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Introduction

In [4] Powers studied uniformly hyperfinite (UHF) C*-algebras.
He proved that factor states of such algebras can be characterized
by a product decomposition property (Theorem 2.5 of [4]), and he
found necessary and sufficient conditions that two factor represen-
tations be quasi-equivalent (Theorem 2.7 of [4]). Analogous results
are also proved in [3]. In the present paper we shall derive the
same type of results for pure states of simple C*-algebras with
identity, thus indicating how properties of UHF-algebras may be
extended to general C*-algebras.

A C*-algebra ") is called a CCR-algebra if every irreducible
representation of . maps ‘L into the completely continuous oper-
ators. If a C*-algebra L has no non-zero CCR ideals, then we
call '/ an NGCR-algebra.

In lemma 4 of [2] Glimm proved that a separable NGCR-algebra
with identity contains an ascending sequence of approximate matrix
algebras of order 2,4,900,2n,°°. with certain density properties,

and we use these approximate matrix algebras to state our results.

We are grateful to Erling Stermer for helpful suggestions.



1. Definitions and simple consequences.

We use the notation and terminology developed by Glimm in [2].

We shall write O, for the n-tuple (0,...,0) and [M] for the

closed linear span of M, where M is a subset of a Hilbert space.

. € {0,1}, and B(n) be

Definition 1. Let V(aq,,,,,an), a;

elements of a C*-algebra, where n 1is a positive integer. We
call
{V(aqsoeesa IV(bgyeee,b )*,B(n0) & a;,b; € {0,1}]

an approximate matrix algebra of order 21 if the following axioms

are satisfied:
(1) V(aqs w8 ) T(Dyyuesb ) = 0 Af  (8ymmdy) # (byywsby)
(2) V(o) 20 and [V(ay,.eera )l =1
(3) B(n) >0 and |B@)|] =1

(4) V(aq,a.,,an)*V(aq,,oo,an)B(n) = B(n)

Definition 2. For each n = 1,2,..., let V(a ,...,a.),

a; € {0,1}, and B(n) bve elements of a C*-algebra . We call
UKaqwqanNKbqwmbn)ﬂBCn):qvbi6©,1}and n=1,2,0.1}

an approximate sequence of approximate matrix algebras if the follow-

ing properties are satisfied:

(1) We let E(n) = Z V(aq,oe.,an)V(aq,..o,an)* .
a/l ,.00, a

n
For each S € ! and each € > O there exist an n and a
linear combination T of elements of the form

V(2 oeny 8 V(b g ey )*  sUCh that [[E(n+1)(S-T)E(n+D]f < €.
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(2) If §<k andif (ag,...,a5) # (by,...,bs), then
V(aqyeeer8 ) T(Dgyeeesby) = 0 .

(3) If k > 2, then V(aq,,.o,ak) = V(aq,.,.,ak_q)V(Ok_q,gk),

(4) If j < k, then V(a,l,”.,,aLJ.)"‘V(a,I,‘,c,.,,aLJ.)V(Ok_,I,aLk)==V((%{_.,},ak),°

(5) V(o) >0 and |[V(agye.era )l =1 .

(e) V(aq,,,,,an)*V(aq,oao,an)B(n) = B(n) .

(7) [B@J| =1 and B(n) 20 .

The difference between the axioms of def.2 and those in lemma

4 of [2] is so small that lemma 5 of [2] remains valid for an approx-
imate sequence of approximate matrix algebras. This latter lemma
therefore tells us about the matrix structure for such a sequence.

The next three lemmas establish some properties of approximate se-

quences of approximate matrix algebras which we shall need later.

Lemma 1. Let
{V(a, ,...,an)V(b,],,..,bn)*, B(n) : a;,b; € {0,7} and n=1,2,... ]

be an approximate sequence of approximate matrix algebras, and let

E(n) Dbe defined as in def.2. Then the following are true:
(1) JE@)]| =1 and E(n) >0 for n =1,2,... .

(2) V(2 pmy8 V(D peeyb ) *E(0+1) = T \/If(a,] peees 8 3D IV (D yoeey D D) *

=0,

(3) E(@)E(m) = E(m)E(n) = E(m) when n <m.
(4) V(aq””,an)V(bq””;bn)* and E(p) commute if n <p.

