A REGULAR SET THEOREM FOR INFINITE
 COMPUTATION THEORIES

by

Viggo Stoltenberg-Hansen
 Oslo

A subset B of the domain of a recursion theory is said to be regular if $B \cap K$ is "finite" (in the theory) whenever the set K is "finite". Of course, in ordinary recursion theory every set is regular, so there the concept is not considered. However, when moving up to recursion theory on an admissible ordinal α, nonregular α-r.e. sets exist whenever $\alpha^{*}<\alpha$. In case α is inadmissible then there are non-regular α-recursive sets.

When studying a-r.e. degrees for an admissible ordinal α the obstacle of the existence of non-regular $\alpha-r . e$. sets is circumvented by the following theorem due to Sacks.

Theorem 1 ([3]). Suppose α is an admissible ordinal. Then every $\alpha-r . e$. set is of the same α-degree as a regular $\alpha-r_{\text {. }}$. set.

Maass [1] has recently obtained a uniform version of theorem 1.
Let Θ be an infinite computation theory as defined in [6]. In this paper we prove the following analogue of theorem 1. (A weaker but for most degree theoretic purposes sufficient version
is proved in [7].)

Theorem 2. Suppose Θ is an adequate infinite computation theory. Then every © - s.c. set B is of the same degree as a regular. ©-s.c. set D. Furthermore D may be chosen such that $\forall x(\forall y \sim x)(x \in D \Rightarrow y \in D)$.

Remark: Suppose Θ is the infinite computation theory over an adequate resolvable admissible set A with urelements. Then the theorem asserts that every \mathcal{A}-r.e. set is of the same \mathcal{A}-degree as a regular $\mathcal{A}-r . e$. subset of $0_{0}^{(\mathbb{A}), ~ t h e ~ o r d i n a l ~ o f ~} \mathcal{A}$.

Thus we have that adequacy is a sufficient condition on Θ for the regular set theorem to hold. However, it is shown in [2] that the condition is not necessary. On the other hand, assuming $A D$, Simpson [4] has shown there is a Θ such that every regular Θ-s.c. set is Θ-computable.

The proof of theorem 1 was simplified by Simpson [5]. He utilized the wellordering of the domain in the form that every $\alpha-r$.e. non- α-finite set has a 1-1 α-recursive enumeration. The analogous property is false for arbitrary adequate computation theories. Thus our proof of theorem 2 is modelled after Sacks' original proof of theorem 1.

For definitions and notation the reader is referred to [6].

Proof of theorem 2: Let B be a Θ-s.c. non- Θ-computable set, We are to find a regular ©-s.c. set D such that $D \equiv B$. Let $B^{*}=\left\{\xi: K_{\xi} \cap B \neq \varnothing\right\}$ where $\lambda \xi K_{\xi}$ is a fixed enumeration of Θ-finite sets. We have $K_{\xi} \cap B^{*}=\varnothing \Longleftrightarrow \cup\left\{K_{\eta}: \eta \in K_{\xi}\right\} \cap B=\varnothing$ and

$$
K_{\xi} \cap B=\varnothing \Leftrightarrow 5 \notin B^{*} . \quad \text { Thus } B^{*} \equiv B
$$

Let $\pi: U \rightarrow L^{|\approx|^{*}}$ be a projection such that $\pi(x) \rightarrow y_{1}$ \& $\pi(x) \rightarrow \mathrm{y}_{2} \Rightarrow \mathrm{y}_{1} \sim \mathrm{y}_{2}$. Then
(1) $K_{\gamma} \cap B^{*}=\varnothing \quad \Leftrightarrow \quad U\left\{K_{\eta}: \eta \in K_{\gamma}\right\} \cap B=\varnothing \quad \Leftrightarrow \quad H_{\gamma} \cap B^{*}=\varnothing$
where $\lambda \gamma H_{\gamma}$ is a Θ-computable mapping whose values are (canonical Θ-indices for) Θ-finite sets such that $\forall \gamma\left(H_{\gamma} \neq \varnothing\right)$, $\xi \in \mathbf{H}_{Y} \Rightarrow K_{\xi}=U\left\{K_{\eta}: \eta \in K_{Y}\right\}$ and $\xi_{1}, \xi_{2} \in H_{\gamma} \Rightarrow \xi_{1} \sim \xi_{2} \& \pi\left(\xi_{1}\right) \sim \pi\left(\xi_{2}\right)$. Because of (1) it is convenient to work with B^{*} instead of B.

