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We shall consider a linear partial differential operator in ffi2 

with principal part 

P(x,D) 

where D1 = a;ax1 and D2 = Cl/Clx 2 . 

The interesting feature of this operator is that its characteristics 

are simple when x 2 * 0 but double when x 2 = 0. The characteristic 

curves though the point (c,O) are the parabolae 

They have a common tangent at (c,O). We shall be interested in the 

Cauchy problem for such operators when data are given on a curve 

characteristic at the origin. 

The very first published results on this problem seem to be the 

following two theorems by F. Treves [18] concerning the operator 

(1.1) PA(x,D) 
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where A is a real parameter. 

Theorem 1.1 (Treves [18, Theorem II]). If A is an odd positive 

integer then there exist 
00 

C -functions u such that 

Theorem 1.2 (Treves [18, Theorem I]). Suppose that A in (1 .1) 

is real but not an odd positive integer. Let ~ c R2 be any open 

set, and F c ~ a closed subset such that for some real a the 

set 

K = {x; x E ~, x 1 < a} n F 

is compact. Then there exist an integer m > 2 depending solely 

on A and a neighbourhood U of K such that any function 

u E em(~) satisfying 

(1.2) PAu = 0, supp u c F 

must vanish in U . 

Treves remarks that it seems likely that m can be chosen equal 

to 2 for all A [18, footnote p. 230]. We shall prove a 

stronger result. 

Theorem 1.3 Let PA, ~, F and K be as in the hypothesis of 
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of Theorem 1.2. Then there is an open set U ~ K such that any 

u ED'(~) fulfilling (1.2) must vanish in U. The proof is given 

in Section 2. We use Schwartz' structure theorem for distributions. 

This idea has been used earlier in proofs of uniqueness theorems 

See J. Persson [8]. In [9] J. Persson conjectures that uniqueness 

cones can always be used to decide whether there is uniqueness in 

the local Cauchy problem when the coefficients are analytic. Theorem 

1.3 shows that this conjecture is false. 

Theorem 1.1 gives us null solutions with support in 

when A is an odd positive integer. Theorem 1.4 below shows that 

in a somewhat modified solution space we have "null solutions" 

for all real A. 

Theorem 1.4 There exist continuous functions u * 0 defined on 

R with values in the space H' (~) of analytic functionals over C 

such that,with PAu defined in the natural way 

Moreover for each x 1 > 0 the functional u(x1 ) is carried by the 

set 

As to the definition of analytic functionals and elementary facts 

about them we refer the reader to F. Treves [17 Chap. 9]. From 

Theorem 1.3 we see that u in Theorem 1.4 cannot be a distribution 

unless A is an odd positive integer. We prove Theorem 1.4 in 

Section 3. 
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The next problem which we consider is whether there exist non-trivial 

solutions of PA(D)u = 0 with supports to the right of the leftmost 

characteristic curve through the origin. !t turns out that such 

solutions always exist at least locally. We shall prove a theorem 

for a more general situation giving this result as a special case. 

At first we supplement our notation by letting lxl = max(lx1 I, lx2 1), 

x E ~2 For ~ = (~ 1 ,~ 2 )E~ 2 , ~j~o, and D = (D 1 ,o2 ) = (a;ax1 ,a;ax2 ) 

s s1 s2 2 
we let D = o1 n2 . For d = (d1 , d 2 ) E R, d 1 ~ 1,d2 > 1 we let 

~d = ~ 1 d 1 + ~ 2 d2 . We also let ~~~ = s 1 + ~ 2 and E;d~d- 1 = 1, ~d = 0, 

and (~d-2)~d- 3 = 1, 0 < ~d- 2 < 1. 

We notice that our restrictions on ~ and d imply that ~ ~ sd~d- 1 

and d ~ ~d~d- 1 both are non-decreasing. 

Now we are ready to state our last theorem. 

Theorem 1 . 5 Let E: > 0 and let S1 = {x; X E JR2 , lxl < E: } • 

00 I al b(x2 ) <roo({x2; lx21<E:}). Let a E (r (n), < 1 and E Let a -

m > 0, I al < 1 ' m > 0' and r, 0 < r < 1 ' and d1 = d2' 1 < d1 < 2 a - - - -
be constants. We assume that with d = (d1 ,d2 ) 

( 1 . 3) 

and 

( 1 . 4) 

Let 
t 

\j/(t) = f min(O,b(s))ds, 0 < t < E:, -
0 

and 
t 

\jl ( t) = f max(O,b(s))ds, 0 < -t < E: • 

0 
Let 

( 1 . 5) P(x,D) 
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00 

Then there exist a neighbourhood n0 of 0 and a u E c (n0 ) 

such that 

P(x,D)u = 0 in n0 and ' 0 E supp u c {x; x 1 ~ '¥(x2 )} . 

Remark 1. If b(O) * 0, then near the origin we may use new 

coordinates with the characteristic curves as coordinate axes. We 

may choose this system such that in this system 

Then we solve the Goursat problem. 

Here we choose 

The corre~ponding solution u, see for instance J. Persson [7] and 

the proof of Theorem 2 there, has supp u c {x; x 1 > 0} and 

0 E supp u. This is Goursat's original construction of null 

solutions with data given on a characteristic line of the wave 
00 

operator. It is not hard to show that u E ~ too. Then we trans-

form back and there we have Qur wanted solution. 

