A REGULAR SET THEOREM FOR INFINITE COMPUTATION THEORIES

by

Viggo Stoltenberg-Hansen Oslo

A subset B of the domain of a recursion theory is said to be regular if $B \cap K$ is "finite" (in the theory) whenever the set K is "finite". Of course, in ordinary recursion theory every set is regular, so there the concept is not considered. However, when moving up to recursion theory on an admissible ordinal α , nonregular α -r.e. sets exist whenever $\alpha^* < \alpha$. In case α is inadmissible then there are non-regular α -recursive sets.

When studying $\alpha - r_{\cdot}e_{\cdot}$ degrees for an admissible ordinal α the obstacle of the existence of non-regular $\alpha - r_{\cdot}e_{\cdot}$ sets is circumvented by the following theorem due to Sacks.

<u>Theorem 1 ([3])</u>. Suppose α is an admissible ordinal. Then every α -r.e. set is of the same α -degree as a regular α -r.e. set.

Maass [1] has recently obtained a uniform version of theorem 1.

Let [®] be an infinite computation theory as defined in [6]. In this paper we prove the following analogue of theorem 1. (A weaker but for most degree theoretic purposes sufficient version is proved in [7].)

<u>Theorem 2</u>. Suppose \circledast is an adequate infinite computation theory. Then every \circledast -s.c. set B is of the same degree as a regular \circledast -s.c. set D. Furthermore D may be chosen such that $\forall x(\forall y \sim x) (x \in D \Rightarrow y \in D)$.

<u>Remark</u>: Suppose @ is the infinite computation theory over an adequate resolvable admissible set \mathcal{A} with urelements. Then the theorem asserts that every \mathcal{A} - r.e. set is of the same \mathcal{A} -degree as a regular \mathcal{A} - r.e. subset of (\mathcal{A}) , the ordinal of \mathcal{A} .

Thus we have that adequacy is a sufficient condition on $\[Theta]$ for the regular set theorem to hold. However, it is shown in [2] that the condition is not necessary. On the other hand, assuming AD, Simpson [4] has shown there is a $\[Theta]$ such that every regular $\[Theta]$ -s.c. set is $\[Theta]$ -computable.

The proof of theorem 1 was simplified by Simpson [5]. He utilized the wellordering of the domain in the form that every $\alpha - r.e.$ non- α -finite set has a 1-1 α -recursive enumeration. The analogous property is false for arbitrary adequate computation theories. Thus our proof of theorem 2 is modelled after Sacks' original proof of theorem 1.

For definitions and notation the reader is referred to [6].

<u>Proof of theorem 2</u>: Let B be a Θ -s.c. non- Θ -computable set. We are to find a regular Θ -s.c. set D such that D = B. Let $B^* = \{\xi : K_{\xi} \cap B \neq \emptyset\}$ where $\lambda \xi K_{\xi}$ is a fixed enumeration of Θ -finite sets. We have $K_{\xi} \cap B^* = \emptyset \iff \bigcup \{K_{\eta} : \eta \in K_{\xi}\} \cap B = \emptyset$ and $K_{\xi} \cap B = \emptyset \iff \xi \notin B^*$. Thus $B^* = B$. Let $\pi: U \to L^{|\mathcal{K}|}^*$ be a projection such that $\pi(\mathbf{x}) \to \mathbf{y}_1 \& \pi(\mathbf{x}) \to \mathbf{y}_2 \implies \mathbf{y}_1 \sim \mathbf{y}_2$. Then (1) $K_{\mathbf{Y}} \cap B^* = \emptyset \iff \bigcup \{K_{\mathbf{\eta}} : \mathbf{\eta} \in K_{\mathbf{Y}}\} \cap B = \emptyset \iff H_{\mathbf{Y}} \cap B^* = \emptyset$ where $\lambda \gamma H_{\mathbf{Y}}$ is a Θ -computable mapping whose values are (canonical Θ -indices for) Θ -finite sets such that $\forall \gamma (H_{\mathbf{Y}} \neq \emptyset)$, $\xi \in \mathbf{H}_{\mathbf{Y}} \implies K_{\xi} = \bigcup \{K_{\mathbf{\eta}} : \mathbf{\eta} \in K_{\mathbf{Y}}\}$ and $\xi_1, \xi_2 \in H_{\mathbf{Y}} \implies \xi_1 \sim \xi_2 \& \pi(\xi_1) \sim \pi(\xi_2)$. Because of (1) it is convenient to work with B^* instead of B.

