1]. These functions both take values in [0,1] and
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they satisfy
Y = 30+ 3) .
Since o(a) < [0,1] we can form ¢(a) and {(a), and by

Proposition 7.6, o(a) € L0,el, ¢(a) € [0,e], and

a = zp(a)+%y(a).

Since a is an extreme point of [0O,e]l, we must have a =

p(a) = ¥(a). From this (7.33) follows.

(7.33) => (7.31) Let a = a(z) . We claim that o(a)c {0,1},
which will complete the proof since it implies a = p?q} € ?8,

Tet o(A) = A°-X for X € R, and observe that by hypothesis
p(a) = 0. Also we define E = (-0,0)U{1, and F = <0,1).
We claim pE = O; for contradiction assume not. Then there exists

x € K such that p%(x) = 1. Hence u; lives on E, so we have

(@) = Joand () = [ o) aud (1)
E

Since ¢ 1is strictly positive on E, this gives the desired contra-

o)

diction. Similarly it follows that p% = 0. Thus

a a
PRUF = PE*+PF = O

which shows that o(a) € R\(EUF) = {0,1}. [j

Corollary 7.8. For each a € A there exists a unique family

{ey ), epof extreme points of [0,e] such that:

(1) A~ e, (x) is increasing and right continuous for every x €K.

(ii) There exist a and B such that e, =0 for all A < o
and ey, = © for all A > B.

(iii) a(x) = fk.del(x) for all x € K.
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Proof. By Proposition 7.7 each ey is a projective unit;
thus {ek} is a spectral family of compact support. The corollary
now follows from Corollary 5.10. D |

Let E be a Borel set of R. Then a mapping ©: (F(E) - A
is said to be a morphism if it is linear and positive with @(1)=e

and satisfies the requirement

(7.34) ®, N0 on E => inf O(¢ ) =0.

The main theorem on functional calculus can now be stated as

follows:

Theorem 7.9. There exists one and only one mapping which

assigns to every a € A a morphism @ : f3(o(a)) = A such that

(i) ®a(y) =a with y(A) =X for all X € o(a).

(ii) @a(xE) is an extreme point of [0,e] for every Borel
subset E of o(a).

Specifically, for fixed a € A the morphism ©_ is given by

(111)  0,(9) = w(a) = w(A)ae} .

This mapping will also satisfy

(1v)  o@ll < loly,y with equality if @ € {5 (a(a))

(v)  8,(4°9) = 8y (y(¥) for o € (F(o(a)) and € B (@EEID)
a

Proof. It follows from Proposition 7.6 and Proposition 7.7
that the mapping a = @, defined by Gii) will satisfy (i), (ii),
(iv) and (v). Hence it only remains to prove the uniqueness.

Iet a € A and let ®:(¢3(c(a)) = A be a morphism such that
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®(y) = a and @(XE) is an extreme point for every Borel set
E < o(a) . By Proposition 7.7, ®(XE) ¢ WU for every Borel set
Eco(a) .

If E = gf&l where {En} is a disjoint sequence of Borel

subsets of o(a) , then Xgp = ZXE . Since @ is a morphism,
n “n

we shall have

T.35 e = T ®(y
( ) (XE) " (yEn)

Hence E - 8(xgz) 1is a Y -valued measure,
For every x € K we consider the corresponding (scalar valued)

measure 6;_ defined by f%X(E) = @(XE)(X) , and we claim that

(7.36) a(x) = [rafl (V) ,

which will complete the proof in virtue of the uniqueness state-

ment of Proposition 7.3.

To verify (7.36) we consider a partition {Xi}gzo of an inter-

val [a,8] where a <-|la]] and B > |lall . Then

n

n
£ As 4 X <y <T oA x
121 =100y a0 = T =0t T

. 1’kij on o(a) ,

and since @ is a morphism with @(y) = a , we also get

n n
T As 48(X ) <a <% A e(x ) .
- 1—1 <)\. )\i] 1=1 1, <>\i—19>\i]

i-1?