V(i)V(k)*E(n+1) for all

(5) V(LIV(H)T(@IVE)*E(a+) = 64

i,J € {0,171}, (5. . 5, = if j
i,J.k,p {O, } ( 33 17 and 3,D O if § # P)

(6) V(e pwesy 4)V(0,peeyby 4)*E(@+1) = [V(a,sweray 150)V(D gy 40)*
+ V(a/l 90009 an-./l 9 1 )V(b/l ,ou,bn_/l 9 /l ) *]E<n+1 ) °



Proof:
(1) Since V(aq,,,.,an)v(aq,,¢,,an)* > 0 for all
(845202580 € {0,1}", we have E(n) > 0.
V(bq 9°°°7bn) *[V(bxl ’"'9bn)v(a/| o009 an)*]V(a,] 90909 an)B(n) = B(n)
is a consequence of axiom (6) in def.2. Since all the V(aa””,gn)
and B(n) have norm one, we get from the Cauchy-Schwarz inequality
that llV(b/],.,.,bn)V(a,],“.,,an)*ll =1 for (aqyee0sa,)s(Dgyeeesd)
€ {0,1}". This together with the fact that V(aqru,an)*V(bqwu;bn)==O

if  (aqpesay) # (bgpe,d ), implies that lE@)|| =1 .

(2) 1In the following we use without comment axioms 2, % and 4 of

definition 2.

V(aq,”,an)V(bq,“qbn)*V(cqvu,cn+1)V(c1Pu,cn+1)* =0 if
(b yeesDy ) # (Cyyoensy)
and
V(aqvn,an)V(bq,"qbﬁfV(bq,uqbnﬁcn+1)V(bq,"”bn,cn+1)*
V(aqu,an)V(bq,“”b *V(bq,“”bn)V(On,cn+1)V(b1”u;bn,cn+1)*

V<a1”“’an)v(on’cn+1)V(bﬂ”“;bn’cn+1)*

V<a1””’§n’cn+1)vcbﬂ”“’bn’cn+1)* °
From these equalities we can easily prove (2).

(3) From (2) we get E(n)E(n+1) = E(n+1). Since E(n) is self-
adjoint for each n, it follows that E(n+1)E(n) = E(n+1). We

suppose k > n and get
E(n)E(k) = E(n)E(n+1) --- E(k-1)E(k) = E(k)

= E(kx)E(k-1) ¢-- E(n+1)E(n) = E(kX)E(n) .

(4) We prove the assertion by induction with respect to the dif-

ference p-n . We suppose first that p-n =1 . From (2) and
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E(n) = E(n)* it follows that

E(n+1 )V(a,| yocos an)V(c,] yooos cn) * = [V(c,l yooes cn)V(a,I ,.,.,an) *B(n+1)]*
,b)*]*

[ = V(c,‘ ,,..,.,cn,b)\/'(a,I gooes

a.
b=0," n

b§0 \,lf(a,l yooes an,b)V(c,] youos cn,b)* = V(a, ,.e.,an)V(c,i yoossy cn) *E(n+1) .
g}

We suppose that the assertion is true for p-n = s>1 and that

p-n = s+1 . From (2) and (3) we get

V(a,I ,«,.,an)V(c,I yocas cn) *E(p) = V(a,] ,.,,,an)V(c,] yosos cn)*E(n+’I )E(p)

=b=§, /’V(a,l oous 8 5D )V ( Cp ey Cpp 5D ) *E(p/)

E(D) V(8 pmsay ;DIV(C ey O D)
b=0,"

E(p)V(a/l yooos an)V(c,I yosos cn) *E(n+1)
E(p)E(n+1 )V(a,I youes B )V(c,] yoaos cn)*

1

E(P)V(a peya, IV(C) peyc )* ©
(5) and (6) are proved in the same way as is lemma 5 in [2].

By a simple induction argument the next lemma follows from

lemma 1.

Lemma 2. Let
{V(a, sy 2 JV(b ey )*,B(0) ¢ 25,0, € {0,1} and n=1,2,... ]

be an approximate sequence of approximate matrix algebras in a C*-
algebra '/ . For each n we let "E"n be the *-algebra generated
by all V(a,l ,.,,,am)V(c,] y ,,cm)* such that O <m <n and
(a,],“.,am),(c,],.ao,cm) e {0,711,

Then for each x € éit:”,":"n there exist complex numbers

a uch that
(afla""’an),(cqr“vcn) such a



xE(n+1) = z v<31 gec0y %)V(Cq ) Cn) *E(n+1) .

