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Introduction 

This is a continuation of: "Non-commutative spectral theory 

for affine function spaces on convex sets I", henceforth referred 

to as "Part I". In the present "Part II" we shall introduce a 

few new concepts although our main concern will be application of 

previous results. The key new concepts are "transversality" of 

an affine retraction of a convex set, a compact convex set being 

"spectral" or "strongly spectral", and a geometric notion of a 

"trace" which will generalize the corresponding notion in operator 

theory. The most important examples studied in Part II are 

(Choquet) simplexes, unit balls of LP(~)-spaces where 1 < p < oc 

(or more general "rotund" convex compact sets), and operator 

algebras for which the convex sets in question will be either the 

normal state space of a von Neumann algebra or the state space of 

a C*-algebra. In addition we shall present a few (low dimensional) 

geometric examples which may help to visualize the concepts of the 

general theory. 

We will now discuss each section in some detail. The general 

context of § 1 is that of an order-unit space (A,e) and a base­

norm space (V,K) in separating order and norm duality (see ·Part I 

for definitions). The main results of this section are geometric 
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characterizations of projective faces depending upon the notion 

of "transversality". A positive projection R of V which leaves 

K invariant, is said to "transversal" at a convex subset F of 

K n im R if kerR c F ; this definition is then :rela ti vi zed to an 

affine retraction p of K in a natural way. (To fix the ideas 
,.., 

we recall that by the definition given in § 1 of Part I, F may 

be thought of as a closed linear subspace "tangent" to K at F 

so "transversality of R at F" means that the last term of the 

direct sum V = im R Et) kerR is contained in the "tangent space" 
,..... 
F to K at F ). The precise statement of the results is given 

in Theorems 1.3 and 1.7; of these the former characterizes projec-

tive faces via transversal projections of V , the latter via 

transversal affine retractions of K (for the latter we assume 

A~ v*) • In Theorem 1.7 we also show that if P is the P-pro-

jection of V corresponding to a projective face F , then 

(P+P')~ is the unique affine retraction of K onto co(FUF #:) 

In § 2 we suppose that K is a convex compact set and that 

V = A(K)* (with A(K) the continuous affine functions on K) 

and A= v* ~ Ab(K) (the bounded affine functions on K). We 

begin by showing that a split face of K is always projective, 

and conversely that a projective face is a split face iff the 

corresponding P-projection is central. Then we define K to be 

a "spectral" convex compact set if (A,e) and (V,K) are in 

spectral duality, and we define K to be "strongly spectral" if 

in addition the spectral units e~ of all a E A(K) are upper 

semi-continuous in the given compact topology on K • The latter 

concept is of interest because it provides a necessary and suffi­

cient condition that A(K) be closed under the functional cal­

culus by continuous functions (Theorem 2.6). It is proved in§ 2 
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that the unit balls of Lp -spaces ( 1 < p < co) are strongly spectral. 

(Theorem 2.5 and Proposition 2.10; see the remarks after Theorem 2.5 

for extension to more general "rotund" convex compact sets). 

Also it is proved that every (Choquet) simplex is spectral, and 

that a simplex is strongly spectral iff it is a Bauer simplex, 

i.e. iff its extreme boundary is cl~sed (Theorem 2.4 and Proposi­

tion 2.9). For a simplex K one can also define a functional 

calculus by means of representing boundary measures ~x for points 

x E K (of. [A1 ; Th.II. 3.6]). Specifically, for a E A(K) and 

for a bounded Borel function ~ one can define ~(a) E Ab(K) by 

~(a)(x) = ~x(~oa) • This functional calculus is shown to coincide 

with the one given by our spectral theory (Proposition 2.8). 

In § 3 we begin with a von Neumann algebra ~ , and we 

define A to be the self-adjoint part of ()L, and V to be the 

self-adjoint part of the pre-dual OL* • If e is the identity 

of a and K c V the normal state space of Ol , then (A, e) and 

(V,K) are shown to be in spectral duality, and the functional 

calculus defined by our spectral theory will coincide·with the 

customary functional calculus for self-adjoint operators (Proposi­

tion 3.4). It is also shown that many of the concepts from our 

general spectral theory can be identified with familiar ones from 

operator theory: the projective units in A are the (self­

adjoint) projections in ~ , the P-projections on A are the 

maps a ~ pap where p E at is a projection, and the projective 

faces of K are exactly the norm closed faces. Moreover, two 

elements of A are compatible iff they commute (as elements of ot), 

and it follows from this that the center Z(A) will coincide with 

the self-adjoint part of the (algebraic) center of Ot . In addi­

tion we remark that by the general results of § 1 there is asso-
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ciated a unique affine retraction p: K ~ co(FuF*) to every 

projective (= norm closed) face F of K • This retraction 

(or rather its dual) gives an example of a conditional expectation 

in ~ , and the uniqueness of p can also be derived from general 

uniqueness theorems for conditional expectations in von Neumann 

algebras (see the remark after Theorem 3.5). 

In the second half of § 3 we treat a c*-algebra at with 

identity e by means of the results from the first half of this 

section. Now we are working in the spectral duality of (A,e) 

and (V,K) where A is the self-adjoint part of the enveloping 

N F't1 ** von eumann algebra v~ and V is the self-adjoint part of the 

due 1 space ot * of a with K c V the state space of CJl- • 

(Recall that crt.* ** can be identified with the pre-dual of Ot and 

K with the normal state space of ~** , of. [D2 ; § 12]). Note 

also that the self-adjoint part of Ot can be identified with A(K) 

and the self-adjoint part of at** with Ab(K) , so the results 

of § 2 will also apply in this case. We show first that with the 

weak* topology the state space K of the given c*-algebra is a 

strongly spectral convex compact set (Theorem 3.6). Using the 

result (due to Effros [E] and Prosser (P]) that the weak*-closed 

faces of K are semi-exposed, we prove that among the norm closed 

(hence projective) faces of K , the weak* closed ones will be 

exactly those for which the corresponding projective unit (alias 

the "carrier projection" in ()1,**) is a weak* upper semi-continuous 

function on K (Theorem 3.7). In § 3 there is also a brief dis-

cussion of the connection between concepts of our general spectral 

theory and one-sided ideals in at* and 0t . We also include 

a proof of the simple fact that the state space K is a simplex 

(and then necessarily a Bauer simplex) iff the given * C -algebra 
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is commutative. The section closes by a discussion of the geometry 

of state spaces for finite dimensional c*-algebras. 

In§ 4 we assume that (A,e) and (V,K) are in spectral 

duality and that A ~ v* • Under this hypothesis we prove that 

every face of A+ which is closed in the weak topology determined 

by the duality with V (the weak* topology), will be of the form 

im+P for a P-projection P on A • As a corollary we conclude 

that every semi-exposed face of K is exposed, hence projective. 

This in turn yields completeness of the lattice of projective 

units (previously shown to be a-complete), generalizing the 

completeness of the projection lattice of a von Neumann algebra. 

We next prove that each x E V admits a unique "orthogonal" de-

composition into positive and negative parts, i.e. a decomposi-

tion x = y- z where y,z > 0 and llx!l = llYII + Hzll • For the 

dual of a c*-algebra this was first proved by Grothendieck [Gr]). 

Finally we give a general definition of a "trace'', and we give a 

geometric proof that the traces always will form a linearly com­

pact simplex (Theorem 4.7). It is then proved that our "traces" 

coincide with the usual ones for the important special cases of 

von Neumann algebras and c*-algebras (Theorem 4.10). As a conse­

quence we obtain a new proof of the fact (first proved by Thoma ~] 

and Effros-Hahn [EH]) that the traces of a c*-algebra form a 
. * weak compact simplex. 
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~ Geometric properties of projective faces. 

Throughout this section we assume that (A,e) and (V,K) 

are order-unit and base-norm spaces in separating order and norm 

duality. As in Part I we shall use the terms "weak" and "weakly" 

to denote the weak topologies defined on A and V by this 

duality. 

Definition. A subspace M of V splits into subspaces M1 

and M2 if M is the direct ordered sum of M1 and M2 , i.e. 

if M = M1 <!> M2 and the corresponding projections Pi : M _. Mi 

(i= 1,2) are positive. M splits conjinuously into M1 and M2 

if the projections P. 
l 

(i= 1 ,2) are also weakly continuous. 

Lemma 1.1. Let M be a subspace of V which splits into 

subspaces M1 and M2 
be P1 and P2 • Then 

and let the corresponding projections 

( 1 • 1 ) for + x E M , i = 1,2. 

If there exists a bounded positive Erojection R of v onto M, 

then p 1..z.E2 are bounded with llPil! ~ 1\R II for i = 1 ? 2. 

Proof. If X E M+ , then X = P1x + P2x where Pix E rvr+ 

for i = 1 , 2 . Now 

\lxll = e(x) = e(P1x) + e(P2x) = "P 'I II 1xl. + I!P2x!l , 

and ( 1 • 1 ) follows. 

If X E Jl1 is arbitrary, then we can decompose X = y-z 

with y,z E v+ and llxll = llyl! + Pzll . (Note that we can not 

always choose y,z E M • There are simple counterexamples 
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with V = ~f) . Assuming that there exists a bounded positive 

projection R from V onto M, we obtain for i = 1,2: 

liP i xjj = j\P.Rx~l = IIP1Ry- pi Rz!l ; l •' 

< IIPiRyl! + !IP iRzjj ~ IIRYII + IIRzll < IIRI!flxll • 

Hence llPill ~ IIRII for i = 1,2. 0 

Note in particular that if the whole space v splits into 

sub spaces M1 and M2 and the corresponding projections are p1 

and p2 ' 
then IIPill ~ 1 for i = 1 '2. Note also that in this 

case Mt = P 21 ( o) n v + is a face of v+ and so M1 n K is a face 

of K ; similarly M2 n K is a face of K • 

Proposition 1.2. If v splits into M1 and M2 t then 

F1 = M1 n K and F2 = M2 n K are complementary split faces of K. 

Conversely, if F1 and F2 are complementary split faces of K 

then v splits into M1 = lin F1 and M2 = lin F2 . 

Proof. Routine verification (of. [A 1; Prop.II.6.1)). 0 

We shall now define some notions which will be used to 

characterize projections R = P + Q for pairs P,Q of quasicom­

plementary P-projections of V • (Recall that this problem is 

' 

of interest only in the non-central case 9 since by Proposition I-4.8., 

R =I when P,Q are central). 

Definition. A weakly continuous positive projection R: V ... V 

is said to be an R-projection if 

( 1 • 2) for X E V+ • 

It is easily verified that a weakly continuous linear map 
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R: V ... V . with range M is an R-projection iff it maps K onto 

M n K and leaves M n K pointwise invariant. It is also easily 

verified that every R-projection is bounded with !IRII _:S 1 . 

Note that (1.2) can be rewritten as e(Rx) = e(x) for 

x E v+ . Since V = v+ - v+ it follows that eo R = e • Hence for 

every R-projection R of V one has 

( 1 • 3) ker R c e - 1 ( 0) • 

Definition. An R-projection R with range M is said 

to be transversal at a convex subset F of M n K if 

( 1 • 4) ker R c ~ . 