.

i=1

Hence for every x € K , if E, = <-:c,xi] then:
n a n
ZAy g Ux(ENEBy_q) falx) = F
i=1 i=
Passing to the limit as |[|[{};}]| = O and using the definition of

a Riemann-Stieltjes integral, we obtain (7.36). D
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In the spectral theory of van Neumann algebras the morphisms
involved also preserve multiplication; a fortiori  they preserve
idempotence, hence they take "extremal" Borel functions (i.e. in-
dicator functions ¥y ) into extremal elements of [O,e] (i.e. pro-
jections). However, it is of interest to note that in the general
case, statement (ii) of Theorem 7.9 is all that remains of multi-
plicative structure, and that the uniqueness now follows from con-
ditions involving only linearity and order.

Note also that condition (ii) is essential. One can always
define

(7.37) e (0)(x) = (8-0)""[(B-a(x))o(a)+(a(x)-a)p(p) ]

where q = 1nfy€Ka(y) and B = supyEKa(y) . That is, one can
apply ¢ to the extremal values and interpolate linearly in be-

tween.

Now the map a - @, will satisfy (i), the inequality of (iv),
and (v) of Theorem 7.9. To see that (ii) can fail in a specific
example, one may take K to be the standard 2-simplex in V =IB3,
and A to be the space A(K) of all affine functions on K with
e the unit function. Then V = 1% , and it is easy to verify that
(A,e) and (V,K) are in spectral duality, and to determine the
spectral families of elements of A ,

In this case the functional calculus defined by spectral_theony‘
consists in evaluating the given function ¢ at all the three ex-
treme points and interpolating linearly in between, which is diffe-
rent from the functional calculus given by (7.37).

It can also be seen directly that statement (ii) will fail

for a "®a. unless the lines a(x) = constant are parallel to one

of the edges of the triangle K .



§ 8. Abelian subspaces

In this section we define a notion of compatibility for arbi-
trary elements of A ., We then pick out certain "abelian" sub-
spaces, which inherit from A a vector lattice ordering, and on
which a commutative multiplication can be defined in a natural way.

We assume throughout that A and V are in spectral duality.

Definition. Two elements a,b of A are said to be compat-

ible if the spectral units ei,éﬁ are compatible for every pair of

values A,u € R.

Clearly this definition is consistent with our previous defi-
nition of compatibility for projective units, and it also conforms
with operator theory since two bounded self-adjoint operators on a
Hilbert space will commute iff any two members of their spectral
families commute., We also make the following observation, which

we state as a proposition for later references:

Proposition 8.1. If a,b are two compatible elements of A

with spectral measures E ~4p%, E - pg, then the projective units

EELRE are compatible for every pair E,B of Borel sets of R .

Proof. Let E,B be arbitrary Borel sets of IR , and consider
first a fixed u € R . By compatibility ei = e?/\eﬁq—ei/\(eg)'

for every X €R . It is easily verified that
Ide jd(eaAeb)-+Jd(e A(e b)’) € [eb]4-[(eb)'

Thus p% is compatible with eg , and so eg = eB Ap% +

b A(pg)V . Arguing as above, we obtain
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b b b (30D
Py = ,ereu = jd(eu‘“-pg) +ja(egn(pg) ') €lpgl +[(pg)'] .
B B B

Hence pg is compatible with pg . []

Corollary 8.2, If a,b are two compatible elements of A
and if o € 3(c(a)) , v € (3(o(b)) , then o(a) and y(b) are

also compatible., In particular pg = XE(a) is compatible with

b = y(b) for every Borel set E ,

Proof. By (7.15) ecp(a) = pa and e‘b(b) =
> o ((=20,17) u

b for arbitrary A,u €IR , Now the corollary follows

P _1
‘!J ((“309“])
from Proposition 8.1. l]
We now make an observation of a rather general nature based
on the same argument as in the proof of Proposition 7.3: If acA
and if E 1is a Borel set of IR , then the P-projection P corre-
sponding to p% will satisfy

(8.1) Pa = (xg-v)(a) = Hdei‘ .

