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1o Introductiono The original Chinese remainder theorem is a theorem 

of elementary number theory which under an evident necessary condi­

tion affirms the simultanous solvability of a finite set of congru-

enceso This theorem has given rise to offspring in various directions. 

Among its arithmetical descendants should be counted several types of 

approximation theorems in valuation theory. More direct (but less 

arithmetical) analogues of the Chinese remainder theorem have been 

considered within such fields as lattice theory [4], lattice ordered 

groups [5] and universal algebra [3]o 

The purpose of the present paper is to show that the general 

theory of ideal systems offers a convenient framework for the treat­

ment of var~ous Chinese remainder theorems. It should be noted that 

the canonical congruences (or equivalences) which are here considered 

in ideal systems are not generalizations of the usual congruences of 

ring theoryo Hence our development leads to some new results and 

some new problems also in the case of ringso On the one hand it will 

turn out that there exist commutative rings such that the Chinese 

remainder theorem with respect to ~ canonical congruences does ~ 

holdo On the other hand we shall prove (in several different ways) 

that the Chinese remainder theorem for any finite number of canonical 

congruences holds in a Dedekind domaino In the case of the ring ~ 
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of integers this result has a simple number-theoretic interpretation 

in terms of greatest common divisorso The general problem of charac­

terizing those ~ommutative rings (or domains) where the Chinese re­

mainder theorem holds for any finite number of canonical congruences 

seems to be of interesto The results of this paper show only that in 

the case of a domain the solution to this problem lies somewhere be­

tween 'Dedekind' and 'Prufer'. 

In contradistinction to the case of rings the general notion of 

a canonical equivalence specializes in the case of lattices to the 

usual equivalence modulo a lattice ideal. This leads to a rather 

neat characterization of the difference between modularity and dis­

tributivity in lattices: A lattice is modular if and only if the 

Chinese remainder theorem holds for any two canonical equivalences 

and it is distributive if and only if the same theorem holds for any 

three (or more) canonical equivalences. This result can be used to 

give a very simple proof of the aforementioned Chinese remainder 

theorem in a Dedekind domaino 

As another easy application we consider a Chinese remainder 

theorem for canonical congruences relative to the usual notion of 

ideal in a commutative monoid. In this situation it turns out that 

the Chinese remainder theorem for two canonical congruences is equi­

valent to their permutabili ty l.'lhich in turn is equivalent to the 

monoid being totally preordered by divisibility - and this condition 

assures that the Chinese remainder theorem holds for any finite num­

ber of canonical congruences. 

The present exposition will also provide some new insight into 

the relationship between the Chinese remainder theorem for ideal sys­

tems and other concepts from the theory of ideal systems like addi­

tivity, modularity, permutability, distributivity and the intersection 
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The term 'ideal system' needs some clarificationo In fact we 

shall here rathor work within the wider framework of 'generalized 

ideal systems' ('ideal systems without continuity axiom')o We could 

even go one step further and consider closure systems with non-void 

intersections in the same way as it was done in [1]o Indeed, Chinese 

remainder theorems are essentially non-multiplicative theorems which 

concern eqLuvalences rather than congruenceso But since all our ap­

plications will be to ideal systems (with or without continuity axiom) 

we shall not bother about the extra generality on this occasiono 

2o Canonical equivalences in generalized ideal systemso For basic 

definitions concerning ideal systems the reader is referred to [1] 

