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Introduction 

In [4] Powers studied uniformly hyperfinite (UHF) C*-algebras. 

He proved that factor states of such algebras can be characterized 

by a product decomposition property (Theorem 2.5 of [4]), and he 

found necessary and sufficient conditions that two factor represen

tations be quasi-equivalent (Theorem 2o7 of [4]). Analogous results 

are also proved in [3]. In the present paper we shall derive the 

same type of results for pure states of simple C*-algebras with 

identity, thus indicating how properties of UHF-algebras may be 

extended to general C*-algebras. 

A C*-algebra ., is called a CCR-algebra if every irreducible 

representation of lt maps \L into the completely continuous oper

ators. If a C*-algebra 'Lt has no non-zero CCR ideals, then we 

call 
' i 
!J, an NGCR-algebrao 

In lemma 4 of [2] Glimm proved that a separable NGCR-algebra 

with identity contains an ascending sequence of approximate matrix 

algebras of order with certain density properties, 

and we use these approximate matrix algebras to state our results. 

We are grateful to Erling St0rmer for helpful suggestionso 
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1o Definitions and simple consequenceso 

We use the notation and terminology developed by Glimm in [2]o 

We shall write On for the n-tuple (O,o.o,O) and [M] for the 

closed linear span of M, where M is a subset of a Hilbert space. 

Definition 1o Let V(a1 ,.o.,an)' ai E {0,1}, and B(n) be 

elements of a C*- algebra, where n is a positive integer. We 

call 

an approximate matrix algebra of order 2n if the following axioms 

are satisfied: 

(2) V(On) > 0 and IIVCa1 , o o o ,an) II = 1 

(3) B(n) :: 0 and IIB(n)ll = 1 

Definition 2. For each n = 1,2,ooo' let V(a1 ,.oo'an)' 

{ } () * ')l a. E 0,1 , and B n be elements of a C -algebra ·.j. o We call 
]_ 

an approximate sequence of approximate matrix algebras if the follow

ing properties are satisfied: 

For each S E 'l..L and each E > 0 there eri st an n and a 

linear combination T of elements of the fol~ 
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(2) If i < k and if 
u -

V(a1 , ••• ,aj)*V(b1 , ••• ,bk) = 0 • 

(3) If k ~ 2, then V(a1 , ••• ,~) = V(a1 , ••• ,ak_1 )V(Ok_1 ,ak). 

(4) If j < k, then V(a1 , ••• ,aj)*V(a1 , ••• ,aj)V(Ok_1 ,ak) =V(~_1 ,ak). 

(5) V(On) > 0 and IIVCa1 , ••• ,an) \I = 1 • 

(7) IIB(n)!l = 1 and B(n) > 0 • 

The difference between the axioms of def.2 and those in lemma 

4 of [2] is so small that lemma 5 of [2] remains valid for an approx-

imate sequence of approximate matrix algebras. This latter lemma 

therefore tells us about the matrix structure for such a sequence. 

The next three lemmas establish some properties of approximate se

quences of approximate matrix algebras which we shall need later. 

Lemma 1. Let 

be an approximate sequence of approximate matrix algebras, and let 

E(n) be defined as in def.2. Then the following are true: 

C 1) !IECn) II = 1 and E(n) ~ 0 for n = 1,2, •••• 

(3) E(n)E(m) = E(m)E(n) = E(m) when n < m. 

and E(p) commute if n < p • 

(5) V(i)V(j)*V(p)V(k)*E(n+1) = o. V(i)V(k)*E(n+1) 
J ,p 

for all 

i,j,k,p E [0,1}n. (o .. = 1 and o. = 0 if j .j p) 
J,J J,p 

(6) V(a1 , ••• ,~_1 )V(b1 ,. .. ,bn_1 )*E(n-1-1) = [V(a1 , ••• ,an_1 ,O)V(b1 ,. .... ,bn-1',0)* 

+ V( a1 ,. .. , an_1 , 1 )V(b1 ,._, bn_1 , 1) *]E(n+1) • 
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Proof: 

(1) Since V(a1 , ••• ,a )V(a1 , ••• ,a )* > 0 for all 
n n -

(a1 , .... ,an) E [0~1}n, we have E(n) ~ 0. 