éakn?a(a,] yooey an),( Cp ooms cn)
(c,l yocos cn)

We illustrate the proof by an example. We let
x = V(1,1)v(0,0)*V(0,0,1)V(1,1,1)*, and it follows that

X'_E(LI-) = V(’l,1)V(0,0)*E(B)E(H—)V(0,0,q)V(/l,’l,/l)*
Lv(1,1,0)v{0,0,0)* +V(1,1,1)v(0,0,1)*1v(0,0,1)V(1,1,1)*E(4)
V(1,1,D)V(1,1,1)*E(4) .

Lemma 3.
{V(aq ,"oaan)v<b/| ,oe.,-bn)*,B(n) : ai’bi € {0,1} and n=1,2,...}

and ".€';.,’7n are defined in lemma 2.

Then for each y € '/, we have

o C
7 = E(n+1)[a T X(aq”“,an)V(On)*yWMDn)V(aq,“,an)*]E(n+1)Enﬁll
1 9°°9

where 3~ is the commutant to i~ in L. .
Proof: 1In this proof we use without comment the axioms of

definition 2 and the results in lemma 1. We have for j,k€ {0,1}"

V(i)V(k)*z = E(n+1)V(J)V(k) “V(k)V(0, ) *y VO, IV(k) *E(n+1)
= V(IHV(E)*V(k)IV(0, ) *E(n+1)y VO IV (k) *E(n+1)
= V(3)V(0 ) *E(n+1)y VO IV(k)*E(n+1)
- B(@+1)V(HV0,) "y VO, IV(3)*V(3)V () *E(n+1)
E(n+DV(3IV(0,)*y VO IV(I)*E(+1)V(IIV(k)*
zV(JIV(K)* .

We let x € ‘*in . By lemma 2 there exist complex numbers a.

i,j € {0,711, such that



xE(n+1) = X a; J.V(i)V(j)*E(n+’l) .
i,3€{0,13%"’

This implies that xz = I a; L V()V(G)*z

]

i, 1,d
and 2zx = EIai i zV(i)V(j)* . It follows now that xz = zx, and
i,
~ C
we have 2z € g e

2. Two variations of Glimm's lemma.

We need two small variations on the fundamental lemma 4 of

Glimm in [2].

Lemma 4. Let ', be a simple, separable NGCR - algebra with
identity, and let f be a pure state. hen !, contains an approx-

imate sequence of approximate matrix algebras such that f(B(n)) = 1

for 811 n .

Proof: We let S5,,5;,... Dbe a dense subset of the self-
adjoint elements in i, . We change the proof of lemma 4 in [2]
such that we in addition get f(B(n)) =1 for all n . The induc-
tion step in the proof need be changed in only two places.

First, in the seventh line from the top of page 577 in [2], we
let p =f . This is possible since f(B(n)) =1 .

The other change is in lines 11 - 13 of page 578. There we let
® =9, and ¥ = Xp . This is possible since wf(Bo) is non-com-

pact, because ... is simple, and since cpP(BO)Xf = Xp (1ine 10,

page 578).



From the 13th line from the bottom of page 579 in Glimm's proof
it follows that cpf(B(n+’l))xf = X, . This implies that f£(B(n+1)) =1.

We have now found elements V(a,l,..,,,an) snd B(n) such that
the axioms 2)-7) in definition 2 are satisfied and elements
T, €T (n) (¥:(n) is the linear span of elements of the form

V(@ oy JV (D geeesD )*)  such that [|E(n+1) (S, -T JE(m+1)|| <.g. .

We let € >0 and S € ! be arbitrary. There exist self-

adjoint elements S' and S" such that S = S'+iS8" . W.  ose

¢ \ e 1
k, and k, such that HS"Sk,,” <5, s -sk2|| <FooE 5 and

% <§- . Since
2
follows by an g- argument that

lE(@)|| =1 and E@)E(m) = E(m) if n <wu , it

IE(+1DIs = (T +1 Ty JIE(@+D]| < €,
1 2
where p = max(k,l,kg) . By lemma 2 there is a T €}!il(p) such
that (‘.'L‘k +1 Tk )JE(p+1) = TE(p+1) . This implies that
1 2

lE(p+1)(S-T) E(p+1)|| < € , and we are done.

Lemma 5. Let '! be a simple NGCR - algebra with identity.

