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1. INTRODUCTION. Let G be a locally compact Abelian topological
group and let LP(G) , 1 <p <, denote the usual Lebesgue spaces .
with respect to Haar méasure on G . The purpose of this note is
two-fold. First, if G is noncompact, we shall establish some ele-
mentary necessary and some elementary sufficient conditions for a
measurable subset of G , the dual group of G , to be a set of
uniqueness for LP(G) , 1 <p <2, and utilize these results to
obtain some information on the topological structure of sets of
uniqueness. Secondly, the results concerning sets of uniqueness
will be applied to construct some examples of nonzero closed trans-
lation invariant linear subspaces X of L2(G) , G being a noncom-
pact group, such that X r\Lq(G) = {0} . Obviously no such sub-
spéces X of Lg(G) can exist when G 1is compact as in this case

Xf)Lq(G) =X .

The Fourier transform of f in Lq(G) will, as usual, be de-
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noted by F , while the Hausdorff-Young or Plancherel transform of
f in LP(G) » 1<p <2, will be denoted by f. If T is de-
fined by F(t) = f(-t) , then f = ()~ and f = (£)” . We recall
that given 1 <p <2 and f € LP(G) such that either f or £
belongs to Lr(@) for some r , 1 <r <2, then f = (
p=r=1,f=() if p=1 and 1<r<2,f = (F) if 1<
p<2 and r=1,and £=(f) if 1<p<2 and 1<r<2.
The formulas are naturally to be interpreted in the sense of equali-

ty almost everywhere with respect to Haar measure. The reader is

referred to [3,pp.240 and 241] for further details.

The Greek letter mn will denote (normalized) Haar measure on
G and CO(G) will denote the Banach space of continuous complex-
valued functions on G +that vanish at infinity. The symbol # in-

dicates the completion of a proof.

2. SETS OF UNIQUENESS FOR LD(G) . If G 1is a locally compact

Abelian topological group and 1 < p <, then a measurable subset

E of G is a set of uniqueness for LP(G) if there exists no non-
zero element g in Lq(é) such that g(y) = 0 for almost all ¥
in G~EFE and & € Lp(G) . That is, E is a set of uniqueness for
LP(G) if whenever g € Lq(é) is such that g(y) = O almost every-
where off of E and § € LP(G) , then g = 0O .

This notion of a set of uniqueness is less restrictive than the
classical concept of Cantor uniqueness. A measurabbe subset E of

the unit circle group I is a set of Cantor uniqueness if whenever

int : ,
ﬁz;_oagne converges to zero almost everywhere off of E , then
ey = O for 2ll n . Every set of Cantor uniqueness is of measure

zero, but not conversely [4,pp.52 and 53]. In contrast to this, it

is easily seen that every measurable subset of G with measure zero



is a set of uniqueness for LP(G) , 1 <p <, and the converse is
also true if 2 < p < and G is noncompact, or if 1 <p <X
and G is compact. Indeed, if G is compact, then the only set of
uniqueness for LP(G) is the enmpty set. The situation is, however,
quite different for noncompact groups and 1 < p < 2 as shown by
the following theorem of Figd-Talamanca and Gaudry [1]. In the case

that G is the integers, the result was established by Katznelson

[51.

THEOREM 1. Let G Dbe a noncompact locally compact Abelian

topological group and let F be a measurable subset of G with

finite positive Haar measure. If € > O , then there exists a mea-

surable set E C€ F such that:

(1) n(E) > n(F) -¢ .

(i1) For each p , 1<p <2, E is a set of uniqueness for

LP(G) .

In particular, if G is noncompact, then there exist sets of
uniqueness for LP(G) , 1 <p <2, with finite positive Haar mea-
sure. In a moment we shall give an example of a set of uniqueness

for Lq(G) with infinite measure.

Let E be a measurgble subset of G . If 1 <p <2 , then
X% will denote the linear subspace of LP(G) consisting of those
f in LP(G) such that E(Y) =0 for almost all y in G ~ E .
Evidently, X% is a closed translation invariant linear subspace of

LP(G) , and X% = {0} if E 4is of measure zero.

The next theorem provides some sufficient conditions for a mea-

surable subset of G to be a set of uniqueness.



THEOREM 2. Let G be a noncompact locally compact Abelian

topological group and let E be a measureable subset of G . If

{0} , then E is a set of unique-

Il

1<p<r<2 and X;NI_(G)

ness for LP(G) .