The geometric meaning of the requirement (1.4) can best be 

seen by considering the affine hyperplane H = e-1 (1) which 

contains K and is invariant under R (since e oR= e). Recall 

that by definition F n H is the intersection of all supporting 
,... 

hyperplanes of K at F • Hence we may think of F n H as the 

affine "tangent space" to K at F. It follows by means of (1.3) 

that the requirement (1.4) is equivalent to 

( 1 • 5) F + ker R c F n H • 

In other words: R is transversal at F iff R-1 (F) is con-
,.... 

tained in the "tangent space" F n H • 

Theorem 1.3. Let F,G c K and M = lin(FUG) • Th!» F 

and G are guasicomplementary projective faces of K iff: 

(i) F and G are semi-exposed faces of K 

(ii) M splits continuously into lin F and lin G 

(iii) There is an R-projection R of V onto M which 

is transversal at F and G. 
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Moreover, if these conditions are satisfied, then there exists 

just one R-projection R with range M , namely R == P + Q 

where P and Q are the P-projections corresponding to the 

projective faces F and G • 

__ Proof. 1.) Assume first that F and G are quasicomple-

mentary projective faces, and let the corresponding P-projections 

be P and Q • Then 

( 1 • 6) 

( 1 • 7) 

( im P) n K == F , ( im Q ) n K == G 

( ker Q) n K == F , ( ker P) n K == G 

By known properties of P-projections (see Part I) F and 

G will be semi-exposed. Also it is easily verified that M will 

split continuously into lin F and linG , the 11 splitting" being 

performed by the (restriction to M of) the two orthogonal pro­

jections P and Q • 

Defining R == P+ Q we get an R-projection (cf. Part I, 

(2 ,8)). For an arbitrary x E kerR we also have x E ker Q • 

Hence by the smoothness of Q (Part I, (1.13)) and by (1.7): 

.r--+:::- ,.., 
x E ker Q == ker Q = F 

This proves that R is transversal at F . Similarly we 

prove that R is transversal at G • 

2.) Assume next (i), (ii), (iii). Let P
0 

and Q
0 

be 

the two weakly continuous projections of M determined by the 

decomposition M =(lin F)~(lin G) , and define P = P
0
R, 

Q = Q
0

R • By assumption P
0

,Q
0 

and R are positive and weakly 

continuous. Hence P,Q are positive and weakly continuous as well. 

It follows from Lemma 1 .1 that liP 
0

1! ~ 1 and IIQ
0 

II ~ 1 • 
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Hence IIPII .:s 1 and IIQI\ ~ 1 • 

It remains to prove that P and Q are smooth projections 

satisfying (1.6) and (1.7). 

By definition im+P = (lin F) n v+ = cone F , and similarly 

for Q. From this (1.6) follows. 

Clearly F c (ker Q)n K. To prove the opposite relation 

we consider an arbitrary element x E (ker Q) nK , which we decom­

pose as follows: 

( 1 • 8) x = Rx + ( x - Rx) . 

Since P
0

+ Q
0 

is the identity operator on M = im R , we 

have R = (P
0

+Q
0

)R = P+Q. Now the assumption x E ker Q 

entails Rx = Px , and so Rx E (im P) n K = F • Clearly also 

x-Rx E kerR. Hence by (1.8) and by transversality of R at F 

(ker Q) n K c F + ker R c F . 

Since F is semi-exposed, this gives 

~ 

( ker Q) n K c F n K = F • 

This proves the first equality of (1.7). The second is similar. 

show 

( 1 • 9) 

To prove that P is a smooth projection, it suffices to 

~ 

ker P c ker+P 

(cf. Part I, (1.14)). To this end we consider an arbitrary 

x € ker P and decompose as follows: 

( 1 ,1 0) x = Qx + (x- Qx) • 

Now QxEimQclinG. Also x-QxE(kerP)n(kerQ), 

and since R = P+ Q we obtain x- Qx E ker R • Hence by (1.9) 



and by the transversality of R at G: 

"" "" x E lin G + ker R c lin G + G c G ~ 

By (1.7) G = (ker+P)-, and so x E (ker+P)"'. This proves (1.9), 

and P is shown to be smooth. Similarly we prove that Q is 

smooth. 

3.) It remains to prove that P+ Q is the only R-projec-

tion of V onto M • To this end we consider an arbitrary R-pro-

jection S of V such that im S = M • 

Since im(P+ Q) = M we have 

(P + Q)S = S . 

We claim that we also have 

(1.11) (P + Q) S = P + Q , 

from which the equality S = P+ Q will follow. 

This claim is most easily proved if we pass from V to A • 

We consider an arbitrary + a E A • For x E im+P c im S , we have 

* * * (S P a)(x) = a(PSx) = a(Px) = (P a)(x) ; 

and for x E ker+P = im+Q c im S , we have 

* * (S P a)(x) = a(PSx) = a(Px) = 0 • 

* * * Hence S P a coincides with P a on and vanishes on 

But * P a is the only element of A+ with this property. 

(Cf. the uniqueness statement of Part I, (2.22)). Thus 

* * * S P a = P a , and since was arbitrary and 

* * * this gives s p = p • Hence PS = P • Similarly we prove 

QS = Q • N.ow ( 1 .11) follows, and the proof is compiete. D 
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Corollary 1.4. Let F and G be semi-exposed faces of K. 

Then F and G are quasicomplementary projective faces iff 

F' n cr c e - 1 ( o) and 

(1.12) v = (lin F)® (lin G)<f> (F'n'G) 

with weakly continuous projections P: V ... lin F , Q: V ... lin G, 
..., ..... 

S: V ... FnG, of which P and Q are also positive. 

Proof. 1.) Assume first that F and G are quasicomple-

mentary projective faces corresponding to P-projections P and Q. 

We shall first prove that R = P+ Q will satisfy: 

ker R = F n G • 

The relation ker R c F n G will follow since R is trans­

versal at F and G • If x E F n G , then by the smoothness of Q 

( c f • Par t I , ( 1 • 1 3 ) ) : 

..... '+" -r-f 
x E F = im P = ker Q = ker Q • 

Hence Qx = 0 . Similarly we find Px = 0 , and so Rx = 0 • 

This proves (1.13). 

By ( 1.13) and (1. 3) we have F n G c e-1 ( 0) • 

Defining S =I- R and using (1.13), we get 
,.., ..... 

im s = Fn G • 

Hence P,Q,S will determine a decomposition (1.12) as desired. 

2.) Assume next that the hypotheses of the Corollary are 

satisfied. We define R = P+ Q = I- S and observe that 

(1.14) ker R = im s = F n G c e-1 ( 0) • 

From this we conclude that 

e ( Rx) = e ( x- Sx) = e ( x) for x E V • 
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Since R = P+ Q is positive, we obtain I!Rx[l = Hxll for x E v+ • 

Hence R is an R-projection. Also it follows from (1.14) that 

R is transversal at F and G 

Now the conditions (i)_, (ii), (iii) of Theorem 1.3 will be 

satisfied, and the proof is complete. 0 

The following result will be useful later. 

Proposition 1.5. If F and G are quasicomplementary 

projective faces of K , then 

( 1 • 1 5 ) ( 1 in F (±) 1 in G) n K = co ( F U G) • 

Proof. To prove the non-trivial part of (1.15) we consider 

an arbitrary x E (lin F(f) lin G) n K • If P and Q are the 

P-projections of V corresponding to F and G , then P+ Q is 

an R-projection onto lin F(f) lin G ; hence (P+ Q)x = x • 

If Px = 0 , then x = Qx E (im Q)n K = G • Similarly, 

Qx = 0 implies x E F • Thus, if Px = 0 or if Qx = 0 , then 

x E co(FU G). 

If Px I 0 and Qx I 0 , then I!Pxll and I!Qx!l are non-zero 

positive numbers which by formula (2.7) of Part I will satisfy the 

equation 

* * IIPxll + l!Qxll = (P e + Q e) (x) = 1 • 

we get a convex combination 

X = A.y + ( 1 - A) Z , 

where y E ( im P) n K = F and z E ( im Q) n K • 0 
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Corollary 1.6. The R-projection R = P+ Q associated with 

a pair ~G of quasicomplementary projective faces will map K 

onto co(FUG). 

Definitions. A map p of K onto a convex subset K' is 

said to be an affine retraction of K onto K' if it is affine 

and leaves K' pointwise invariant, i.e. if 

(1.16) p ( A.y + ( 1 - A. ) z ) = X p ( y ) + ( 1 - X ) p ( z ) , 

for y,z E K , 0 < h < 1 , and if p(x) = x for x E K' . An 

affine retraction p: K ~ K' is said to be transversal at a convex 
#'OJ 

subset F of K' if for y,z E K , p(y) = p(z) implies y- z E F. 

By definiton, an R-projection R of V onto a subspace M 

will determine an affine retraction p = RIK of K onto M n K ; 

and transversali ty of R at F c M n K will imply transversali ty 

of p at F . In particular, if F and G are quasicomplement­

ary projective faces of K , then the corresponding R-projection 

R = P+ Q (cf. Theorem 1.3) will determine an affine retraction p 

of K onto co(F U G) ( cf. Corollary 1. 6); and the affine re-

traction p will be transversal at F and G • 

We shall now turn to an important special case where it is 

possible to extend affine retractions of K to R-projections of 

the surrounding space V and thereby obtain an intrinsic char­

acterization of pairs of quasicomplementary projective faces in 

terms of geometric properties of the convex set K • 

1 t G K t A -~ v*. Theorem .7. Le F. c and suppose tha 

Then F and G are quasicomplementary projective faces 

of K iff: 
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(i) F and G are semi-exposed faces of K . 
(ii) F and G are affinely independent. 

(iii) There is an affine retraction p of K onto 

co~FUG~ which is transversal at F and G • 

Moreover, if these conditions are satisfied, then there exists 

just one affine retraction p of K onto co(Fu G) ; specific­

ally p = ( P + Q) I K where P and Q are the P-pro j ections 

corresponding to F and G • 

Proof. 1.) The necessity of the above conditions (i), (ii), 

(iii) follows immediately from the corresponding statements of 

Theorem 1.3. 

2.) To prove sufficiency, we assume that the requirements 

(i), (ii), (iii) above are satisfied, and we shall verify state­

ment (iii) and then statement (ii) of Theorem 1.3. 

We claim that if 

(1.17) '\I I I I 
AY - ~z = "' y - ~ z 

where and I I y,y ,z,z E K , then 

(1.18) A.p(y)- ~p(z) = A.
1 p(y')- ~ 1 p(z') • 

To prove this implication, we evaluate e at both sides 

of (1.17) and obtain \ I I 
"'+~=A.+~. We denote this common 

value by a and divide through by it in (1.17). Then we obtain 

an equality of two convex combinations: 

A IJ. 1 
I 

-y +- z = a. a. 
A' I -y +1-Lz a a. • 

Since p is an ~ffine map, we get 

~ p(y) + ~p(z') = f P(y') + ~p(z) , 
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from which (1.18) follows. 