Let $\lambda \sigma B^{\sigma}$ be a disjoint (\lesssim)-enumeration of B^{*} such that $\forall \sigma\left(B^{\sigma} \neq \varnothing\right)$ and $\forall \sigma, x, y\left(x \in B^{\sigma}\right.$ \& $\left.y \in B^{\sigma} \Rightarrow x \sim y \& \pi(x) \sim \pi(y)\right)$. Define

$$
\left.D^{2}=\{\sigma:(\exists \tau\rangle \sigma)\left(B^{\top}<B^{\sigma} \& \pi\left(B^{\tau}\right)<\pi\left(B^{\sigma}\right)\right)\right\} .
$$

Note that expressions like $\pi\left(B^{\top}\right)<\pi\left(B^{\sigma}\right)$ make sense and are ©computable. Clearly D^{2} is \oplus-s.c. and $U-D^{2}$ is unbounded. Claim 1: D^{2} is regular.

Proof: Given σ_{0} we show $D^{2} \cap L^{\sigma}{ }^{\circ}$ is Θ-finite. Having defined $\sigma_{0}, \ldots, \sigma_{n}$ we choose, if possible, σ_{n+1} such that $\sigma_{n+1}>\sigma_{n}$ and $(\forall j \leq n)\left(B^{\sigma_{n+1}}<B^{\sigma_{j}} \vee \pi\left(B^{\sigma_{n+1}}\right)<\pi\left(B^{\sigma_{j}}\right)\right)$. By the well-foundedness of $<$ the defined sequence is finite. Let σ_{n} be the last. Then

$$
D^{2} \cap I^{\sigma_{0}}=\left\{\sigma<\sigma_{0}:\left(\exists \tau \leqslant \sigma_{n}\right)\left(B^{\tau}<B^{\sigma} \& \pi\left(B^{\tau}\right)<\pi\left(B^{\sigma}\right) \& \tau \succ \sigma\right)\right\} .
$$

One inclusion is obvious. So suppose $\sigma \in D^{2} \cap L^{\sigma}$. Choose $\tau \succ \sigma$ such that $B^{\top}<B^{\sigma}$ \& $\pi\left(B^{\top}\right)<\pi\left(B^{\sigma}\right)$ 。 If $\tau \lesssim \sigma_{n}$ then all is well. If $\tau>\sigma_{n}$ then by the choice of σ_{n} there is $j \leq n$ such that $B^{\sigma}{ }^{j} \nsim B^{\tau}$ \& $\pi\left(B^{\sigma} j\right) \leqslant \pi\left(B^{\tau}\right)$. But then $B^{\sigma}{ }^{j} \prec B^{\sigma} \& \pi\left(B^{\sigma}{ }^{j}\right) \prec \pi\left(B^{\sigma}\right)$ and $\sigma \prec \sigma_{0} \preccurlyeq \sigma_{j}$. Thus the inclusion from left to right holds.

Claim 2: $\quad D^{2} \leq B^{*}$.
Proof: First we show
(2) $\sigma \notin D^{2} \Leftrightarrow \pi^{-1}\left[\pi\left(A^{B^{\sigma}}\right) \cap\left(L^{\pi\left(B^{\sigma}\right)}-\underset{\tau<\sigma}{\bigcup} \pi\left(B^{\tau}\right)\right)\right] \cap B^{*}=\varnothing$.

Suppose the right hand side is false for a given σ. Then there are x and τ such that
$x \in \pi^{-1}\left[\pi\left(I^{B^{\sigma}}\right) \cap\left(I^{\pi\left(B^{\sigma}\right)}-\underset{\sigma^{\prime}<\sigma}{U} \pi\left(B^{\sigma^{\prime}}\right)\right)\right] \cap B^{\tau}$. In particular $\pi(x) \cap \pi\left(\mathbb{I}^{B^{\sigma}}\right) \neq \varnothing$ so $x \in \mathbb{L}^{B^{\sigma}}$ (since π is a projection) and hence $B^{\top}<B^{\sigma}$. Furthermore $\pi(x) \cap\left(I^{\pi\left(B^{\sigma}\right)}-\underset{\sigma^{\prime}<\sigma}{U} \pi\left(B^{\sigma^{\prime}}\right)\right) \neq \varnothing$ so $\pi\left(B^{\tau}\right)<\pi\left(B^{\sigma}\right)$ and $\tau \succ \sigma$. Thus $\sigma \in D^{2}$.

