ISBN 82-553-0168-2 Mathematics No 6 - April 3

1974

PURE STATES OF SIMPLE C*-ALGEBRAS

by

Jan Søreng Oslo

Introduction

In [4] Powers studied uniformly hyperfinite (UHF) C*-algebras. He proved that factor states of such algebras can be characterized by a product decomposition property (Theorem 2.5 of [4]), and he found necessary and sufficient conditions that two factor representations be quasi-equivalent (Theorem 2.7 of [4]). Analogous results are also proved in [3]. In the present paper we shall derive the same type of results for pure states of simple C*-algebras with identity, thus indicating how properties of UHF-algebras may be extended to general C*-algebras.

A C*-algebra \mathcal{U} is called a CCR-algebra if every irreducible representation of \mathcal{U} maps \mathcal{U} into the completely continuous operators. If a C*-algebra \mathcal{U} has no non-zero CCR ideals, then we call \mathcal{U} an NGCR-algebra.

In lemma 4 of [2] Glimm proved that a separable NGCR-algebra with identity contains an ascending sequence of approximate matrix algebras of order 2,4,...,2ⁿ,... with certain density properties, and we use these approximate matrix algebras to state our results.

We are grateful to Erling Størmer for helpful suggestions.

1. Definitions and simple consequences.

We use the notation and terminology developed by Glimm in [2]. We shall write O_n for the n-tuple $(0, \ldots, 0)$ and [M] for the closed linear span of M, where M is a subset of a Hilbert space.

<u>Definition 1</u>. Let $V(a_1, \ldots, a_n)$, $a_i \in \{0, 1\}$, and B(n) be elements of a C^{*}-algebra, where n is a positive integer. We call

$$\{V(a_1,...,a_n)V(b_1,...,b_n)^*,B(n):a_i,b_i \in \{0,1\}\}$$

an <u>approximate matrix algebra</u> of order 2ⁿ if the following axioms are satisfied:

- (1) $V(a_1, ..., a_n)^* V(b_1, ..., b_n) = 0$ if $(a_1, ..., a_n) \neq (b_1, ..., b_n)$ (2) $V(0_n) \ge 0$ and $||V(a_1, ..., a_n)|| = 1$
- (3) $B(n) \ge 0$ and ||B(n)|| = 1
- (4) $V(a_1,...,a_n) * V(a_1,...,a_n) B(n) = B(n)$

<u>Definition 2</u>. For each $n = 1, 2, ..., let V(a_1, ..., a_n)$, $a_i \in \{0, 1\}$, and B(n) be elements of a C^{*}-algebra \mathcal{U} . We call

$$\{V(a_1,...,a_n)V(b_1,...,b_n)^*,B(n):a_i,b_i \in \{0,1\} \text{ and } n=1,2,...\}$$

an approximate sequence of approximate matrix algebras if the following properties are satisfied:

(1) We let
$$E(n) = \sum V(a_1, ..., a_n)V(a_1, ..., a_n)^*$$
.
 $a_1, ..., a_n$
For each $S \in U$ and each $\epsilon > 0$ there exist an n and a
linear combination T of elements of the form
 $V(a_1, ..., a_n)V(b_1, ..., b_n)^*$ such that $||E(n+1)(S-T)E(n+1)|| < \epsilon$.

The difference between the axioms of def.2 and those in lemma 4 of [2] is so small that lemma 5 of [2] remains valid for an approximate sequence of approximate matrix algebras. This latter lemma therefore tells us about the matrix structure for such a sequence. The next three lemmas establish some properties of approximate sequences of approximate matrix algebras which we shall need later.

Lemma 1. Let

 $\{V(a_1,...,a_n)V(b_1,...,b_n)^*, B(n): a_i, b_i \in \{0,1\} \text{ and } n = 1,2,...\}$ be an approximate sequence of approximate matrix algebras, and let E(n) be defined as in def.2. Then the following are true:

(1) ||E(n)|| = 1 and $E(n) \ge 0$ for n = 1, 2, ...

(2)
$$V(a_1, ..., a_n)V(b_1, ..., b_n) * E(n+1) = \sum_{b=0,1}^{\infty} V(a_1, ..., a_n, b)V(b_1, ..., b_n, b) * .$$

(3) E(n)E(m) = E(m)E(n) = E(m) when n < m.

(4)
$$V(a_1, \dots, a_n)V(b_1, \dots, b_n)^*$$
 and $E(p)$ commute if $n < p$.

- (5) $V(i)V(j)*V(p)V(k)*E(n+1) = \delta_{j,p}V(i)V(k)*E(n+1)$ for all i,j,k,p $\in \{0,1\}^n$. $(\delta_{j,j} = 1 \text{ and } \delta_{j,p} = 0 \text{ if } j \neq p)$
- (6) $V(a_1, \dots, a_{n-1})V(b_1, \dots, b_{n-1})*E(n+1) = [V(a_1, \dots, a_{n-1}, 0)V(b_1, \dots, b_{n-1}, 0)* + V(a_1, \dots, a_{n-1}, 1)V(b_1, \dots, b_{n-1}, 1)*]E(n+1).$

Proof:

(1) Since $V(a_1, \dots, a_n)V(a_1, \dots, a_n)^* \ge 0$ for all $(a_1, \dots, a_n) \in \{0, 1\}^n$, we have $E(n) \ge 0$.