V(b1 ~ ••• ,bn)*[V(b1 , ••• ,bn)V(a1 , ••• ,an)*]V(a1 , .... ,an)B(n) = B(n) 

is a consequence of axiom (6) in def.2. Since all the V(aa,.-,an) 

and B(n) have norm one, we get from the Cauchy-Schwarz inequality 

that IIVCb1 , ••• ,bn)V(a1 , ••• ,an)*l! = 1 for (a1 , .... ,an),(b1 , ••• ,bn) 

E (o, 1 }n. This together with the fact that V(a1 ,. •• ,an) *V(b1 ,. .. , bn) = 0 

if (a1 , ... ,an) I= (b 1 , ... ,bn), implies that IIE(n)ll = 1 • 

(2) In the following we use without comment axioms 2, 3 and 4 of 

definition 2. 

and 

V(a1 , • .,,an)V(b1 ,.o.,bn)*V(c1 ,.-,cn+'l)V(c1 ,._,cn+'l)* = 0 if 

(b1,o .. ,bn) I= (c1, ••• ,cn) 

V(a1 ,. •• , an)V(b1 , ••• , bJ*V(b1 , .... , bn, cn+1 )V(b1 , ••• , bn, cn+'l) * 

= V( a 1 , ••• ,an )V(b1 , ••• , bJ*V(b1 ,.o., bn )V( On, cn+1 )V(b1 ,._, bn, cn+1 ) * 

= V( a 1 , ... , an)V( On, cn+1 )V(b 1 ,.00, bn, cn+1 ) * 

= V( a 1 , .... ,an, cn+1 )V(b1 ,. ... , bn, cn+1 ) * • 

From these equalities we can easily prove (2). 

(3) From (2) we get E(n)E(n+1) = E(n+1). Since E(n) is self

agjoint for each n , it follows that E(n+1 )E(n) = E(n+1) • We 

suppose k > n and get 

E(n)E(k) = E(n)E(n+1) E(k-1)E(k) = E(k) 

= E(k)E(k-1) o•• E(n+1)E(n) = E(k)E(n) 

(L!-) We prove the assertion by induction with respect to the dif

ference p-n o We suppose first that p-n = 1 • From (2) and 
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E(n) = E(n)* it follows that 

E(n+1 )V( a 1 ,.00, an )V( c1 ,._,en)* = [V( c1 ~ .... ,en )V( a 1 ,.00, an) *E(n+1)] * 

= [ L: V(c1 , ••• ,cn,b)V(a1 ,.-,an,b)*]* 
b=O, 1 

= b~O, ~Ca1 ,._,an, b )V( c1 ,._,en, b)* = V(a1 ,.o., an)V( c1 ,.0., en) *E(n+1) 0 

We suppose that the assertion is true for p-n = s > 1 and that 

p-n = s+1 • From (2) and (3) we get 

V( a 1 , ..... ,an )V( c1 ,.o .. , en) *E(p) = V( a 1 ,.o., an )V( c1 , ••• ,en) *E(n+1 )E(p) 

= L: V(a1 , .... ,an,b)V(c1 ,oe.,cn,b)*E(p) 
b=0,1 ' I 

= E(p) L: V(a1 ,.o.,an,b)V(c1 , .... ,cn,b)* 
b=O, 1 

= E(p)V(a1 ,. ... ,an)V(c1 ,.-,cn)*E(n+1) 

= E(p )E(n+1 )V( a 1 , .... ,an )V( c1 ,._,en)* 

= E(p )V(a1 , .... , an)V( c1 , ... ,en)* 

(5) and (6) are proved in the same way as is lemma 5 in [2]. 

By a simple induction argument the next lemma follows from 

lemma 1. 

Lemma 2. Let 

be an approximate sequence of approximate matrix algebras in a C*-
i; I 

algebra I For each n we let 
. .,.--.. 
e.n be the *-algebra generated 

by all V(a1 , ... ,am)V(c1 , •• ,em)* such that 0 < m < n and 

Ca1 , ••• ,am),(c1 ,.o.,cm) E (0,1)m 0 

Then for each X E -.~. 
~- .l ,_) 

n there exist complex numbers 

such that 
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xE(n+'1) 

We illustrate the proof by an exampleo We let 

x = V('1,'1)V(O,O)*V(0,0,'1)V('1,'1,'1)*, and it follows that 

xE(4) = V('1,'1)V(O,O)~E(3)E(4)V(0,0,'1)V('1,'1,'1)* 

= [V( '1, '1, 0 )V( 0, 0, 0) * + V( '1, '1, '1 )V( 0, 0, '1) * ]V( 0, 0; '1 )V( '1, '1, '1) *E( 4) 

= V('1,'1,'1)V('1,'1,'1)*E(4). 