Let $\lambda \sigma B^{\sigma}$ be a <u>disjoint</u> (\lesssim)-enumeration of B* such that $\forall \sigma (B^{\sigma} \neq \emptyset)$ and $\forall \sigma, x, y (x \in B^{\sigma} \& y \in B^{\sigma} => x \sim y \& \pi(x) \sim \pi(y))$. Define

 $\mathbb{D}^{2} = \{ \sigma : (\exists \tau \succ \sigma) (\mathbb{B}^{\tau} \prec \mathbb{B}^{\sigma} \& \pi(\mathbb{B}^{\tau}) \prec \pi(\mathbb{B}^{\sigma})) \}.$

Note that expressions like $\pi(B^{\tau}) \prec \pi(B^{\sigma})$ make sense and are Θ_{-} computable. Clearly D^2 is Θ_{-} s.c. and $U - D^2$ is unbounded.

<u>Claim 1</u>: D² is regular.

<u>Proof</u>: Given σ_0 we show $D^2 \cap L^{\sigma_0}$ is Θ -finite. Having defined $\sigma_0, \dots, \sigma_n$ we choose, if possible, σ_{n+1} such that $\sigma_{n+1} \succ \sigma_n$ and $(\forall j \le n) (B^{\sigma_{n+1}} \prec B^{\sigma_j} \lor \pi(B^{\sigma_{n+1}}) \prec \pi(B^{\sigma_j}))$. By the well-foundedness of \prec the defined sequence is finite. Let σ_n be the last. Then

$$\mathbf{D}^{2} \cap \mathbf{L}^{\sigma_{\mathbf{O}}} = \{ \sigma \prec \sigma_{\mathbf{O}} : (\exists \tau \preceq \sigma_{\mathbf{n}}) (\mathbf{B}^{\mathsf{T}} \prec \mathbf{B}^{\sigma} \& \pi(\mathbf{B}^{\mathsf{T}}) \prec \pi(\mathbf{B}^{\sigma}) \& \tau \succ \sigma) \}.$$

One inclusion is obvious. So suppose $\sigma \in D^2 \cap L^{\sigma_0}$. Choose $\tau \succ \sigma$ such that $B^T \prec B^{\sigma} \& \pi(B^T) \prec \pi(B^{\sigma})$. If $\tau \preccurlyeq \sigma_n$ then all is well. If $\tau \succ \sigma_n$ then by the choice of σ_n there is $j \le n$ such that $B^{\sigma}j \preccurlyeq B^T \& \pi(B^{\sigma}j) \preccurlyeq \pi(B^T)$. But then $B^{\sigma}j \prec B^{\sigma} \& \pi(B^{\sigma}j) \prec \pi(B^{\sigma})$ and $\sigma \prec \sigma_0 \preccurlyeq \sigma_j$. Thus the inclusion from left to right holds.

<u>Claim 2</u>: $D^2 \leq B^*$.

Proof: First we show

(2)
$$\sigma \notin D^2 \iff \pi^{-1} \operatorname{fr}(L^{B^{\sigma}}) \cap (L^{\pi(B^{\sigma})} - \bigcup_{\tau \prec \sigma} \pi(B^{\tau}))] \cap B^* = \emptyset.$$

Suppose the right hand side is false for a given σ . Then there are x and τ such that

 $x \in \pi^{-1}[\pi(L^{B^{\sigma}}) \cap (L^{\pi(B^{\sigma})} - \bigcup \pi(B^{\sigma'}))] \cap B^{T}.$ In particular $\pi(x) \cap \pi(L^{B^{\sigma}}) \neq \emptyset \text{ so } x \in L^{B^{\sigma}} \text{ (since } \pi \text{ is a projection) and hence}$ $B^{T} \prec B^{\sigma}.$ Furthermore $\pi(x) \cap (L^{\pi(B^{\sigma})} - \bigcup \pi(B^{\sigma'})) \neq \emptyset \text{ so } \sigma' \prec \sigma$ $\pi(B^{T}) \prec \pi(B^{\sigma}) \text{ and } \tau \succ \sigma.$ Thus $\sigma \in D^{2}.$

The converse of (2) follows by a similar argument. Using (2) we have

$$\mathbb{K} \cap \mathbb{D}^{2} = \emptyset \iff \bigcup_{\sigma \in \mathbb{K}} \pi^{-1}[\pi(\mathbb{L}^{\mathbb{B}^{\sigma}}) \cap (\mathbb{L}^{\pi(\mathbb{B}^{\sigma})} - \bigcup_{\tau \prec \sigma} \pi(\mathbb{B}^{\tau}))] \cap \mathbb{B}^{*} = \emptyset,$$

so $\mathbb{D}^{2} \leq \mathbb{B}^{*}$.