$$V(b_{1},...,b_{n})*[V(b_{1},...,b_{n})V(a_{1},...,a_{n})*]V(a_{1},...,a_{n})B(n) = B(n)$$

is a consequence of axiom (6) in def.2. Since all the $V(a_a, ..., a_n)$ and B(n) have norm one, we get from the Cauchy-Schwarz inequality that $\|V(b_1, ..., b_n)V(a_1, ..., a_n)^*\| = 1$ for $(a_1, ..., a_n), (b_1, ..., b_n)$ $\in \{0, 1\}^n$. This together with the fact that $V(a_1, ..., a_n)^*V(b_1, ..., b_n) = 0$ if $(a_1, ..., a_n) \neq (b_1, ..., b_n)$, implies that $\|E(n)\| = 1$.

(2) In the following we use without comment axioms 2, 3 and 4 of definition 2.

$$V(a_{1},...,a_{n})V(b_{1},...,b_{n})*V(c_{1},...,c_{n+1})V(c_{1},...,c_{n+1})* = 0 \text{ if } (b_{1},...,b_{n}) \neq (c_{1},...,c_{n})$$

and

$$\begin{array}{l} \mathbb{V}(a_{1}, \dots, a_{n}) \mathbb{V}(b_{1}, \dots, b_{n})^{*} \mathbb{V}(b_{1}, \dots, b_{n}, c_{n+1}) \mathbb{V}(b_{1}, \dots, b_{n}, c_{n+1})^{*} \\ = \mathbb{V}(a_{1}, \dots, a_{n}) \mathbb{V}(b_{1}, \dots, b_{n})^{*} \mathbb{V}(b_{1}, \dots, b_{n}) \mathbb{V}(0_{n}, c_{n+1}) \mathbb{V}(b_{1}, \dots, b_{n}, c_{n+1})^{*} \\ = \mathbb{V}(a_{1}, \dots, a_{n}) \mathbb{V}(0_{n}, c_{n+1}) \mathbb{V}(b_{1}, \dots, b_{n}, c_{n+1})^{*} \\ = \mathbb{V}(a_{1}, \dots, a_{n}, c_{n+1}) \mathbb{V}(b_{1}, \dots, b_{n}, c_{n+1})^{*} \\ \end{array}$$

From these equalities we can easily prove (2).

(3) From (2) we get E(n)E(n+1) = E(n+1). Since E(n) is selfadjoint for each n, it follows that E(n+1)E(n) = E(n+1). We suppose k > n and get

$$E(n)E(k) = E(n)E(n+1) \cdots E(k-1)E(k) = E(k)$$

= $E(k)E(k-1) \cdots E(n+1)E(n) = E(k)E(n)$.

(4) We prove the assertion by induction with respect to the difference p-n. We suppose first that p-n = 1. From (2) and $E(n) = E(n)^*$ it follows that

$$E(n+1)V(a_{1},...,a_{n})V(c_{1},...,c_{n})^{*} = [V(c_{1},...,c_{n})V(a_{1},...,a_{n})^{*}E(n+1)]^{*}$$

$$= \begin{bmatrix} \sum V(c_{1},...,c_{n},b)V(a_{1},...,a_{n},b)^{*}]^{*}$$

$$= \sum V(a_{1},...,a_{n},b)V(c_{1},...,c_{n},b)^{*} = V(a_{1},...,a_{n})V(c_{1},...,c_{n})^{*}E(n+1).$$

We suppose that the assertion is true for $p-n = s \ge 1$ and that p-n = s+1. From (2) and (3) we get

$$V(a_{1},...,a_{n})V(c_{1},...,c_{n})*E(p) = V(a_{1},...,a_{n})V(c_{1},...,c_{n})*E(n+1)E(p)$$

$$= \sum V(a_{1},...,a_{n},b)V(c_{1},...,c_{n},b)*E(p)$$

$$= E(p) \sum V(a_{1},...,a_{n},b)V(c_{1},...,c_{n},b)*$$

$$= E(p)V(a_{1},...,a_{n})V(c_{1},...,c_{n})*E(n+1)$$

$$= E(p)E(n+1)V(a_{1},...,a_{n})V(c_{1},...,c_{n})*$$

$$= E(p)V(a_{1},...,a_{n})V(c_{1},...,c_{n})*$$

(5) and (6) are proved in the same way as is lemma 5 in [2].

By a simple induction argument the next lemma follows from lemma 1.

Lemma 2. Let

 $\{V(a_1,...,a_n)V(b_1,...,b_n)^*,B(n):a_i,b_i \in \{0,1\} \text{ and } n=1,2,\dots\}$ be an approximate sequence of approximate matrix algebras in a C*algebra . For each n we let \mathfrak{F}_n be the *-algebra generated by all $V(a_1,...,a_m)V(c_1,...,c_m)^*$ such that $0 < m \le n$ and $(a_1,...,a_m), (c_1,...,c_m) \in \{0,1\}^m$.