Lemma 3o 

and are defined in lemma 2o 
·~, i 

Then for each y E u, we have 

where is the commutant to 

Proof: In this proof we use without comment the axioms of 

definition 2 and the results in lemma '1o We have for j,k E [0,'1}n 

V( j )V(k) * z = E(n+'1 )V(j )V(k) *V(k)V( On) *y V(On)V(k) *E(n+1) 

= V( j )V(k) *V(k)V( On) *E(n+'1 )y V(On)V(k) *E(n+'1) 

= V( j )V( On) *E(n+'1 )y V(On)V(k) *E(n+'1) 

= E(n+'1 )V( j )V( On) *y V(On)V( j) *V( j )V(k) *E(n+'1) 

= E(n+1 )V( j )V(On) *y V(On )V( j) *E(n+'1 )V( j )V(k) * 

=zV(j)V(k)*o 

We let x E (6 n o By lemma 2 there exist complex numbers 

i, j E [0, '1 }n , such that 

a. . ' l,J 
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xE(n+1) = L: a .. V(i)V(j)*E(n+1) 
l..,J 

This implies that 

i,jE{0,1}n 

xz = L: a.; . V(i)V(j)*z 
. . ...... 'J l..,J 

and zx = L: a. . z V ( i )V ( j ) * 
. . ].. 'J l..,J 

It follows now that xz = zx , and 

we have z E -'~~: c '·-. .Jn 

2. Two variations of Glimm's lemmao 

We need two small variations on the fundamental lemma 4 of 

Glimm in [2]o 

Lemma 4. Let ; : be a simple, separable NGCR- algebra with 

identity, and let f be a pure s"Gateo Then .! contains an approx

imate sequence of approximate matrix algebras such that f(B(n» = 1 

for all n o 

be a dense subset of the self-

adjoint elements in ";), o We change the proof of lemma 4 in [2] 

such that we in addition get f(B(n)) = 1 for all n o The indue-

tion step in the proof need be changed in only two placeso 

First, in the seventh line from the top of page 577 in [2], we 

let ~ = f o This is possible since f(B(n)) = 1 o 

The other change is in lines 11-13 of page 578o There we let 

~ = ~f and y = J(f o This is possible since ~f(B0 ) is non-com

pact, because :) __ is simple, and since ~f(B0 )xf = xf (line 10, 

page 578) o 
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From the 13th line from the bottom of page 579 in Glimm's proof 

it follows that cpf(B(n+1) )xf = xf • This implies that f(B(n+1 )) = 1. 

We have now found elements V(a1 , ••• ,~) and B(n) such that 

the axioms 2)- 7) in definition 2 are satisfied and elements 

Tn E 'YY\ (n) ( n :, (n) is the linear span of elements of the form 

V(a1 , .... ,an)V(b1 , ••• ,bn)*) such that IIECn+1)(Sn-Tn)E(n+1)11 < ~ • 

We let E > 0 and S E be arbitrary. There exist s~lf-

adjoint elements S 1 and S 11 such that 

k1 and k 2 such that liS 1 - ~111 < ! 
s = s I+ i S" 0 vr.:. 

E 
4 and 

1 < E 
k2 4 Since IIE(n) II = 1 and E(n)E(m) = E(m) if n < L.l , it 

E follows by an 4 - argument that 

IIE(p-r-1) [S- (Tk +i Tk ) ]E(p+1) II < E , 
1 2 

where p = max(k1 ,k2 ) o By lemma 2 there is a T E hL(p) such 

that (Tk +i Tk )E(p+1) = TE(p+1) o This implies that 
1 2 

!IE(p+1)(S-T) E(p+1)11 < E , and we are done. 

Lemma 5. Let · : __ J. be a simple NGCR- algebra with identity. 

Let f 1 and f 2 be two pure states such that f 1 and f 2 are not 

unitary equivalent. Let 

be an approximate matrix algebra such that f 1 (B(n)) = 1 • Then 

there exists an approximate matrix algebra 

[V( a1 , .. _, an+1 )V(b1 , ••• , bn+1 ) * ,B(n+1) : ai, bi E {0, 1)) 

such that f 1 (B(n+1)) = 1 and f 2 (E(n+1)) = 0 , where 

E(n+1) = 2: V(a1 ,.oo,an+1 )V(a1 , ••• ,an+1 )* , 

(a1' ... .,~+1) 
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and such that 

and 

Proof: The proof is analogous to the proof of the induction 

step in lemma 4 of [2]. We make some small changes. 