PROOF., Suppose 1 <p <r <2 and X%f]LD(G) = {0} . Let
g € Lq(a) be such that g(y) = O almost every%here off of E and
g ¢ LP(G) . Since g € CO(G} and p <r <2, it follows at once
that g € Lr(G) and (g)° = g almost everywhere on G . Hence

E
quently, g(t) =0 , t € G , because § € CO(G) and the Haar measure

g ¢ erWLp(G) , and so §g(t) = 0 almost everywhere on G . Conse-

of every nonempty open subset of G is positive [2,pp.19% and 194].
Thus, by the injectivity of the Fourier transformation, we conclude

that g = O . Therefore E 1is a set of uniqueness for LP(G) -

Obviously the converse of Theorem 2 1is valid for any set of
uniqueness with measure zero. Furthermore, the converse remains
valid for sets of uniqueness with finite positive measure, the exis-
tence of which are ensured by Theorem 1. More precisely, we have

the next result:

THEOREM 7. Let G Dbe a noncompact locally compact Abelian

topological group, let 1 <p <2 , and let E be a measureble sub-

set of G with finite positive Haar measure. If E is a set of

uniqueness for LD(G) and p <r <2, then X%F)LP(G) = {0} .

PROOF. Suppose E 1is a set of uniqueness for LP(G) ,p<r<z,
end let £ € XpN (@) . Then f €L (6), f(y) = 0 almost every-
v A
where off of E , emd f €L_,(&) , %+%.

Young Theorem [3,pp.226 and 227]. Moreover, since E has finite

= 1 , by the Hausdorff-

measure, it is apparent that the characteristic function of E be-
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longs to Lp(@) , and an easy argument reveals that f e Lq(é) .
Consequently, (f) = f and so (f)A € Lp(G) . Hence f =0 as
E is a set of uniqueness for LP(G) . Therefore, by the inJjecti-

vity of the Hausdorff-Young transformation, we conclude that f =0. #

We note that Theorems 2 and 3 are trivially valid when p = r,
since in this case Xg = {0} . Obviously, if G is discrete, then

the measurable subsets of é all have finite measure.

Theorems 2 and 3 can be used to shed some light on the topolo-
gical properties of sets of uniqueness. We observe that every set
of uniqueness for LP(G) , 1<p<2 , is a set of uniqueness for
Lq(G) . The proof is elementary. The closure of a subset E of

G will be denoted by c¢l(E) , and the interior of E by int(E) .

THEOREM 4. Let G be a noncompact locally compact Abelian

topological group and let E be a measurable subset of G with

finite Haar measure. If 1<p<2 and E is a set of uniqueness

for I,(G) , then cl(G~E) = G .

PROOF. It is easily verified that if E is a set of unique-
ness for LP(G) , then -E is a set of uniqueness for LP(G) , and
hence -E is a set of uniqueness for Lq(G) . Thus, by Theorem 3
and the remarks immediately preceding it, we see that X?Erqu(G) =
{0} . However, we cleim that

2

)
-4

{£]£€1,(6),f(v) =0,y €G~E} c X nL,(6) .

To see this it clearly suffices to show that every member of the

set on the left hand side of the containment belongs to L2(G) .

But if f € Lq(G) and f(y) =0 , Y €EG~E , then, since f € CO(G)
and E has finite measure, we deduce that % € Lg(@) . Consequent-

1y, £ = (£)° belongs to L,(G) .



Denoting, as is customary, the kernel of a set of maximal regu-
lar ideals in Lq(G) by k(F) , and the hull of a closed ideal I
in Lq(G) by h(I) , we conclude from the argument of the previous
paragraph that k(G~E) = {0} , whence hk(G~E)] = G . Since
Lq(G) is a regular commutative Banach algebra, it follows at once

A

that @ ~ % is dense in G . #

The reader is referred to [6, Chapter 7] for a discussion of

regular Banach algebras.

COROLLARY 1. Let G be a noncompact locally compact Abelian

topological group and let E be a measurable subset of é . If

1<p<2 and E is a set of uniqueness for LP(G) , then cl(G~E)

A

=G .

PROOF. If E has finite measure, then the result is precisely
the conteat of Theorem 4. So assume E has infinite measure and
that cl(G~E) £ G , that is, int(E) # ¥ . It is easily seen that
every measurable subset of a set of uniqueness is again a set of
uniqueness. Consequently, since int(E) £ @ , there exists an open
set UCE of finite measure that is a set of uniqueness for

LP(G) , contrary to the conclusion of Theorem 4. Hence cl(G~E) =

G' ° #

COROLLARY 2. Let G be a noncompact locally compact Abelian

topological group, let 1<p<2 , and let E be a set of uniqueness

for Lp(G) . If nlcl(E)~E] =0, then E 1is a nowhere dense sub-

~

set of G .

PROOF. An elementary argument shows that c¢cl(E) is a set of

uniqueness for QP(G) whenever E is such a set and nlcl(E)~E]=0.
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Thus, by Corollary 1, cl[a~*cl(E)] e , that is, E is nowhere

dense. n

In particular, Corollary 2 shows that every closed set of
uniqueness for LP(G) , 1<p<2, must be nowhere dense. The con-
verse assertion is also valid in the case p =1 . This will be an

immediate consequence of the following theorem:

THEOREM 5. Let G be a noncompact locally compact Abelian

topological group and let E be a measurable subset of G . If

E is nowhere dense, then E is a set of uniqueness for Lq(G) .