An arbitrary X E v admits a decomposition X = 'Ay- 1-LZ 

with A,~~ 0 and y,z E K , and we write 

(1.19) Rx = 'Ap ( y) ... ~p ( z ) • 

Note that the map R: V .... lin(F U G) is well defined by virtue 

of (1.18), and also that R is an extension of p from K to 

the whole linear space V • 

Clearly R is linear. ·Also I!Rll .::;: 1 , since we can choose 

the above decomposition x = 'Ay- \.LZ such that A.+ 1.1. = llxll and 

since II P ( Y) II = II P ( z) II = 1 By the assumption ,.... * A = V , a bounded 

linear operator on V is also continuous with respect to the weak 

topology determined by the duality of V and A • Hence R is 

weakly continuous. 

If x E lin(FU G) = lin F+ lin G , then we can write 

( 1 • 20) '\I I I I x = Xy - ~z + A y - ~ z , 

where ','',••,••
1 > 0 ·, y,z E F ·, y' z' E G Now by l1'near1'ty fl. A r"' !- t • 

of R we get Rx = X ' and we have thus shown that R is a pro-

jection of v onto lin(F U G) • 

Clearly X E v+ implies Rx E v+ and also 

II Rx II = II x //· II P ( fxrr ) II = II x II • 

Thus, R is an R-projection. 

In order to prove that R is transversal at F , we consider 

an arbitrary x E ker R and decompose x = A.y- ~z where ), ,~ .:::, 0 

and y,z E K. Now 0 = A.p(y)- ~p(z) • Evaluating e at the 

right hand side of this equation, we find A. = 1..J. If A = ~ = 0 , 
,.... 

then x = 0 E F • Otherwise we conclude that p(y) = p(z) • 
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Since p is supposed to be transversal at F , this implies 

y- z E F • Hence x = A.( y-z) E F , and so we have proved that R 

is transversal at F • Similarly we prove that R is transversal 

at G • 

We now turn to statement (ii) of Theorem 1.3. By the affine 

independence of F and G one has (lin F) n (lin G) = [0} 

(cf~ e.g. [A1; Prop. 11.6.1]), and hence 

(1.21) lin ( F U G) = (lin F) <!> (lin G) • 

Let the corresponding projections of lin(FU G) onto lin F 

and linG be P
0 

and Q
0 

, respectively. We shall prove that 

P
0 

and Q
0 

are positive. 

To this end we consider an arbitrary x E Kn lin(FU G) • 

Then x = Rx = p(x) • Therefore x E co(FU G) , say that 

x = AY + (1-A.)z , 

where y E F , z E G and 0 < A ~ 1 • By the uniqueness of 

decompositions with respect to 

we must have P
0
x = A.y E v+ and 

the positivity of P
0 

and Q
0 

• 

lin F and linG ( cf. 

Q
0
x = (1-A)Z E v+ • 

(1.21)), 

This proves 

Next observe that P
0 

and Q 
0 

are bounded (by Lemma 1.1), 

and so they are weakly continuous. Now we have proved that 

lin(F U G) splits continuously into lin F and linG • 

3.) Finally we assume conditions (i) (ii) (iii) of the 

theorem and we consider an affine retraction cr of K onto co(F U G). 

As above we extend cr to an R-projection S: V ... lin(F U G) , 

and we use Theorem 1. 3 .to conclude that S = R • Hence cr = p , 

and the proof is complete. 
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Theorem 1.7 is useful for identification of projective faces 

in special cases. As examples we shall determine pairs of quasi-

complementary projective faces for a few 3-dimensional convex 

sets K • We shall think of K as base .of a cone v+ of posi­

tive elements in the (4-dimensional) space V , and we shall take 

A to be the (4-dimensional) space of affine functions on K with 

e(x) = 1 for all x E K • (Cf. the example shown in Part I, 

Fig. 3). '" * Now A= V and Theorem 1.7 applies. 

Y:={x} 

Fig. 1 Fig. 2 Fig. 3 

Fig 1. shows a tetrahedron with two opposite edges F and G. 

They are quasicomplementary projective faces. (In fact, they are 

even complementary split faces). Here co(Fu G) is the whole 

set K , and the unique affine retraction of K onto co(FU G) 

is the identity mapping. 

Fig. 2 shows a section of a circular cylinder, determined 

by two planes intersecting the surface of the cylinder in two 

ellipses which at a point x have a common tangent perpendicular 

to the axis. Now the singleton F = (xJ and the opposite line 

segment G on the cylindrical surface will be quasicomplementary 

projective faces. Here co(FU G) is the triangle spanned by F 
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and G , and the unique affine retraction of K onto co(FU G) 

is the orthogonal projection onto this triangle. 

Fig. 3 shows a sphere with two antipodal points x and y • 

Now F = {xJ and G = {yJ will be quasicomplementary projective 

faces. Here co (F U G) is the diameter between x 

the unique affine retraction of K onto co(F u G) 

genal projection onto this diameter. 

and y , and 

is the ortho-
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i_£. Spectral convex sets. 

In this section we shall assume that K is a compact convex 

subset of a locally convex Hausdorff space E • We shall use the 

customary symbol A(K) to denote the space of all continuous 

affine functions on K and the symbol Ab(K) to denote the space 

of all bounded affine functions on K • Also we shall denote by 

At(K) (respectively A~(K)) the subspace of Ab(K) consisting 

of pointwise limits of increasing (decreasing) nets from A(K) • 

Note that these spaces are respectively the l.s.c (u.s.c.) affine 

functions K . of. ~ Cor. I.1.4]. The function e E A(K) on . e.g.,(A1 , 

is defined by e(x) = 1 for all X E K • 

We assume without lack of generality that K is regularly 

embedded in E (see (A 1 ; Ch II, § 2]). Then E can be identi­

fied with A(K)* endowed with the weak* topology, and every x E E 

can be written in the form 

( 2.1 ) X = "Ay- \-I.Z , 

where y,z E K and A,\.J. E ~ • Also (E,K) will be a base-norm 

space and the identification of E with A(K)* will be an isome-

try. 

Now every a E Ab(K) can be uniquely extended to a bounded 

linear functional on E , which we shall also denote by a • In 

fact, for every x E E 

(2.2) a(x) = "Aa(y) - ua(z) 

where x is given by (2.1), and it follows by an argument similar 

to the proof of the implication (1.17) => (1.18) that the extended 

function is well defined. Clearly every bounded linear functional 

on E restricts to a bounded affine function on K • Hence we 

can identify Ab(K) with E* and then in turn with A(K)** • 



The spaces (A(K),e) and (Ab(K),e) are seen to be order-

unit spaces whose norms will coincide with the sup-norm for func­

tions on K • Since the unit ball of the base-norm space E is 

given by E1 = co (Ku - K) , we obtain from ( 2. 2) that for every 

a E A b (K) 

(2.3) nail = supla(x) 1 
XEK 

= supja(x)j • 
xEE1 

From this it follows that the identification of the order-unit 

space (Ab(K),e) with the dual of the base-no"rm space (E,K) 

will be an isometry. 

The interrelationship between the various spaces can be 

summarized in the following diagram where 

isomorphism: 

e E A(K) 
(order-unit space) ' 

K c E ~ A(K)* 

(base-norm space) 

denotes isometric 

b ,.... *tv ** , e E A (K).r= E =A(K) 
(order-unit-space) 

The order-unit space (A(K),e) and the base-norm space (E,K) 

will be in separating order and norm duality, and likewise for the 

order-unit space (Ab(K),e) and the base-norm space (E,K) • Of 

these ·two dualities the latter will be the most relevant for our 

investigations since Ab(K) is pointwise monotone complete (and 

so requirement (3.1) of Part I is satisfied). 

Definition. A convex compact set K is said to be spectral 

if (Ab(K),e) and (E,K) are in spectral duality. 

We now proceed to give examples of spectral convex sets, 

and we start with some auxiliary results. 
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Proposition 2.1. The space E is order com~ete. ~ 

specifically, every descending net [xa} from E+ has a greatest 

lower bound x in X is the limit of in the 

norm of E • 

Proof. It follows by the i~entification of E with A(K)* 

that tx~} has a greatest lower bound x E E+ , which is also the 

weak* limit of {xa} • Since e E A(K) and xa ~ x for all a , 

we obtain 

and the proposition is proved. 0 

Proposition 2.2. If F is a split face of K , then F is 

a projective face of K in the duality of (Ab(K),e) and (E,K); 

the quasicomplement F* is equal to the customary complement F' 

(see e.g. [A 1 ; p. 132] for definition); the projective unit u 

associated with F is given by u(x) = A where x E K and A 

is determined by the uni~e decomposition 

(2.4) ' A E [0,1], y E F, z E F . 
' x = AY + (1-A)z , 

and the P-projection P : Ab(K)- Ab(K) associated with F is 

given by (Pa)(x) = Aa(y) for a E Ab(K) 

Proof. Since Ab(K) ~ E* , we can apply Theorem 1.7 to the 

faces F and F' • Defining u(x) = A where A is given by 

(2.4), we obtain a function in Ab(K) attaining its extreme 

values 1 and 0 at F and F' respectively. Hence F and 

F' are exposed faces, and requirement (i) of Theorem 1.7 is satis­

fied. By the definition of a split face, F and F' are affinely 

independent; hence (ii) is satisfied. Also K = co(FUF') , and 
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clearly the identity mapping p : K - K is transversal at F and 

F' • Hence (iii) is satisfied. It follows that F and F
1 

are 

quasicomplementary projective faces, and it is easily verified 

that the function u and the projection P defined in the propo­

sition, will have the properties defining the projective unit and 

the P-projection associated with F • 0 

Remark. It is perhaps of interest to note that a projective 

face F is a split face of K iff the corresponding P-projec­

tion P of Ab(K) is central (i.e. compatible with all a E Ab(K), 

cf. Part I, § 4). For if F is a split face, then Proposition 2.2 

shows that P satisfies P + P' = I • Then Pa + P' a = a for all 

a E Ab(K) , so P is central. Conversely, if P is central then 

P+ p' = I follows, and this implies that K is the direct convex sum 

* *' of F = K n imP and F# = K n im P1 
, so F is a split face of K. 

We recall that K is a Choquet simplex iff E is a vector 

lattice (Cf. e.g. [A 1 ; Ch II, § 3]). If K is a simplex, then 

E ~ A(K)* is known to be an L-space (cf. e.g. [Sem]), and so 

Ab(K) = E* is an M-space. In particular, Ab(K) is a vector 

lattice, and for every a E Ab(K) the positive and negative parts 

of a in the vector lattice Ab(K) are given by the following 

formulas for 

(2.5) 

(2.6) 

+ X E E 

a+(x) = sup[a(y)IO < y ~ x} , 

a-(x) = -inf(a(z) I 0 < z < x} • 

(Cf, e.g. [KN; Prop. 23.9]). 