or [2]o If we drop the continuity axiom ( AB c (AB) ) 
X X 

from the de-

finition of an ideal system, we get a generalized ideal systemo To 

any x-ideal A in the generalized ideal system ( D, x) 
X 

there is 

associated an equivalence by putting b = c(A ) 
X 

whenever 

(also written A + {b } = A + ( c } ) o 
X X 

This is the unique 

coarsest equivalence relation in D with the property that any 

x-ideal Bx containing is a union of equivalence classeso We 

call this equivalence the canonical equivalence associated with A o 
X 

These canonical equivalences are all congruences if the continuity 

axiom is satisfied, but all the canonical equivalences in (D,x) may 

be congruences without (D,x) satisfying the continuity axiomo The 

exact condition which is needed in order that all canonical equiva-

lences be congruences, is that the quotient 

equivalence classes modulo 

We note that 

A o 
X 

implies 

A ·b x· is a u..."lion of 

for any B => A o 
X X 

On the other hand it is not true in general that b = c(A ) 
X 

and 
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b = c(Cx) imply b = c(Axn Cx) .. We say that (D,x) satisfies the 

intersection property if this implication is always true.. One sees 

immediately that any generalized ideal system with a distributive 

lattice of x-ideals, has the intersection property (Theorem 6 in 

3.. The Chinese remainder theorem.. Let (D,x) be a generalized 

ideal system .. We denote the x-ideal generated by the union of A 
X 

and Bx by Ax+ Bx o We shall say that the Chinese remainder theorem 

for n canonical equivalences holds in (D,x) - or that the condi­

tion CRTn (x) (or simply CRTn ) holds in (D,x) - if the following 

Property is satisfied·. Given n x-ideals A( 1 ) A( 2 ) A(n) and 
X 'X '"""'X 

n elements a a a ED such that a. = a.(A(i) +A(j)) there 1' 2'"""' n l J X X 

exists an element a E D such that a = a. (A (i)) for i = 1 ,2, ..... n .. 
l X 

We note that the condition a. = a.(A(i) +A(j)) certainly is a 
l J X X 

necessary condition for the existence of a simultanous solution to 

the n canonical equivalences in question.. For 

a= a.(A(j)) imply a= a. (A(i) +A(j)) and a= 
J X l X X 

a = a. (A ( i) ) and 
l X 

a . (A ( i) + A ( j ) ) and 
J X X 

hence by transitivity the given compatibility condition .. 

Theorem 1. (Chinese remainder theorem for generalized ideal systems)o 

The condition CRTn ( n.:::_ 3) holds in a generalized ideal system if 

and only if CRT2 holds ~nd the lattice of ideals is distributive .. 

Proof: It is clear that CRT => CRT n m whenever m < n (by consi-

dering the case A (m) =A (m+1 ) = ..... =A (n) 
X X X 

and 

In particular CR'I'n => CRT2 for every n ~ 3 .. We shall next show 

that CRT3 implies that the lattice of x-ideals of (D,x) is dis­

tributive.. Assume that 
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We consider the two canonical equivalences 

and 

The equivalence 3.3. is equivalent to the conjunction of the two 

equivalences 

and 

Clearly 3.4. and 3.5. follow from 3.3. On the other hand 

hence 3.3. That we really have a solution a to the two equiva-

lences 3.2. and 3.3. is a consequence of the fact that the equivalent 

system 3.2., 3.4. and 3.5. according to 3.1. satisfies the compatibi~ 

lity requirements 

and hence has a solution according to 

combined with 3.2~, we conslude that 

CRT3 • When a E Bxn ex is 

a1 E A + (B l1 C ) which proves 
X X X 

the distributivity of the ideal lattice. 

We prove the converse by induction. 

starts the induction. Suppose next that 

Since we assume CRT2 this 

a. = a.(A(i) +A(j)) for 
1 J X X 

i, j = 1, 2, ••• n • By induction we can assume that there exists an ele­

ment a' such that 

a' = a. (A (i)) 
1 X ' 

i = 1 ,2, 0 0 0 n-1 

Combining 3.6. with i = 1 , 2 , • 0 • n -1 , and 
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using transitivity we obtain a' = a (A ( i) + A ( n) ) 
n X X ,. Since (D,x) 

is supposed to have a distributive ideal lattice, and this implies 

the intersection property, we get 

and again by distributivity 

( ) n-1 ( ) 
a' - a (A n + 11 A i ) 

n X · 1 X 
1.= 

By CRT2 and 3 .. 7 .. there exists an element a E D such that 

and 

n-1 (") 
a-a'(l1 A 1 ) 

. 1 X 1.= 

From 3 .. 9 .. we obtain for i=1,2, ...... n-1 and hence 

a = for n-1 .. This together with 

3 .. 8.. completes the proof of the theorem .. 