Remark 2. The characteristic curves of (1.5) through (c,O) are 

the line 

( 1 • 6) 

X = C 1 

x2 
= f b(t)dt. 

0 

where 
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They have a common tangent at (c,O) precisely when ~· (0) = b(O) = 0. 

Remark 3. After obvious modifications the theorem is also valid 

for operators which can be transformed into (1 .5) by suitable 

coordinate changes. We mention two such operators: 

a) The operator PA of (1.1) is transformed into (1.5) by 

the coordinate shift 

b) If we allow the function b in (1.5) to be of the form 

b(x) = b 1 (x1 )b 2 (x 2 ) with both bj satisfying estimates 

of the form (1.4) the resulting operator is transformed 

back to (1 .5) by 

Then it can be shown that the coefficients of the lower order still 

satisfy estimates of (1 .4) type. 

The proof of Teorem 1.5 will be given in Section 4. Some soft and 

some harder auxiliary results are proved in Sections 5 and 6. 

How then is Theorem 1.5 related to known results on non-uniqueness. 

The first construction of a null solution seems to be the one by 

Goursat already cited. In the constant coefficient case we refer 

to A. Tihonov [19], s. Tacklind [16], L. Hormander [3, Theorem 3.2] 
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or [4, Theorem 5.2.2, p. 121], J. Persson [12]. In the case of 

analytic coefficients we refer to [4, Theorem 5.2.1] when the initial 

hypersurface is simply characteristic and to J. Persson [10] [11] and 

[13] when the multiplicity of the initial hypersurface is arbitrary 

but constant. Later M. D. Bronstejn [2] has extended the results in 

[10] to non linear problems. H. Komatsu [6] has also constructed 

null solutions by another method. In all the literature cited above 

the initial characteristic hypersurface has constant multiplicity. 

If we let the data of PA(D)u = 0 be given on 2 x = -x /2 1 2 with 

PA from (1.1) then the multiplicity of the initial curves is 2 at 

x = 0 and 1 for x * 0. So this case is not contained in the 

results cited above. We allow the coefficients to be in non-analytic 

Gevrey classes in Theorem 1.5. In [10] it is indicated how one may 

weaken the hypothesis in this direction when the multiplicity of the 

characteristic initial surface is constant. 

If the p~incipal part vanishes on the initial hypersurface L. Hormander 

[5, Theorem 2.2] has given some examples of null solutions when the 

coefficients are analytic. We do not intend to give any complete 

survey of results on uniqueness and non-uniqueness in the characteris-

tic Cauchy problem but like to cite M.S~ Baouenii and C. Goulaouic 

[1]. They have characterized other types of characteristic Cauchy 

problems where one cannot construct c"'-null solutions. 

Post Scriptum After this paper was completed we began to think 

on the construction in the proof of Theorem 1.5. We simply looked 

at it as the solution of the Cauchy problem when data are given on 

x 2 = 0 in the proper Gevrey class. Then we learned from Zentralblatt 

about V. Ja. Ivrij [E7] and his striking results on the Cauchy problem 
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for operators with hyperbolic principal part. He treats the case 

when data are in Gevrey classes and his result covers our result in 

Theorem 1.5. We still think that our more direct construction and 

our point of view motivate its publication Looking 

at the Cauchy problem in the x 2-direction we also enter into a long 

range of results. Here we have found no results giving room for one 

characteristic curve to oscillate around the other one as in Theorem 

1.5. However they are more general in other aspects. We have 

enumerated some of these papers plus the paper by Ivrij in an extra 

reference list at the end of the references. 

It also happened that the author B. B. tried to compute the best 

constant c in Lemma 5.1. He conjectured that c = 4 is the best 

one. Then Arne Str¢m, Oslo, and Robert Fossum and Erik Sparre 

Andersen, Copenhagen showed us how to prove this fact which goes 

back to Abel. W~ thank all this people. Section 5 is rewritten 

accordingly. 

2. Proof of Theorem 1.3 

Let K c m2 and e > 0, c E R. We define 

and 

K = {x; dist (x,K) ~ e} e 

~c = {x; x1 < c}. 

Now let the sets ~' K, F and the number a be as in Theorems 1.2 

and 1.3. We look at a distribution solution u of p u = 0 
;>.. 

in 

with supp u c F. We want to.show that u = 0 in some neighbourhood 

of K. 
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We start by choosing n > 0 so small that 

It follows that the closure of the set 

is compact and disjoint from F. Thus it has a positive distance 

to F. Therefore we can choose a real number c such that 

a < c < a + n, and such that 

( 2. 1 ) 

Now we use cut off functions to split u into a sum 

where 

(2.2) supp u 1 c K2 n n F, 

and 

supp u 2 n Kn = 0, supp u 2 c F. 

From (2.1) it than follows that 

Since 
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we also have 

We extend u 1 by letting it be zero outside K3n to obtain 

u 1 E !J' ( rn 2 ) and 

(2.5) PAu1 = 0 1 X E nc. 

It follows from Schwartz' theorem on the structure of distributions 

with compact support [14 1 Theoreme 26 1 p. 91] and (2.2) that there 

exist a positive integer m and continuous functions f 1 lal < m a -

with supp f c K3 such that 
a n 

To simplify notations we choose a real number b such that 

(2.6) K 4n c {x; x 1 > b 1 x 2 > b}. 