We now make an assumption and show that if the assumption holds then $B^* \leq D^2$. On the other hand if the assumption is false, we find σ such that $B^* \equiv B^* \cap L^{\sigma}$. It is then easy to find a regular Θ -s.c. set D such that $B^* \cap L^{\sigma} \equiv D$.

Define

$$k_{1}(\gamma) = \mu\sigma[H_{\gamma} \prec \sigma \& \pi(H_{\gamma}) \prec \min \pi(\{y: y \sim \sigma\})].$$

 k_1 is Θ -computable and total (by adequacy). Let

 $k(\gamma) = \mu \sigma[k_1(\gamma) \preccurlyeq B^{\sigma} \& \min \pi(\{y : y \sim k_1(\gamma)\}) \preccurlyeq \pi(B^{\sigma}) \& \sigma \notin D^2].$ Note that $k \leq_w D^2$.

<u>Claim 3</u>: If k is total then $B^* \leq D^2$.

<u>Proof</u>: Note that $H_{\gamma} \cap B^* \neq \emptyset \iff H_{\gamma} \subseteq B^*$. We show $H_{\gamma} \subseteq B^* \iff H_{\gamma} \subseteq \bigcup \{B^T : \tau \prec k(\gamma)\}$. It then follows from (1) that $B^* \leq D^2$. So let $\xi \in H_{\gamma} \subseteq B^*$, say $\xi \in B^T$. We want to show $\tau \prec k(\gamma)$. $B^T \prec k_{\gamma}(\gamma) \preceq B^{k(\gamma)}$ so $\tau \not \prec k(\gamma)$. Suppose $\tau \succ k(\gamma)$. Then since $k(\gamma) \notin D^2$ it must be that $\pi(B^{k(\gamma)}) \preceq \pi(B^T)$. But then $\pi(B^T) \sim \pi(H_{\gamma}) \prec \min \pi(\{y : y \sim k_{\gamma}(\gamma)\}) \preceq \pi(B^{k(\gamma)}) \preceq \pi(B^T)$, a contradiction. Thus $\tau \prec k(\gamma)$.

Now we assume k is not total. Choose γ such that $\forall \sigma [B^{\sigma} \prec k_{1}(\gamma) \lor \pi (B^{\sigma}) \prec \min \pi (\{y : y \sim k_{1}(\gamma)\}) \lor \sigma \in D^{2}].$

Let $B_{\gamma}^{*} = B^{*} \cap L^{*}$. We will show $B_{\gamma}^{*} \equiv B^{*}$. Clearly $B_{\gamma}^{*} \leq B^{*}$. By adequacy we can choose σ_{0} such that $\tau \succ \sigma_{0} \Rightarrow \pi(B^{T}) \succ \min \pi(\{y : y \sim k_{1}(\gamma)\})$. Thus (3) $\forall \tau \succ \sigma_{0} (B^{T} \lt k_{1}(\gamma) \lor \tau \in D^{2})$.

Let $B' = B^* - (L \cup \bigcup \{B^T : \tau \preceq \sigma_0\})$. Since clearly $B^* - B' \leq B^*_{\gamma}$, it suffices to show $B' \leq B^*_{\gamma}$ in order to show $B^* = B^*_{\gamma}$.

<u>Claim 4</u>: $B' \leq B_{\gamma}^*$.