J
E

Definition., For every a ¢ A +the positive- and negative-

parts of a are given by the formulas:

(8.2) at = yT(a) = J hdei,
r*
(8.3) a” = v7(a) =~ rae} .
=™
Clearly a‘ >0 and at > a , and similarly a” >0 a >-a.
+

Clearly also a = at-a”, and it is easily verified that a” = a
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iff a > 0.

Writing E = R* = [0, (we could equally well take E =<¢0,<))
and denoting by P and Q the P -projections corresponding to p%
and EIE\E , we obtain by (8.1)

(8.4) at = Pa, a = -Qa.

Since Q = P', it follows by (6.2) that a' Ll (-a~). (This infor-
mation was also implicit in the proof of Proposition 6.1. )

Note that for x € K the value a’(x) is not the same as
a(x)” in general. (In fact x - a(x)" is not evenan affine func-
tion on K wunless a >0 or a<0.) Neither will a’ be the
least upper bound of a and O in the partially ordered set A in
general. (If A is the self-adjoint part of the 2X2-matrix alge-
bra, then sup(a,0) is non-existent unless a >0 or a<o0 [K,I 1.

However, we do have the following result:

Proposition 3.%. If a € A, then a’ is the least upper

bound of a and O among all elements compatible with a.

Proof. It suffices to prove that b > a and b € AT implies
b > at.

As above, we denote by P +the P -projection corresponding to

]pa Lo By Corollary 8.2, P is compatible with b, and since
R

b € AT we have Pb < Db. Hence by B.4) and the hypothesis a <b,

we obtain

L

a  =Pa<Pb<b,

which completes the proof. []
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Corollary 8.4, If M is a subspace of A such that all pairs

of elements in M are compatible and such that a € M implies

at € M, then M is a vector lattice in the ordering induced from A.

Proof. A partially ordered linear space is a vector lattice
iff the least upper bound of every element with zero exists. By

Proposition 8.3 +this requirement is satisfied for M. D

Corollary 8.5. A is a vector lattice iff all elements of A

are mutually compatible.

Proof. By Corollary 8.4 we only have to prove that if A is
a vector lattice, then all elements of A are compatible.

Since A is also a norm complete order-unit space, then A is
order isomorphic to some C(X) (see e.g. [A,l,CorII.,’l,M])° The
projective units of A are the extreme points of [0,e] (Prop.7.7),
and they will correspond to the characteristic functions in C(X) .
The latter form a Boolean algebra, and therefore it follows that all
projective units in A are compatible. This in turn implies that

all pairs of elements in A are compatible. []

Observe that Corollary 8.5 does not hold for subspaces. A
subspace M of A may consist of mutually compatible elements
without being a lattice in the induced ordering. (E.g. consider
M = {Xa] AER} with a € ATU (-A™).) Conversely, a subspace M
may be a vector lattice in the induced orderi;é while containing
pairs of elements which are not compatible. (E.g. choose two non-
compatible elements a,b € AT , then 1linf{a,b} is a vector lattice
in the induced ordering.)

Finally, let M be a norm closed subspace which contains e
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and is a lattice in the induced ordering. Then M is isomorphic
to C(X) for suitable X, so one can define a functional calculus
(for continuous functions) on M. We shall now explore conditions
guaranteeing that this functional calculus ehall agree with the

functional calculue defined on A.

Proposition 8.6. Tet M be a norm closed subspace of A con-

taining the order unit e. Then the following are equivalent:

(i) M is closed under the map a - a”

(ii) M is closed under the map a = ®(a) for ¢ € C(d(a))
@)

(iii) M is closed under the map a — a

Proof. For arbitrary a € M we define

(8.5) %, = leeco(a)) | ola)em,

and we observe that f;g is a norm closed linear subspace of C(o(a))
containing all linear functions & - aE+B.
Now assume (i). TFor fixed a € M and arbitrary o € f;;, we

have

o (a) = (Yep)(a) = Y (o(a)) = ola) e M.

