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1. INTRODUCTION. Let G be a locally compact Abelian topological 

group and let L (G) , 1 < p 5_ a::; , denote the usual Lebesgue spaces 
p 

with respect to Haar measure on G • The purpose of this note is 

two-fold. First, if G is noncompact, we shall establish some ele-

mentary necessary and some elementary sufficient conditions for a 

measurable subset of d the dual group of G , to be a set of 

1 ~ p < 2 , and utilize these results to uniqueness for Lp(G) 

obtain some information on the topological structure of sets of 

uniqueness. Secondly, the results concerning sets of uniqueness 

will be applied to construct some examples of nonzero closed trans­

lation invariant linear subspaces X of L2(G) , G being a noncom­

pact group, such that X n L1 (G) = [0} • Obviously no such sub-

spaces X of L,(G) 
c. 

can exist when G is compact as in this case 

The Fourier transform of f in L1 (G) will, as usual, be de-
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"' noted by f , while the Hausdorff-Young or Plancherel transform of 

" f in L rG) p\ ' 
1 <p::2 ' 

will be denoted by f 0 If I' is de-

" v 
fined by f(t) = f(-t) then f = (f) .... and f = (f) .... We recall 

E Lp(G) " " that given 1 < p < 2 and f such that either f or f 

" (f)" belongs to Lr(G) for some r 
' 

1 < r < 2 
' 

then f = if -
p = r = 1 

' 
f = cir if p = 1 and 1 < r < 2 

' 
f = (t)" if 1 < 

p < 2 and r = 1 
' 

and f = (f)~ if 1 < p < 2 and 1 < r < 2 . 
The formulas are naturally to be interpreted in the sense of equali-

ty almost everywhere with respect to Haar measure. The reader is 

referred to [3,pp.240 and 241] for further details. 

The Greek letter ~ will denote (normalized) Haar measure on 

" G and C0 (G) will denote the Banach space of continuous complex-

valued functions on G that vanish at infinity. The symbol f in­

dicates the completion of a proof. 

2. SETS OF UNIQUENESS FOR Lp(G) • If G is a locally compact 

Abelian topological group and 1 < p < co ~ then a measurable subset 

"' E of G is a set of uniqueness for if there exists no non-Lp(G) 

g(y) = 0 zero element g in 

in G..vE and g E 

L ~G) if whenever p\ 

where off of E and 

such that for almost all y 

That is, E is a set of uniqueness for 

g E L1 (G) is such that g(y) = 0 

g E Lp(G) ~ then g = 0 • 

almost every-

This notion of a set of uniqueness is less restrictive than the 

classical concept of Cantor uniqueness. A measurasfue subset E of 

the unit cil..,cle group I' is a set of Cantor uni.9._ueness if 1r1henever 

~=-co en eint converges to zero almost everywhere off of E , then 

c = 0 for all n • Every set of Cantor uniqueness is of measure n 

zero, but not conversely [4,pp.52 and 53]. In contrast to this, it 

" is easil;T seen that every measurable subset of G with measure zero 
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is a set of uniqueness for L (G) , 1 < p < co , and the converse is 
p - -

also true if 2 :s_ p < co a..'1.d G is noncompact, or if 1 :S. p :S. co 

and G is compact. Indeed, if G is compact, then the only set of 

uniqueness for L (G) 
p 

is the empty set. The situation is, however, 

quite different for noncompact groups and 1 < p < 2 as shown by 

the following theorem of Figa-Talamanca and Gaudry [1]. In the case 

that G is the in-cegers, the result was established by Kat znelson 

[5]. 

THEOREM: 1. Let G be a noncompact; locally compact Abelian 
,.. 

topolo_g_ical group and let F be a measurable subset of G with 

finite positive J-Iaar measure:_. If E: > 0 , then there exists amea-

surable set E c F such that: 

(i) 1l(E) > 1l(F) -E: • 

(ii) For each p , 1 < p < 2 , E is a set of uniqueness for 

L (G) • 
p 

In particular, if G is noncompact, then there exist sets of 

uniqueness for Lp(G) , 1 2 p < 2 , with finite positive Haar mea­

sure. In a moment we shall give an example of a set of uniqueness 

for L1 (G) with infinite neasure. 