For continuous functions g with supp g c {x; x 1 > b 1 x 2 > b} we 

define 

-1 o1 g(x) 

It is clear that 

It is obvious that 

-1 
D.O. g 

J J 

and 

g I j 

x2 
= J g(x11 t)dt 

b 

vanish when or ~ b . 

all commute and that 

= 1 , 2. 
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Then we let 
-n -1 n 

D. = (D. ) , 
J J 

n > 0. 

with 

a -m a -m 
f - L D 1 D 2 f 
-lal~m 1 2 a . 

We now see that we may write 

We also notice that (2.4), and supp fa c K3 n Ia! < m, imply that 

(2.7) supp f c {x: x1 > b + nr x 2 > b + n} . 

Now we regularize in the x 1-direction. 

Let ~ E C~(R1 ) satisfy f~ = 1, ~(t) = 0 for ltl > 1/2. Then 

we let 

and 

V - V = U *I rn - g 1 '~'g 

where * 1 denotes convolution in the x 1-variable. The coefficients 

of Pt.. do not depend on x 1 so we have Pt.. v = (Pt.. u 1 ) * 1 ~t:. Hence 

(2.5) gives us 

(2.8) = 0 in n 
c-t: 

We choose t: such that 
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0 < ~ < c - a < n. 

We notice that this and (2.2) gives us 

supp v c K4 n c {x; x 1 > b, x 2 > b} 

So we have 

where 

v(x) 

g = f*'D m(.j) 
1 ~ 

is a continuous function smooth in 

Now we rewrite (2.8) as 

( 2. 9) 
m 

\D1D2 g, X E rt 
c-~. 

We notice that supp g c {x; x 1 > b, x 2 > b} . 

We also notice that for m > 2 

We also have 
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We put these things together and get 

D 2+m D m ( 2 2 ) 
2 g = 2 x2 D1 g D m-1( 2 D 2) 

2 mx2 1 g + 

We see that h is continuous. It is smoth in the x 1-variable and 

supp h c {x; x 1 > b, x 2 > b}. 

This shows that 

(2.10) g -2 = D2 h, X E r2 c-£ 

For m = 1 it is still simpler. For m = 0 it is obvious. Now 

assume that m is the smallest integer positive or not such that 

for some continuous g with supp g c {x; x 1 > b, x 2 > b} 

g being smooth in x 1 . 
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The calculation above for m > 0 and an obvious argument for 

m < 0 shows that (2.10) is true for some h fulfilling the same 

regularity condition as g. So m was not minimal and v restricted 
00 

to ~ is in c ( ~ ) . 
c-e c-e Now v 

£ 
satisfies all the conditions 

of Theorem 1 . 2 in ~ so v = 0 in ~ That means that c-e £ c-e. 

u1 = 0 in ~ since c ve ~ u 1 there when e ~ 0. Then (2.4) implies 
0 

that u1 = u in K3n n 

proved. 

3. Proof of Theorem 1.4 

~ c Let The theorem is 

In this proof we prefer to abandon the multi-index notation and 

denote points in IR2 by by (x, y) instead of (x1,x2) We also 

use D = a;ax and D = a;ay. Our equation p u = 0 then reads 
X y A 

( 3 . 1 ) ( 20 2 D 2 AD )u(x,y) 0 - = y X y X 

The Fourier-Borel transform with respect to y transforms this into 

( 3 • 2) (D 20 2 
Z X 

z 2 - AD )w(x,z) = 0. 
X 

We are interested in solutions w(x,z) which are continuous functions 

of (x,z) E Rx~, analytic in z for fixed x and vanishing for 

x < 0. We seek solutions of the form 

( 3 • 3) 
00 

w(x,z) = r 
j=O 

where the <+>. are in c 2 ( IR) vanishing for x < 0. Formal substitution 
J 

of (3.3) into (3.2) gives us the following differential equations for 



<P. : 
J 

and 
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2 
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= A<.P I I + j ( j - 1 ) <.p I 2, j > 2. 
J J-

We notice that <Pj. E c2 (R}, 

<l).(O) = <P·' (0) = 0. We define 
J J . 

-1 D g(x) 
X 

= Jg(t)dt. 
0 

All this implies that 

and 

<l).{x) = 
J 

0, X < 0 

-1 -2 
<Pj+ 2 =AD <Pj + j(j- 1)D <Pj_ 2 , j > 2. 

implies that 

Thus all <l). can be expressed in terms of the two first ones as 
J 

follows 

-j 
<P 2 j = O(O,A,j)D <Po' 

- . -j 
<P 2 j+1 - 8(1,A,J)D <P1 ! j > 1, 

where O(i,A,j) are complex numbers fulfilling the recursive formulas 

8(0,A,j+1) = AO(O,A,j) +2~j(o2j-1)8(0,A,j-1), j > 0, 

and 

8(1,A,j+1) = A8(1,A,j) + (2j +1)2j0(1,A,j-1) j > 0, 

with O(i,A,O) = 1, O(i,A,j) = 0, j < 0. 
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It follows by induction that 

le(O,A.,j)l 
. 1 j 

~ 2J+ j~ n (2(k + 1) + IA.I)(2k + 2)-1 
k=1 

Since 

X 

= ((j-1)~)- 1 I t~> 0 (t) (x-t)j-1dt 
0 

a simple computation shows that the series 

wo(x,z) = 00 2j/('"'')' L: tp2 .z L:J • 
j =:1 J 

j ~ 1 ' 

converges in Rx~ , uniformly on compact sets, and that for fixed 

x ~ 0 the function z + w0 (x,z) is entire and that 

lw0 (x,z) I ~ C exp (I z I ( 12x+E)) 
E: 

for every E: > 0 and 

w0 (x,z) = 0 , x < 0 . 