Hence o € fF; implies m+ € ?;;, and so {;;‘ is a vector lattice.
By Stone-Weierstrass (lattice version) f;; = C(o(a)), and this
proves that (ii) holds.
Trivially (ii) implies (iii).
Finally we assume (iii). Since
oo¥ = 3 (@+)7 - 9% - 471

9

it follows that for fixed a € M, EZ; will be a subalgebra of

C(o(a)) . By Stone-Weierstrass (algebra version) @;; = C(o(a)).
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In particular y*© € ﬁ};, and so a' = y'(a)€M. Thus (i) is
valid. [J |

We shall now prove that for a norm closed subspace closed under

the map a - a+, the implication of Corollary 8.4 can be reversed.

Proposition 8.7. Let M be a norm closed subspace of A con-

taining the order unit e and closed under the map a ~ at . Then

the following are equivalent:

(i) All elements of M are mutually compatible.
(ii) M is a vector lattice in the induced ordering.

(iii) M has the Riesz decomposition property.

Proof. Only the implication (iii) => (i) requires proof, so
assume M has the Riesz decomposition property. We consider two
elements a,b € A, and we shall prove that they are compatible.
Since M is closed under the map a - a+, then M 1is positively
generated. Hence we can (and shall) assume O < a < e without loss
of generality. Observe that it is sufficient to pr&ve that every

spectral unit eb is compatible with a, since this will give com-

ol

cqsm s b . a _
patibility of ey with ey = X(_a%x](a) for every X € R.

For fixed M let Q be the P -projection corresponding to
b

the projective unit eu and let {¢n} be a sequence of continuous
functions with values in [0,1] such that Pn\ X(-a%u] . Then
infnwn(b) = eB, and this also means that @n(b) converges to eﬁ

in the weak topology defined by the duality of A and V.
Clearly O < mn(b) < e, and by Proposition 8.6 mn(b) €M for

=1,2,... - For every n we consider the decomposition

B
!

®
|

= ¢, (b) + (e-¢ (b)), and since O < a < e we can use the Riesz
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decomposition property to find elements &, aﬁ €M with
— [}
0O<a <9 () and 0<al <e-q (b) such that a =a +aj.
. 1 b ] b 1 - 1
Since a) < e-cpn(b) < e-e; then a8 € [(eu) ] =imQ', and so

Q'aﬁ = aﬁ. We therefore have

(8.6) Q'a =Q'a +Q'al =Q'a +a) <Q'a +a.

By weak continuity of Q', Q'(¢n(b)) converges to Q'(éﬁ). Since
0<a =< mn(b) for all n, it follows that Q'an cenverges weakly
to O. By (8.6) this gives Q'a <a. Thus Q' is compatible
with a, and it follows that e is compatible with a. []

Definition. A norm closed subspace M of A containing e

is said to be an abelian subspace if it is closed under the map

a - a’ and if all pairs of elements are compatible.

It follows from Proposition 8.6 (statement (ii)) that an abelian
subspace M is closed under the functional calculus of A . On the
other hand it follows from Proposition 8.7 that M is a vector |
lattice in the ordering induced from A. Hence M is isometrically
order isomorphic to some C(X), and the compact Hausdorff space X
is unique up to homeomorphisms. (One can take X to be the set of
extreme points of the state space of (M,e); see e.g. [A,I;Cor.II,’I.’I’I])°
This isomorphism induces a functional calculur on M. We now verify

that the two functional calculi agree.

Proposition 8.8. Let M be an abelian subspace of A and

 : M = C(X) an isometric order isomorphism for a compact Hausdorff

space X. Then the functional calculus induced on M from C(X)

coincides with that induced from A, i.e. for a €M and ¢ € C{R):
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(8.7) 5~ pe(2a)] = 9(a) .