Let E be a measurable subset of 

xk will denote the linear subspace of 

f in Lp(G) such that f(y) = 0 for 

,.. 
G 0 

L (G) 
p 

almost 

If 1 < p < 2 , then 

consisting of those 
,.. 

all y in G,...,E • 

Evidently~ X~ is a closed translation invariant linear subspace of 

LP(G) , and Xk = [0} if E is of measure zero. 

The next theorem provides some sufficient conditions for a mea-
,.. 

surable subset of G to be a set of uniqueness. 
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THEOREM 2. Let G be a noncompact locally co~act Abelian 

"' to~olo~cal group and let E be a measureable subset of G o If 

1 < p < r :5. 2 and X~ n LP (G) = [ 0} , then E is a set of unique­

ness for Lp(G) • 

PROOF. Suppa s e 1 < p < r < 2 and X~ n Lp (G) = [ 0 } • Let 

g E L1 (G) be such that g(y) = 0 almost everywhere off of E and 

g E Lp(G) Since g E C0 (G) and p < r ~ 2 , it follows at once 
A 

that g E Lr(G) and (gt = g 

g E x~n LP(G) and so g(t) = o 

almost everywhere on G " Hence 

almost everywhere on G Conse-

guently, g(t) = 0 t E G , because g E C0 (G) and the Haar measure 

of every nonempty open subset of G is positive [2,pp. 193 and 194] o 

Thus, by the injectivity of the Fourier transformation, we conclude 

that g = 0 • Therefore E is a set of uniqueness for Lp(G) o # 

Obviously the converse of Theorem 2 is valid for any set of 

uniqueness with measure zeroo Furthermore, the converse remains 

valid for sets of uniqueness with finite positive measure, the exis-

tence of which are ensured by Theorem 1. More precisely, we have 

the next result: 

THEOREM 3. Let G be a noncompact locally compact Abelian 

topological group, let 1 < p < 2 , and let E be a measurable sub-
A 

set of G with finite positive Haar measure. If E is a set of 

uniqueness for Lp(G) and p < r:: 2 , then ~n Lp(G) = [0} • 

L (G) ,p<r<2 p -
PROOF. Suppose E is a set of uniqueness for 

and let Then 
v 

' f(y) = 0 almost every-f E Lp(G) 

where off of E , and f E Lp 1 (G) , ; + ; 1 = 1 , by the Hausdorff-

Young Theorem [3,pp.226 and 227]. Moreover, since E has finite 

measure, it is apparent that the characteristic function of E be-
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longs to L (G) , and an easy argument reveals that 
p ... 

v 

Consequently, (f) = f and so (f) ... E Lp(G) • Hence f = 0 as 

E is a set of uniqueness for Lp(G) Therefore, by the injecti-

vity of the Hausdorff-Young transformation, we conclude that f = 0. 1t 

We note that Theorems 2 and 3 are trivially valid when p = r, 

since in this case X~ = [0} ~ Obviously, if G is discrete, then 
... 

the measurable subsets of G all have finite measure. 

Theorems 2 and 3 can be used to shed some light on the topolo­

gical properties of sets of uniqueness. We observe that every set 

of uniqueness for Lp (G) , 1 < p < 2 , is a set of uniqueness for 

L1 (G) • The proof is elementary. The closure of a subset E of 
... 
G will be denoted by cl(E) , and the interior of E by int(E) • 

THEORE1'1 4o Let G be a noncompact locally compact Abelian 
... 