We note the following 

Corollary .. In a generalized ideal system CRT 
n holds for all n 

if and only if CRT3 holds .. 

4.. Commutative rings.. We shall first take a look at the content of 

Theorem 1 in the case of ordinary ideals (here also called d.-ideals) 

in a' commutative ring R .. In the presence of an identity element 

the relationship between the classical and the canonicel congruence 

modulo a d.-ideal Ad in R is particularly simple to formulate.. In 

this case the canonical equivalence modulo Ad is a congruence (with 

respect to multiplication) giving rise to a residue class monoid 
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which is nothing but the monoid of all principal ideals in the ordi-

nary residue class ring R;Ad o Otherwise expressed: Two elements 

in R are canonically congruent (d-congruent) modulo Ad if and only 

if they give rise to associate elements in the residue class ring !YAd 

(whereas they give rise to identical elements if they are congruent 

in the usual sense)a 

Somewhat surprisingly the difficulty in characterizing those 

rings which satisfy CRT n in the case of canonical congruences 

resides essentially in the case n = 2 • Whereas the classical 

Chinese remainder theorem holds trivially for two congruences in any 

commutative ring, we shall now prove the following 

Theorem 2a There are commutative rings in which the Chinese re­

mainder theorem for two canonical congruences does not holdo 

Proof: (The following example emerged during some clarifying dis­

cussions with Ia Fleischer). Let ~ denote the additive group of 

rational numbers and let R = ~ Ef> Q be the ring with zero mul tipli­

cation whose underlying additive group is a direct sum of two copies 

of 

Then 

Qt o Consider the two ideals A = 7Z Ef> {0} and 
1 2 A+ B = 7Z ® 2Z and the tvTO elements C3, 9) 

are canonically equivalent modulo A+ B, ioea 

(This because and 

B = {0)® iZ 

1 8 
and (3'9) 

in R. 

in R 

If CRT2 (d) were valid in R there would hence exist an element 

(a,b) E R such that 

(?ZEE> (0}, (a,b)) 
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and 

4"'2"' ([O}~zz;, (a,b)) = ({O}®ZG, (;,~)) 

From 4o 1 o we deduce b = m "' ~ and ~ = n b with m,n E zz; hence 
2 1 b = :t 9 • Similarly 4.2"' gives a = ± 3 .. It is clear, however, that 

4o2o can not be satisfied for these values of a and b since this 

would require n :!: ~ = ~ with n E 'll .. 

When it comes to positive results, it is natural to start with 

the ring 'll of integers which along with the classical Chinese re­

. mainder theorem also posesses a completely analogous property rela-

tive to canonical congruences .. These latter congruences have the fol-

lowing simple number- theoretic content: The integers a and b are 

canonically congruent modulo n if the greatest common divisor of 

a and n is the same as the greatest common divisor of b and no 

Theorem 3. The Chinese remainder theorem holds in 'll for any 

finite number of canonical congruences .. 

Proof: Since the ideal lattice of 'll is distributive, it suffices 

according to Theorem 1 to show that CRT0 (d) 
.::;_ 

is verified in ZZ • 

Denoting the greatest (positive) common divisor of the integers 

a1 ,a2 , ... o,ak by (a1 ,a2 , .... ,ak) the CRT2-condition amounts to the 

following in the principal ideal domain ZZ : If a, b and m,n are 

two pairs of integers such that 

4o3o (m,n,a) = (m,n,b) 

then there exists an integer c such that 

4 .. 4. (m,a) = (m,c) and (n,b) = (n,c) 