Proof. Fix a € M, and let J be a compact interval in IR
comtaining o(a) U (%3a)(X). It suffices to prove (8.7) for
® € C(J). Let

(8.8) G, = (wec(d) | e oo (2a)] = w(ad] .

Note that & must take e into the function identically 1 on X.
It follows that @F; contains all the linear functions § - af&+ 8.,

@E; is also closed under the map o - m+ since for ¢ € Q?;

3(p(a)) = 2(p(a)vo) = #(v(a)) Vo

i}

[pe(2a)l VO = [pe(3a)]” = ¢Fe(3a).

It follows that é?; is a norm closed vector sublattice of C(J)
containing the constants and separating points. By Stone-Weierstrass

92?= C(J), and the proof is complete. []

Corollary 8.9. An abelian subspace M of A is a commutative

Banach algebra under the product

(8.9) ab = +{(a+b)(3) = a(2) _1,(2)y

Proof. Consider an isometric order isomorphism ¢ :M - C(X)

and use Proposition 8.8. []

Proposition 8.10. If a € A then the least abelian subspace

containing a is

(8.10) M(a) = {9(a) | p€c(aa))},

and @a: @ = o(a) is an isometric order- and algebra- isomorphism

of C(o(a)) onto M(a).
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Proof. By Theorem 7.9, ®a is an isometric order isomorphism,
and it is multiplicative in virtue of the definition (8.9). It fol-
lows from Proposition 8.6 that ®a will map C(o(a)) onto the

least abelian subspace of A which contains a. []

Finally we shall give a characterization of compatibility of
elements of A which is most easily obtained from a theorem of
Varadarajan on orthomodular lattices [V,Th.6.9]. By this theoremn,
for a given sequence of @Z—valued measures L ~ p% with mutually
commuting ranges there exists a single Zgnvalued measure E - Py

and a sequence of Borel functions ®; such that p% =D 4 for

)

: L
every Borel set E. If all the given 18-valued measures are of

compact support, then one can also choose the new Zg—valued measure
to be of compact support and all the functions ®; to be bounded.
(This can be proved from the original statement by application of a

"finitizing transform" like & - arctan€).

Proposition 8.171. A sequence {ai} of elements of A consists

of mutually compatible elements iff there exists ¢ € A and Borel

functions . bounded on o(c) such that a; = mi(c) for all 1i.

Proof. The sufficiency follows from Corollary 8.2 and the

necessity from the theorem of Varadarajan Jjust quoted. D

We now pass to the stydy of weakly closed abelian subspaces.

Proposition 8.12. If M is a weakly closed abelian subspace,

then for each a € M and each o € B (d(a)), ol(a) is in M.

Proof. Fix a € M and define
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Fo = lwed3(a(a)) | w(a)en].
Then C(o(a)) c CTva, and C«Za is a subalgebra of (J(o(a)) closed
under bounded, pointwise, monotone, sequential limits (Prop.7.6).

Hence %% = @(a(a)). [

Corollary 8.13. If a is an element of a weakly closed abe-

lian subspace M and if E - p% is the spectral measure of a,

then p% is in M for all Borel sets E < R. In particular, the

spectral A -unit e‘;i isin M for all A € R.

Proposition 8.14. Every weakly closed abelian subspace M is

a Dedekind o -complete vector lattice in the order induced from A.

Proof. Let {an} be a squence in M bounded above by a €M.
We consider the elements bk = n\=/’l a, (least upper bound in the
vector lattice M ). Then {bk} is an increasing sequence bounded
above by a, and by monotone o -completeness there exists b € A
such that b = Supkbk (i.e. b 1is pointwise supremum of the se-
quence {bk}), The sequence {bk} will also converge to b in the
weak topology, and so b € M., It is now evident that b is the
least upper bound of {an} in M. This proves that M is Dedekind

o-complete. []