We let c:pi and x. respectively be the induced representation 
~ 

and induced vector of f. 0 

~ 
We let H. be the Hilbert space on 

~ 

which cpi acts. The elements D0 ,D1 ,B0 ,B20 and V , which we 

mention in the following proof, are defined on page 578 in Glimm's 

proof, and the function fr is defined on page 577~ 

First, in the seventh line from the top of page 577 we let 
!-1 = f 1 ;. This is nossible since f 1 (B(n)) = 1 • 

In lines 10- 18 on page 578 we make the following changes. .. 

let cp = cr1 (line 11). This is possible since cr1 (B0 )x1 = x1 and 

:_1_, is simple, hence c:p1 (B0 ) is non-compact o We let y = x1 o 

This is possible since cr1 (B0 )x1 = x1 , which implies that 

x1 E Range cr1 (B0 ) o 

We define N by 

which is a finite dimensional subspace of H2 • We require in ad

dition of C0 and U in the lines 14 and 17 that 

and that 

This is possible by an application of theorem 2.8.3 in [1], since 

dim[f0 (D1 )N] < dimN < oo , and since f 1 and f 2 are not unitarily 

equivalent. 
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By making these changes in the induction step of Glimm's proof 

we find an approximate matrix algebra 

such that (1) and (2) are satisfied. It remains to prove that our 

changes imply that f 1 (B(n+1)) = 1 and f 2 (E(n+1)) = 0 • 

By (2.2.) we have cp2 (D0 )(N) = [0} and hence cp2 (V)(N) = [0}. 

Since V* = f 0 (D0 )U*f0 (D1 ) , by (2.3) we have cp2 (V*)(N) = [0} • 

From the definition of V(On,1) and V(On+1 ) we get cp2 (V(On,~~(N) 

= [0} and cp2 (V(On+1 ))(N) = [0} • 

(2.2.) implies now that 

cp2 (V( On, 1) *V( a1 ,._,an) *x2 = 0 and 

cp2 (V(On+1 )*V(a1 , ••• ,an)*x2 = 0 for all (a1 ,.. •• ,~) E [0,1}n. 

This implies that cp2 (E(n+1))x2 = 0 , and hence f 2 (E(n+1)) = 0 

From line 13 from the bottom of page 579 we get cp(B(n+1) )y = y. 

Since we have chosen cp = cp1 and y = x1 , we then get cp1$Cn+~)x1 

= x1 and hence f 1 (B(n+1)) = 1 • 

We suppose we have two approximate matrix algebras which satis

fy (1) and (2) in lemma 5. Then, in the same way as in the proof of 

lemma 5 of [2], we can show the following: '} \ L (n) is the set of all 

finite linear combinations of elements of the form 

cp( r: ~(n)) 1 
[range cp(E(n+1))Hcp] 

is a 2n x 2n matrix algebra with matrix units 

This justifies definition 1 of an approximate matrix algebra. 
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3. Main results. 

We prove in theorem 1 that pure states of a simple separable 

C*-algebra with identity hava a product decomposition property. 

Moreover, we prove in theorem 2 that two pure states of a simple 

C*-algebra with identity are unitarily equivalent if and onl;y· if 

they are asymptotically equal. The following result is well known, 

and is stated without proof. 

Lemma 6. Let ·1_1, be a simple C*-algebra with identity.. Then 

either '1.t is an NGCR- algebra or else U. is *-isomorphic with 

an n x n matrix algebra, where n is finite. 