The converse of (2) follows by a similar argument. Using (2) we have

$$
\begin{align*}
& \quad K \cap D^{2}=\varnothing \Leftrightarrow \underset{\sigma \in K}{U} \pi^{-1}\left[\pi\left(I^{B^{\sigma}}\right) \cap\left(I^{\pi\left(B^{\sigma}\right)}-\underset{\tau<\sigma}{\cup} \pi\left(B^{\tau}\right)\right)\right] \cap B^{*}=\varnothing, \\
& \text { so } \quad D^{2} \leq B^{*} .
\end{align*}
$$

We now make an assumption and show that if the assumption holds then $B^{*} \leq D^{2}$. On the other hand if the assumption is false, we find σ such that $B^{*} \equiv B^{*} \cap I^{\sigma}$ 。 It is then easy to find a regular $@-$ s.c. set D such that $B^{*} \cap I^{\sigma} \equiv D$.

Define

$$
k_{1}(\gamma)=\mu \sigma\left[H_{\gamma}<\sigma \& \pi\left(H_{\gamma}\right)<\min \pi(\{y: y \sim \sigma\})\right] .
$$

k_{1} is ©-computable and total (by adequacy). Let

$$
k(\gamma)=\mu \sigma\left[k_{1}(\gamma) \approx B^{\sigma} \& \min \pi\left(\left\{y: y \sim k_{1}(\gamma)\right\}\right) \preccurlyeq \pi\left(B^{\sigma}\right) \& \sigma \notin D^{2}\right] .
$$

Note that $k \leq_{W} D^{2}$.
Claim 3: If k is total then $B^{*} \leq D^{2}$.

Proof: Note that $H_{\gamma} \cap B^{*} \neq \varnothing \Leftrightarrow H_{\gamma} \subseteq B^{*}$. We show $H_{\gamma} \subseteq B^{*} \Leftrightarrow H_{\gamma} \subseteq \cup\left\{B^{\top}: \tau<k(\gamma)\right\}$. It then follows from (1) that $B^{*} \leq D^{2}$. So let $\xi \in H_{\gamma} \subseteq B^{*}$, say $\xi \in B^{\top}$. We want to show $\tau<k(\gamma)$. $B^{\top}<k_{1}(\gamma) \preccurlyeq B^{k(\gamma)}$ so $\tau \not \not k(\gamma)$. Suppose $\tau>k(\gamma)$. Then since $k(\gamma) \notin D^{2}$ it rust be that $\pi\left(B^{k(\gamma)} \leqslant \pi\left(B^{\tau}\right)\right.$. But then $\pi\left(B^{\top}\right) \sim \pi\left(H_{\gamma}\right)<\min \pi\left(\left\{y: y \sim k_{1}(\gamma)\right\}\right) \leqslant \pi\left(B^{k(\gamma)}\right) \leqslant \pi\left(B^{\top}\right)$,
a contradiction. Thus $\tau<k(Y)$.
Now we assume k is not total. Choose γ such that $\forall \sigma\left[B^{\sigma}<k_{1}(\gamma) \vee \pi\left(B^{\sigma}\right)<\min \pi\left(\left\{y: y \sim k_{1}(\gamma)\right\}\right) \vee \sigma \in D^{2}\right]$.

Let $B_{\gamma}^{*}=B^{*} \cap L^{k_{1}(\gamma)}$. We will show $B_{\gamma}^{*} \equiv B^{*}$. Clearly $B_{\gamma}^{*} \leq B^{*}$. By adequacy we can choose σ_{0} such that
$\tau>\sigma_{0} \Rightarrow \pi\left(B^{\tau}\right)>\min \pi\left(\left\{y: y \sim k_{1}(\gamma)\right\}\right)$. Thus

$$
\begin{equation*}
\forall \tau>\sigma_{0}\left(B^{\tau}<k_{1}(\gamma) \vee \tau \in D^{2}\right) . \tag{3}
\end{equation*}
$$

Let $B^{\prime}=B^{*}-\left(L^{k_{1}(\gamma)} \cup \cup\left\{B^{\top}: \tau \not \approx \sigma_{0}\right\}\right)$. Since clearly $B^{*}-B^{\prime} \leq B_{\gamma}^{*}$, it suffices to show $B^{\prime} \leq B_{\gamma}^{*}$ in order to show $B^{*} \equiv B_{\gamma}^{*}$ 。

Claim 4: $\quad B^{\prime} \leq B_{\gamma}^{*}$.
Proof: We first show
(4) $\zeta \in B^{\prime} \Leftrightarrow \exists \exists \sigma, \tau\left[\sigma_{0}<\sigma<\tau \& E \in B^{\sigma} \& B^{\top}<k_{1}(\gamma) \leqslant B^{\sigma}\right.$ $\left.\& \pi\left(B^{\top}\right)<\pi\left(B^{\sigma}\right)\right]$.