At this point we are in the position to clarify the relationship
with Freudenthal's spectral theorem for Dedekind o -complete vector
lattices. (See [F]; we shall use the terminology of [L-2Z; pp. 249-
269].) TFor a fixed weakly closed abelian subspace M one can apply
Freudenthal's theorem [L-Z; Th.40.2], by which each element a € M

is approximated by linear combinations of "components" p €M
satisfying O <p < e and pA(e-p) = 0. From the isomorphism of
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M with C(X) it is easy to see that the "components" of M coin-
cide with the idempotents, i.e. the elements wu such that u<2)=11,
and they are in turn the projective units of M (Prop. 7.7). From
this it follows that the "spectral system of components" {pa} as-
sociated with a, is in our terminology a spectral family for a.
(See [L-Z; Th.38.4]), and that Freudenthal's theorem [L - Z; Th.40.2)
coincides with our theorem relativized to M.

We will next study properties of the set of all elements of A
compatible with a given subset of A. Observe that if P is a
P-projection, then by the definition of compatibility the set of all
elements of A compatible with P is just ker(I-P-P'); hence
it is a weakly closed subspace of A. It follows by the definition
of compatibility for arbitrary elements of A that the set of all
elements of A compatible with all elements of a given subset B

of A, will be a weakly closed subspace of A,

Definition. TFor every subset B of A we denote by B' the

weakly closed linear subspace of A consisting of all elements of
A  compatible with all elements of B. The space (B')ﬂ which we

will write as B", is called the bicommutant of B.

The connection with the previously defined concept of‘g?—bicom—

mutant is given in the following proposition.

Proposition 3.15. Let a € A and let P be a P -projection

with associated projective unit u = Pe. Then u € {al}" iff

P € (3(a).

Proof. Assume first u € {a}". Then wu, and hence also P,

is compatible with a € {a}'. If Q, or equivalently Qe, is
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compatible with a, then u, and hence also P, 1is compatible
with Qe € {a}'. This proves P € ﬁa(a).

Assume next P € dg(a), and consider b € {a}'. ©Now all spec-
tral projections of b are compatible with a, and therefore they
must be compatible with P. Hence P is compatible with b, and

so u € {b}'. This proves u € {a}". []

Proposition 8.16. If B is a subset of A consisting of mu-

tually compatible elements, then B" is a weakly closed abelian

subspace of A containing B.

Proof. We only have to prove that B" 1is an abelian subspace.
Clearly e € B". If a is compatible with an element b, then so
is any function of a (Cor.8.2); it follows that B" is closed
under the map a - a*. Since all pairs of elements of B are com-
patible, then B < B', and therefore B" <« B'. Now if a € B" and
b € B" ©B', then a and b are compatible. Thus all pairs of

elements of B" are compatible. []

Corollary 8.,17. If B © A consists of mutually compatible

elements, then there exists a smallest abelian subspace (and a smal-

lest weakly closed abelian subspace) containing B.

Definition. The center of A, written Z(4), consists of all

those elements of A which are compatible with all elements of A,

iaeo Z(A) = .A.' °

Observe that Z(A) is a weakly closed abelian subspace of A
since Z(A) = {e}". ©Note also that our previous definition of cen-

tral P -projection (in §4) conforms with this new definition of
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center. In fact, a P -projection P was said to be central exactly
when P, or equivalently the éorresponding projective unit u = Pe,

was compatible with all a € A. Hence the Boolean center of A

consists of all P -projections corresponding to projective units in

Z(A) .

Recall that by Proposition 4.8 the central P -projections P

are those weakly continuous projections P:A - A such that

(8.11) 0<Pac<a, for all a € A"

This result was proved under the general assumptions of §4
(i.e. (3.1) and (3.2)). In the present section we are assuming
spectral duality, and we shall see that this makes the requirement

to weak continuity redundant.

Lemma 8.18. If P is a projection on A such that 0<Pax< a

for all a € A , then P is a central P -projection.

Proof. Let P be a projection sugh that O < Pa < a for all
a € AT, We claim that Pe is an extreme point of [0,e]l. Suppose

a,b are in [0,e], 0 <X <1 and Pe = Aa+ (1-A)b . By assumption:
(8.12) Pa<a, Pb<b,
and since Pe = P(Pe) we shall have

Aa+ (1=A)b = Pe = APa+ (1-APb < ha+ (1=A)b ;

but this is possible only if the equality signs are valid in (8.12).