Lemma 2.3. Su!n~ose that· K is a Chog,uet sim:Elex. If 

a s Ab~K~ then for every_ X E E+ there exists a decomEosition 

X = y_+z where Y.zZ E. E+ such that 
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(2 .. 7) 

Proof. By (2.5) we can find a sequence (yn} such that 

0 < Yn ,:s x and 

Now we observe that for any two elements y,y' E E+ such 

that y ,:s x and y' < x : 

(2.9) a(y) - a(y Ay') = a(yv y') - a(y') < a+(x) - a(y') 

Applying (2.9) with y = y n and 
I 

Y = Yn+1 we obtain from (2.8) 

( ) ( ) 2-n-1 
a Y n - a Y n " Y n+ 1 < ' 

and then in turn 

(2.10) +( ) ( ) -n -n-1 · a x - a y n A y n+ 1 ~ 2 + 2 • 

Next we may apply (2.9) with y = Yn A Yn+ 1 

then proceed by induction to get 

and t 

y = Yn+2 ' and 

(2.11) +( ) ( ) 2-n 2-n-1 2-n-k a x - a y n A ••• A Yn+ k < + + • , .+ 

for k = 1,2, •••• 

We denote by un the greatest lower bound of 

(Yn"···"Yn+k}k=1 , 2 , •..• By Proposition 2.1 this sequence con­

verges to ~ in the norm of E , and since a E Ab(K) is norm 

continuous, we get from (2.11) 

(2.12) a+(x) - a(u ) < 2-n+ 1 
n - , n= 1,2, •••• 

Finally we d·enote by y the least upper bound of the increasing 

sequence (un} • Then 0 ~ y ~ x , and by (2.12) a+(x) = a(y) • 

,4 .. 
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Now we write z = x- y.~ 0 • Then by (2.6) 

a(x) = a+(x) - a-(x) ~ a(y) + a(z) = a(x) • 

Here the equality sign must hold throughout. Hence -a-(x) = a(z), 

and the lemma is proved. 0 

We remark for later reference that if we assume x E K 

i~ Lemma 2.3 and if we normalize y and z , i.e. if we replace 
I 

b ,-1yl the original vectors y A and ( 1-A) z 
1 

where ~ = llYII = e ( y), 

then we obtain a convex combination 

(2.13) X = "Ay I + ( 1 -A ) z I 

where I I E K and where by ( 2. 5), (2.6): y ,z 
' 

{ a+(yl) = a( y I) , a-(yl) = 0 , 
(2.14) 

a+(z 1
) a-(z 1

) -a(z 1
) = 0 , = • 

We also recall that a face of a Choquet simplex K is 

split iff it is norm closed. (Ae-El] • From this it follows 

by Proposition 2.2 that the projective faces of a Choquet simplex 

K (in the duality of (Ab(K),e) and (E,K)) are exactly the 

norm closed ones. 

Theorem 2~4. Every Choquet simplex is spectral. 

Proof. Assuming K to be a Choquet simplex we shall prove 

that (Ab(K),e) and (E,K) are in spectral duality. The space 

Ab(K) is pointwise monotone complete, so requirement (3.1) of 

Part I is satisfied. Clearly every exposed face of K is norm 

closed, hence projective, so requirement (3.2) of Part I is also 

satisfied. 

We shall prove that a+JLa- for every a .E Ab(K) which 
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will guarantee we,ak spectral duality by virtue of Proposition 6.1 

. of Part I. 

For given a E Ab(K) we define the two norm closed faces 

(2.15) F = ( x E K I a+ ( x) = 0} , G = ( x E K I a- (x) = 0} 

By the above remarks F and G are projective (in fact "split"). 

Now it follows from the equivalence (3.20) of Part I that 

F = ( x E K I rp (a+ ) ( x) = 0} , G = ( x E K I rp (a-)( x) = 0} • 

Hence rp(a+) is the projective unit corresponding to the pro­

jective face F* = F 1 
• Similarly rp(a-) is the projective unit 

t G# -- G I • corresponding o 

By (2.13) and (2.14) K = co(FU G). This implies F'n G'=¢ 

(cf. e.g. (A1 ; Prop. II. 6.7]) • By the definition of the com-

1 t f f f t t F ' c (G')' -- (G')#. p emen o a ace o a convex se , we ge 

Hence F
1

~ G' , and so rp(a+)j_rp(a-) • Thus we have proved 

a+j_a-. 

It remains to prove that (Ab(K),e) and (E,K) are in 

spectral duality and not only in weak spectral duality. In this 

connection we observe that it follows from the explicit form of 

the P-projection associated with a given projective (and "split") 

face F of K that every P-projection on Ab(K) is compatible 

with every element of Ab(K) (cf. Proposition 2.2). This implies 

that every P-projection belongs to the £P-bicommutant of a given 

element of Ab(K) • By Corollary 6.7 of Part I, this completes 

the proof. 0 

Theorem 2.5. If K is affinely isomorphic to the unit ball 

of LP(u) for 1 < p < oo 1 then K is spectral. 
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Proof. Let K be as announced above. In particular K 

is centrally symmetric, and we shall denote the point which is 

opposite to a given'point X by 
I 

X Again the space Ab(K) 

is pointwise monotone complete, so requirement (3.1) of Part I 

is satisfied. 

By elementary properties of LP(~) the only faces of K 

are the ones of the form (y) where y is an extreme point 

(K is "strictly convex"). Also we note that for every extreme 

point y of K there exists a bounded affine function a on K 

attaining its supremum-value at y and that a is unique up to 

a constant factor and an additive constant; or otherwise stated 

that K admits a unique supporting hyperplane at y (K is 

"smooth" ) • (For proofs, see e.g. [K0; p. 351] ) • 

Now it is seen by elementary arguments similar to the ones 

used in the proof of Proposition 6.9 of Part I, that every face 

F = (yJ of K is projective with F* = (y') , that the associ­
b . 

ated projective unit u is the unique element of A (K) which 

attains its supremum-value 1 at y and its infimum-value 0 

at I 
y , and that the associated P-projection is given by 

(2.16) P*x = u(x)y , all x E E • 

From this it follows that an element of Ab(K) is compatible 

with P iff it is of the form o,u + ~ for o,,~ E JR. • 

We now consider an arbitrary a E Ab(K) and define 

a = infxEKa(x) and 13 = supo.EKa(x) • We know that there exist 

points y,y
1 

E K such that a(y) =a and a(y') = 13 (weak 

compactness of the unit ball of LP(~) ; note also that y and y' 

are unique and that ' y is the ~pposite of y). By the above 

remarks ¢,(y},(y 1 ),K are the only projective faces of K com-
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patible with a • Therefore there exists for every A E JR a 

unique projective face F compatible with a such that a_s X 

Ollll F and a > ')... on F:/F • In fact, F = ¢ if A < ('X. 9 F= [Y} if 

ex. < A < 13 , and F = K if A ~ 13 . This shows that (Ab(K),e) 

and (E,K) are in spectral duality, and the proof is complete, 0 

Note that the above proof will go through under much more 

general hypotheses. The essential requirements are that K shall 

be strictly convex and smooth, and that every a E Ab(K) shall 

attain its infimum-value. (By James' Theorem [Ja] the latter 

requirement is equivalent to compactness of K in the weak topo-

logy * b cr(E 1 E) = cr(E,A (K))) • 

Throughout this section we have assumed that E is endowed 

with a locally convex Hausdorff topology in which K is compact 

(the weak*-topology when E is identified with A(K)*) • So far 

we have made no use of this assumption since we have only had to 

work in the norm-topology and in the weak topology defined on E 

by the duality with Ab(K) ~ E* • But in the remaining part of 

this section we shall study properties related to the given 

(weak*-) topology on K • In this connection we shall need the 

spaces Af(K) and A+(K) defined in the beginning of this sectio~. 

Definition. A spectral convex compact set is said to be 

strongly spectral if for every a E A(K) the spectral units 

all satisfy the requirement e~ E A~(K) • 

For the proof of the.next theorem we remark that A~(K) is 

closed under addition and under multiplication by positive real 

numbers, and ·also that it is closed under pointwise limits of 

bounded descending nets; The same statement will hold for At(K) 

if the word "descending" is replaced by "ascending". 
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Theorem 2.6. Let K be a spectral convex compact convex 

set. Then the following statements are equivalent: 

(i) K is strongly spectral. 

(ii) Xu(a) E A+(K) for all open sets U CE and all a E A(K). 

(iii) p(a) E At(K) for all bounded lower semi-continuous 

functions ~ on m and all a E A(K) • 

. (iv) . p(a) E A(K) for all pE C(cr(a)) and all a E A(K) • 

Proof. (i) => (ii) We first consider an open interval 

(~,~) and a function a E A(K) • By Proposition 7.6 of Part I 

X(a,co)(a) = ( t- X(-oo,et]) (a) = e - e~ E At (K) , 

and 

Hence 

An arbitrary open set U cR 
co 

union u (et.,s.)·, and by writing 
i=1 ]. ]. 

can be written as a disjoint 
n 

~n = .~ 1 x(a. c ) , we obtain 
J.= i'~i . . 

~n /t Xu • 

It follows that ~n(a)~ Xu(a) • By the result just proved, 

~n(a) E At(K) • Hence also Xu(a) E At(K) • 

(ii) => (iii) We next consider a bounded l.s.c. function 

~ on 1R and a function a E A(K) • 

Let a < inf ~(s) < ~ , and let 
seJR 

y =(A.}~. be a partition 
l 1=0 

of [a,sJ i.e. a= A0 < A1< ••• <An = s . By lower semi-conti­

nuity the sets Ui = ~- 1 ((Ai,oo)) are open for i = 1, ••• ,n. 
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We now define 

n 
Wy = a.t + E (X.-A. 1)xu 

i=1 l. l.- i • 

By virtue of (i), Vy(a) E A~(K) • Clearly 

ly) as the partition is being r~fined. Hence 

•'• ~rn (even uniform-
'¥ Y'. T 

cp(a) E Af'(K) • 

(iii) => (iv) If cp is a bounded continuous function on R 

and a E A(K) , then we may apply (iii) to cp and -cp , and ob­

tain cp(a) E At(K) n Ai- (K) • Therefore .:p(a) is both upper and 

lower semi-continuous, and so cp(a) E A(K) • Clearly this result 

will remain valid if cp is defined only on a(a) • 

(iv) => (i) For given X E ~ and a E A(K) we consider 

a sequence [cp) of continuous functions on ~ such that 

cpn~X(-oo,X]. Then ~n(a) E A(K) by virtue of (iv), and it fol­

lows that e~ = X(-oo,A](a) E A~(K) • This completes the proof. 0 

We now return to spectral convex sets of the two types 

discussed in Theorem 2.4 and Theorem 2.5. In this connection we 

recall that if K is a Choquet simplex, then every point x of 

K is barycenter of a unique positive (in fact, probability-) 

"boundary" measure \J.x ("boundary" means "maximal in the Choquet 

ordering"). If K is metrizable, then the "extreme boundary", 

~ (K) (i.e. the set of extreme points) is a G6-subset of K , and 

a positive measure u on K is a boundary measure iff 

!l(K-...... ~(K)) = 0 • Recall also that the mapping x ... \J.x is Borel 

with respect to the given compact topology of K and the weak* 

(or "vague") topology of the space M(K) of measures on K , and 

that this mapping is continuous iff ~(K) is closed. (See 

.[A1; Ch II, §§ ,,4] for proofs). 
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We shall also need the following elementary result, which 

we state as a lemma for later references. 