It is also seen that w0 (x~z) solves (3.2). Quite similar state­

ments hold for 

w1 (x,z) 

We see that for any choice of <.p1 and vanishing for X ~ 0 

we obtain a solution w(x,z) = w0 (x,z) + w1 (x,z) of (3.2) in 
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c 2 (Rx~) , entire of exponential growth in z for each fixed x . 

When we take the inverse Fourier-Bore! transform of w(x,z) in 

the z-variable, see [17, Theorem 9.1, p. 474], then we obtain a 

function u E c2 (R,H' (~)) solving (3.1). We also have that u * 0 

and that for fixed x > 0 

{y; y E ~' IYI < /2X} 

is a carrier of u(x) . The theorem is proved. 

4. Proof of Theorem 1.5 

The starting point for the proof is the observation that the 

differential operator 

( 4 • 1 ) 

has a right inverse T which is given explicitly as the integral 

operator 

( 4. 2) 
x2 t 

Tg(x) = I I g(x1 r- tp(x2 ) + tp(t) ,s)ds dt 
0 0 

where tp' = b and tp(O) = 0 . We shall use this fact when we 

construct null solutions of the full equation P(x,D)u = 0 by 

successive approximations. In order to prove the convergence of 

these approximations we need some inequalities. They will be 

proved in Sections 4 and 5. But we shall state them and use them 

in this section. 



- 18 -

Lemma 4.1 Let n c R 2 be open and let 
OJ 

f,g E C (Q) • Let 

m, m', r, d1 ~ 1, d 2 ~ 1 be positive constants and let q(x) ~ 0 

in n be such that with d = (d1 ,d2 ) 

( 4. 3) 

and 

(4.4) I D ~ g I :£. m' r- I ~ I ~ d ~ d - 1 exp [ ( 1 +~d) q ( x) ] , x E n , a 11 ~ ' . 

Then there exists a constant c , independent of all quantities 

mentioned above, such that 

(4.5) ID~(fg) I ~ cmrn'r-1~1~d~d- 1 exp[(1+~d)q(x)] , x En, all ~ . 

Corollary 4.2 Let f be as above, and let k be a positive 

integer., Then 

( 4. 6) 

Proof. Let q = 0 in the lemma and use induction in· k . 

Lemma 4.3 Let n = {x; X E JR2, I x21 < p } for some p > 0 . Then 

( 4. 2) defines a function Tg E C00 (Q) if g E C00 (Q) and q) E Coo (JR) 

Let g satisfy ( 4 . 4) with r, 0 < r .$. 1 , and n as above, and 

( 4 • 7) q(x) 2 -2 = e lx2 1/r, p < re 

. 
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Let (j) E c""({t 1 ltl < p}) fulfil 

(4.8) ltl <PI j = 0, 11•••1 

where 0 < r/R < 1/4 1 and me < 1/4 Here c is taken from 

Lemma 4.1. Then with T defined in (4.2) we have 

( 4. 9) ID~Tgl .:S. 4m'r2-l~l(~d-2)~d- 3exp[(~d-1)q(x)], x E ~~ 1~1 ~ 21 

anGl. 

(4.10) ID~Tgl .:S. 4m'l x E ~~ 1~1 .:s. 1 . 

We like to work with an operator defined in ~ = {x; x E R 2 , 

lx2 1 < p} such that (4.8) is fulfilled and such that (1.3) and 

(1.4) are fulfilled with this ~ and with E = p • 

In addition we want to have 

(4.11) 

Here c was introduced in Lemma 4.1. The constants m come 
Cl. 

from (1.3). We also require that 

(4.12) 
. jd -1 

-< mR-J ( J. d 2 ) 2 1 J. > 0 I I - ' x2 < P I 

where 

(4.13) 0 < r/R < 1/4 1 me < 1/4 . 
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We begin the proof by showing how the general case can be reduced 

to this one. We may assume that we have adjusted r and R such 

that the first inequality of (4.13) is satisfied and such that 

(1 .3) is true with the new r and that (1 .4) is true with r 

replaced by R . 

We define q by (4.7) and choose p such that -2 0 < p < min(re ,E) • 

Then we choose a cut-off function 
00 

h E C (lR) such that 

also fulfilling 

-. jd1 
!:. m'r J(jd1 ) 

The existence of such a function follows from [4, Lemma 5.7.1, 

p. 146]. Now we define 

a'(x) = 0 
a 

, I x1 I > p , I x2 I < p • 

Then Lemma 4.1 with q(x) = 0 shows that the estimates of (1 .3) 

are still true if we replace a 
a 

by a' . 
a 

The only change is 

that we may have to change the values of the constants m 
a 

If 

we replace the coefficients a 
a 

in 

a new operator P' (x,D) defined in 

P(x,D) by 

S"l = {x; 

a' 
a 

then we get 

p, X E 1R2 } 

In a neighbourhood of x = 0 the equations P(x,D)u = 0 and 
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P' (x 1 D)u = 0 have the same solutions. From now on we work with 

P' (x 1 D) and delete the primes. 