Then for each $x \in \mathcal{B}_n$ there exist complex numbers $a(a_1, \dots, a_n), (c_1, \dots, c_n)$ such that

$$xE(n+1) = \sum_{\substack{a_1,\dots,a_n \\ (a_1,\dots,a_n)}} a_{(a_1,\dots,a_n)}(c_1,\dots,c_n)^{V(a_1,\dots,a_n)V(c_1,\dots,c_n)*E(n+1)}$$

We illustrate the proof by an example. We let

$$x = V(1,1)V(0,0)*V(0,0,1)V(1,1,1)*, \text{ and it follows that}$$

$$xE(4) = V(1,1)V(0,0)*E(3)E(4)V(0,0,1)V(1,1,1)*$$

$$= [V(1,1,0)V(0,0,0)* + V(1,1,1)V(0,0,1)*]V(0,0,1)V(1,1,1)*E(4)$$

$$= V(1,1,1)V(1,1,1)*E(4).$$

Lemma 3.

 $\{ \mathbb{V}(a_{1}, \dots, a_{n}) \mathbb{V}(b_{1}, \dots, b_{n})^{*}, \mathbb{B}(n) : a_{1}, b_{1} \in \{0, 1\} \text{ and } n = 1, 2, \dots \}$ and \mathfrak{B}_{n} are defined in lemma 2. Then for each $y \in \mathbb{V}$, we have $z = \mathbb{E}(n+1) [\sum_{\substack{a \in \mathbb{V}(a_{1}, \dots, a_{n}) \mathbb{V}(0_{n})^{*} y \mathbb{V}(0_{n}) \mathbb{V}(a_{1}, \dots, a_{n})^{*}] \mathbb{E}(n+1) \in \mathfrak{B}_{n}^{c}$ where \mathfrak{B}_{n}^{c} is the commutant to \mathfrak{B}_{n} in \mathcal{U} .

<u>Proof</u>: In this proof we use without comment the axioms of definition 2 and the results in lemma 1. We have for $j,k \in \{0,1\}^n$

$$V(j)V(k)*z = E(n+1)V(j)V(k)*V(k)V(O_n)*yV(O_n)V(k)*E(n+1)$$

= $V(j)V(k)*V(k)V(O_n)*E(n+1)yV(O_n)V(k)*E(n+1)$
= $V(j)V(O_n)*E(n+1)yV(O_n)V(k)*E(n+1)$
= $E(n+1)V(j)V(O_n)*yV(O_n)V(j)*V(j)V(k)*E(n+1)$
= $E(n+1)V(j)V(O_n)*yV(O_n)V(j)*E(n+1)V(j)V(k)*$
= $zV(j)V(k)*$.

We let $x \in \mathbb{B}_n$. By lemma 2 there exist complex numbers $a_{i,j}$, i, j $\in \{0,1\}^n$, such that

$$xE(n+1) = \sum_{i,j \in \{0,1\}} a_{i,j} V(i)V(j) * E(n+1) .$$

i,j $\in \{0,1\}^n$
This implies that $xz = \sum_{i,j} a_{i,j} V(i)V(j) * z$
and $zx = \sum_{i,j} z V(i)V(j) * .$ It follows now that $xz = zx$, and
 i,j^i,j
we have $z \in \bigotimes_n^c$.

2. Two variations of Glimm's lemma.

We need two small variations on the fundamental lemma 4 of Glimm in [2].

Lemma 4. Let \bigcup be a simple, separable NGCR - algebra with identity, and let f be a pure state. Then \bigcup contains an approx-imate sequence of approximate matrix algebras such that f(B(n)) = 1 for all n.

<u>Proof</u>: We let S_0, S_1, \ldots be a dense subset of the selfadjoint elements in \mathcal{V} . We change the proof of lemma 4 in [2] such that we in addition get f(B(n)) = 1 for all n. The induction step in the proof need be changed in only two places.

First, in the seventh line from the top of page 577 in [2], we let $\mu = f$. This is possible since f(B(n)) = 1.

The other change is in lines 11 - 13 of page 578. There we let $\varphi = \varphi_f$ and $y = x_f$. This is possible since $\varphi_f(B_\sigma)$ is non-compact, because \mathcal{V} is simple, and since $\varphi_f(B_\sigma)x_f = x_f$ (line 10, page 578).

From the 13th line from the bottom of page 579 in Glimm's proof it follows that $\varphi_f(B(n+1))x_f = x_f$. This implies that f(B(n+1)) = 1.

We have now found elements $V(a_1, \ldots, a_n)$ and B(n) such that the axioms 2)-7) in definition 2 are satisfied and elements $T_n \in \mathcal{W}(n)$ (n) is the linear span of elements of the form $V(a_1, \ldots, a_n)V(b_1, \ldots, b_n)^*$) such that $||E(n+1)(S_n - T_n)E(n+1)|| < \frac{1}{n}$.

We let $\epsilon > 0$ and $S \in \mathbb{N}$ be arbitrary. There exist selfadjoint elements S' and S" such that S = S' + iS". We use k_1 and k_2 such that $||S' - S_{k_1}|| < \frac{\epsilon}{4}$, $||S'' - S_{k_2}|| < \frac{\epsilon}{4}$, $\frac{1}{k_1} < \frac{\epsilon}{4}$ and $\frac{1}{k_2} < \frac{\epsilon}{4}$. Since ||E(n)|| = 1 and E(n)E(m) = E(m) if $n < \omega$, it follows by an $\frac{\epsilon}{4}$ -argument that

$$\|E(p+1)[S - (T_{k_1} + i T_{k_2})]E(p+1)\| < \epsilon$$
,

where $p = \max(k_1, k_2)$. By lemma 2 there is a $T \in \mathcal{H}(p)$ such that $(T_{k_1} + iT_{k_2})E(p+1) = TE(p+1)$. This implies that $||E(p+1)(S-T)E(p+1)|| < \epsilon$, and we are done.