Since a <e and b < e, we also have
(8.13) Pa <Pe, Pb <Pe,
and so

Pe = APa+ (1-A)Pb < APe + (1-A)Pe = Pe;
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but this is possible only if the equality signs are valid in (8.13).
Hence a =Pa =Pe and b =Pb = Pe, and this shows that Pe 1is
an extreme point of [0,e].

By Proposition 7.7 there exists a P -projection Q such that
Pe = Qe 3 we will show that'.P = Q. TFor this purpose it suffices
to prove imP < imQ@ and kerP € ker @, and these inclusions can

be obtained as follows:

imP =[Pel] = [Qe] = imQ

kerP = im (I-P) = [e-Pe] = [e-Qe] = imQ' € kerQ .

Since P = Q satisfies (8.11), it is a central P -projection,

and the proof is complete. 0

We will show that Z(A) is canonically isomorphic to Wils'
"ideal center" Zi(A) [wa, and that it coincides with the 'center"
Z(A,e) of the order-unit space (A,e) as defined by Alfsen and
Andersen [AA2]° Recall that Ziél} is a subspace of thé space of
linear operators on A, consisting of all operators T admitting

an "order bound" A € R such that

(8.14) -Xa < Ta < Aa for all a € A"

e

whereas Z(A,e) 1is a subspace of A, consisting of all elements
which "act multip}icatively on the pure states". (See [AA2] for
details.) Although formally different, these two spaces are closely
related. In fact, the map T - Te is a bijection of Zi(A) onto
Z(A,e) preserving linearity, order and norm. (Cf. [Wq] and [AA2],
See also [A,Ch.II.§7] for a detailed exposition and [AE] for a more
general theory of "centralizer" and "multipliers" for arbitrary (not

necessarily ordered) Banach spaces).
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Theorem 3,19. The image of the ideal center Zi(A) under

the map T - Te is the center Z(A); otherwise stated Z(A,e) =

2.

Proof. The ideal center Z,(A) is endowed with a rich struc-
ture. It is an order-unit space in the natural order (i.e. S <7
if Sa < Ta for all a € A”) whose order-unit norm (i.e. ||T|| =
inf{A€ R | -AI<T<\I}) coincides with the operator norm; also it is
a vector lattice, and a commutative Banach algebra under operator
multiplication. (See e.g. [A,‘,Ch.,II,§'7]°) By the monotone 0 -com-
pleteness of A, Zi(A) will also be monotone 0 -complete. Now it
follows by standard arguments that Zi(A) is the norm closed linear
hull of projections P satisfying O <P <T. (E.g. one can apply
Freudenthal's spectral theorem [IrZ, Th.40.2] to show that Zi(A) is
the norm closed linear hull of those elements P € Zi(A) which sat-
isfy 0 <P<TI and PA(I-P) =0, and then use functional repre-
sentation to show that these elements are idempotent.) By Lemma 8.18,
a projection P satisfying O <P < I will be a central P -projec-
tion, and so Pe € Z(A).so Pe €Z(A). It follows that the map T —Te
will map Zj(4) into Z(4).

Since Z(A) 1is a weakly closed abelian subspace of A, all
spectral units of elements of Z(A) are in Z(A). Hence Z(A) is
the norm closed linear hull of the projective units Pe with P in
the Boolean center. Now every P -projection in the Boolean center
satisfies (8.11), and thus it must belong to Zi(A) . Hence 7Z(A)
is the norm closed linear hull of elements Pe with P € Zi(A) , and
the surjectivity follows.

The last assertion of the proposition is obvious since

zZ(A,e) = {Te |T€Z, (A)}. []
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We close this section by various characterizations of spectra.