If in our original coordinate system (4.11) or the last inequality 

of (4.13) are not true then we choose 

and x' = 
2 

with some constant t ~ 1 So we have 

where u(x) = u' (x') 

equivalent equation 

We have 

and 

Now P(x 1 D)u = 0 is transformed into the 

+ D')u' -
2 

D' (b' (x' )D' + D' )u' -
2 2 1 2 

I: a'D'au1 = 0 • 
I a I ~1 a 

I x21 < tp 1 

x1 E R 1 all t; 1 
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ID'jb'(x')J 
2 2 

< tp ' X I E R' j ;::. 0 • 

It is now clear that with a proper choice of t ~ 1 and after 

deleting the primes we may assume that both (4.11) and the last 

inequality of (4.13) are fulfilled. So we assume that this is 

true from the beginning. 

We notice that with T from (4.2) 

(4.14) 

and that 

(4.15) 

00 

Let g E C (~) be such that g(x) = 0 in M = {x; x E ~, 

x1 < ~(x2 )} with ~ defined in the hypothesis of Theorem 1.5. 

Then we assert that Tg(x) = 0 in M . Let x E M, x 2 < 0 • In 

T we have x 2 s t ~ 0, t ~ s s 0 . We notice that d/dt(~ - ~) = 

max(O,b) - b ~ 0, t < 0 , and that 

,:;; ~ (X 2) - ~ ( t) + ~ ( t) - ~ (X 2 ) ,:;; 0 • 

The case x 2 > 0 is now also obvious. 

Now we construct a solution u of P(x,D)u = 0 . We start by 

choosing a function u0 (x) of the form 
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ID'jb'(x')l 
2 2 

< tp I X I E R I j ~ 0 • 

It is now clear that with a proper choice of t ~ 1 and after 

deleting the primes we may assume that both (4.11) and the last 

inequality of (4.13) are fulfilled. So we assume that this is 

true from the beginning. 

We notice that with T from (4.2) 

(4.14) 

and that 

(4.15) 

Let g E C 00 (~) be such that g(x) = 0 in M = {x; x E Q, 

x1 < $(x2 )} with $ defined in the hypothesis of Theorem 1 .5. 

Then we assert that Tg(x) = 0 in M . Let x E M, x 2 < 0 . In 

T we have x 2 ~ t ~ 01 t ~ s ~ 0 . We notice that d/dt($ - ~) = 

max(0 1 b) - b ~ 0 1 t < 0 , and that 

The case x 2 > 0 is now also obvious. 

Now we construct a solution u of P(x,D)u = 0 . We start by 

choosing a function u 0 (x) of the form 
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We choose h(x1 ) such that 

(4.17) 

and such that for some m" > 0 

(4.18) 
. d -1 

~ m"R-JJ. 1 E lR 11 , x 1 , a j ~ 0 . 

Here d 1 is chosen from the hypothesis. The number R is the 

constant chosen below formula (4.13). We again refer to [4, 

Lemma 5.7.1, p. 146]. Then we define 

(4.19) 

and recursively for p ~ 1 

(4.20) uP(x) = Tfp- 1 (x), x En , 

and 

(4.21) 

We are going to prove that for every n the series 

(4.22) 

This means that 

converges absolutely uniformly on n for all 

u = L uP is a well defined function in 

~ . 
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C00 (rl) • Now (4.16) and (4.17) tell us that 0 u ( x1 , 0) > 0, x1 > 0 , 

while (4.15) tells us that uP(x1 ,o) = 0, x 1 > 0 , for all p ~ 1 

That shows us that 

u ( x 1 , 0) > 0, x1 > 0 • 

We have 

The argument after (4.15) then implies that 

So the same is true for u itself. Finally we have by (4.22), 

( 4 . 2 0) , ( 4 . 1 4 ) and ( 4 . 21 ) that 

P(x,D)u = P(x,D)u0 + ~(D 2 (bD 1 + D2 )up 
1 

0 00 p-1 00 p = - f + I: f - I: f = 0 • 
1 1 

It remains to prove (4.22). 

It follows from (4.16) and (4.18) that 

IDE;,u0 i S. m"r-IE:.IE;,dE;,d- 1 , x E rl, all E;, • 

I: aaDaup) = 
ial~1 

A short calculation based on (4.18), Lemma 4.1, (1 .3) and (4.12) 
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shows that 

(4.23) 

for som constant m' . We want to prove that 

(4.24) 

p ~ o, x E n, all ~ 

where q(x) is still given by (4.7). Now (4.23) shows that 

(4.24) is true for p = 0 So we assume that (4.24) has been 

established for some p ~ 0 . Then (4.20), (4.24) and Lemma 4.3 

shows that 

(4.25) 

x exp [ ( ~ d -1 ) q ( x) ] , x E n, I ~ I .?. 2 , 

and 

(4.26) 

If l~+al .?. 2 and lal ~ 1 then (4.25) gives us 
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since r ~ 1, ad~ 2 . 

For l~+al ~ 1 we use (4.26) and get 

Then we use Lemma 4.1 and get 

x exp[ (1+~d)q(x)] . 

This and (4.21) tell us that 

x exp [ ( 1 + ~d) q ( x) ] . 

Then a look at (4.11) completes the proof of (4.24). So (4.25) 

and (4.26) are true for all p too. That implies (4.22) and 

completes the proof of Theorem 1 .5. 

5. Estimates of derivatives 

As we mentioned in the introduction this section is rewritten. 