Let £ and f2 be two pure states such that f,] and f2 are not

1
unitary equivalent. Let

{V(a,.,.,%)V(b,l ,.,.,bn)*,B(n) ta;,b; € {0,131}

be an approximate matrix algebra such that £, (B(n)) =1 . Then

there exists an approximate matrix algebra
{V(a,] N )V(b,l,...,bn+,])*,B(n+’l) tag,by € {0,113
such that f,I(B(n+/I)) =1 and f2(E(n+’l)) = 0 , where

E(I’H-/] ) = z V(a/] 9°°9 an+’] )V(a’l 92299 an'f'/' >* ?



and such that

1) V(aqv“’%+q) = V(az] "”’an>v(on’an+’1)
and

(2) V(afl"mean)*v(a/]a°°'s%)v<on,an+/|> = V(Onaan+/|) °

Proof: The proof is analogous to the proof of the induction
step in lemma 4 of [2]. We make some small changes.

We let ®; and X5 respectively be the induced representation
and induced vector of fi . We let Hi be the Hilbert space on
which ¢, acts. The elements Do’Dﬂ’Bo’Bzo and V, which we
mention in the following proof, are defined on page 578 in Glimm's

proof, and the function f. is defined on page 577.

First, in the seventh line from the top of page 577 we let
u=1F,. This is nossible since fq(B(n)) =1,
In lines 10~ 18 on page 578 we make the follcwing changes. ..

let ¢ = @, (line 11). This is possible since cp,l(Bo)x/I = x, and
! is simple, hence @1(B0) is non-compact. We let y = x, .
This is possible since mq(BG)xq = X, , which implies that
x, € Range wﬂ(Bo> .
We define N by

(2.1) N = Loy (V(i)*)x, : 1 € {0,1}7]

which is a finite dimensional subspace of H2 . We require in ad-

dition of C0 and U in the lines 14 and 17 that
(2.2.) @2(00)(320N) = {0}

and that
(2.3.) 9y(U)(£,(D)IM) € X .

This is possible by an application of theorem 2.8.3 in [1], since
dimlf (D4)N] < dimN < ©, and since f, and f, are not unitarily

equivalent.
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By making these changes in the induction step of Glimm's proof

we find an approximate matrix algebra
{V(a,‘ oy 8 g )V(b,l,..,,bn+,‘)*,B(n+’l) :a;,b, € {0,111

such that (1) and (2) are satisfied. It remains to prove that our
changes imply that fq(B(n+1)) =1 and f2(E(n+1)) =0 .

By (2.2.) we have mg(Do)(N) = {0} , and hence ¢2(V)(N) = {0}.
Since V* = fo(Do)U*fo(Dﬂ) , by (2.32) we have @2(V*)(N) = {0} .
From the definition of V(0 ,1) and V(0O ,,) we get cp2<V(on,q)‘3(N)
- (0} end @,(V(0,, ) = (0} .

(2.2.) implies now that

]
®)

CP2(V(On,’l)*V(a,I 90”,an)*X2 and

1]
O

95 (V(O, 1) *V (@ soer @ ) ¥, for all (aq,“,an)65{o,1}n.

This implies that ¢2(E(n+1))x2 = 0 , and hence fZ(E(n+1)) =0 .
From line 1% from the bottom of page 579 we get o(B(n+1))y=y.

Since we have chosen ¢ = 9, and y = x,; , we then get mﬁB(n+TDx1

= x, and hence fq(B(n+1)) =1 .

We suppose we have two approximate matrix algebras which satis-
fy (1) and (2) in lemma 5. Then, in the same way as in the proof of
lemma 5 of [2], we can show the following: i (n) is the set of all
finite linear combinations of elemehts of the form

4

V(aqyu,an)V(bq,”qbn)* . For each representation ¢ of 1} ,

qJ(;::L(n))l[range e(E(n+1) )Hel

is a 2%x2% matrix algebra with matrix units

CP(V(H’I gocey an)v(b’! 9°°°’bn)* [range ©(E(n+1))He] .

This Jjustifies definition 1 of an approximate matrix algebra.
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3. Main results.

We prove in theorem 1 that pure states of a simple separable
C*-algebra with identity hava a product decomposition property.
Moreover, we prove in theorem 2 that two pure states of a simple
C*-algebra with identity are unitarily equivalent if and only if
they are asymptotically equal. The following result is well known,

and is stated without proof.

.