It is possible to give a reformulation of 4 .. 30 and 4 .. 4 .. if we look 

at an element ( I 0 ) in ZZ as a divisor, i o e.. as an integer-valued 
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(positive) function with finite support defined over the set P 

consisting of all primeso With a corresponding functional notation 

4e3o is then equivalent to the conjunction of the two implications 

4.,5o a(p) < (mA n)(p) => a(p) = b(p) 

and 

4o6o a(p),:: (mAn)(p) => b(p) ~ (mAn)(p) 

where p E P and m A n denotes the infimum of the two functions 

m and n o The conclusion 4o4.. in CRT2 then asserts the existence 

of a divisor c defined on P such that the following four impli­

cations hold., 

4.10. 

a(p) < m(p) => 

a(p) ::_ m(p) => 

b(p) < n(p) => 

b(p) ::. n(p) => 

c(p) = a(p) 

c(p) ::_ m(p) 

c(p) = b(p) 

c(p) ::_ n(p) 

By distinguishing the following four cases (i) a(p) < m(p) and 

b(p) < n(p) (ii) a(p) < m(p) and b(p) ::. n(p) (iii) a(p) > m(p) 

and b(p) < n(p) and (iv) a(p) ::_ m(p) and b(p) ::_ n(p) it is 

easy to see that we in each case can make a choice of the value c(p) 

which is consistent with the restrictions imposed by the implications 

4.50-4.,100 (putting respectively c(p) = a(p) = b(p), c(p) =< a(p), 

c(p) =b(p) and c(p) = (avb)(p) in the four cases (i)-(iv))o 

In case some of the integers a, b, m, n happen to be equal to zero, 

we make the usual convention O(p) = - co so as to exte"'ld the above 

proof to all cases., 

Although the above proof of Theorem 3 is simple enough, it does 

not fully exploit the technique of localizationo In fact CRT2 for 
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canonical congruences is always valid in a valuation ring - the 

ideals being totally ordered with respect to inclusion in this caseo 

Indeed, if a = b(Ad +Ed) and Ed cAd then the two canonical con­

gruences c - a(Ad) and c = b(Ed) will have c = b as a solution. 

In case of the ring ~ this means that with the above notation we 

only need to distinguish the two cases m(p) > n(p) and m(p) < n(p) 

corresponding to the solutions c(p) = a(p) and c(p) = b(p) respec~ 

tively - and this furnishes a second and shorter proof of Theorem 3. 

On the basis of the above proofs we can easily establish the 

following more general result: 

Theorem 4o The Chinese remainder theorem holds in a Dedekind domain 

for any finite number of canonical congruences. 

Proof: By Theorem 1 and the distributivity of the ideal lattice 

of a Dedekind domain it is again sufficient to prove CRT2 (d) • 

Hence, let the d-ideals Ad, Bd and the elements a, b be given 

such that a = b(Ad +Ed) 0 In case at least one of the ideals Ad, 

Ed is the zero ideal, we shall have Ad c Ed or Ed cAd and ac­

cording to the second proof of Theorem 3 CRT2(d) is valid in this 

case. We may thus assume that both Ad and Ed are different from 

the zero ideal in the given Dedekind domain R. Then Ad n Bd ~ (0) 

and RjAd nEd is a principal ideal domain. According to the reason_. 

ing in the proof of Theorem 3 we can find a divisor Cd (interpreted 

as an ideal) such that Ad+ Cd = Ad+ {a} and Ed+ Cd = Ed+ {b} (where 

the + -sign corresponds to the infimum in the divisor interpretation). 

Passing to the residue class ring modulo Ad n Ed the ideal Cd turns 

into a principal ideal Cd = (c) with c E R. It is then clear that 

c satisfies c = a(Ad) and c = b(Ed) and this completes the proof. 
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5.. Monoids. A particularly simple case is x = s , i .. e. usual ideals 

in a commutative monoid D where ideal generation is given by As = DA 

assuming that D has an identity element.. We shall say that the com­

mutative monoid D is a valuation monoid if D is totally preordered 

by divisibility.. This amounts to saying that the family of s-ideals 

is totally ordered under inclusion .. 