We then also take the opportunity to trace the ideas lying behind 

Lemma 5.1 below and our use of it. The first example of a problem 

leading to non-analytical estimates of Gevrey type seems to be a 
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counter-example by S. Kovalevskij [E8l showing that the Cauchy 

problem for the heat equation au/at - a2u;ax2 = Q is not always 

solvable in the class of analytic solutions when the initial 

datum is given at time t = 0 . LeRoux [E12] and Holmgren 

[E6] showed that with data in Gevrey classes 2 on x = 0 there 

exists a solution analytic in the x-variable. 

Then M. Gevrey in [E5] introduced the classes nowadays called 

Gevrey classes. He also solved the Cauchy problem with data on 

x = 0 for the heat equation with added "lower" order terms with 

coefficients in proper Gevrey classes. There he uses his version 

of Lemma 5.1. So we may say that he is the one behind it. But 

he solves the Cauchy problem using an explicit form of the solu-

tion of the inhomogeneous heat equation with zero initial data. 

The first one to use the corresponding idea on successive approxi-

mations was C. Pucci [14] when he solved a general linear Cauchy 

problem for equations with coefficients in proper Gevrey classes. 

More transparent versions have been used by P. Lax [E11] and 

A. Friedman [E4] in the proof of different versions of the Cauchy-

Kovaleskij theorem. They show that formal power series solutions 

in the time variable are convergent using estimates of the same 

type as that in Lemma 5.1. See also J. Persson [E13], [10], [11] 

and M. Shinbrot and R.R. Welland [E16]. Now we give the ''canonical" 

proof of the lemma. 

Lemma 5.1 Let d = ( d1 , ... , d ) E 1Rn, d . ~ 1 , 1 ~ j .~ n . Let v 
n J 

and ~ be multi-indices with non-negative components. Then there 

exists a constant c independent of n, d, and ~ such that 
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( 5. 1 ) 

Here we have used the natural extension to Rn of the notation 

for R 2 in the Introduction. We have let 

(~) = ~ (~~), and 
j=1 J 

\), ~ ~., 1::;, j ~ 
J J 

n • 

Remark. The proof will show that c = 4 is the best constant 

in ( 5. 1 ) • 

Proof. Let n x,y E R . The "binomial" formula gives 

(x+y)~ = 2:: (~) v ~-v 
X y . 

\)~~ 

Let x1 = = X = t and let y1 = = Yn = 1 . n 

This implies that 

( 5. 2) 

We also notice that for v ~ ~, 0 * v * ~ , 

·(5.3) (vd/~d)vd-1 ~ (lvl/1~1> lvl-1 ' 

We get 

since d. > 1 , 1 < j ~ n . Let I ~ I = k . Now ( 5. 2) and ( 5. 3) 
J 
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show that the left member of (5.1) is smaller than 

k-1 
A= 2 + E (kJ.)(k-j)k-j-1jj-1k-k+1 • 

j=1 

From [E15] p. 20 formula (20) we get the following identity letting 

X = y = 1 

k-2 
E (k-J·2)( 1+j)j-1(k-j-1 )k-j-3 = 2kk-3 

j=O 

This is equivalent to 

k-1 
E (kJ·=~) jj-2(k-j)k-j-2 = 2kk-3 , 

j=1 

or 

k-1 
(k (k-1)) -1 E (kJ.) j j-1 (k-j) k-j-1 = 2kk-3 

j=1 

In other words 

k-1 
E (kJ.) jj-1 (k-j)k-j-1k-k+1 = 2 - 2/k ' 

j=1 

for all k ~ 2 . The lemma is proved. 

Proof of Lemma 4.1. Let f and g satisfy (4.3) and (4.4), 

respectively. We use Leibniz' formula on D~ ( fg) , then ·the 

estimates (4.3) and (4.4), and at last Lemma 5 gives 

ID~(fg)l < E 
v~~ 
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exp[(1+vd)g(x)] ~ mm'cr-lslsdsd-1exp[ (1+sd)g(x)] • 

We have also noticed that et is increasing. The lemma is proved. 

The special case with q = 0 shows us that the Gevrey classes with 

d ~ ( 1, ... , 1) are closed under multiplication. An easy argument-

shows that they are also closed under differentiation. Here we 

must adjust the r of the estimate,not only choose a new constant 

m in our estimate. We have used these two facts when we derived 

(4.24). 

6. The hard part 

We shall now prove Lemma 4.3. The first statement of the lemma 

is easy to verify so we concentrate upon the second one. In this 

section we write s = (i,j) , instead of s = (s1 rs2) 

define 

( 6 • 1 ) A(k) = kk-1 , k ~ 1, A(k) = 1, 0 ~ k ~ 1, 

and 

( 6. 2) E(k,t) = exp[(1+k)e 2 itl/r], k ~ 0 . 

We also 

We shall let d denote a number here. More specifically we let 

d = d 2 ~ 1 . The number k in (6.1) and (6.2) will be of the 
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form k = jd , with j i 0 an integer. In these numbers k 

both A(k) and E(k,t) are non-decreasing. In this notation 

Lemma 5.1 takes the form 

( 6. 3) 
k 
E (kJ.) A((k-j)d)A(jd) ~ c A(kd), all k . 

j=O 

We also notice that 

( 6. 4) 

and if e 2itl/r s 1 then 

( 6. 5) E(k,t) S E(k-p,t)eP . 

We leave the proofs to the reader. 