Lemma 6. Let i, be a simple C*-algebra with identity. Then
either "L is an NGCR- algebra or else U, is *-isomorphic with

an nxn mnmatrix algebra, where n 1is finite.

Theorem 1. Let "i be a simple separabie C*- algebra with

identity. We suppose that L. is not *-isomorphic with any nxn

matrix algebra such that n is finite. Let f be a pure state of
o
{~. As °

:‘\ . . .
Then ‘... contains an approximate sequence of approximate ma-

trix algebras
{V (8 o3 8 V(D) ooy D ) *,B(m2) : &, ,b. € {0,171 and n=1,2,... }

such that the following are satisfied:

We let (4, be the C*-algebra generated by
{V (e seees 2 JV(D 4 poeesD ) * 2 25,1, € {0,1} and n=1,2,... }, and we let
1Wi(n) be the set of all linear combinations of V(aq,n,an)V(bq,u;bﬁﬁ
Then for each € > 0 and each x € (J , there is an n such that

[£Gay) - £ < ellyll  for y €M(n)C.

(W(n)® is the commutant of “W,(n) in VL .)
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Proof: 1In this proof we use the axioms of definition 2 and
lemma 1 without comment.

By lemma 6 L is an NGCR algebra. We use lemma 4 and choose
an approximate sequence of approximate matrix algebras such that

f(B(n)) =1 for all n .

E(n)B(a) = E(n)V(0,)V(0,)B(n)

z V(aqr"aan)v(aqPu’an)*v(on)v(on)B(n)
( 8 9oy an)

(0, )V(0_ V(0 )V(0,)B(n) = B(n) .

1]

Since f(B(n)) =1 and |B(n)|] =1, we have

(Cpf(B(Il)>Xf,Xf) =1 = Ilcpf(B(n))fo-HXfH °
Thus wf(B(n))Xf is proportional to x., and so 1is equal to xg.
Since E(n)B(n) = B(n) , we have

(%.1) cpf(E(n))xf = X, and f(E(n)) =1 for n=1,2,% ceo o
We have now to prove the following assertion:
bl
l{i is a pure state.

We prove first that f‘fk has a unique extension to %j, . Suppose
then that g is a pure state such that flc& = glii . In the same
way as we prove cpf(B(n))xf = X, , Wwe prove that cpg(E(n))xg = X,
for n=1,2,... . From this and (3.1) we get

(2.2) f£(-) = £(BE(n)-E(n)) and g(°) = g(E(n) E(n)) for n=1,2.
We let S € 'J. and € > 0 Dbe arbitmery and choose n and TE€ (L
such that ||E(n)(T-8)E(n)|| < € . By (3.2) it follows that

[£(8) -g(8)| = |£(T) - (D) + £(8-T) - g(s-T) |
= |(£-g)(E()(s-T)E(n)| < 2¢ .
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Since € > 0 was arbitrary, we have f(S) = g(8) .

Next we prove that f|. is pure. We suppose flCE,= +(h+g) ,
where h and g are states of (% . We extend h and g to 1L
and call the extensions h' and g' . Since we have just proved
that f|cy has a unique extension to I, , it follows that f =
+(h'+g') . f is pure, hence f =h' = g' , and we have proved
the assertion.

We let i%n’ be the *-algebra generated by

NOTI
{V(2a] ey 2 V(D yoersDy ) * £ 85 ,b; €{0,1}, k<n} . Since (7, = U,‘I*%n ,
n=
0 .
it is sufficient to prove the theorem for each x € U ﬁﬁn .
n="1

We let x € @gn. and € > 0 be given. We choose 6 > O such

that
lxll-6 + 6 |£(x)| +6(1+8) < e .
{anleq is an ascending sequence of *-algebras such that (j =
—m-fnorm
Uk, , and f[ (; 1s a pure state, in particular a factor state.
n="1 -

We copy the proof of theorem 2.5 i) = ii) in [4] and find m > n
such that |
c .
(3.3) [2Gy)-£@E@)] < olyll for a1l ye B NG .

We let y €1VL(m)®, and we suppose without loss of generality

that ||yl = 1 . We need now the following assertion:

For each & > 0 and each S € there exist
k and T €5, such that |7 < s + 6 and

lE(k+1) (S-T)E(X+D| < 6 .