Lemma 2.7. If B is a Borel subset of a Choquet simplex K, 

then F = (x E K I IJ.~(13) = 1) and G = {x E K 1\..L~(B) = 0} are comple­

mentary split faces of K • 

Proof. Clearly F and G are.faces of K. For every 

x E K'(F UG) we write A= IJ.x(B) E (0,1) , and we denote by y 

the barycenter of A-1 I \J.x B and by z the barycenter of 
. -1 

(1-~) \J.xi(K,B) • Then it is easily verified that 

X= A.y + (1-A)Z 

is the unique decomposition of x as a convex combination of a 

point in F and a point in G • This completes the proof. 0 

Proposition 2.8. Let K be a Choquet simplex and let 

a E A(K) • Then for every bounded Borel function p and every 

X E K : 

(2.17) 

Otherwise stated: We obtain the (scalar valued) spectral measure 

for a at the point x by transporting the measure \J.~ to the 

real line by means of a • 

Proof. The last equality of (2.17) is merely the defini-

tion of a\J,x • 

To prove the first equality of (2.17), we consider the 

mapping 9: @(cr(a)) ... Ab(K) defined by 

(2.18) for x E K • 
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Clearly 8 is a morphism, and we note that 

(2.19) ( e y )( x ) = I y d ( a\J.x) = I a diJ.x = a ( x ) for X E K • 

Hence 8 satisfies requirement (i) of Theorem 7.9 of Part I. 

To verify requirement (ii) of this theorem, we consider an 

arbitrary Borel set E clli and evaluate exE for an arbitrary 

X E K : 

Now it follows by Proposition 2.2 and Lemma 2.7 that 8XE 

.is the projective unit corresponding to the projective (and in 
. 1 

fact "split") face F = (xEKI~(a- (E))= 1} • Thus, 9XE is 

an extreme point of [O,e] (by Proposition 7.7 of Part I), and 

'requirement (ii) of Theorem 7.9 of Part I is satisfied. By the 

uniqueness statement of this theorem, 9~ = ~(a) for every 

~ E 63(cr(a)) , and the proof is complete. 0 

Note that in the above proof the assumption a E A(K) was 

used only once, to permit the transition from I a diJ.x to a(x) 

in (2.19). Hence (2.17) will remain valid for all Borel functions 

in Ab(K) satisfying the barycentric calculus. 

Note also that by (2.17) we obtain for a E A(K) : 

(2.20) 

from which it follows that the corresponding projective face F~ 

is given by: 

(2.21) 

Proposition 2.9. A simplex K is strongly spectral iff 

~ (K) is closed. (K is a "Bauer simplex" in the terminology 
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Proof. 1 • ) We assume first that ~ (K) is closed. Then 

the mapping X ~ 1-J. 
X 

is continuous from the given compact topology 

topology of measures [A 1 ; Th. II. 4.1]. If 

is a continuous real function, then ~oa is 

continuous, and therefore ~(a): x ~ ~x(~oa) will be continuous. 

Hence, K is strongly spectral. 

of K to the * weak 

a E A(K) and if cp 

2.) We next assume that K is strongly spectral, and we 

note that for an arbitrary simplex K the extreme points .x are 

exactly those for which: 

(2.22) for all a E A(K) 

In fact, if x E ~(K), then by (2.17): 

On the other hand, if x i ~ (K) , then the support of ~x will 

consist of more than one point. Since A(K) separates the points 

of K , the support of a~x will also consist of more than one 

point for a suitable a E A(K) • Hence 

By (2.22) we can express 6(K) by the formula: 

G (K) = n (x EKja(
2

)(x) - a(x)
2 = 0) 

aeA(K) 

and it follows from the continuity of a ( 2 ) that 6 (K )' is closed.[) 

Proposition 2.10. If K is affinely isomorphic to the 

unit ball of LP(!+) for 1 < p < ~, then K is strongly spectral. 

Proof. It follows from the reflexivity of LP(~) 

A(K) = Ab(K) in the present case. Therefore e~ E A(K) 

for every a E A(K) • 0 

that 

= A.J,(K) 
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We close this section by some examples of two and three 

dimensional spectral convex compact sets. The two convex sets 

shown in Fig. 1 and Fig. 3, both have the property that all their 

faces are projective. By Theorem 6.14 of Part I, they are spectral. 

(This will of course also follow directly from the general results 

of Theorem 2.4 and Theorem 2.5 of this section). But the convex 

set shown in Fig. 2 will not be spectral since it has plenty of 

exposed non-projective faces. 

As a new example, consider any smooth strictly convex two 

dimensional compact convex set K (e.g. Fig. 4). 

Fig. 4 

By the remarks after Theorem 2.5 (or else by direct applica­

tion of Theorem 1.7) K is seen to be spectral. In fact, it is 

not difficult to show that the only spectral two dimensional 

compact convex sets are the 2-simplex (the triangle) and the 

smooth strictly convex sets. 

Fig. 5 below shows a circular cone K •· The only proper 

faces of this set are: 

(i) The top-point and the base. These are quasicomplement­

ary projective faces (in fact complementary split faces). 

(ii) The extreme points of the base and the extreme rays 

of the cone. When "diametrically opposite" one such point and one 
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such ray will form a quasicomplementary pair of projective faces. 

(The properties (i)-(iii). of Theorem 1.7 are verified in the same 

way as for the faces F,G of Fig. 2). 

By T~eorem 6.14 of Part I the circular cone K of Fig. 2 

is a spectral convex set. 

Fig. 5 Fig. 6 

Fig. 6 shows a convex set.which combines "simplicial" and 

"rotund" features in a slightly less trivial way than the cone. 

This set may be thought of as a "compressed ball" with a "triangu­

lar equator", and a concrete model may be obtained by inflating 

a balloon which is initially spanned over a triangular ·frame. 

(We will not attempt here to give an analytical expression for 

such a surface). 

The proper faces of this convex set K are: 

(i) The extreme points off the triangle. They are all 

smooth points and will admit unique antipodal points, which are 

also off the triangle. (Antipodal points have parallel tangent 

planes). Two antipodal extreme points p p' , off the triangle 

will form a quasicomplementary pair of projective faces. (Use 

Theorem 1.7). 
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(ii) The edges and the vertices of the triangle. They 

will also form pairs of quasicomplementary projective faces. 

Specifically, the quasicomplement of an edge· is the opposite 

vertex and vice versa. (Use Theorem 1.7 once more). 

Again it follows from Theorem 6.14 of Part I that the 

"compressed ball'' of Fig. 6 is a spectral convex compact set. 

Finally we note that finite dimensional spectral compact 

convex sets are necessarily strongly spectral, since reflexivity 

yields A(K) = Ab(K) = A~(K) • 
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1_2. Applications to operator algebras. 

In this section we shall specialize the general theory to 

the context of operator algebras. There will not be any new 

results on operator algebras in this section, and the presentation 

will be based on standard reference works such as [D2] and [Sa]. 

We will begin with von Neumann algebras and then pass to 

C *-algebras which will be studied by means of their enveloping 

von Neumann algebras. 

For the moment we assume that (A,e) is the self-adjoint 

part of a von Neumann algebra (){, with identity e organized to 

an order-unit space in the usual way. Also we shall denote by 

(V,K) the self-adjoint part of the predual space Ot* organized 

to a base-norm space in the usual way. (Recall that ~* consists 

of ultraweakly continuous linear functionals and that K consists 

of ultraweakly continuous, or "normal", states). By elementary 

properties of von Neumann algebras the spaces (A,e) and (V,K) 

will be in separating order and norm duality,.and note that (A,e) 

will be isomorphic to (V,K)* ~ Ab(K) • Note also that the weak* 

topology on A determined by the duality with V will be the 

same as the ultraweak topology, and recall that multiplication 

in Ot is separately continuous in each variable with respect to 

the ultraweak topology (see e.g. [Sa; 1.8.5]). From this it fol­

lows that a ~ b*ab is a weak* continuous map of A into itself 

for each b E ~ • Recall also that an ascending net from A 

will converge pointwise (on K) to an element of A iff it 

converges in the weak* topology. Hence the requirement (3.1) of 

§ 3 of Part I is satisfied. 

In the sequel we shall sometimes think of the elements of V 

as functions on the von Neumann algebra Ct (or on its self-adjoint 
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part A), and sometimes we shall think. of the elements of A as 

functions on the pre-dual Ct* (or on the state space K c {t*) • 

Therefore we find it convenient to use the symmetric notation 

(a,x) from the first section of Part I. 

For later references we recall that by application of the 

Cauchy-Schwartz inequality to the semi-inner product de~ined 

On 0/, by a state X (i.e. (a,b) _. (b*a,x)) , we obtain the 

following well known formula valid for all a E m + and b E Qt.. : 

( 3. 1 ) 
2 1 * 1 2 

l(ba,x)l = l<(a2 b*) a2 ,x)l ~ (a,x)(bab*,x) 

Proposition 3.1. A map P: A- A is a P-projection iff 

it is of the form 

(3.2) Pa = pap 

for a (self-adjoint) projection p E at and in this case 

P'a = (e-p)a(e-p) • 

Proof. 1.) Assume first that P is of the form (3.2) for 

some projection p E at and let the map Q: A ... A be defined by 

Qa = (e-p)a(e-p) • Clearly P is-positive, weak* (=ultraweakly) 

continuous, P = p2 d , an liP II < 1 • Similarly for Q • 

If a E ker+P then a E A+ and pap= 0. By (3.1) 

(pa,x) = 0 for all x € K ~ and so pa = 0 and ap = (pa)* = 0 • 

Hence 

Qa = a - pa - ap + pap = a , 

On the other hand, . +p a E ~m means pap 

implies 

Qa = (e-p)a(e-p) = (e-p)pap(e-p) = 0 , 

a ' which 
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and so a E ker+Q • 

Hence ker+P c im+Q and im+P c ker+Q • The opposite 

relations follow by interchanging P and Q • Hence P and Q 

are quasi-complementary. 

By Proposition I.2.4 it remains to prove that p* and Q* 

are neutral. We shall do this for Q* • The verification for P* 

is similar. 

Let x EK and assume that I!Q*xll = 1 • Then 1 = (e,Q*x) = 

(Qe,x) = (e-p,x) • Hence (p,x) = 0, and by application of (3.1) 

we find for all a E A+ : 

(a,x)= (pap,x)+ (pa(e-p),x)+ ((e-p)ap,x)+ ((e-p)a(e-p),x) 

= ((e-p)a(e-p),x) = (Qa,x) = (a,Q*x) • 

Hence x E im+Q* , and the first part of the proof is complete. 

2.,) Assume next that P: A .... A is a P-projection, and 

let p = Pe • By Corollary I.2.12, p is an extreme point of 

[O,e] • But the extreme points of the positive part of the unit. 

ball of a von Neumann algebra are known to be projections, and 

the P-projection defined on A by the formula a .... pap is seen 

to have the same positive image as the given P-projection P 

. (Cor. I. 2. 11 ) • 

(Cor. I. 2. 9). 

Therefore the two P-projections must coincide 

This completes the proof. 0 

Corollary 3.2. The projective units in A are precisely 

the projections in Ct • 

Pro.of. By definition the projective units are the. elements 

Pe - pep = p where p is a projection in ()l," 
• 0 



Corollary 3.3. An element a E A is compatible with a 

P-pro j ection P : a -+ pap iff it commutes with the projection p E at .. 