Lemma 5. Let U be a simple NGCR - algebra with identity. Let f_1 and f_2 be two pure states such that f_1 and f_2 are not unitary equivalent. Let

{
$$V(a,...,a_n)V(b_1,...,b_n)^*,B(n):a_i,b_i \in \{0,1\}$$
}

be an approximate matrix algebra such that $f_1(B(n)) = 1$. Then there exists an approximate matrix algebra

$$\{V(a_1, ..., a_{n+1}) | V(b_1, ..., b_{n+1})^*, B(n+1) : a_i, b_i \in \{0, 1\}\}$$

such that $f_1(B(n+1)) = 1$ and $f_2(E(n+1)) = 0$, where

$$E(n+1) = \Sigma \quad V(a_1, \dots, a_{n+1}) V(a_1, \dots, a_{n+1})^*,$$
$$(a_{1}, \dots, a_{n+1})$$

and such that

(1)
$$V(a_1, ..., a_{n+1}) = V(a_1, ..., a_n)V(0_n, a_{n+1})$$

and

(2)
$$V(a_1, ..., a_n) * V(a_1, ..., a_n) V(O_n, a_{n+1}) = V(O_n, a_{n+1})$$
.

<u>Proof</u>: The proof is analogous to the proof of the induction step in lemma 4 of [2]. We make some small changes.

We let φ_i and x_i respectively be the induced representation and induced vector of f_i . We let H_i be the Hilbert space on which φ_i acts. The elements $D_0, D_1, B_\sigma, B_{2\sigma}$ and V, which we mention in the following proof, are defined on page 578 in Glimm's proof, and the function f_c is defined on page 577.

First, in the seventh line from the top of page 577 we let $\mu = f_1$. This is possible since $f_1(B(n)) = 1$.

In lines 10 - 18 on page 578 we make the following changes. let $\varphi = \varphi_1$ (line 11). This **is** possible since $\varphi_1(B_{\sigma})x_1 = x_1$ and \bigcup is simple, hence $\varphi_1(B_{\sigma})$ is non-compact. We let $y = x_1$. This is possible since $\varphi_1(B_{\sigma})x_1 = x_1$, which implies that $x_1 \in \text{Range } \varphi_1(B_{\sigma})$.

We define N by

(2.1) N =
$$[\varphi_2(V(i)^*)x_2 : i \in \{0,1\}^n]$$
,

which is a finite dimensional subspace of H_2 . We require in addition of C_o and U in the lines 14 and 17 that

 $(2.2.) \quad \varphi_{2}(C_{0})(B_{2\sigma}\mathbb{N}) = \{0\}$

and that

(2.3.) $\varphi_2(U^*)(f_\sigma(D_1)N) \subset N$.

This is possible by an application of theorem 2.8.3 in [1], since $\dim[f_{\sigma}(D_1)N] \leq \dim N < \infty$, and since f_1 and f_2 are not unitarily equivalent.

By making these changes in the induction step of Glimm's proof we find an approximate matrix algebra

{
$$V(a_1, \dots, a_{n+1})V(b_1, \dots, b_{n+1})^*, B(n+1): a_i, b_i \in \{0, 1\}$$
}

such that (1) and (2) are satisfied. It remains to prove that our changes imply that $f_1(B(n+1)) = 1$ and $f_2(E(n+1)) = 0$.

By (2.2.) we have $\varphi_2(D_0)(N) = \{0\}$, and hence $\varphi_2(V)(N) = \{0\}$. Since $V^* = f_{\sigma}(D_0)U^*f_{\sigma}(D_1)$, by (2.3) we have $\varphi_2(V^*)(N) = \{0\}$. From the definition of $V(O_n, 1)$ and $V(O_{n+1})$ we get $\varphi_2(V(O_n, 1)^*)(N) = \{0\}$ and $\varphi_2(V(O_{n+1}))(N) = \{0\}$. (2.2.) implies now that

$$\begin{split} & \varphi_2(\mathbb{V}(0_n, 1)^*\mathbb{V}(a_1, \dots, a_n)^* x_2 = 0 \quad \text{and} \\ & \varphi_2(\mathbb{V}(0_{n+1})^*\mathbb{V}(a_1, \dots, a_n)^* x_2 = 0 \quad \text{for all} \quad (a_1, \dots, a_n) \in \{0, 1\}^n. \end{split}$$

This implies that $\varphi_2(E(n+1))x_2 = 0$, and hence $f_2(E(n+1)) = 0$.

From line 13 from the bottom of page 579 we get $\varphi(B(n+1))y = y$. Since we have chosen $\varphi = \varphi_1$ and $y = x_1$, we then get $\varphi_1(B(n+1))x_1 = x_1$ and hence $f_1(B(n+1)) = 1$.