Theorem 1. Let '• .. .;.. be a simple separable C*- algebra with 

identity. '\' We suppose that ~--'" is not *-isomorphic with any nxn 

matrix algebra such that n is finite. Let f be a pure state of 

'1 Then ·_:.J contains an approximate sequence of approximate ma-

trix algebras 

such that the following are satisfied: 

We let (y._, be the C*-algebra generated by 

(V(a1 ,..-,an)V(b1 ,..-,bn)*: ai,bi E (0,1} and n=1,2, ••• }, and we let 

1hL(n) be the set of all linear combinations of V(a1 ,. ... ,an)V(b1 ,. .. ,bJ*· 

Then for each 8 > 0 and each X E ('i 
<.Y .• ' there is an n such that 

lf(xy) - f(x)f(y) 1 < 8 IIYII 

CY'I'l.(n)c is the commutant of 'Yn,Cn) in "u~ . ) 
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Proof: In this proof we use the axioms of definition 2 and 

lemma 1 without commento 

By lemma 6 -lL is an NGCR algebrao We use lemma 4 and choose 

an approximate sequence of approximate matrix algebras such that 

f(B(n)) = 1 for all n • 

E(n)B(n) = E(n)V(On)V(On)B(n) 

= E V(a1 ,..-,an)V(a1 , .. -,an)*V(On)V(On)B(n) 
( a1 ,._,an) 

= V(On)V(On)V(On)V(On)B(n) = B(n) • 

Since f(B(n)) = 1 and 1\B(n)ll = 1, we have 

Thus cpf(B(n) )xf is proportional to xf , and so is equal to xf .. 

Since E(n)B(n) = B(n) , we have 

( 3 • 1 ) cp f ( E ( n) ) xf = xf and f ( E ( n) ) = 1 for n = 1 , 2 , 3 o • .. o 

We have now to prove the following assertion: 

is a pure state o 

We prove first that fIr-,, has a unique extension to r!), • 
,_I( 

Suppose 

then that g is a pure state such that In the same 

way as we prove cpf(B(n))xf = xf , we prove that cpg(E(n))xg = xg 

for n = 1,2, ••• o From this and (3.1) we get 

(3.2) f(o) = f(E(n)•E(n)) and g(•) = g(E(n)·E(n)) for n=1,2, .. eo 

We let S E l)~ and e > 0 be arbirnnry and choose n and T E (l2_, 

such that \IE(n)(T-S)E(n)l\ < e • By (3o2) it follows that 

if(S)- g(S) l = !f(T)- g(T) + f(S-T)- g(S-T) 1 
= lCf-g)(E(n)(S-T)E(n))l < 2e • 
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Since £ > 0 was arbitrary, we have f(S) = g(S) . 

Next we prove that f 1 C/ is pure. We suppose flu. = f(h+g) , 

where h and g are states of cr~ 0 

,; ' 

We extend h and g to 'LL 

and call the extensions h' and g' • Since we have just proved 

that f 1 rn has a unique extension to "I.( , it follows that 
\.. ... '!' • .i' 

f = 

t(h I +g I) o f is pure, hence f = h 1 = g 1 , and we have proved 

the assertion. 

We let (/~\ n be the *-algebra generated by 

[V(a'1,. .. ,ak)V(b,1'.-'bk)*: ai,bi E [0,1}, k.:S,n) • Since 

it is sufficient to prove the theorem for each 

,.--, 
We let x E /ij n and e: > 0 be given. We choose 6 > 0 such 

that 

llxll 0 6 + olf(x) I+ 6 ('1+6) < e: • 

::-. CD 
[ 1~n)n='1 is an ascending sequence of *-algebras such that (jJ, = 

05 norm 
, ....... 

U ·l.::ln_, 
n=1 

, and f l c-&· is a pure state, in particular a factor state o 
-· .J 

We copy the proof of theorem 2.5 i) ... ii) in [ LJ-] and find m > n 

such that 

(3.3) lf(xy)- f(x)f(y) 1 .:s. 6llYII for all y E (B~ n Ct 0 

We let y E'rYL(m)c , and we suppose without loss of generality 

that IIYII = 1 We need now the following assertion: 

For each 6 > 0 and each S E rlL there exist 

't k and T E ~.j k such that liT II .:S. llsll + 6 and 

1!E(k+1) ( S-T )E(k+1) II < 6 0 

We choose p and T 1 such that 11E(p+1)(S-T')E(p+1)1j < 6 o We 

define k = p+1 and T = E(p+1)T 1 E(p+1) 0 
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II Tll = IIE(p+1 )T I E(p+1) II 

< IIECp+1)(S-T' )E(p+1)11 + I!E(p+1)SE(p+1)11 < o + l!sll, 

since IIE(p+1) II = 1 " We get 

I!E(p+2) (S-T )E(p+2)IJ 

= IIE(p+2)(E(p+1)SE(p+1)- E(p+1)T'E(p+1))E(p+2)11 

.:: IIE(p+2) II 0 IIE(p+1) (S-T I )E(p+1) II 0 IIE(p+2) II < 6 

and we have proved the assertiono 

By the assertion we can find k > max(m,n) and rl z E (0 k such 

that 

(3.4) II zll < 1 + o and IIE(k+1) ( z-y )E(k+1) II < ~ o 
2 

Since IIVCa1 , ••• ,am)V(Om)*ll = 1, we have by (3.4) 