Proof. By definition a is compatible with P iff 

a = Pa + P'a , or equivalently 

(3.3) a = pap + (e-p)a(e-p) , 

Gener~lly 

a = pap + (e-p)ap + pa(e-p) + (e-p)a(e-p) ; 

hence pa = ap will imply (3.3). 

Conversely, from (3.3) we obtain pa = pap and ap = pap 

by multiplication by p from the left and the right; hence 

pa = ap • 0 

From Corollary 3.3 it follows that the 9P-bicommutant of an 

element a E A consists of all P-projections P: a-+ pap such 

that p is a projection in the (relative) bicommutant of a in~. 

Proposition 3.4. If (A,e) and (V,K) are d.efined as 

above, then they are in spectral duality, and the functional 

calculus in A coincides with the customary functional calculus 

for self-adjoint elements of ~ • 

Proof. Let a E A , /1.
0 

E IR ·, and let 

projection of the self-adjoint element a 

be the spectral 

for the value ~. 

By elementary theory of von Neumann algebras, eA is in the 
0 

bicommutant of a in Qt , and by Corollary 3.2 and Corollary 3.3 

above ex is a projective unit in A bicompatible with t~e 
0 

given element a • We denote by F the projective face of K 

which corresponds to the projective unit 



If x E F , then (eh ,x) = 1 , and so 
0 

If x E F* , then (eA ,x) = 0 • This implies that the 
0 

measure on R with distribution A ~ (eA,x) has no mass in the 

interval (-oo,A
0

] , and therefore 

(a,x) =J A deA(x) > ~ 0 • 

Thus by Proposition I.5.2 every exposed face of K is 

projective, so the requirement (3.2) of Part I is satisfied. 

Now by Corollary I.6.7 (A,e) and (V,K) will be in spectral 

duality. 

Clearly the functional calculus defined by this spectral 

duality will be the customary functional calculus, since the 

spectral units are precisely the ordinary spectral projections. 0 

We are now going to look more closely into the geometry of 

state spaces, and we shall need some slightly less elementary 

~esults on operator algebras. 

If F is a. norm closed face of the normal state space of 

a von Neumann algebra a, then there exists a (unique) projec­

tion pF E ~ , called the carrier projection of F , such that 

(3.4) F = (X E K I < PF , X> = 1 } • 

The idea of the proof of this result is to show that the ultra­

weakly closed left ideal 

(3.5) JF = (a E ()t, I (a*a,x) = 0 all x E F} 
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contains a maximal projection q , which will Qe a right unit for 

JF (the proof of this fact is essentially due to Kaplansky [Kap]), 

and then to verify that pF = e - q has the desired property ( 3. 4). 

(For details, see Prosser's memoir [P]) • 

The theorem below will describe the facial structure of K 

as far as the norm closed faces are concerned. In this theorem, 

as in the rest of this section, the terms "projective unit", 

"projective face" etc. are used with reference to the duality of 
b ~ (A (K),e) = (~sa'e) and (V,K) ~ ((ot*)sa'K) • 

Theorem 3.5. Let K be the normal state SEace of a 

von Neumann algebra Ot and let F be a norm closed face of K. 

Then F is a 12rojective face of K. i the associated Erojective 

unit is the carrier Erojection Ep ~considered as an element 

of Ab(K)) ; the associated P-Erojection P is given by 

Pa = EF~F for a s Otsa (~ Ab(K)) ; the quasicomplement F# 

consists of all x E K such tha.t <l2p•x) = 0 ; and the unique 

affine retraction P of K onto co(FU F*) is given by 

(3.6) (a,px) = (pap+ (e-p)a(e-p) ,x) all a E OL sa 

Moreover, F ~ pF is a bijection of the set of norm closed faces 

of K onto the set of £rO j ections in Ot which maps S:Eli t faces 

onto central projections. 

Proof. By the existence of carrier projections for norm 

closed faces and by use of Proposition 3.1 and Corollary 3.2 we 

conclude that every norm closed face F of K is projective and 

that the associated projective unit, P-projection and quasicomple~ 

ment are of the form described in the present theorem. Generally 

the affine retraction p: K ~ co(FU F*) is given by p = p* + P'*; 



hence (3.6) follows by use of the formula Pa = pFapF and the 

corresponding formula for P' • 

The map F ~ pF is injective (cf. (3.4)), and it is also 

surjective since every projection p E 0t determines a norm closed 

face F = [x EKj(p,x) = 1] , and we see that pF = p • 

As we remarked after Proposition 2.2, split faces of K 

correspond to central projections, and thus to projective units 

compatible with all elements of .Ab(K) • By Corollary 3.3 these 

are precisely the central projections in ~ , and the proof is 

complete. 0 
Remark. If a is acting on a Hilbert space H , and if H1 

and H2 are range and null space of a projection p E ~ , then 

every a E Ot can be represented by a 2 X2-matrix (a. ·.) where 
l.J 

is a bounded linear operator from H. into H. • Now the 
1. J 

element pap + (e-p)a(e-p) is represented by the matrix obtained 

from the former by cancellation of the "cross terms" and 

a 21 • By Theorem 3.5 the dual of this "cancellation map" is the 

only possible affine retraction of the state space K onto 

co(FU F#=) where F = (x E Kl (p,x) = 1 J and F:/1= = (x E Kj (p,x) = 0}. 

This result (or rather its dual version) can also be obtained as 

a special case of a uniqueness theorem for conditional expecta­

tions on OL (see [Ar; Th. 6.22) for a specific reference). In 

fact the theory of conditional expectations on von Neumann alge-

bras grew out of "diagonal processes" like the maps 
Il 

a ~ ~ p. ep. 
. 1 1. 1. 
1.= 

where (p1 , ••• ,pn} is a set of orthogonal projections with 
n 

i~ 1 Pi =e. (Cf. e.g. [Neu2 ] and [KS]) • 

After this brief account of von Neumann algebras we pass 

to the * C -algebra case. From now on we assume that (A, e) is 

the self-adjoint part of a C *-algebra OL with identity e 
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organized to an order-unit space in the usual way, and that (V,K) 

.is the self-adjoint part of the dual space Ol* with state space K 

organized to a base-norm space in the usual way. We recall that 

the enveloping von Neumann algebra is the bidual space~** 

endowed with the multiplication and involution obtained by identi-

f . n1** y1.ng vv with the weak (= ultraweak) closure of rr(ot) in 

0D (H ) where TI is the universal representation of Ol- , (see 
TI 

* ' ** [D2 ; § 12)). The space Ot will be the predual of Dt (con-

sisting of ultraweakly continuous linear functionals on ot**) , 

and K will be the set of normal states on 01..** • Therefore we 

may apply the previous results to the duality of Ot* and ~** • 

It is appropriate here to add a few words on the connections 

with the theory of affine functions on convex sets. By a known 

result (due to Kadison) the space (A 1 e) is isometrically 

(linear- and order-) isomorphic to the linear space A(K) of all 

weak* continuous affine functions on the state space K provided 

with the uniform norm. (This holds for every complete order unit 

space; see e.go [A1 ; Th. II. 1.8]) • The. self-adjoint part at** sa 

of Ot ** will be the dual of the space ()l * · = V ; hence it can sa · 
be identified with the space Ab(K) of all bounded affine func-

tions on the base K • Thus we obtain an isometric (linear- and 

order-) isomorphism of at:~ onto Ab(K) t and this representation 

takes ultraweak convergence into pointwise convergence. (Note that 

the elements of K act as ultraweakly continuous linear functionals 

on a**) . Moreover, this representation of ct** onto Ab(K) sa 
will reduce to the original representation for elements of 

A = Qt c M** (In fact, the original representation of ~sa sa V"sa 
is nothing but an embedding into at** followed by restriction 

of the functionals from the domain~* to the smaller domain K), 
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Our main result on state spaces will now follow, essentially 

by summing up our previous discussion of operator algebras. As 

usual the topology of the state space of a C *-algebra will be 

understood to be the weak* topology unless otherwise is stated. 

Theorem__..L_§,. The state space K of a C *-algebra OL is 

a strongly spectral convex compact set. 

Proof. Identifying Qt ;; with A b (K) and using Proposi­

tion 3.4, we conclude that (Ab(K),e) and (V,K) are in spectral 

duality. Hence K is a spectral convex set. 

By Proposition 3.4 the functional calculus in Ab(K) coin­

cides with the customary functional calculus for self-adjoint 

elements of ~** o By elementary spectral theory for operators 

~sa is closed under (real) continuous functions. Therefore 

A(K) is closed under continuous functions, and by Theorem 2.6 

K is strongly spectral. 0 

* We turn now to weak -closed faces, and we shall need the 

following fundamental result: Every weak*-closed face F of K 

is semi-exposed in the duality of (A,e) and (V,K) , i.e. 

F contains all x E K such that (a,x) = 0 for all a E A+ 

vanishing on F • 

This theorem is due to Effros lE; Th. 4.9], and it is also 

implicit in Prosser's memoir [P; § 4). We shall briefly sketch 

the idea of the proof, and we first recall that for given x E K 

and a E (/i ** the functional a ox E OL * is defined on ()[, by. 

b ~ (ab,x) (here the product ab is formed in ~** and x 

acts as a normal state on at**) • Now it can be proved that for 

every weak*-closed face F of K the set· 

(3.7) L = {aoxlaE at**, x E F) 
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is a weak* -closed subspace of ()i. * and that the equality L. n K = F 

holds. The proof of this fact is based on a polar decomposition 

for linear functionals in Qt* due to Tomita [To], Effros -

[E; Th. 3.2, Lem 3.3] and Prosser [P; Lem 3.4]. (See also 

[D2 ; Th. 12.2.4, Prop. 12.2.9)). With the weak* closed subspace L 

at hand one may proceed by a standard Hahn-Banach argument. Speci­

fically, let x E K satisfy (a,x) = 0 for all a E A+ vanishing 

on F , and assume for contradiction that x t F • By the above 

result xi L ; hence there exists b E Of, vanishing on L such 

that (b,x) I 0 • Then the element b*b E A+ will satisfy 

(b*b,y) = (b 1 b*oy) = 0 for all y E F • But Schwartz' inequali~ 

gives 0· < j(b,x)j2 < (b*b,x) , which is the desired contradiction. 

The fact that the weak* closed faces of K are semi-exposed, 

is used in a crucial way in the proof of the next theorem. 

Theorem 3.7. Let F be a norm closed, hence projective, 

face of the state space K of a C *-algebra Qt. , and let pF 

be the corresponding projective unit (=carrier projection). 

Then pF E A~(K) iff F is weak*-closed, and pF E A(K) iff 

F and F* are both weak* closed. 