Whereas the s-ideals of a monoid D always form a distributive 

lattice under inclusion (because they form a sublattice of the lattice 

of all subsets of D ) the condition CRT2 (s) only holds in a very 

special situation: 

Theorem 5.. In a commutative monoid D the follm...ring conditions are 

equivalent 

1 .. CRT2(s) 

2 .. CRT (s) n for any n .?: 3 

3 .. Any two canonical s-congruences in D are permutable 

4 .. D is a valuation monoid 

Proof: In view of Theorem 1 the equivalence of 1. and 2 .. is clear .. 

Furthermore the implication 1 => 3 is contained in Theorem 4 in 

[2] and 3 => 4 follmrTS thus: If D is not a valuation monoid, 

there exist two s-ideals A s and Bs in D such that 

Denoting the canonical congruence which is associated with 

the s-ideal A s by we shall clearly have 

a E As- Bb and b E Bs- As.. This because a8(As)c and c8(Bs)b 

for 

for any c E As nBs. On the other hand a8(Bs)8(As)b signifies that 

there exists an element c E D such that a8(B8 )c and c9(As)b. By 

the choice of a and b this entails c ¢ As U Bs .. Thus a and c 
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are two elements tvhich are both outside of Bs and s-congruent 

modulo Bs , hence associates, contradicting the fact that the s-

ideal As "separates" a and c o In order to prove 4 => 1 

assume that As cBs are two s-ideals in the valuation monoid D. 

In this case a = b(As + Bs) implies that either both a and b are 

in Bs or neither of them is in Bs. In the former case a will 

be a solution of the two relevant congruences, and in the latter case 

either a or b can be used as a solution. 

6. Conditions related to CRT • 
n 

Before giving a brief account of 

the Chinese remainder theorem in lattices, we shall look a little bit 

into the relationship between CRT ftr genera]jzed :k:Eal systems and 
n 

other conditions occurring in the theory of ideal systems like addi­

tivity (abbreviated by A ) , modularity of the lattice of ideals (M) , 

permutability of canonical equivalences (P) , distributivity of the 

lattice of ideals (D) , and the intersection property (I) ., We have 

the following diagram of implications within the framework of genera­

lized ideal systems (or even closure systems with non-void inter­

sections). 

Among these implications A => M and D => I are proved in ( 1]. 

The implications 

proof of Theorem 1 

CRT3 => D and 

and CRT,.., => c. 

CRT3 => CRT2 are part of the 

P is proved in (2] (Theorem 4). 
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Finally CRT2 => A is also easily established: Let c E Ax+ Bx 

and b E Bx. By CRT2 there exists an element d E D such that 

d - c(Ax) and d = b(Bx) .. The latter equivalence implies that 

d E Bx and the additivity then becomes a consequence of the former 

equivalence .. 

Apart from the possibilities P => CRT2 , P => A or P => M 

(which we leave unsettled) there are in general no other implications 

between these conditions than those which are indicated in the above 

diagram. For this the following list of counterexamples will 

suffice 

I =I=> M (The system of .lattice ideals in the 5-element non­

modular lattice) 

CRT2 =I=> I (The system of lattice ideals in the 5-element modular 

but non-distributive lattice) 

D =I=> P (The s-system in a monoid which is not a valuation 

monoid) 

D =I=> A (The example given in the proof of Theorem 8 in [ 1] ) 

A =I=> P (The s-system in a monoid which is not a valuation 

monoid) 