PROOF. TIn view of Theorem 2 it suffices to show that X%ﬂ

L,(6) = {0} . But if £ € X2NL,(G) , then f € L(6)NL,(G) and
£(y)

f(v) =0, v €G~E. Indeed, if v € G~FE is such that %(yo)

O almost everywhere on G~E. Actually, we claim that

# 0 , then, since ¥ is continuous, there exists an open neighbor-
hood U of Yo such that }(w) 0 , w € U. However, since E

is nowhere dense, there alsoexistsa nonempty open set V € U such
that VAE=¢ . Thus VC G~E , n(V) >0 , and f(w) #0 , w € V,
contradicting the assumption that f(y) = 0 almost everywhere on

G ~E . Hence f(y) =0, vy € éﬂfE .

Appealing once more to the fact that E is nowhere dense, we

deduce that %(Y) =0,y €&, since cl(a~=E) =G . Consequently

4 2

£f=0,and XGNLE) = {0} .

COROLLARY 3. Let G be a noncompact locally compact Abelian

topological group and let E be a closed subset of G . Then E

is a set of uniqueness for L,(G) if and only if E is a nowhere

dense subset of é o




Theorem 5 also provides us with a means 0f constructing sets
of uniqueness for Lq(G) that have infinite measure. For example,
let G =R , the additive group of the real numbers, and for each
positive integer n let En be a Cantor subset of the closed in-
terval [2n,2n+1] of Lebesgue measure + [7,p.63}. If E =U;Z1En’
then E is a measurable nowhere dense subset of IR with infinite

measure, and so E is a set of uniqueness for Lq(ED with infinite

measure.

3. TRANSLATION INVARIANT SUBSPACES. The proof of Theorem 5
actually shows that X%fqu(G) = {0} whenever E is a measurable
nowhere dense subset of G and G is noncompact. In particular,
if E is a nowhere dense subset of G with positive measure, then
X% is a nonzero closed translation invariant linear subspace of
LE(G) that contains no nonzero continuous function with compact
support. This answers a question posed to the author by Arne Hole.

Considerably more can be said as shown by the next result:

THEOREM 6. If G is a noncompact locally compact Abelian

topological group, then there exists a nonzero closed translation

EROY

invariant linear subspace X of L2(G) such that XN (U1
= {0} .

=p

PROOF. ILet E be a measureble subset of G with finite posi-
tive Haar measure that is a set of uniqueness for LP(G) for allp,

1<p<2 . The existence of such a set is ensured by Theorem 1. Let

2
X = XE .

of L2(G) and X # {0} . The latter is true since the Plancherel

Then X is a closed translation invariant linear subspace

transform of the characteristic function of E , which is not zero,

belongs to X . Moreover, by Theorem 3, XF1(U45P<2LP(G)) = {0}. "
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COROLLARY 4. ILet G be a noncompact locally compact Abelian

topological group. If X is a nonzero closed translation invari-

ant linear subspace of L2(G) , then there exists a nonzero closed

translation invariant linear subspace Y of L2<G> such that

2lp(@) = {0 .

YcX and YF\(U1§P

PROOF. If is well known that X = X% for some measurable sub-
set F of G with positive Haar measure [3,p.23%7]. By Theorem 1
there exists a measurable subset E of G with finite positive
measure such that ECF and E is a set of uniqueness for IigG),
2

1<p<2 . Let Y =Xg. 4

Two obvious questions remain unanswered. First, if G 1is non-
compact and 1<p<2 , do there exist nonzero closed translation in-
variant linear subspaces X of LP(G) such that Xrqu(G) = {0} ?
The argument utilized in Theorem 6 will not work in this situation,
since if E 1is a set of uniqueness for LP(G) with finite positive
measure, then X% = {0} . Second, if 1<p<2 and G is noncom-
pact, do there exist nonzero closed translation invariant linear
subspaces X of LE(G) such that XFILq(G) = {0} , but }(01&§G) P4
{0} . To prove the existence of such a subspace it would suffice,
in view of Theorem 3, to establish the existence of a measurable
subset E of G with finite positive measure that was a set of
uniqueness for Lq(G) , but not for LP(G) . Conversely, the exis-
tence of sets of uniqueness for Lq(G) that are not sets of unique-
ness for LP(G) , 1<p<2 , could be established by proving the ex-
istence of closed translation invariant linear subspaces X in
LE(G) for which XF]Lq(G) = {0} , but Xf)Lp(G) Z {0} . We remark

that Theorem 1 only ensures the existence of subsets of G with

finite positive measure that are simultaneously sets of uniqueness
for each Q&G),1§p<2.‘
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