(3.5) IIVCa1 , ... ,am)V(Om) *E(k+1) (z-y)E(k+1 )V(Om)V(a1 ,.-,Bm.)*ll < ;m 

for all (a1 , ... ,Bm_) E [0,1}m • 

L: V(a1 ,.. •• , am)V( Om) *E(k+1) (y-z )E(k+1 )V( Om)V (a1 , ..... ,am)* 
(a1 , ••• ,am) 

= L: E(k+1 )yV(a1 , ••• ,~)V(Om)*V(Om)V(a1 ,. •• ,am)*E(k+1) 
(a1 ,DO.,~) 

- E~+1 )(E(m+1) L: V(a1, ••• ,am)V(Om)*zV(Om)V(a1 , ... ,am)*E(m+1 ))E~+1) 
(a1 ,.. ... ,arJ 

= E(k+1 )y EGn)E(k+1) - E(k+1) z I E(k+1) 

= E(k+1)(y-z')E(k+1) , 

where z' is defined by 

(3.6) z' =E(m+1) L: V(a1 ,.-,am)V(Om)*zV(Om)V(a1 ,.-,am)*E(m+1) • 
(a1 ,...., Bm.) 

We add the inequalities in (3.5) and get 

(3.7) IIE(k+1)(y-z' )E(k+1)11 < 6 o 
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From (3.4) it follows that 

Since 

we get 

II l: V(a1 ,. •• ,am)V(Om)*zV(Om)V(a1,.-,am)*!l < 1 + o • 
(a1 ,.00, am) 

By (3.6) this gives 

(3 .. 8) liz' II < 1 + o • 

By lemma 3 

that 

we have z' E This implies by (3.3) and (3.8) 

(3.9) lf(xz')-f(x)f(z')l < o!lz'll ~ o(1+0) a 

Since X Ef" z' e·P, .,_, n ' .__, m+1 and k + 1 > max(k,n) , we have by 

(3.2) and (3.7) that 

lf(xz')-f(xy)l ~ llx!lo, 

because 

If ( xz I ) - f ( xy) 1 
= If (xE(k+1) z I E(k+1)) - f (xE(k+1 )yE(k-1-1)) 1 
~ l!xE(k+1 )z 'E(k+1)- xE(k+1 )yE(k+1) II ~ llxll • 6 • 

Moreover, 1tfe have by ( 3. 2) and ( 3. 7) that 

(3.11) lf(z')-f(y)l = lf(E(k+1)(z'-y)E(k+1))1 < 6 • 

(3.9), (3.10) and (3.11) imply 

lf(xy)-f(x)f(y)l ~ llxll·o+o·!f(x)l+o(1+o) < e:, 

and we are done. 
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Theorem 2. 
,1) 

Let ~ J be a simple C*-algebra with identity. We 

suppose that r·, 1 ,_., is not 

such that n is finite. 

*-isomorphic with any n x n matrix algebra 

Let f 1 and f 2 be two pure states of '1L. 
Then the following are equivalent: 

( 1) 

(2) 

(3) 

f1 and f2 are unitarily equivalent. 

There is an approximate matrix algebra 

{V(a1 )V(b1 )*,B(1): a1 ,b1 E {0,1}} 

such that 

f 1 (B(1)) = 1 and II Cf1-f2 ) \HLC1 )ell = 0 c 

There is an approximate matrix algebra 

{V(a1 , .... ,an)V(b1 , ••• ,bn)*,B(n): ai,bi E {0,1}} 

such that 

f 1 (B(n)) = 1 

'YYLCn) is the linear span of the elements V(a1 ,._,an)V(b1 ,.,..,bn)* , 

and rnLCn) 0 is the commutant of 1VYlCn) in 1L o 

Proof: By lemma 6, 't}1 is a simple NGCR-algebra with identity, 

1) ... 2): We suppose f 1 "'f2 .. We define TT = rrf1 • If TT is a 

one-dimensional representation, the theorem is trivially satisfied. 