The if direction is obvious. So suppose $\bar{\xi} \in \mathrm{B}^{\prime}$. Then there is $\sigma>\sigma_{0}$ such that $\xi \in B^{\sigma}$ and, by (3) and the definition of B^{\prime}, $\sigma \in D^{2}$. Thus there is $\tau_{1}>\sigma$ such that $B^{\top}{ }^{\top}<B^{\sigma}$ and $\pi\left(B^{\top} 1\right)<\pi\left(B^{\sigma}\right)$. If $B^{\top} \uparrow<k_{1}(\gamma)$ then we are done. If not, then $B^{\top} 1 \geqslant k_{1}(\gamma)$ so $\tau_{1} \in D^{2}$ by (3). Thus there is $\tau_{2}>\tau_{1}$ such that
$B^{\tau_{2}}<B^{\tau_{1}} \& \pi\left(B^{\tau_{2}}\right)<\pi\left(B^{\tau_{1}}\right)$. The sequence $\tau_{1}, \tau_{2}, \ldots$ must be finite so eventually we obtain τ_{m} such that $B^{\top} m^{\prime}<k_{1}(\gamma)$. This proves (4).

Now suppose we have chosen the enumeration of $@$-finite sets $\lambda E K_{\xi}$ to be repetitive in the following sense: Given any x then every Θ-finite set has an index in $U-L^{X}$. Then we can find a Θ-computable mapping $\lambda \eta G_{\eta}$ whose values are Θ-finite sets such that

$$
\text { (5) } \begin{aligned}
K_{\eta} \cap B^{\prime}=\varnothing & \Leftrightarrow\left(K_{\eta}-\left(L^{k_{1}(\gamma)} \cup \cup\left\{B^{\tau}: \tau ふ \sigma_{0}\right\}\right)\right) \cap B^{*}=\varnothing \\
& \Leftrightarrow G_{\eta} \cap B^{\prime}=\varnothing
\end{aligned}
$$

Furthermore $\lambda \eta G_{\eta}$ can be chosen to have the following properties:

$$
\begin{aligned}
& \forall \eta\left(G_{\eta} \neq \varnothing\right), G_{\eta} \cap B^{\prime} \neq \varnothing \Leftrightarrow G_{\eta} \subseteq B^{\prime}, G_{\eta} \subseteq B^{*} \Leftrightarrow G_{\eta} \subseteq B^{\prime}, \quad \text { and } \\
& \xi_{1}, \xi_{2} \in G_{\eta} \Rightarrow \xi_{1} \sim \xi_{2} \& \pi\left(\xi_{1}\right) \sim \pi\left(\xi_{2}\right)
\end{aligned}
$$

Let $F_{\eta}=\left\{x \in L^{k_{1}(\gamma)}: \pi(x)<\pi\left(G_{\eta}\right)\right\}$, and let
$I(\eta)=\mu \tau\left[\left(F_{\eta}-U\left\{B^{\sigma}: \sigma \prec \tau\right\}\right) \cap B_{\gamma}^{*}=\varnothing\right]$. Then l is total by adequacy and $I \leq_{W} B_{Y}^{*}$. Clearly $I(\eta)$ is a strict least upper bound for $\left\{\tau: B^{\top} \subseteq F_{\eta}\right\}$. We show $G_{\eta} \cap B^{\prime}=\varnothing \Leftrightarrow G_{\eta} \cap \cup\left\{B^{\top}: \tau<I(\eta)\right\}=\varnothing$. Combining this with (5) we then have $B^{\prime} \leq B_{\gamma}^{*}$. So suppose $\xi \in G_{\eta} \subseteq B^{\prime}$. By (4) there is σ and τ such that $\sigma_{0}<\sigma<\tau, \xi \in B^{\sigma}, B^{\tau}<k_{1}(\gamma)$ and $\pi\left(B^{\tau}\right)<\pi\left(B^{\sigma}\right)$. If $\sigma \succsim l(\eta)$ then $\tau>l(\eta)$ so $\pi\left(G_{\eta}\right) \leqslant \pi\left(B^{\top}\right)$. But $\pi\left(B^{\top}\right)<\pi\left(B^{\sigma}\right) \sim \pi\left(G_{\eta}\right)$ so we have a contradiction. This shows $\sigma<I(\eta)$, which was all that remained to prove the claim.