We suppose we have two approximate matrix algebras which satisfy (1) and (2) in lemma 5. Then, in the same way as in the proof of lemma 5 of [2], we can show the following: \Re (n) is the set of all finite linear combinations of elements of the form $V(a_1,\dots,a_n)V(b_1,\dots,b_n)^*$. For each representation φ of \mathcal{V} ,

$$\varphi(f)(n)$$
 [range $\varphi(E(n+1))H\varphi$]

is a $2^n \times 2^n$ matrix algebra with matrix units

$$\varphi(V(a_1, \dots, a_n)V(b_1, \dots, b_n))$$
 [range $\varphi(E(n+1))H\varphi$].

This justifies definition 1 of an approximate matrix algebra.

3. Main results.

We prove in theorem 1 that pure states of a simple separable C*-algebra with identity hava a product decomposition property. Moreover, we prove in theorem 2 that two pure states of a simple C*-algebra with identity are unitarily equivalent if and only if they are asymptotically equal. The following result is well known, and is stated without proof.

Lemma 6. Let \mathcal{Y} , be a simple C*-algebra with identity. Then either \mathcal{Y} is an NGCR-algebra or else \mathcal{U} is *-isomorphic with an n×n matrix algebra, where n is finite.

<u>Theorem 1</u>. Let \mathcal{U} be a simple separable C*- algebra with identity. We suppose that \mathcal{U} is not *-isomorphic with any $n \times n$ matrix algebra such that n is finite. Let f be a pure state of \mathcal{U} .

Then \mathcal{U} contains an approximate sequence of approximate matrix algebras

 $\{V(a_1,...,a_n)V(b_1,...,b_n)^*,B(n):a_i,b_i \in \{0,1\}^n \text{ and } n=1,2,...\}$ such that the following are satisfied:

We let \mathcal{O}_{i} be the C*-algebra generated by $\{V(a_1,\dots,a_n)V(b_1,\dots,b_n)^*:a_i,b_i \in \{0,1\} \text{ and } n=1,2,\dots\}, \text{ and we let}$ $\mathcal{W}(n)$ be the set of all linear combinations of $V(a_1,\dots,a_n)V(b_1,\dots,b_n)^*$. Then for each $\varepsilon > 0$ and each $x \in \mathcal{O}_i$, there is an n such that

$$|f(xy) - f(x)f(y)| < \varepsilon ||y||$$
 for $y \in \mathcal{W}(n)^{c}$.

 $(\mathcal{M}(n)^{c}$ is the commutant of $\mathcal{M}(n)$ in \mathcal{M} .)

<u>Proof</u>: In this proof we use the axioms of definition 2 and lemma 1 without comment.

By lemma 6 \mathcal{U} is an NGCR algebra. We use lemma 4 and choose an approximate sequence of approximate matrix algebras such that f(B(n)) = 1 for all n.

$$E(n)B(n) = E(n)V(O_n)V(O_n)B(n)$$

$$= \sum V(a_1, \dots, a_n)V(a_1, \dots, a_n)*V(O_n)V(O_n)B(n)$$

$$(a_1, \dots, a_n)$$

$$= V(O_n)V(O_n)V(O_n)V(O_n)B(n) = B(n) .$$

Since f(B(n)) = 1 and ||B(n)|| = 1, we have

$$(\varphi_{f}(B(n))x_{f}, x_{f}) = 1 = \|\varphi_{f}(B(n))x_{f}\| \cdot \|x_{f}\|$$
.

Thus $\varphi_f(B(n))x_f$ is proportional to x_f , and so is equal to x_f . Since E(n)B(n) = B(n), we have

(3.1)
$$\varphi_{f}(E(n))x_{f} = x_{f}$$
 and $f(E(n)) = 1$ for $n = 1, 2, 3$...

We have now to prove the following assertion:

$$f|_{\mathbb{C}}$$
 is a pure state.

We prove first that $f|_{(\mathcal{L})}$ has a unique extension to \mathcal{H} . Suppose then that g is a pure state such that $f|_{(\mathcal{L})} = g|_{(\mathcal{L})}$. In the same way as we prove $\varphi_f(B(n))x_f = x_f$, we prove that $\varphi_g(E(n))x_g = x_g$ for $n = 1, 2, \ldots$. From this and (3.1) we get

(3.2) $f(\cdot) = f(E(n) \cdot E(n))$ and $g(\cdot) = g(E(n) \cdot E(n))$ for n = 1, 2, ...We let $S \in \mathbb{N}$ and $\epsilon > 0$ be arbitmerry and choose n and $T \in \mathbb{Q}$ such that $||E(n)(T-S)E(n)|| < \epsilon$. By (3.2) it follows that

$$|f(S) - g(S)| = |f(T) - g(T) + f(S-T) - g(S-T)|$$

= $|(f-g)(E(n)(S-T)E(n))| < 2\varepsilon$.

Since $\epsilon > 0$ was arbitrary, we have f(S) = g(S). Next we prove that $f|_{\mathcal{O}}$ is pure. We suppose $f|_{\mathcal{O}} = \frac{1}{2}(h+g)$, where h and g are states of \mathcal{O} . We extend h and g to \mathcal{U} and call the extensions h' and g'. Since we have just proved that $f|_{\mathcal{O}}$ has a unique extension to \mathcal{U} , it follows that $f = \frac{1}{2}(h'+g')$. f is pure, hence f = h' = g', and we have proved the assertion.