We suppose that TT is at least two-dimensional, that f 1 (·) = 

( TT ( • )x1 'x1 ) ' that f2(·) = ( TT ( • ) x2 , x2 ) , and that x2 = A.x1 + ~z 

where x1 .L z , llzll = 1 and A.,~ E ~ • By theorem 2.8.3 in [1] 

there exist elements D and u ,. I 
such that D > 0, IIDII 1 ' of L__, = 

rr(D)x1 = x 1 , rr(D)z = 0, U is unitary, and rr(U)x1 = z 

For each € > 0 in (0,1) we let f 8 be the function defined 

by: f 8 ((-C0,1-€]) = 0, f 8 ([1-;, co)) = 1, and f 8 is linear on 

[1-e,1-~] o We define 

V = f 1 ( I-D )U f 1 (D) • 
2 2 
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We prove now that f~(I-D)f~(D) = 0 • We define g by g(t) = 
2 2 

f1(1-t)f1Ct) o Since f1 = 0 on [O,f] and s:p(D) c [0,1], it 
2 2 2 

follows that g = 0 on s:p(D) o This implies g(D) = 0 o Since 

f1(I-D)f1(D) = 0, it follows that v2 = 0 o 
2 2 

We have 

we define 

V( 1) = Vk(V*V) , where k( t) 

V(O) = f~(y*V), and 
2 

Next we want to :prove that 

[V(i)V(j)*,B(1): i,j E [0,1}} 

is an approximate matrix algebrao V(1)*V(O) = 0, since (V*) 2 = 0. 

Moreover, V(O)*V(1) = 0, since v2 = 0 0 This means that axiom (1) 

in definition 1 is satisfied. Axioms (2) and (3) are trivially sa-

tisfiedo Since 

V( 1) *V( 1) = k(V*V)V*Vk(V*V) = f~ (V*V) , 
2 

it follows that V(1)*V(1)B(1) = B(1), because f 1; 2f 1; 4 = f 1; 4 o 

Since f 1; 2f 1; 4 = f 1; 4 , it follows that V(O)*V(O)B(1) = B(1), 

and axiom 4 is satisfiedo Thus we have proved that 

[V(i)V(j)*,B(1): i,j E [0,1}) 

is an approximate matrix algebrao 

We define G by 

G = A.V(O)V(O)* + !-LV(1 )V(O)* • 

From (13.12) we get 
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n(V(O)V(O)*)x1 = n([ff(V*V)J 2 )x1 = x1 

n(V(1)V(O)*)x1 = n(Vk(V*V)ff(V*V))x1 = z 

n(V(O)V(1)*)z = n(ff(V*V)k(V*V)V*)z = x1 , 

and hence 

n(V(O)V(O)*)z = n(V(O)V(O)*V(1)V(O)*)x1 = 0 

and 

n(V(O)V(1)*)x1 = n(V(O)V(1)*V(O)V(1)*)z = 0 • 

This implies 

We get 

n(G*)(A.x1+!-!Z) = (5::V(O)V(O)* + j:LV(O)V(1)*)(A.x1+!-!Z) 

= ( JA. 12+ l!-!l2)x1 = 1·x1 = x1 . 

n(G*G)x1 = x1 • 

we let A E ;nt(1)c • 

We get 

r 2(A) = (n(A)x2 ,x2 ) = (n(A)n(G)x1 ,n(G)x1 ) 

= f 1 (G*AG) = f 1 (AG*G) = f 1(A) 

since G and A commute and n(G*G)x1 = x1 • 

2) _. 3) is trivial • 

3) _. 1): We suppose f 1 f f 2 , and we let 

{V(a1 ,. .. ,an)V(b1 ,. •• ,bn)*,B(n): ai,bi E {0,1}} 

be an approximate matrix algebra such that f 1(B(n)) = 1 • By 

lemma 5 we choose an approximate matrix algebra 
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such that (1) and (2) in lemma 5 are satisfied and such that 

f 1 (B(n+1)) = 1 and f 2 (E(n+1)) = 0 o 

f 1 (E(n+1)) = 1, since B(n+1) _:: E(n+1) 

f 1 (B(n-r1)) = 1 implias 

In the same wa:y as in 

the proof of lemma 1, ( 1) and ( 4), we get E(n+1) E 1lYLCn)c and 

I!E(n+1)11 = 1 Since l'le have 1Cf1-f2 )(E(n+1)l = 1, it follows 

that 
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