The conditions CRT2 , addi ti vi ty, modularity and permutabili ty 

(P) are closely related to each other and become identical under 

various conditions imposed on the given closure system. In the case 

of lattice ideals (see the next section and [2]) all these conditions 

are equivalent. We have also seen that CRT2 is equivalent to per­

mutability for the s-system in a monoid.. Another situation where 

these concepts show a tendency to coincide, is given by the couple 

generated closure systems. A closure system (D,x) is said to be 
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couple generated if to a given closed set (x-i deal) A in D and 
X 

a given element a E A 
X 

there always exists an element b E A 
X 

such 

that (a,b) =A • 
X X 

The traces of the d-ideals in a Dedekind domain 

R on the multiplicative monoid R* = R- {0] form a couple generated 

ideal system in R* • 

Theorem 6. The following properties are equivalent for a couple 

generated generalized ideal system. 

'1. The Chinese remainder theorem for two canonical equivalences 

2. Additivity 

3s Modularity of the ideal lattice 

Proof: We shall establish the theorem by means of the following 

sequence of implications: 1 => 2 => 3 => 2 => 1 • The two first 

implications are part of the above diagram and 3 => 2 was proved 

for couple generated closure systems in [1]. Hence, we only need to 

prove 2 => 1 •. Assume c1 = c2 (Ax + Bx) • By addi ti vi ty this im­

plies the existence of elements c' and c" such that 

Writing out the meaning of 6.10 and 6.2. we conclude that c' and c" 

both belong to Cx = (Ax+ {c1 }) n (Bx + (c2 J) • 

by modularity that 

Since c' E ex we get 

assumption there exists an element c such that C = (a, c) • Com-x X 
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bined with 6~1a and 6o3o this gives A + {c 1 = A + C X J X X 

Ax+ {c1 ) or c - c1 (Ax) .. 

and hence CRT2 .. 

In the same way we obtain 

= A + {c'} = 
X 

c = c2 (Bx) 

Theorem 6 (combined with Theorem 1) gives us a new proof of 

Theorem 4 since the non-zero d-ideals in a Dedekind domain form a 

distributive lattice and their traces on the monoia R* form a couple 

generated ideal system .. 

7.. Lattices.. We shall here content ourselves with a brief mention 

of the case of lattices and refer the reader to [2] for a more thorough 

treatment.. Chinese remainder theorems in lattices were appearantly 

first considered by V .. K .. Balachandran in [4] Dealing exclusively 

with distributive lattices the main problem of characterizing those 

lattices for which CRTn holds, was not approached in [4] .. According 

to Theorem 1 it is sufficient to consider the two cases n = 2 and 

n=3. 

Spelling out the general notion of a canonical equivalence in 

the case of the system of ideals (here called 1-ideals) in a lattice 

L, we arrive at the following more suggestive formulation: 

Two elements b,c E L are canonically equivalent modulo the 

1-ideal A1 if and only if there exists an element a E A1 such 

that b U a = c U a • 

In contradistinction to d-ideals in rings the canonical equi-

valence associated with an 1-ideal thus reduces to the familiar no-

tion which has already been considered in [4] and elsewhere .. 

We have shown that CRT2 implies the modularity of the ideal 

lattice.. In case of the 1-system in a lattice L this means that 

CRT2(1) implies the modularity of L itself.. Conversely, if L 
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is modular,the l-system in L is additive (Theorem 3 in [1]) and 

hence satisfies CRT2 according to the proof of Corollary 1 of 

Theorem 4 in [2]. Combining this with the above Theorem 1, we obtain 

the following 

Theorem~. The Chinese remainder theorem holds for two (resp. three 

or more) canonical equivalences in a lattice L if and only if L 

is modular (resp. distributive). 

We note that Theorem 7 gives us still another approach to Theorem 4 

by considering the family of d-ideals in a Dedekind domain as a dis­

tributive (and hence modular) lattice under set-inclusion. Theorem 7 

gives us a solution of the relevant congruences in terms of d-ideals 

and this ideal solution is converted into an element solution by pas-

sing to a residue class ring in the same manner as in the proof of 

Theorem 4. 
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