topological group and let E be a measurable subset of G with 

finite Haar measure o If 1 _::: p < 2 and E is a set of uniqueness 

for Lp (G) , then cl ( G'"" E) = G • 

PROOF. It is easily verified that if E is a set of unique­

ness for Lp(G) , then -E is a set of uniqueness for Lp(G) , and 

hence -E is a set of uniqueness for L1 (G) Thus, by Theorem 3 

end the remarks immediately preceding it, we see that ~En L1 (G) = 

[0} ~ However, we claim that 

To see this it clearly suffices to show that every member of the 

set on the left hand side of the containment belongs to L2 (G) 0 

... ... ... 
But if f E L1 (G) and f(y) % 0 , y EG"'E then, since f E C0 (G) 

and E has finite measure, we deduce that f E L2(G) . Consequent-

ly, f = (it belongs to L2 ({)-) 0 
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Denoting, as is customary, the kernel of a set of maximal regu-

lar ideals in L1(G) by k(F) , and the hull of a closed ideal I 

in L1(G) by h(I) , we conclude from the argument of the previous 

paragraph that k(G,..,E) = [0} , whence h[k(G,..,E)] =G. Since 

L1 (G) is a regular commutative Banach algebra, it follows at once 
~ ~ 

that G ,.., E is dense in G 

The reader is referred to [6, Chapter 7] for a discussion of 

regular Banach algebras. 

COROLLARY 1. Let G be a noncompact locally compact Abelian 
~ 

topological group and let E be a measurable subset of G • If 

1.;::p<2 and E is a set of uniqueness for Lp(G), then cl(G,..,E) 

= Q. • 

PROOF. If E has finite measure, then the result is precisely 

the conte2t of Theorem 4. So assume E has infinite measure and 

that cl ( G"" E) ;f G , that is, int (E) ;f 0 . It is easily seen that 

every measurable subset of a set of uniqueness is again a set of 

uniqueness. Consequently, since int(E) ;f 0 , there exists an open 

set U c E of finite measure that is a set of uniqueness for 
,... 

Lp(G) , contrary to the conclusion of Theorem 4. Hence cl(G,..,E) = 
A 

G • # 

COROLLARY 2. Let G be a noncompact locally compact Abelian 

topological group, let 1 _:: p < 2 , and let E be a set of uniqueness 

for L (G). If T}[cl(E),....E] = 0, then Eisa nowhere dense sub­
- p 

"' set of G • 

PROOF. An elementary argument shows that cl(E) is a set of 

uniqueness for Lp (G) whenever E is such a set and T}[cl(E) '""'E) = 0. 
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Thus, by Corollary 1, cl[G ..... cl(E)] "' = G , that is, E is novJhere 

dense. 

In particular, Corollary 2 shows that every closed set of 

uniqueness for Lp(G) , 1,:S_p<2, must be nowhere dense. The con­

verse assertion is also valid in the case p = 1 o This will be an 

immediate consequence of the following theorem: 

THEOREM 5. Let G be a noncompact locally compact Abelian 

"" topological group and let E be a measurable subset of G • If 

E is nowhere dense, then E is a set of uniqueness for L1 (G) • 

PROOF. In view of Theorem 2 it suffices to shov-r that ~n 

L1 (G) = ( 0} o But if f E ~ n L1 (G) , then and 
y "" f(y) = 0 almost everywhere on G ,.... E o Actually, we claim that 
v 
f(y) = 

,., 
0 , y E G E • Indeed, if 

A V 

y0 E G ..... E is such that f(y 0 ) 

~ 0 , then, since 
v 
f is continuous, there exists an open neighbor-

v 

hood U of y 0 such that f(w) ~ 0 , w E U However, since E 

is nowhere dense, there alsoexistsanonempty open set V c U such 

that V n E = 0 • 
A V 

Thus V c G ,.... E , 11 (V) > 0 , and f ( w) ~ 0 , w E V , 
v 

contradicting the assumption that f(y) = 0 almost everywhere on 
A V ft 

G ..... E • Hence f ( y) = 0 , y E G ,.... E o 

Appealing once more to the fact that E is nowhere dense, we 
\/ ;... ,.._ A 

deduce that f ( y) = 0 , y E G , since cl ( G,.... E) = G • Consequently 

f = 0 , and X~ n L1 (G) = (0} o # 

COROLLARY 3. Let G be a noncompact locally compact Abelian 

topological grou~and let E be a closed subset of G . Then E 

is a set of uniqueness for L1(G) if and only if E is a nowhere 
.... 