We let \mathcal{B}_n be the *-algebra generated by $\{V(a_1, \dots, a_k)V(b_1, \dots, b_k)^* : a_i, b_i \in \{0, 1\}, k \le n\}$. Since $\mathcal{Q} = \bigcup_{n=1}^{\infty} n^{n \circ n}$ it is sufficient to prove the theorem for each $x \in \bigcup_{n=1}^{\infty} n^n$.

We let $x \in {}^{\bigcirc}_n$ and $\varepsilon > 0$ be given. We choose $\delta > 0$ such that

 $\|x\| \cdot \delta + \delta |f(x)| + \delta(1+\delta) < \varepsilon$.

 $\{\mathcal{B}_n\}_{n=1}^{\infty}$ is an ascending sequence of *-algebras such that $\mathcal{O}_{\mathcal{A}} = \frac{1}{2} + \frac{1}{2} +$

(3.3)
$$|f(xy) - f(x)f(y)| \le \delta ||y||$$
 for all $y \in \mathbb{B}_m^c \cap \mathbb{Q}$.

We let $y \in \mathcal{W}(m)^c$, and we suppose without loss of generality that ||y|| = 1. We need now the following assertion:

For each $\delta > 0$ and each $S \in \mathcal{U}$, there exist k and $T \in \mathcal{B}_k$ such that $||T|| \le ||S|| + \delta$ and $||E(k+1)(S-T)E(k+1)|| < \delta$.

We choose p and T' such that $||E(p+1)(S-T')E(p+1)|| < \delta$. We define k = p+1 and T = E(p+1)T'E(p+1).

$$\begin{split} \|T\| &= \|E(p+1)T'E(p+1)\| \\ &\leq \|E(p+1)(S-T')E(p+1)\| + \|E(p+1)SE(p+1)\| < \delta + \|S\|, \\ \text{since } \|E(p+1)\| &= 1 \text{ . We get} \\ &\|E(p+2)(S-T)E(p+2)\| \end{split}$$

since
$$||E(p+1)|| = 1$$
. We get

and we have proved the assertion.

$$\|E(p+2)(S-T)E(p+2)\|$$

= $\|E(p+2)(E(p+1)SE(p+1) - E(p+1)T'E(p+1))E(p+2)\|$
 $\leq \|E(p+2)\| \cdot \|E(p+1)(S-T')E(p+1)\| \cdot \|E(p+2)\| < \delta$

By the assertion we can find k > max(m,n) and $z \in \mathcal{B}_k$ such that

(3.4)
$$||z|| < 1 + \delta$$
 and $||E(k+1)(z-y)E(k+1)|| < \frac{\delta}{2^m}$.

Since $\|V(a_1,...,a_m)V(O_m)^*\| = 1$, we have by (3.4)

(3.5)
$$\|V(a_1, ..., a_m)V(0_m) * E(k+1)(z-y)E(k+1)V(0_m)V(a_1, ..., a_m) * \| < \frac{\delta}{2^m}$$

for all $(a_1, ..., a_m) \in \{0, 1\}^m$.

$$\begin{split} & \Sigma \quad V(a_{1}, \dots, a_{m}) V(O_{m})^{*} E(k+1)(y-z) E(k+1) V(O_{m}) V(a_{1}, \dots, a_{m})^{*} \\ & (a_{1}, \dots, a_{m}) \\ & = \quad \Sigma \quad E(k+1) y \, V(a_{1}, \dots, a_{m}) V(O_{m})^{*} V(O_{m}) V(a_{1}, \dots, a_{m})^{*} E(k+1) \\ & (a_{1}, \dots, a_{m}) \\ & - \quad E(k+1)(E(m+1) \quad \Sigma \quad V(a_{1}, \dots, a_{m}) V(O_{m})^{*} z V(O_{m}) V(a_{1}, \dots, a_{m})^{*} E(m+1)) E(k+1) \\ & \quad (a_{1}, \dots, a_{m}) \\ & = \quad E(k+1) y \, E(m) E(k+1) - \quad E(k+1) z' E(k+1) \\ & = \quad E(k+1)(y-z') E(k+1) , \end{split}$$

where z' is defined by

(3.6)
$$z' = E(m+1) \sum V(a_1, ..., a_m) V(O_m) * z V(O_m) V(a_1, ..., a_m) * E(m+1) .$$

 $(a_1, ..., a_m)$

We add the inequalities in (3.5) and get

$$(3.7) ||E(k+1)(y-z')E(k+1)|| < \delta$$
.

From (3.4) it follows that

$$\|V(a_{1}, ..., a_{m})V(O_{m}) * z V(O_{m})V(a_{1}, ..., a_{m})*\| < 1 + \delta$$
.

Since

$$V(a_{1},\ldots,a_{m})*V(b_{1},\ldots,b_{m}) = 0 \quad \text{if} \quad (a_{1},\ldots,a_{m}) \neq (b_{1},\ldots,b_{m}),$$

we get

$$\begin{aligned} & \| \Sigma \quad V(a_1, \dots, a_m) V(O_m)^* z \, V(O_m) V(a_1, \dots, a_m)^* \| < 1 + \delta \\ & (a_1, \dots, a_m) \end{aligned}$$

By (3.6) this gives

$$(3.8) ||z'|| < 1 + \delta .$$

By lemma 3 we have $z' \in {\mathbb B}_m^c \cap {\mathbb Q}$. This implies by (3.3) and (3.8) that

(3.9)
$$|f(xz') - f(x)f(z')| < \delta ||z'|| \le \delta(1+\delta)$$
.