Proof. 1.) Assume first that F is weak* closed. It is 

well known (and easily verified) that the set 

(3.8) IF = (a E (JL, I (a*a,x) = 0 all x E F} 

is a closed left ideal in a; .hence it contains an ascending right 

approximate unit (uA} (see [D2 ; Prop. 1.7.3]) • Since (uA} is 

a bounded ascending net,it has an ultraweak limit q E ~** • 

For every a E 0t the net (auAJ will converge in norm to a , 

but it will also converge ultraweakly to aq since multiplication 
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is ultraweakly continuous in each variable. From this it follows 

that 

(3.9) aq = a all a E IF 

In particular uA.q = UA. for all A • Passing to ultraweak 
2 limits, we obtain q = q • Hence q is a projection in rx** • 

We claim that q = e- PF • 

To prove this claim we shall verify that (3.4) holds with 

e- q in 

ence is 

place of 

valid for 

pF , or equivalently that the following equival­

x E K 

(3.10) X E F <==> (q,x) = 0 • 

Assume first x E F • Then since uA. E I , 

and by Schwartz' inequality 

Hence (uA,x) = 0 for all A. • Since x acts as a normal state 

on Qt** we can pass to the ultraweak limit q , and we get 

(q,J~:) = 0 • 

Assume next that (q,x) = 0 • Then for every a E A+ 
1 

vanishing on F we have a2 E I • Since IF is a left ideal, 

a E I • Using (3.9), the equality 2 q = q and Schwartz' in-

equality, we find 

l<a,x>l 2 
= l(aq,x)l 2 s (q,x)(aa*,x) = 0 • 

Since F is semi-exposed in the duality of (A,e) and (V,K) , 

this gives x E F • 

Now we have proved that q = e- pF .as claimed. It follows 

that 

Hence 

PF = e - q ·, and so 
..... 

PF E A (K) • 

e - uA. ~PF (pointwise convergence on K) • 
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2.) If pF E A,K) then pF is a weak* upper semiconti~ 

nuous function on K with values in (0,1] and the set 

F = (x EKj(pF,x) = 1} must be weak* closed. 

3.) If F and F# are both weak* closed, then pF E A~(K) 

and p~ = e- pF E A-f.. (K) • Hence pF is both upper and lower 

semicontinuous in the weak* topology, and so pF E A(K) e 

4.) If pF E A(K) then pF is weak*-continuous and 

F = ( x E K I ( pF ,:X) = 1] and F:/1= = (xEKj(pF,x) = 0} are both closed.O 

Remark. The discussion above differs from the standard 

treatment in that we have emphasi·zed the facial structure of K 

rather than the ideal structure of ()i and OL**. For the sake 

of completeness we recall a few basic facts on ideals, which are 

closely related to the results above. By (3.5) every norm closed 

face F of K determines an ultraweakly closed left ideal JF 

of at** , and by (3.8) every weak*-closed face F of K deter-

mines a closed left ideal IF of m. It can be proved (essenti.;. 

ally by the correspondence of norm closed faces of K and pro-

jections in m** , of. [P; Th. 3.16 J), that the map F ... JF is 

bijective arid that the inverse map is given by 

(3.11) F = (xEKj(a*a,x) = 0 all aEJFJ • 

Similarly it can be proved (of. [P; Th. 5.11]) that the map F ... IF 

is bijective and that the inverse map is given by the similar 

·formula 

(3.12) F = (xE Kj(a*a,x) = 0 all a E IF) • 

Also it can be verified that JF and IF are two-sided ideals 

iff F is a split face. (This was first observe~ for IF in 
[AAr; Prop. 7.1]). Finally we note that a result related to the 
first assertion of Theorem 3.7 was given in [GR;. Appendix]. 



The next result is also well known, but since it is essential 

for understanding the geometry of state spaces, we have included 

the simple proof. 

Proposition 3.8. If K * is the state space of a C -algebra 

~' then the following statements are equivalent: 

(i) K is a simplex 

(ii) Ot.is commutative 

(iii) K is a Bauer simplex (i.e. K is a simplex and 

f>(K) is weak*-closed). 

Proof. (i) => (ii). If K is a simplex then every norm 

closed face of K is a split face [As - El]. Hence every projec­

tion in at** is central (Theorem 3.5). From this it follows that 

a** ' and then also ()(, ' is commutative. 

( ii) => (iii) If OZ, is commutative, then OL ~ C (X) for 

a compact Hausdorff space X , and hence K must be affinely 

isomorphic and homeomorphic to the Bauer simplex M~(X) of all 

probability measures on X provided with the vague (or weak*) 

topology. 

(iii) => (i) Trivial. 0 

We shall close this section by a discussion of the geometry 

of the state spaces of finite dimensional algebras. Here. all 

ideals and faces are closed in all relevant topologies, so we do 

not have to worry about topology at all. Note also that we can 

restrict our attention to simple algebras, for if ()t, is a 

C *-algebra with a proper two-sided ideal, then K can be decom­

posed into a direct convex sum of two complementary split faces. 

Next we recall that a simple finite-dimensional C *-algebra is a 

full matrix algebra Mn for some n E~ (Wedderburn's Structure 
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Theorem). Hence it suffices to study the state spaces of Mn 

for n E JN • 

It is well known (and easily verified) that the states of 

~ are of the form 

(3.13) p(a) = Tr(ta) 

where t is a positive nxn-matrix of trace 1 , and that (3.13) 

defines an affine isomorphism of the state space K of Mn onto 

the set of all such matrices. Counting variables we conclude 

that dim K = n2-1 (i.e. ·K can be realized as a convex body 

in JR.n2-1) • 

By the general theory of this section the faces of K will .all 

be projective. They will occur in quasi-complementary pairs (F,G), 

and for such a pair there will exist one and only one affine 

retraction p: K ~ co(FU G) • To every face F of K is asso-

ciated a number k = 0,1, ••• ,n viz. k = dim p(H). where n H = C: 

and p E Mn is the carrier projection of F • The face F will 

then be affinely isomorphic to the state space of Mk • Hence · 

there will exist proper faces of K of dimension k2-1 for 

k = 1, ••• ,n-1 , and no other. For example the state space of M3 
will be of dimension 8 , and it will have proper faces of dimen­

sion 0 (extreme points) and 3 (state space of M2 ) • 

The only state space which is easily visualized, is that 

of M2 • By·(3.13) a state p of M2 is given by a positive 

2 x 2-matrix t of trace 1 ~ i.e. a matrix of the form 

(~ + ~ ' 
t = 

f}- i{;, 

Tl + i) , 
~- ~ 

det(t) > 0 • 

Evaluating the determinant we find that the condition det(t) > 0 
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is equivalent to 

Therefore the state space of M2 will be a solid sphere 

in m3 , and the center of the sphere corresponds to the normalized 

trace functional. 

From the discussion above it also follows that of the six 

convex sets pictured at the end of § 1 and § 2, only those of 

Fig. 1 and Fig. 3 are state spaces, whereas those of Fig. 4, 

Fig. 5 and Fig. 6 are spectral without being state spaces, and 

that of Fig. 2 is not even spectral. 
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1_1. Some further results on spaces in spectral dualitl• 

In this section (A,e) and (V,K) will denote order-unit 

and base-norm spaces in spectral duality. In addition we will 

assume A= V* , so that A~ Ab(K) • Our purpose here will be 

to prove various results which are valid in this setting and which 

generalize known results from operator theory. When the proofs 

are specialized to the context of operator algebras, they will 

usually be more geometric than previous ones. 

Lemma 4.1. If fur) is a monotone net of projective 

units of A , then the pointwise limit of this net exists and 

is a projective unit. 

Proof. It suffices to consider a decreasing net {uaJ • 

For such a net a = lim u = inf u exists by the pointwise u. a co: a 

monotone completeness of A ~ Ab(K) • Recall that for a E A+ 

we have defined rp(a) to be the smallest projective unit u 

such that a E face(u) • Recall also that if 0 < a < e then 

a< rp(a) (cf. (3.23) of Part I). Thus for any projective unit v, 

0 < a < v implies a ~ rp(a) ~ v • Now 0 ~ a ~ ua implies 

a < rp(a) ~ ua , so 

a ~ rp(a) ~ infaua = a 

Thus a = rp(a) is a projective unit. 0 

Keeping the terminology of Part I, we shall say that a net 

in A or in V converges weakly if it converges in the weak 

topology determined by the given duality of A and V • (For 

nets in A = v* , the term "weak*" would be ~qually appropriate). 
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Lemma 4.2. If a E A+ 
! then r:Q(a} is the EOintwise, 

hence weak, limit of the ascending sequence {cpn( a)} where 

5e.n (A} = 1 1\ nl.. for A. E 

Proof. We have 

[0 2 cc) 

rp(a) = 

• 

a e-e 
0 

by formula (6.7) of Part I 

and the remarks on the following lines. (It is also easy to prove 

this directly from the spectral integral for a). Hence rp(a) = 

X(o, oo) (a) , and since 

cpn(a);nrp(a) • Since 

cpn? X( o' oo) on 

V = linK then 

on V , i.e. weakly. 0 

[0, oo) , we find that 

cpn(a) ~ rp(a) pointwise 

Theorem 4.3. Every weakly closed face H of A+ is of 

the form H = im+P where P E 9D . 

Proof. Let J( be a maximal collection of non-zero pairwise 

orthogonal projective units in H and let ~(Jt) be the collec­

tion of all finite sums u = u1 + ••• + ~ E H where ui E JC for 

i = 1, ••• ,n. By Proposition I.3.4 we also have u = u1 v ••• V~Et£, 

and it follows that Sf (JC) is directed upwards. By Lemma 4.1 

u
0 

= sup(ulu E5="CX)J is a projective unit which will be in the 

weakly closed face H • 

We will now show H = im+P , where P E flJ satisfies Pe = u
0

• 

For fixed a E H we define v = rp(a + u
0

) • By Lemma 4.2 , v E H • 

Note that a E face(v) ; we are going to show v = u 
0 

so that 

a E face(u
0

) c H • Since a was an arbitrary element of H , 

face(u
0

) = H will follow. By Corollary I.2.11 face(u
0

) = im+P 

so this will complete the proof that H = im+P • 

To prove v = u
0 

, we note that u
0

E face(v) , so 

u
0 

= rp(u
0

) ~ v • 

Theorem I.3.5). 

Thus v-u 
0 

For arbitrary 

= v 1\ u~ E U (see the proof of 

u E Jr we have u < u
0 

so 
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We shall now apply Theorem 4.3 in the context of operator 

algebras. Suppose that A is the self-adjoint part of a 

von Neumann algebra OL and that V is the self-adjoint part of 

the predual ()I,* with K the normal state space. Now the weak 

topology of A determined by the duality with V , will be the 

ultraweak topology. (If Ot is the enveloping von Neumann algebra 

of a c* -algebra, then the ul traweak topology on O'L is the same 

as the weak operator topology when ~ is acting on the Hilbert 

space of the universal representation of the given * C -algebra, 

cf. [D; § 12]) • 

It follows from Theorem 4.3 that for every ultraweakly 

closed face H of A+ there exists a P-projection p on 

such that H = im+P • By Proposition 3.1 p is of the form 

Pa = pap where p is a (self-adjoint) projection in a • 

H will be of the form 

+ H=pAp. 

A 

Hence 

It is clear from the argument above that p ~ pA+p is a 

1 - 1 correspondence between projections in Ol. and ul traweakly 

closed faces of A+ • 

For brevity we write q = e- p and we recall that P' is 

of the form ' P a = qaq (Proposition 3.1). We also define 

JH = (a Em I a*a E H} . 