dense subset of G o 
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Theorem 5 also provides us with a means of constructing sets 

of uniqueness for L1 (G) that have infinite measure. For example, 

let G =lli , the additive group of the real numbers, and for each 

positive integer n let En be a Cantor subset of the closed in-

terval [2n,2n+1] of Lebesgue measure 1 
2 If 

co 
E = U ,E , n= 1 n 

then E is a measurable nowhere dense subset of lli with infinite 

measure, and so E is a set of uniqueness for L1 (JR) with infinite 

measure. 

3. TRANSLATION INVARIANT SUBSPACES. The proof of Theorem 5 
? 

actually shows that XE n L1 (G) = [0} whenever E is a measurable 
A 

nowhere dense subset of G and G is noncompact. In particular, 
A 

if E is a nowhere dense subset of G with positive measure, then 

xi is a nonzero closed translation invariant linear subspace of 

L2 (G) that contains no nonzero continuous function with compact 

support. This answers a question posed to the author by Arne Hole. 

Considerably more can be said as shown by the next result: 

THEOREM 6. If G is a noncompact locally compact Abelian 

topological group, then there exists a nonzero closed translation 

invariant linear subspace X of L2(G) such that xn (U 1,3><2Lp(G)) 

= [0} .. 

A 

PROOFo Let E be a measurable subset of G with finite posi-

ti ve Haar measure that is a set of uniqueness for Lp (G) for all p , 

1<p<2 . The existence of such a set is ensured by Theorem 1. Let 

X = x2 
E Then X is a closed translation invariant linear subspace 

of L2(G) and X I [o} . The latter is true since the Plancherel 

transform of the characteristic function of E , which is not zero, 

belongs to X • Moreover, by Theorem 3, X n ( U 1 < <2L (G) ) = [ 0} • .....;.p p 
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COROLLARY 4.. Let G be a noncompact locally compact Abelian 

topological gpou~.. If X is a nonzero closed translation invari­

ant linear subspace of L2 (G) , then there exists a nonzero closed 

translation invariant linear subspace Y of L2 (G) such that 

Y c X and Yn (U'1_:::p<2Lp(G)) = {0} • 

PROOF. If is well known that X = X~ for some measurable sub-

" set F of G with positive Haar measure [3,po237]. By Theorem '1 

" there exists a measurable subset E of G with finite positive 

measure such that E c F &"ld E is a set of uniqueness for Lp( G) , 
2 '1 _:: p < 2 o Let Y = XE .. # 

Two obvious questions remain unanswered. First, if G is non-

compact and '1 < p < 2 , do there exist nonzero closed translation in-

variant linear subspaces X of L (G) 
p" 

such that xn L1 (G) = {O} ? 

The argument utilized in Theorem 6 will not work in this situation, 

since if E is a set of uniqueness for Lp(G) with finite positive 

measure, then xP 
E = [0} 0 Second, if '1<p<2 and G is noncom-

pact, do there exist nonzero closed translation invariant linear 

sub spaces X of L2 (G) such that X n L1 (G) = {0} , but X n Lp(G) ;i 

{0} .. To prove the existence of such a subspace it would suffice, 

in view of Theorem 3, to establish the existence of a measurable 
" subset E of G with finite positive measure that was a set of 

uniqueness for L1(G) , but not for Lp(G) • Conversely, the exis­

tence of sets of uniqueness for L1 (G) that are not sets of unique­

ness for Lp (G) , '1 < p < 2 , could be establiShed by proving the ex­

istence of closed translation invariant linear subspaces X in 

L2 (G) for which xn L1 (G) = {0} , but xn Lp(G) ;i [0} .. We remark 
"' that Theorem '1 only ensures the existence of subsets of G with 

finite positive measure that are simultaneously sets of uniqueness 

for each Lp(G) , '1 < p < 2 .. 
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