Let $C=U\left\{\pi(x): x \in B_{\gamma}^{*}\right\}$. It is easily seen that $C \equiv B_{\gamma}^{*}$ since B_{γ}^{*} is bounded. Let $\lambda \sigma C^{\sigma}$ be a disjoint (α)-enumeration of C such that $\forall \sigma\left(C^{\sigma} \neq \varnothing\right)$ and $x, y \in C^{\sigma} \Rightarrow x \sim y$. Let $D=\left\{\sigma:(\exists \tau>\sigma)\left(C^{\top}<C^{\sigma}\right)\right\}$, the deficiency set of $C . D$ is clearly
regular and $U-D$ is unbounded. We show $D \equiv B_{\gamma}^{*}$ thus completing the proof of the theorem.

We have $\sigma \notin D \Leftrightarrow\left(I^{C^{\sigma}}-U\left\{C^{\top}: \tau<\sigma\right\}\right) \cap C=\varnothing$ so $K \cap D=\varnothing \Leftrightarrow \underset{\sigma \in K}{U}\left(I^{C^{\sigma}}-U\left\{C^{\tau}: \tau<\sigma\right\}\right) \cap C=\varnothing$. Thus $D \leq C \equiv B_{\gamma}^{*}$. For the converse reducibility note that
(6) $K_{\eta} \cap B_{\gamma}^{*}=\varnothing \Leftrightarrow U\left\{K_{\xi}: \xi \in K_{\eta} \cap L^{k_{1}(\gamma)}\right\} \cap B=\varnothing \Leftrightarrow N_{\eta} \cap B^{\prime}=\varnothing$ where $\lambda \eta N_{\eta}$ is a ©-computable mapping having properties similar to those of $\lambda \eta G_{\eta}$. Let $f(\eta)=\mu \sim\left[C^{\top} \gtrsim \pi\left(N_{\eta}\right) \& \tau \notin D\right]$. f is total by adequacy and $f \leq_{W} D$. Let $g(\eta)=\mu \tau\left[\pi^{-1}\left(U\left\{C^{\sigma}: \sigma<f(\eta)\right\}\right)-U\left\{B^{\sigma}: \sigma<\tau\right\}=\varnothing\right]$. Then g is total and $g \leq{ }_{W} D$. We show $N_{\eta} \subseteq B^{\prime} \Leftrightarrow N_{\eta} \subseteq U\left\{B^{\top}: \tau<g(\eta)\right\}$. This together with (6) shows $B_{\gamma}^{*} \leq D$. So suppose $\xi \in \mathbb{N}_{\eta} \subseteq B^{\prime}$. By (4) there are σ, τ such that $\xi \in B^{\sigma}, \sigma \prec \tau, B^{\tau} \prec k_{1}(\gamma) \preccurlyeq B^{\sigma}$ and $\pi\left(B^{\top}\right) \prec \pi\left(B^{\sigma}\right) \sim \pi\left(N_{\eta}\right)$. Thus $B^{\top} \subseteq B_{\gamma}^{*}$ since $B^{\top}<k_{1}(\gamma)$. Furthermore $B^{\top} \subseteq \pi^{-1}\left(U\left\{C^{\tau^{\prime}}: \tau^{\prime}<f(\eta)\right\}\right)$ since $\pi\left(B^{\top}\right)<\pi\left(N_{\eta}\right)$ and D is a deficiency set for C. But then $\tau<g(\eta)$ so $\sigma<g(\eta)$.

As a final remark we note that the regular set produced is either D^{2} or D. Both of these satisfy the last statement of the theorem.

Bibliography

[1] W. Maass, The uniform regular set theorem in α-recursion theory, to appear.
[2] D. Normann and V. Stoltenberg-Hansen, A non-adequate admissible set with a good degree structure, to appear in proceedings from conference in generalized recursion theory, Oslo 1977.
[3] G.E. Sacks, Post's problem, admissible ordinals and regularity, Trans. Amer. Math, Soc. 124 (1966), 1-23.
[4] S.G. Simpson, Post's problem for admissible sets, in: J.E. Fenstad and P.G. Hinman (eds.), Generalized Recursion Theory, North-Holland, 1974, 437-441.
[5] S.G. Simpson, Admissible ordinals and recursion theory, Ph.D. thesis, MIT, 1971.
[6] V. Stoltenberg-Hansen, Finite injury arguments in infinite computation theories, Preprint series in mathematics, No 121977, Oslo.
[7] V. Stoltenberg-Hansen, On priority arguments in Friedberg theories, Ph.D. thesis, Toronto, 1973.