Since $x \in \mathcal{B}_n$, $z' \in \mathcal{B}_{m+1}$ and $k+1 > \max(k,n)$, we have by (3.2) and (3.7) that

(3.10)
$$|f(xz') - f(xy)| \le ||x||\delta$$
,

because

$$|f(xz') - f(xy)|$$

= $|f(xE(k+1)z'E(k+1)) - f(xE(k+1)yE(k+1))|$
 $\leq ||xE(k+1)z'E(k+1) - xE(k+1)yE(k+1)|| \leq ||x|| \cdot \delta$.

Moreover, we have by (3.2) and (3.7) that

(3.11)
$$|f(z') - f(y)| = |f(E(k+1)(z'-y)E(k+1))| \le \delta$$
.

(3.9), (3.10) and (3.11) imply

$$|f(xy) - f(x)f(y)| \leq ||x|| \cdot \delta + \delta \cdot |f(x)| + \delta(1+\delta) < \varepsilon,$$

and we are done.

such that n is finite. Let f_1 and f_2 be two pure states of \mathcal{U} . Then the following are equivalent:

- (1) f_1 and f_2 are unitarily equivalent.
- (2) There is an approximate matrix algebra $\{V(a_1)V(b_1)^*, B(1): a_1, b_1 \in \{0, 1\}\}$ such that $f_1(B(1)) = 1 \quad \text{and} \quad \| {}^{(f_1 f_2)} |_{\mathbb{N}(1)} c \| = 0 .$

(3) There is an approximate matrix algebra
$$\{V(a_1, ..., a_n)V(b_1, ..., b_n)^*, B(n) : a_i, b_i \in \{0, 1\}\}$$
 such that $f_1(B(n)) = 1$ and $\| (f_1 - f_2) |_{\mathcal{M}(n)} c \| < 1$.

 $\mathcal{W}_{(n)}$ is the linear span of the elements $V(a_1, \dots, a_n)V(b_1, \dots, b_n)^*$, and $\mathcal{W}_{(n)}^c$ is the commutant of $\mathcal{W}_{(n)}$ in \mathcal{U} .

<u>Proof</u>: By lemma 6, U_{1} is a simple NGCR-algebra with identity, 1) \rightarrow 2): We suppose $f_{1} \sim f_{2}$. We define $\pi = \pi_{f_{1}}$. If π is a one-dimensional representation, the theorem is trivially satisfied. We suppose that π is at least two-dimensional, that $f_{1}(\cdot) =$ $(\pi(\cdot)x_{1},x_{1})$, that $f_{2}(\cdot) = (\pi(\cdot)x_{2},x_{2})$, and that $x_{2} = \lambda x_{1} + \mu z$ where $x_{1} \perp z$, ||z|| = 1 and $\lambda, \mu \in \mathbb{C}$. By theorem 2.8.3 in [1] there exist elements D and U of U_{1} such that $D \geq 0$, ||D|| = 1, $\pi(D)x_{1} = x_{1}$, $\pi(D)z = 0$, U is unitary, and $\pi(U)x_{1} = z$.

For each $\epsilon > 0$ in (0,1) we let f_{ϵ} be the function defined by: $f_{\epsilon}((-\infty, 1-\epsilon]) = 0$, $f_{\epsilon}([1-\frac{\epsilon}{2}, \infty)) = 1$, and f_{ϵ} is linear on $[1-\epsilon, 1-\frac{\epsilon}{2}]$. We define

$$V = f_{\frac{1}{2}}(I-D)Uf_{\frac{1}{2}}(D) .$$

We prove now that $f_{\frac{1}{2}}(I-D)f_{\frac{1}{2}}(D) = 0$. We define g by $g(t) = f_{\frac{1}{2}}(1-t)f_{\frac{1}{2}}(t)$. Since $f_{\frac{1}{2}} = 0$ on $[0,\frac{1}{2}]$ and $sp(D) \subset [0,1]$, it follows that g = 0 on sp(D). This implies g(D) = 0. Since $f_{\frac{1}{2}}(I-D)f_{\frac{1}{2}}(D) = 0$, it follows that $V^2 = 0$. We have

(13.12) $\pi(V)x_1 = z$ and $\pi(V^*)z = x_1$.