Proof o~ Lemma 4.3. The first step in the proof is to perform 

all differentiations in the expression of the left member of (4.9) 

and (4.10). To facilitate the book-keeping of the arising terms 

we write the resulting expression in the following form 

( 6 • 6) 

x 2 t 

DiDj J J g(x1 - ~(x2 ) + ~(t) ,s)ds dt = 
1 2 0 0 

1 2 3 = B. I + B .. + B .. 
l,J l,J l,J 

where B~ . denotes the sum of all terms that contains a double 
l,J 

2 integral, B. . the sum of those containing a single integral, 
l,J 

and 3 
B .. 
l,J 

the sum of those without integral signs. 
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( 6 • 7) 

(6.8) 

and 

(6.9) 

Q. . = bj, j ~ 0 ' 
J,J 

Q. 0 = o, j > 0 ' 
J' 
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We remember that ~· = b . A straightforward calculation shows 

that 

(6.10) 

(6.11) 

and 

(6.12) 

Remark. -·--

1 
B .. = l,J 

2 
B .. = 
l,J 

3 B. I = 
l,J 

If j 

since Qj,O = 0 

start at k = 1 

.::. 

j x 2 t 

E Q. k I I (D1i+kg) (x1 ~ 
k=O J' 0 0 

~(x2 ) + ~(t),s)ds dt, 

j-1 Q, 

E E 
£=0 k=O 

1 the sum· in (6.10) actually starts at k = 1 

then. Similarly if j ~ 2 the sums in (6.11) 

Q, = 1 since j-1-£ 
0 2 Qtk = 0 if (t,k) = (0,0) 

or (£,k) = (1 ,0) For j = 1 there is just one term in (6.11) 

and none for j = 0 The expression of 3 
B .. l,J in (6.12) is empty 

if j ~ 1 . For j .<':. 2 it contains just one term with £= k = 0 

1 Dl1. DJ2. -" 2g . name y If that term is taken out the rest of the sum 
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can be taken from k = 1 and t = 1 too and the first summation 

starts at p = 2 . 

We now assert that 

(6.13) 

0 < k ~ t, s ' 0, I x 2 I < P , 

where c is defined in Lemma 4.1, and p, m and R in Lemma 

4. 3. 

If k = t then we conclude from (6.7), (4.8) and 

Corollary 4.2 that (6.13) is true for s ~ 0 . Notice that d ~ d 2 

here. Finally assume that (6.13) is true for a certain t, 0 < k ~ t 

and all s . This is certainly the case for t = 1 . Now take 

0 < k ~ t • We use (6.9), Leibniz' formula, (6.13), and (4.8). 

For k > 1 we get 

Now we notice that 
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A((t+.e-k+1)d) (A((s+.e-k+1)d))-1 < A(td) (A(sd))-1 • 

We use this, (6.3), and (~:1) + (~:~) = (k~ 1 ) • We get 

By that we have proved that (6.13) is true when .e is replaced 

by .\', + 1 and if 1 < k ~ .\', We notice that 

s+1 
D2 Q.e, 1 . So (6.13) is also true when k = 1 and .e is replaced 

by .e + 1 . The case Q.e+1 ,.e+1 is treated earlier. So (6.13) 

is always true. 

We can now deduce estimates for the terms k B .. , k = 1, 2, 3 I l,J 
using (6.13) and the assumption (4.4) which in our present nota-

tion reads 

(6.14) 

However, it is a rat.her complicated task to reduce the resulting 

estimates into a rnanageab.le form so we have to present the compu-

tations in detail. We look at 1 
B .. l,J first, (6 .1 0). 

j -1-k k-1(j-1) E m'r A((i+k)d)m(mc) k-1 x 

k=1 

Let 

. x 2 t 

x R-(J-k)A((j-k)d) If f E((i+j)d,s)ds dtl . 
0 0 

j :::: 1 . 

We have used E((i+k)d,s) ~ E((i+j)d,s) here. From (4.13) we 

get me < 1/2, r < R . We notice that (6.3) gives 
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~ (~=~)A((i+k)d)A((j-k)d) ~ 
k=1 

~ J1 (~~t)A((i+k)d)A((j-k)d) ~ cA((i+j)d) • 

This together with integration of the double integral gives us 

(6.15) 1 -i-j -2 2 -4 lB .. I s. m'r A( (i+j)d) (1+(i+j)d) r e x 
1,] 

x E( (i+j)d,x2 ) . 

It is clear that (6.15) is also true for j = 0 . Now we use 

(6.4) and (6.5) with p = 2 for the case i + j ~ 2 . We get 

(6.16) IB~ ·I ~ m'r-i-j+2A( (i+j)d-2)E( (i+j)d-2) ,x2), i + j ~ 2 . 
1,] 

When i + j ~ 1 a short computation gives 

(6.17) 1 lB. ·l~m',i+j~1, 
1,] 

since d ~ 2 . 

The estimate of 2 
B .. 
1,] 

is obtained in much the same way. We esti-

mate the right member of (6.11) using (6.13) and (6.14). Then we 

replace E((i+k)d,s) by E((i+j-1 )d,s) before we integrate. 