Proof: We first show

(4)
$$\xi \in B' \iff \exists \sigma, \tau [\sigma_{o} \prec \sigma \prec \tau \& \xi \in B^{\sigma} \& B^{\tau} \prec k_{1}(\gamma) \preceq B^{\sigma} \& \pi(B^{\tau}) \prec \pi(B^{\sigma})].$$

The if direction is obvious. So suppose $\xi \in B'$. Then there is $\sigma \succ \sigma_0$ such that $\xi \in B^{\sigma}$ and, by (3) and the definition of B', $\sigma \in D^2$. Thus there is $\tau_1 \succ \sigma$ such that $B^{\tau_1} \prec B^{\sigma}$ and $\pi(B^{\tau_1}) \prec \pi(B^{\sigma})$. If $B^{\tau_1} \prec k_1(\gamma)$ then we are done. If not, then $B^{\tau_1} \succeq k_1(\gamma)$ so $\tau_1 \in D^2$ by (3). Thus there is $\tau_2 \succ \tau_1$ such that

 $B^{T_2} \prec B^{T_1} \& \pi(B^{T_2}) \prec \pi(B^{T_1})$. The sequence τ_1, τ_2, \cdots must be finite so eventually we obtain τ_m such that $B^{T_m} \prec k_1(\gamma)$. This proves (4).

Now suppose we have chosen the enumeration of Θ -finite sets $\lambda \xi K_{\xi}$ to be repetitive in the following sense: Given any x then every Θ -finite set has an index in $U - L^{X}$. Then we can find a Θ -computable mapping $\lambda \eta G_{\eta}$ whose values are Θ -finite sets such that

(5)
$$K_{\eta} \cap B' = \emptyset <=> (K_{\eta} - (L^{k_{\eta}} \cup \bigcup \{B^{\tau} : \tau \preceq \sigma_{0}\})) \cap B^{*} = \emptyset$$

<=> $G_{\eta} \cap B' = \emptyset$.

Furthermore $\lambda \eta G_{\eta}$ can be chosen to have the following properties: $\forall \eta (G_{\eta} \neq \emptyset), G_{\eta} \cap B' \neq \emptyset \iff G_{\eta} \subseteq B', G_{\eta} \subseteq B^* \iff G_{\eta} \subseteq B', \text{ and}$ $\xi_1, \xi_2 \in G_{\eta} \implies \xi_1 \sim \xi_2 \& \pi(\xi_1) \sim \pi(\xi_2).$

Let $F_{\eta} = \{x \in L^{k_{\eta}}(\gamma) : \pi(x) \prec \pi(G_{\eta})\}$, and let $l(\eta) = \mu \tau [(F_{\eta} - \bigcup \{B^{\sigma} : \sigma \prec \tau\}) \cap B_{\gamma}^{*} = \emptyset]$. Then 1 is total by adequacy and $l \leq_{W} B_{\gamma}^{*}$. Clearly $l(\eta)$ is a strict least upper bound for $\{\tau : B^{T} \subseteq F_{\eta}\}$. We show $G_{\eta} \cap B' = \emptyset <=> G_{\eta} \cap \bigcup \{B^{T} : \tau \prec l(\eta)\} = \emptyset$. Combining this with (5) we then have $B' \leq B_{\gamma}^{*}$. So suppose $\xi \in G_{\eta} \subseteq B'$, By (4) there is σ and τ such that $\sigma_{0} \lt \sigma \lt \tau$, $\xi \in B^{\sigma}$, $B^{T} \lt k_{1}(\gamma)$ and $\pi(B^{T}) \lt \pi(B^{\sigma})$. If $\sigma \succeq l(\eta)$ then $\tau \succ l(\eta)$ so $\pi(G_{\eta}) \preceq \pi(B^{T})$. But $\pi(B^{T}) \lt \pi(B^{\sigma}) \sim \pi(G_{\eta})$ so we have a contradiction. This shows $\sigma \lt l(\eta)$, which was all that remained to prove the claim.

Let $C = \bigcup \{ \pi(x) : x \in B_{\gamma}^{*} \}$. It is easily seen that $C \equiv B_{\gamma}^{*}$ since B_{γ}^{*} is bounded. Let $\lambda \sigma C^{\sigma}$ be a disjoint (\preceq)-enumeration of C such that $\forall \sigma (C^{\sigma} \neq \emptyset)$ and $x, y \in C^{\sigma} \Longrightarrow x \sim y$. Let $D = \{ \sigma : (\exists \tau \succ \sigma) (C^{\tau} \prec C^{\sigma}) \}$, the deficiency set of C. D is clearly regular and U-D is unbounded. We show $D \equiv B_{\gamma}^*$ thus completing the proof of the theorem.