We define

 $V(1) = Vk(V*V), \text{ where } k(t) = (f_{\frac{1}{2}}(t)t^{-1})^{\frac{1}{2}}, k(0) = 0,$ $V(0) = f_{\frac{1}{2}}(V*V), \text{ and}$ $B(1) = f_{1/4}(V*V).$

Next we want to prove that

{ $V(i)V(j)^*, B(1): i, j \in \{0, 1\}$ }

is an approximate matrix algebra. V(1)*V(0) = 0, since $(V^*)^2 = 0$. Moreover, V(0)*V(1) = 0, since $V^2 = 0$. This means that axiom (1) in definition 1 is satisfied. Axioms (2) and (3) are trivially satisfied. Since

$$\mathbb{V}(1)^*\mathbb{V}(1) = \mathbb{k}(\mathbb{V}^*\mathbb{V})\mathbb{V}^*\mathbb{V}\mathbb{k}(\mathbb{V}^*\mathbb{V}) = f_{\frac{1}{2}}(\mathbb{V}^*\mathbb{V}),$$

it follows that V(1)*V(1)B(1) = B(1), because $f_{1/2}f_{1/4} = f_{1/4}$. Since $f_{1/2}f_{1/4} = f_{1/4}$, it follows that V(0)*V(0)B(1) = B(1), and axiom 4 is satisfied. Thus we have proved that

 $\{V(i)V(j)^*, B(1): i, j \in \{0, 1\}\}$

is an approximate matrix algebra.

We define G by

$$G = \lambda V(0)V(0)^* + \mu V(1)V(0)^* .$$

From (13.12) we get

$$\pi(\mathbb{V}(0)\mathbb{V}(0)^*)\mathbf{x}_{1} = \pi([\mathbf{f}_{\frac{1}{2}}(\mathbb{V}^*\mathbb{V})]^2)\mathbf{x}_{1} = \mathbf{x}_{1}$$

$$\pi(\mathbb{V}(1)\mathbb{V}(0)^*)\mathbf{x}_{1} = \pi(\mathbb{V}\mathbf{k}(\mathbb{V}^*\mathbb{V})\mathbf{f}_{\frac{1}{2}}(\mathbb{V}^*\mathbb{V}))\mathbf{x}_{1} = z$$

$$\pi(\mathbb{V}(0)\mathbb{V}(1)^*)z = \pi(\mathbf{f}_{\frac{1}{2}}(\mathbb{V}^*\mathbb{V})\mathbb{k}(\mathbb{V}^*\mathbb{V})\mathbb{V}^*)z = \mathbf{x}_{1},$$

and hence

$$\pi(G)x_1 = \lambda x_1 + \mu z = x_2$$

We get

$$\pi(\mathbb{V}(0)\mathbb{V}(0)^*)z = \pi(\mathbb{V}(0)\mathbb{V}(0)^*\mathbb{V}(1)\mathbb{V}(0)^*)x_1 = 0$$

and

$$\pi(\mathbb{V}(0)\mathbb{V}(1)^*)\mathbf{x}_1 = \pi(\mathbb{V}(0)\mathbb{V}(1)^*\mathbb{V}(0)\mathbb{V}(1)^*)\mathbf{z} = 0 .$$

This implies

$$\begin{aligned} \pi(G^*)(\lambda x_1 + \mu z) &= (\overline{\lambda} V(0) V(0)^* + \overline{\mu} V(0) V(1)^*)(\lambda x_1 + \mu z) \\ &= (|\lambda|^2 + |\mu|^2) x_1 = 1 \cdot x_1 = x_1. \end{aligned}$$

We get

$$\pi(G^*G)x_1 = x_1$$

We let
$$A \in \mathcal{M}(1)^{c}$$
.
We get
 $f_2(A) = (\pi(A)x_2, x_2) = (\pi(A)\pi(A))$

$$f_{2}(A) = (\pi(A)x_{2}, x_{2}) = (\pi(A)\pi(G)x_{1}, \pi(G)x_{1})$$
$$= f_{1}(G^{*}AG) = f_{1}(AG^{*}G) = f_{1}(A)$$

since G and A commute and $\pi(G^*G)x_1 = x_1$.

2) \rightarrow 3) is trivial.

3) \rightarrow 1): We suppose $f_1 \not\sim f_2$, and we let

{
$$V(a_1, ..., a_n) V(b_1, ..., b_n)^*, B(n) : a_i, b_i \in \{0, 1\}$$
}

be an approximate matrix algebra such that $f_1(B(n)) = 1$. By lemma 5 we choose an approximate matrix algebra

{
$$V(a_1, ..., a_{n+1})V(b_1, ..., b_{n+1})^*, B(n+1) : a_i, b_i \in \{0, 1\}$$
}

such that (1) and (2) in lemma 5 are satisfied and such that $f_1(B(n+1)) = 1$ and $f_2(E(n+1)) = 0$. $f_1(B(n+1)) = 1$ implies $f_1(E(n+1)) = 1$, since $B(n+1) \leq E(n+1)$. In the same way as in the proof of lemma 1, (1) and (4), we get $E(n+1) \in \mathcal{W}(n)^c$ and ||E(n+1)|| = 1. Since we have $|(f_1-f_2)(E(n+1)|| = 1$, it follows that

$$\| (\mathbf{f}_1 - \mathbf{f}_2) |_{(n)^c} \| \ge 1$$

References

- 1. <u>J. Dixmier</u>, Les C*-algèbres et leur représentations, Gauthier-Villars, Paris (1969.
- 2. <u>J. Glimm</u>, Type I C*-algebras, Annals of math. 73 (1961), 572-612.
- R. Haag, R.V. Kadison and D. Kastler, Nets of C*-algebras and classification of states, Commun. math. Phys. 16 (1970), 81-104.
- 4. <u>R.T. Powers</u>, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Annals of math. 86 (1967), 138-171.