In this connection we agree to write:
(8.15) ab = +[(a+b)(2) - a(2) _(2)4

if a and b are compatible elements of A . TUnder this hypothe-
sis a and b will generate an abelian subspace M (Cor.8.17),
and ab is simply the product of a and b ia the commutative

Banach dlgebra M (Cor.8.9).

Definition. An element a € A is said to be invertible if

there exists b € A compatible with a such that ab = e.

Proposition 8.20. Iet a € A and M €IR . Then a - Ae is

invertible iff A £ o(a); in this case the inverse of a - Ae is

unique and is in M(a) .

Proof. Note that by Proposition 7.5 o(a-ie) = o(a)-\, and
by definition M(a-Ae) = M(a). It therefore suffices to consider
A =0.

1.) Assume first a invertible, say ab = e with a and D
compatible. Let M be the smallest weakly closed abelian subspace
containing a and b (Cor.8.17). By Proposition 8.12 and Propo-
sition 7.6 the mapping ¢ - @(a) is a norm-decreasing homomorphism
of the Banach algebra (3(o(a)) into M. (By definition it pre-
serves squares, hence also products.)

Let E = (-B,B) where B < HbH_q, and write u = p%. We
shall verify that u = O, which will give o0(a)NE = ¢ and then
O € o(a).

The element u = xE(a) will be an idempotent element of M,

and the following inequalities will hold:
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[uall = | (xgev) (@) < L& | gerd)M] <8,

[ubll < =[Pl < Il

(ua)(ub), this gives

Since u = ue

[lul

Since u 1is a projective unit, it is either zero or it takes the

luall- luv]l < 8-llpll < 1.

IA

value 1 at the corresponding projective face. By the above in-
equality the second alternative is impossible, and so u =0 as

claimed.
2.) Assume next O £ o(a), and define ¢ € é?(o(a)) by
(&) ='%. Then b = @(a) € M(a) by Proposition 8.12, and

ab = (y-p)(a) = 1(a) =e.

Thus a is invertible with inverse b € M(a).

Finally we assume that ¢ is any other inverse of a compa-
tible with a, and we consider the abelian subspace N generated
by a and c¢ (Cor.8.17). Then M(a) c N, and N is itself a
commutative Banach algebra (Cor.8.9). But then there can not be

more than one inverse of a in N, and so ¢ =b. Hence the in-

verse is unique. U

Definition. A point x € K is said to be a characteristic

point for an element a € A if the (scalar valued) spectral measure
for a at x has all mass concentrated in one point, i.e. if

“; = ea(x)' A real number A 1is said to be a characteristic value

for a € A if there exists a characteristic point x € K such that

a(x) = X, The set of characteristic values for a is called the

point spectrum for a.
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The result (7.30) can now be restated as follows: For a € A
and x € K one has
(8.16) a(g)(x) - a(x)?
iff x 1is a characteristic point for a.

By definition the point spectrum is contained in the spectrum.
The opposite does not hold in general, but it is of some interest

to observe that every point of the spectrum "almost" has the proper-

ties of a characteristic wvalue.

Proposition 8.21. Let a € A and AN € R. Then the following

are equivalent

(i) X € o(a)
(ii) For every open neighbourhood V of A there exists

x € K with p;_(v) = 1.

Proof. (i) => (ii) TLet X\ € o(a) and let V be an open
neighbourhood of A . By definition of o(a), p% Z 0. BSince p%
is a non-zero projective unit, the corresponding projective face F

is non-empty. For x in F we shall have ui(V) = p%(x) =1,

(ii) => (i) TFollows from the definition of spectrum. []

Corollary 8.22. ILet a € A and M\ € d(a). Then for every

pair 0,€ > O there exists x € K such that

(8.17)  la(x)-1] < & and  [a®(x)-23] < e.

Proof. Choose an open neighbourhood V of A such that
lg-kl <5 and 152-l2| < € for € € V. Then select an element
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x € K such that p;(V) = 1, and observe that the values
a(x) =‘[kdu§(k), a(®)(x) =.[k2dg§(l)

will satisfy (8.17). []
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