Now it is easily seen that JH is an ultraweakly closed left ideal 

and that + H c A n JH • On the other hand for every we 

have a*a EH = ker+P' , and so 0 =llqa*aqll= !jaqlj 2 , which implies 

h 1 0 rnh f A+ n J k +p I H aq = 0 and t en a so qaq = • L ere ore H c er = , 
and so we have proved 

( 4. 1) 
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For any ul traweakly closed left ideal J of 07., one has 

( 4. 2) 

(This follows from the polar decomposition of ~ , of. e.g. 

[Sa; Th. 1 .12 .1]). Thus by ( 4.1) and ( 4. 2) J .... A+ n J is a 1-1 

correspondence of ultraweakly closed left ideals of ~ and ultra­

weakly closed faces of A+ • 

The connections between ultraweakly closed faces of 

projections in ~ , and ultraweakly closed left (or right) ideals 

in 0L were first established by Effros [E] and Prosser [P] • 

We turn now to a result which will be of use later and which 

is also of interest in itself. Recall that every element x of 

a base-norm space admits a decomposition x = y - z where y, z ~ 0 

and !lxll = IIYII + II z II (of. (A 1·; Prop. II. 1. 4]). Under certain 

conditions this decomposition is unique (e.g. see [El1J). In 

particular, the existence and uniqueness of such a decomposition 

in the predual of a von Neumann algebra (and thus also in the dual 

of a c*-algebra) was proved by Grothendieck [Gr]. We will now 

generalize ·this result to the context of this section (i.e. A 

and V in spectral duality and A= V*). 

Proposition 4.6. Every x E V admits a unique decomposition 

of the form x = y- z where y,z 2 0 and !lxl! = llyll + !lz!l • 

Moreover, there exists P E §? such that y = P*x and z =- P'*x. 

Proof. Assume llxll = 1 and let x = y- z be a decomposi­

tion of the type described in the proposition. 

Note that the unit ball A1 of A = v* is weakly (i.e.weak*~ 

cqmp~c.~, eo the set E = (aEA 1 j(a,x)= lJ is a non-empty compact 

face of A1 • By the Krein-Milman Theorem E will contain an 
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extreme point s , and s will also be an extreme point of A1 

since E is a face of A1 

The map a ... 2a- e is an affine isomorphism of the convex 

set [O,e] (order intervaU onto [-e,e] = A1 • Since the extreme 

points of [O,e] will be mapped onto the extreme points of ~e,e], 

and since the extreme points of (O,e] are precisely the projec­

tive units (Proposition 1.7.7), there exists a projective unit u 

such that s = 2u- e • Setting u' = e - u , we can write s = u- u'. 

Let ·P be the P-projection on A such that u = Pe • 

We shall prove that y = p*x and 

Since s E E then 

'* z = -P X • 

( 4 .. 3) 1 = (s,x) = (u-u',x) = (u-u',y-z) = 

= (u,y) + (u' ,z) - (u,z) - (u' ,y) • 

Since by assumption 1 = !lxl! = IIYI! + II zll , we also have 

( 4. 4) 1 = (e,y) + (e,z) ~ (u,y) + (u',z) • 

Subtracting (4.3) from (4.4) we find 

0 ~ (u,z) + (u' ,y) , 

from which it follows that each term on the right must be zero. 

Otherwise stated: 

(4.5) (Pe,z) = (P'e,y) = 0 • 

From (4.5) we conclude that I!P*zl/ = (e,P*z) = 0 and that 

j!P'*yll = (e,P'*y) = 0 Hence p*z = 0 and P'*y = 0 , and so 

. +p'* liD , 

Applyl·ng p* and p'* t b th 'd f th t' o o s1 es o e equa 1on x = y- z , 
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we now obtain the desired conclusion * '* p X= y , p X= -z • 0 

Our final goal will be to generalize the result that the 

traces of a * C -algebra form a simplex. We begin by giving'the 

general definitions and results in the context of the present 

section (A and V in spectral duality and A= V*); then we 

specialize to operator theory. 

Definition. An element z E V is said to be central if 

(P + P' )*z = z for all P E g.;> , and the central elements of K 

are called traces. 

Note that if one considers a von Neumann algebra and its 

predual in the context of spectral duality, then there are two 

notions available of "trace" and "cent,ral". However, this ambi­

guity is only apparent: we shall show later that the condition 

(P+P')*z = z for all P E £P characterizes central elements and 

traces of the operator algebra variety. 

Theorem 4.7. The central elements of V form a vector 

lattice and the traces form a linearly compact simplex. 

Proof. We first prove that if z E V is central and if 

z = + z - z is the (unique) decomposition given in Proposition 4.6, 

then z+ and z are also central. 

For every p EBJ we have 

( 4.6) z = (P+P~*z = (P+P')*z+- (P+P')*z-. 

By assumption l!zll = pz+!l + \\z-11 , and since (P+ P' )* preserves 

norms in v+ (see Prop. I. 2,1), we have 

( 4. 7) 
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But by the uniqueness statement of Proposition 4.6, (4.6) and (4.7) 

imply that 

+ ( I )* + . z = P+ P z , 

Since P E §0 was arbitrary, z+ and z are central. 

It follows in particular that the central elements form 

a positively generated linear subspace Z(V) of v • We will 

prove that Z(V) is a vector lattice, and to this end it suffices 

to prove that for every z E Z(V) the element z+ is the least 

upper bound of z and 0 within Z(V) • Clearly z+ > z and 

z+ ~ 0 • Suppose y E Z(V) and y ~ z , y ~ 0 • Let· P E £P 
be chosen such that z+ = p*z and z- = -P'*z (Proposition 4.6); 

then 

y = (P+ P' )*y ;: P*y ~ p*z 

as desired. 

Finally we note that the traces form a base for the positive 

cone Z(V)+ of the vector lattice Z(V) (since K is a base 

for v+). This implies that the set of traces is a linearly 

compact simplex (see [Ken]). 0 

We will next prove that the concepts of a "central element" 

of V and of a "trace" really generalize the corresponding concepts 

used in operator theory. We will need some auxiliary results. 

For the statement of the first of these we agree to say that two 

elements * a,b of a C -algebra are exchanged by a unitary u if 

u*au = b • 

Lemma 4.8. If projections p and q in a von Neumann 

algebra Ot can be exchanged by a unitary u E Ot then there 

exist self-adjoint unitaries s,t E Ol such that p and g are 
exchanged by st • 
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Proof. If p and. q can be exchenged by a unitary, then 

by a theorem of Fillmore [Fil] p and q are perspective (i.e. 

have a common complement in the lattice of projections). Now by 

a result of Topping two perspective projections can be exchanged 

by the product of two self-adjoint unitaries. (This result is in 

fact valid in the more general context of JW-algebras, see 

LT; Th. 8]). The proof is now complete. 0 

We recall that.a bounded linear functional z on a 

c* -algebra Oi with identity e is said to be central if it is 

"invariant under conjugation by unitaries", i.e. if 

( 4,,8) (u*au,z) = (a,z) 

for all a E 0L and all uni taries u E ()I. • 

It is easily verified that this is equivalent to the alterna­

tive condition 

(4.9) (ab,z) = (ba,z) 

for all a,b E Gt • 

We will use the word trace to denote a central state on at • 

(Note that with this definition we require that the traces shall 

be "normalized", i.e. that (e,z) = !lzll = 1) • 

We shall need an auxiliary result by which the traces of a 

c*-algebra Gt with identity can be identified with the normal 

traces of the enveloping von Neumann algebra ct**. This result 

is elementary, but since we have been unable to find a satis­

factory reference, we include a prpof. 

Lemma 4.9 If t is a trace on a C*-algebra at , with 

identity, then t (in its natural identification) is a normal trace 

on the enveloping von Neumann algebra, and conversely. 
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Proof. It is evident from the definition that a normal 

trace on OL ** restricts to a trace on CJt, • 

Let t be a trace on ~ • Then (4.9) holds for all 

a,b E ~ ; we will show that (4.9) is also valid for all a,b E ct**. 

Clearly it suffices to prove this for a,b E a** with llall = llbll =1. 

By the Kaplansky density theorem there exists nets (aa} and 

fbaJ in the unit ball of ~ which converge to a and b in the 

ultrastrong topology (i.e. 
-II* 

the strong operator topology when Ot 

is acting on the Hilbert space H of the universal representation 

of OL ). Since multiplication is jointly continuous with respect 

to the ultrastrong topology on the unit ball of Qt** , then 

a
0
.b

0 
.... ab and baa a. _, ba ul trastrongly. Since ul traweakly conti­

nuous linear functionals are ulstrastrongly continuous on the 

unit ball, then 

This completes the proof. 0 

Theorem 4.10. Let A be the self-adjoint part of a 

von Neumann algebra ~ and let V be the self-adjoint part of 

the predual ~ with K the normal state space. An element 

z E V determines a central linear functional on OZ. iff z is 

central in the general sense defined in this section, i.e. iff 

(4.10) (P+ P' )*z = z for all P E f/J . 

Proof. Suppose first that z E V determines a central 

linear functional on ~ , and consider an arbitrary P E gD 
expressed by Pa = pap where p is a projection in 0L (Proposi­

tion 3.1). For brevity we write q = e- p , and we recall that 

P'a = qaq for a E A • 
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Now we observe that p -q is unitary, so by (4.8) 

(4.11) ((p-q)a(p-q),z) = (a,z) • 

But since p + q = e , we also have 

(4.12) ((p+q)a(p+q),z) = (a,z) • 

Adding (4.11) and (4~12) and dividing by 2, we obtain 

(4.13) (pap+ qaq, z) = (a, z) , 

which is equivalent to (4.10). 

Conversely, suppose that (4.10) holds for a given z E V • 

Subtracting (4.12) from twice (4.13) we are again back to (4.11). 

Since p- q (with q = e- p) is the general form of a self-

adjoint unitary, this proves that z is invariant under conjuga-

tion by self-adjoint unitaries. 

Now suppose that u E OL is any unitary and r E Cl is any 

projection. Then u*ru and r are projections exchanged by a 

unitary; by Lemma 4.8 there exist self-adjoint unitaries s,t 

such that r and u*ru are exchanged by st , i.e. 

u*ru = (ts)r(st) • 

Hence 

(u*ru,z) = (t(srs)t,z) = (r,z) . 

Since the linear span of projections is norm dense in ~ , and 

since the map a ~ u*au and the linear functional determined 

by z are norm continuous, we have 

(u*au,z) = (a,z) for all a E Of, • 

Thus, z determines a central linear functional on C!L , and this 

completes the proof. 0 
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Corollary 4.11 • Let 0t be a c* -algebra with identity, 

let A be the self-adjoint part of the enveloping von Neumann 

algebra at** , and let V be the self-adjoint part of 

OL*('~( at**)*) • Then a state t on ot. will be a trace iff t 

(in its natural identification) is a trace on A in the general 

sense defined in this section. 

Proof. The corollary follows at once from Lemma 4.9 and 

Theorem 4.10. 0 

Corollary 4.12. (Thoma [Th], Effros-Hahn [EH; Cor. 2.14]) 

The traces on a c*-algebra with identity form a weak* compact 

simplex. 

Proof. By Theorem 4.7 and Corollary 4.11 the traces form 

a linearly compact simplex. But it follows immediately from the 

definition (4.9) that the traces form a weak* closed, therefore 

compact, subset of the state space. 0 
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