We have
$$\sigma \notin D \iff (L^{C^{\sigma}} - \cup \{C^{T} : \tau \prec \sigma\}) \cap C = \emptyset$$
 so
 $K \cap D = \emptyset \iff \bigcup_{\sigma \in K} (L^{C^{\sigma}} - \cup \{C^{T} : \tau \prec \sigma\}) \cap C = \emptyset$. Thus $D \le C \equiv B_{\gamma}^{*}$.

For the converse reducibility note that

(6) $\mathbb{K}_{\eta} \cap \mathbb{B}_{\gamma}^{*} = \emptyset \iff \mathbb{U}[\mathbb{K}_{\xi} : \xi \in \mathbb{K}_{\eta} \cap \mathbb{L}^{k_{\eta}(\gamma)}] \cap \mathbb{B} = \emptyset \iff \mathbb{N}_{\eta} \cap \mathbb{B}' = \emptyset$ where $\lambda \eta \mathbb{N}_{\eta}$ is a \mathbb{O} -computable mapping having properties similar to those of $\lambda \eta \mathbb{G}_{\eta}$. Let $f(\eta) = \mu^{\tau}[\mathbb{C}^{\mathsf{T}} \succeq \pi(\mathbb{N}_{\eta}) \& \tau \notin \mathbb{D}]$. f is total by adequacy and $f \leq_{W} \mathbb{D}$. Let $g(\eta) = \mu^{\tau}[\pi^{-1}(\mathbb{U}\{\mathbb{C}^{\sigma} : \sigma \prec f(\eta)\}) - \mathbb{U}\{\mathbb{B}^{\sigma} : \sigma \prec \tau\} = \emptyset]$. Then g is total and $g \leq_{W} \mathbb{D}$. We show $\mathbb{N}_{\eta} \subseteq \mathbb{B}' \iff \mathbb{N}_{\eta} \subseteq \mathbb{U}\{\mathbb{B}^{\mathsf{T}} : \tau \prec g(\eta)\}$. This together with (6) shows $\mathbb{B}_{\gamma}^{*} \leq \mathbb{D}$. So suppose $\xi \in \mathbb{N}_{\eta} \subseteq \mathbb{B}'$. By (4) there are σ, τ such that $\xi \in \mathbb{B}^{\sigma}, \sigma \prec \tau, \mathbb{B}^{\mathsf{T}} \prec k_{\eta}(\gamma) \preceq \mathbb{B}^{\sigma}$ and $\pi(\mathbb{B}^{\mathsf{T}}) \prec \pi(\mathbb{B}^{\sigma}) \sim \pi(\mathbb{N}_{\eta})$. Thus $\mathbb{B}^{\mathsf{T}} \subseteq \mathbb{B}_{\gamma}^{*}$ since $\mathbb{B}^{\mathsf{T}} \prec k_{\eta}(\gamma)$. Furthermore $\mathbb{B}^{\mathsf{T}} \subseteq \pi^{-1}(\mathbb{U}\{\mathbb{C}^{\mathsf{T}'} : \tau' \prec f(\eta)\})$ since $\pi(\mathbb{B}^{\mathsf{T}}) \prec \pi(\mathbb{N}_{\eta})$ and \mathbb{D} is a deficiency set for C. But then $\tau \prec g(\eta)$ so $\sigma \prec g(\eta)$.

As a final remark we note that the regular set produced is either D^2 or D. Both of these satisfy the last statement of the theorem.

Bibliography

- [1] W. Maass, The uniform regular set theorem in α-recursion theory, to appear.
- [2] D. Normann and V. Stoltenberg-Hansen, A non-adequate admissible set with a good degree structure, to appear in proceedings from conference in generalized recursion theory, Oslo 1977.
- [3] G.E. Sacks, Post's problem, admissible ordinals and regularity, Trans. Amer. Math, Soc. 124 (1966), 1-23.
- [4] S.G. Simpson, Post's problem for admissible sets, in: J.E.
 Fenstad and P.G. Hinman (eds.), Generalized Recursion Theory, North-Holland, 1974, 437-441.
- [5] S.G. Simpson, Admissible ordinals and recursion theory, Ph.D. thesis, MIT, 1971.
- [6] V. Stoltenberg-Hansen, Finite injury arguments in infinite computation theories, Preprint series in mathematics, No 12-1977, Oslo.
- [7] V. Stoltenberg-Hansen, On priority arguments in Friedberg theories, Ph.D. thesis, Toronto, 1973.