We choose p and T' such that ||E(p+1)(S-INE(p+1)|| <6 . We
define k = p+1 and T = E(p+1)T'E(p+1) .
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Il = |EG+1)T E(+D]||
< B+ (S-T")E(@+D] + [|[E(p+1SEE+D)| < 6+ |8,

since [|E(p+1)| =1 . We get

|E(p+2) (8-T)E(p+2)||
= [|E(p+2) (E(p+1)SEQ+1) - E(p+1)T'E(p+1) )E(p+2)||
< [E(+2) ||+ [|E(+1) (8-T )E(p+ D] - |E(p+2)|| < &

and we have proved the assertion.

By the assertion we can find Xk > max(m,n) and =z € Bk such
that

(3.4) |zl < 1+6 and ||E&k+1)(z=y)E(k+1)| < 565 .

Since HV(a/| ,...,am)V(Om)*H =1, we have by (3.4)
(3.5)  [1V(ay pmya JV(OL ) *ECk+1) (2= )E(K+1)TV(O_ V(8 pera )| < -2%1-

for all (a pe=say) € {0,131 .,

. z . V(8 oey 8 V(0 ) *E(Ie+1) (3=2)E e+ 1) V(O W (@q oy ) *
A weer 8
= I E&+N)y V(a,] .,.,,,am)V(Om)*V(Om)V(aL/I ,.,,,am)*E(kH )
(a,] yooos %)
-Ek+1)(E(m+1) = V@ gpeees 8 V(O ) *2V (0 IV (8, soomy @ ) *E(m+1 DEe+1)
(a/l yocey aH_P

Ek+1)yE@Ek+1) - E(k+1)z'E(k+1)

1]

E(k+1)(y-z"'")E(k+1) ,
where 2z' 1is defined by

(3.6) z'=E(m+1) I V(a,] ,...,am)V(Om)*z V(Om)V(a,] ,...,am)*E(m+’I) .
(2 wera)

We add the inequalities in (3.5) and get

(3.7) |E&+1)(y-2" )E&+1)] < 6 .
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From (%3.4) it follows that

HV(aq,”,am)V(Qm)*zV(Om)V(aq,uqam)*H <1+6 .

Since

V(a/] ‘)’”')%)*V(b’] w"abm) =0 if (a/] w»sam> # (b/] ruabm) ’

we get
I 2 V(o ag JV(O, ) *2 V(O IV (appesap )*ll < 148 .
(a/l ,caa,am>

By (3.6) this gives

(3.8) lz']] <1+8 .

By lemma 3 we have z' € j@;f1C£,, This implies by (3.3) and (3.8)
that
(3.9) |£(xz') - £(x)f(2")]| < 8]lz'|| < 86(1+8) .

since x € B _, z' €8 and k+1 > max(k,n), we have by

m+1
(3.2) and (3.7) that

(3.10) [£(xz") - £(xy) | < lIxlls

because
|£(xz') - £(xy)|
= |F(xE(k+1)2'E(k+1)) - £(xBE(k+1)yE(k+1))|
< |[|xE(k+1)2'E(k+1) - xE(k+D)yE(&+D] < [|x]|-8 .

Moreover, we have by (3.2) and (3.7) that
(3.1 12z -£@) | = [£E&D(2'-7)EE&)| < 8
(3.9), (3.10) and (3.11) imply
I£(xy) = £G)E)| < Ixll<6 + 6+ |£(x)| + 6(148) < ¢,

and we are done.
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Theorem 2. Let .\ be a simple C*-algebra with identity. We
suppose that !, is not *~isomorphic with any nXxn matrix algebra
such that n is finite. Let f,I and f2 be two pure states of 14,.

Then the following are equivalent:
(1) £, and f, are unitarily equivalent.

(2) There is an approximate matrix algebra
{V(a)V(b,)*,B(1) : a,,b, € {0,1}}
such that
- (£4=£2)]. . -
£,(B(1)) =1 ana |12 lm(,,)cll =0 .

(3) There is an approximate matrix algebra
{V(aq ,"‘aan)V(b/] a"%bn)*,B(n) tay ’bi € {091}}
such that
£ -f
f/](B(n>) = and ”( 1 2)"1/”‘“(1-1)0“ <1.

Y1,(n) is the linear span of the elements V(aqu,an)V(bqu,bn)*,

-~
]

and 1Y (n)® is the commutant of "(n) in 1/, .