For j ~ 2 we get 

2 I B. . I :5. 
1,] 

j -1 Q, 

L: L: m'm[1+(i+j-1)d]-1 re- 2E((i+j-1)d,x2 ) x 

£=1 k=1 

x r-(i+k) (mc)k-1 (~=~)R-(j-1 -k)A((i+k)d)A((j-k-1)d) . 
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We interchange the summations. We use me < 1/2, r < R and get 

IB~ . I < rnrn'r-(i+j)+ 2E((i+j-1)d,x2 )e- 2 [1+(i+j-1)d]-1 x 
l,J 

X 

j-1 
l: 

k=1 
A( (i+k)d) (A( (j-k-1 )d) 

j-1 
l: 

Q,=k 
(£-1) 

k-1 • 

We notice that 

(6.18) 
j-1 

l: 
Q,=k 

(£-1) 
k-1 

We then argue as in the last step in the estimation of 

We get 

1 
B. . • l,J 

IB~ . I < m'r-(i+j)+ 2E((i+j-1)d,x2· )e- 2 (1+(i+j-1)d)-1 x 
l,J 

X A((i+j-1)d) 

This estimate also holds for j = 1 . For i + j ~ 2 we use 

(6.4) and (6.5) with p = 1 . We notice that d ~ 1 . We get 

(6.19) IB~ .1 .:s: m'r-(i+j)+ 2E( (i+j)d-2,x2 )A( (i+j)d-2) 
l,J 

For i + j ~ 1 we only have 

(6.20) 2 1Bo,11 ~ m' . 

The estimation of 3 
B .. 
l,J is more complicated. 

shall use that 4r ~ R not just that r .:S: R . 

In our estimate we 
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3 
B .. = 0 

l.,J 
for j < 2 and 

we can estimate by (6.14). We also recall that 

which 

is the 

only non-vanishing term in (6.12) with £ = 0 or k = 0 . We 

use this and Leibniz' formula to rewrite (6.12) as 

j-1 p-1 £ 
L L L 

p=2 £=1 k=1 

j-2-£-q J. 
X D2 Q£,k' ~ 3 . 

We use (6.13) and (6.14). Since q + k ~ j - 2 we may replace 

E((i+k+q)d,x2 ) by E((i+j-2)n,x2 ) in the estimate of each term. 

For j ~ 3 we get 

I 3 i j-2 I _< B. . - D1 n 2 g 
l.,J 

-i-j+2 rnrn'r E((i+j-2)d,x2 ) x 

j-1 p-1 £ j-1-p ( )( ) 
.x L L L q--Lo j-q1-p ~=~ (mc)k-1 (r/R) j-2-k-q x 

p=2 £=1 k=1 

X A( (i+k+q)d)A( (j-2-k-q)d) . 

Just as in the derivation of (6.19) we interchange the £ and k 

summations, ann get 

(6.21) 

j-1 p-1 j-1-p ( )( ) 
x L L L j-q1-p P~ 1 (me) k-1 (r/R) j-2-k-q x 

p=2 k=1 q=O 

X A( (i+k+q)d)A( (j-2-k-q)d) . 
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We shall need the following lemma. 

Lemma 6.1 Let j ~ 3, p, q, i ~ 0 , be integers such that 

p,. 2 s. p .$. j 1 , 1 s.- k .$. p - 1 . Let d ~ 1 • 

Then we have 

A( (i+k+q)d)A( (j-2-k-q)d) (A( (i+j-2)d)) - 1 .s. 

.$. A(q)A(j-p-1-q) (A(j-p-1)) - 1 • 

Proof. At first we notice that 

A( (i+k+q)d)A( (j-2-k-q)d) (A(i+j-2)d)-1 S. 

"' .S. A(k+q)A(j-2-k-q) (A(j-2))- 1 

Then we.notice that 

k + A(k+q)A(j-2-q-k) 

is a convex function. Thus we have 

A(k+q)A(j-2-k-q) S. max(A(q)A(j-2-q), A(q+p-1)A(j-1-p-q)) 

We also notice that 

A(q)A(j-2-q) (A(j-2))-1 S. A(q)A(j-p-1-q) (A(j-p-1)-1 , 
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and 

A(q+p-1)A(j-1-p-q) (A(j-2))-1 ~ A(q)A(j-p-1-q) (A(j-p-1)-1 . 

The lemma is proved. 

Lemn1a 6.1 applied to (6.21) gives us 

(6.22) I 3 i j-2 I -i-j+2 Bi,j- D1D2 g s m•r E((i+j-2)d,x2 ) x 

X 

X 

X 

j-1 j-1-p(. . 
A((i+j-2)d) L L J- 1-p)(r/R)J- 2-q-p-1 x 

p=2 q=O q 

-1 -1 A(q)A(j-1-p-q) (A(j-1-p)) c X 

p-1 ( ) L p~ 1 (me) k ( r /R) p-1 - k • 
k=1 

We notice that j - 2 - q - p - 1 ~ 0, r/R s 1 . We also notice 

that 

p-1 p-1 (me + r/R) - (r/R) , 

and that because of (4.13) 

j-1 
L (me+ r/R)p- 1 ~ (me+ r/R) (1 -me- r/R)-1 ~ 1 . 

p=2 

These facts together with d ~ 2 , (6.22) and (6.3) show that for 

j .<! 3 
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This and (6.14) shows that 

(6.23) jB~ .j ~ 2m'r-i-j-2A( (i+j)d-2)E( (i+j)d-2 1 x 2 ) 1 i 2. 0 1 j 2. 2 • 
ll] 

Now ( 6. 1 6) 1 ( 6. 1 9) and ( 6 . 2 3) give ( 4. 9) • At last ( 6 . 1 7) and 

(6.20) give (4.10). Lemma 4.3 is proved. By this also the full 

proof of Theorem 1.5 is completed. 
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