Proof: By lemma 6, ’MJ is a simple NGCR-algebra with identity,
1) = 2): We suppose £, ~ fga We define m = nfq . If m is a |
one-dimensional representation, the theorem is trivially satisfied.
We suppose that m 1is at least two-dimensional, that f1(°) =
(n(o)xq,xq), that f2(°> = (n(°)x2,X2), and that x, = Ax, + 12
where x,1lz, [z =1 and A,u € € . By theorem 2.8.3 in [1]
there exist elements D and U of 1/, such that D >0, |D|| =1,

n(D)x1 = X, , m(D)z = 0, U is unitary, and w(U)X,I =2z .

For each ¢ >0 in (0,1) we let f, be the function defined

by: f£.((-,1-€]) =0, fe([¢-%30®) =1, and f_, is linear on
|
[’!-—e,’]-%] . We define i
V = £,(I-D)UL,(D) . |
z 2 |
|
|
|
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We prove now that f%(I—D)f%(D) =0 . We define g by 'g(t) =
f%(ﬂ—t)f%(t) . Since f% =0 on [0,4] and sp(D) < [0,1], it
follows that g = 0 on sp(D) . This implies g(D) =0 . Since
£4(I-D)£y(D) = 0, it follows that v -0 .

We have
(13.12) Tr(V)x,| =z and ™V*)z = Xq -
we define
V(1) = Vk(V*V) , where k(t) = (f%<t>t'“)’3‘, k(0) = 0,
v(0) = f%(V*V) , and
B(1) =

£q, (V*V) .
4/4
Next we want to prove that

{(v(a)v(i*,B(1) : 1,5 € {0,1}}

is an approximate matrix algebra. V(1)*V(0) = 0, since (V*)2 = 0.

2

Moreover, V(0)*V(1) = O, since V- = 0 . This means that axiom (1)

in definition 1 is satisfied. Axioms (2) and (3) are trivially sa-

tisfied. Since
V(1)*V(1) = k(V*V)V*Vk(V*V) = £,(V*V),
2
it follows that V(1)*V(1)B(1) = B(1), because f1/2f1/4 = f,]/4 .

Since f1/2f1/4 = f1/4, it follows that V(0)*V(0)B(1) = B(1),

and axiom 4 1is satisfied. Thus we have proved that
{(v@@)v(g)*,B(1) : i,5€ {0,1}}

is an approximate matrix algebra.

We define G by

G = AV(O)V(O)* + pv(1)V(0)* .

From (1%.12) we get
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m(V(OIV(0)*)x, = m(LE (V*)1)x, = x,

n(V(ﬂ)V(O)*)xq = ﬂ(Vk(V*V)f%(V*V))x1 =z

m(V(O)V(1)*)z = n(f%(V*V)k(V*V)V*)z = X, ,
and hence

n(G)xq = X, +MZ = X5 o
We get

m(V(0)V(0)*)z = TT(V(O)V(O)*V(’I)V(O)*)x,l =0
and

ﬂ(V(O)V(ﬂ)*)Xq = m(V(O)V(1)*V(0)V(1)*)z = 0 .

This implies

m(G*) (Ax,+uz) (AV(0)V(0)* + AV(OIV(1)*) (Ax,+uz)

]

APtz = 1%, = x,, .

We get
TT(G*G)X,| = X,

°

We let A € 'Wi(1)° .

We get

£,(A) = (m(A)x5,%x,) = (m(A)(G)x,,m(G)x,)

]
]

fq(G*AG) = fq(AG*G) fq(A)

since G and A commute and ﬁ(G*G)x,| = X, o
2) = %) is trivial.
3) = 1): We suppose £, 7 f5, and we let
{V(a, pesa )V (0, ,.,.,bn)*,B(n) : a;,b; €{0,1}}

be an approximate matrix algebra such that fq(B(n)) =1 . By

lemma 5 we choose an approximate matrix algebra
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{V(aq,“,an+1)V(b1,u”bn+1)*,B(n+1) :ai,bi‘6{0,1}}

such that (1) and (2) in lemma 5 are satisfied and such that
£,(B(a+1))
fq(E(n+1))
the proof of lemma 1, (1) and (4), we get E(n+1) € 1Vi(n)® and
lE(m+1)|| = 1 . Since we have |(f1—f2)(E(n+1)l =1, it follows

]

1 and fE(E(n+1)) =0 . fq(B(n+1)) = 1 dmplies

1, since B(n+1) < E(n+1) . In the same way as in

that

| (£4-12) >

‘?ﬂ(n)c
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