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In [5] S. Wainer introduces a hierarchy for arbitrary 

Given F, he defines a set of ordinal type-2-functionals. 

notations OF, and for each a E oF a function f recursive in . a 
F and an ordinal lair F 

< wl. For any f recursive in F there 

an a E OF such that f is primitive recursive in f . a 
Let p 

F 
be the least ordinal a such that for any f 

recursive in F there is an a E OF with Ia lF < a such that 

is primitive recursive in f . 
a 

F F 
p < w1 the hierarchy breaks 

f 

is 

down. In Bergstra-Wainer [2] 

If 

F 
p is described as "the real ordinal 

of the !-section of ru. 
Using standard methods (originally due to Kleene) one may 

F F prove that if F is normal, then p = w1 • 

Feferman has proved that if F is recursive, then 2 w • 

Let !-section (F) = 1-sc(F) = {f; f is recursive 1n F} 

where f is a total object of type 1. 

Grilliot [ 4] proved that F t, 1-sc (F) is continuous if and 

only if F is not normal. In Wainer [5] it is stated that if F 
F F is not normal, then p < w1 . We are going to disprove this by 

proving 

Theorem 1 

There is a continuous function G of type two such that 

G 
(a)l. 
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L. Harrington proved the following: 

Let F be nonnormal and let h be the canonica·l associate for F. 

Then 
r 
F F 1 

p < ~1 • 1-sc(F) E ~1 (h) 

The statement in Wainer [5] was proved using this result of 

Harrington and as a hidden lemma that the right hand side of the 

equivalence above would always hold. The hidden lemma is false, and 

we obtain Theorem 1 by combining Harrington's result with: 

Theorem 2 

There is a continuous function G of type 2 recursive in o1 

such that 1-sc(G) E n1 ' ~l 1 1• 

Here 01 is a complete recursively enumerable set. Theorem 2 

is the main result of the paper. 

Let ~ 
of order ~ y. 

consist of those hyperarithmetic sets with notations 

We define n° and A 0 in the obvious way. y y 

Adopting methods from the proof of theorem 2 we may prove 

Theorem 3 

Let Then there is a continuous functional 

type 2 recursive in o1 such that 

i 

ii 

G 
y < p < ~1 

1-sc G ( ~O · y 

G of 

Clearly, for any functional F, 1-sc(F) is closed under recursion, 

so 1-sc(F) defines an upper semilattice of degrees. We say that 

1-sc(F) is topless if 1-sc(F) contains no maximal degree. 

Corollary (J. Bergstra [1]) 

There exists a continuous functional G of type 2 such that 

1-sc(G) is topless. 
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Proof Let G be obtained from theorem 2 or from theorem 3 with 

y ~ 5. If 1-sc(G) is not topless, let a € 1-sc(G) be of 

maximal degree. Since a is recursive in o1 , a € fl~. 

But 1-scG = {8; 8 is recursive in a} € t~(a) ~ t~ 

Many of the ideas in the following construction are due to 

M. Hyland, J. Bergstra and S. Wainer. The-inspiration from 

Bergstra-Wainer [2] is clear, and several of the technical details 

are borrowed from Bergstra [1]. We take the liberty to repeat them 

here. 

Lemma 1 (R.O. Gandy [3]) 

a There is a recursive, linear ordering A on jN such that the 

maximal wellordered-initual segment B is but not 1 A-1 

b Let y < (a)l. There is a recursive, linear ordering A 

such that the maximal well-ordered initial segment B is 

not ro 
y . 

Remark Only a is stated in Gandy [ 3] ' but b is proved -

same manner. 

We give a quick sketch of the proof: 

on .. IN 
.tll 

1 but 

in the 

a Let < be the Kleene - Brouwer ordering of the sequence numbers. 

Let R be recursive such that 

(H) a € .tli ~ V6 3n 1 R( <a-, 6:;=.Tb)) 

where a1 is a subsequence of a 2 and RCcr1 > • R(a 2>. 

Let A be ~ restricted to R. 

A is a recursive linear ordering without hyperarithmetic 

descending sequences, but A is not well-ordered. 

Then the initial wellordered segment must be but not 

b A closer analysis of the proof of a gives a k such that when we 
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replace K by 

0 
a E ry+k .. VB 3n 1 R(<a,B>(n)) 

then the maximal initial wellordered segment of A will not be 
0 

ry' but for some 

Lemma 2 

Let A be a recursive linear ordering of IN. There exists an 

t X '= IN 2 r.e. se 

xn = {<i,m> 

and y = {<i,m:>. n 
then X is not n 

such that when 

€ X; m~An} 

€ X; m<An} 

recursive l.n y 
n· 

Proof This is proved by a standard priority argument using the 

finite injury method. 

In lemmas 3-8, let A,B be as in lemma l.a;X~Xn and Yn 

as in lemma 2. 

Let * B = {a; a 

Lemma 3 

Bx E n1 ' r 1 
1 1 

is recursive in X for some 
n 

The proof is trivial. 

We want to construct G so that 1-sc(G) = B*. 

Conventions 
fn if k = 0 

If n € w, a E tp(l)' let nr·,a (k) = ) 
I a(k-1) if k 
'....-

- (k) a(k+l) Let a = 

If F is a (partial) type two functional, let 

n e: B}. 

> 1 

F (a) = n F(n'"'a). 

Let T be Kleene's T-predicate with the following properties: 

Each r.e.set is on the form W : {p; 3qT(a,p,q)j 
a 

For any p,a there is at most one q such that 

T(a,p~q), and T(a,p~q) • q > 1 
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There are recursive functions ~ and w such that 

and yn = w$(n) 

Field (A) = IN • 

X 
n 

Definition (Bergstra [1]) 

a Let a be a sequence number. 

b 

R (a) • 3p,q( 1 ~ p,q -s lh(a) 11 T(a,p,q) /\ a(p) < q) 
a 

\'llt[T(b,a(O),t) "•Ra(a(t))] if euch t exists 
Fb(a) 

a =Lo otherwise. 

F~ is recursive in Wb uniformly in a,b. 

Lemma 4 (Bergstra [1]) 

a Va, n[R (a(n)) • R (a(n+l))] 
a a 

b is not recursive in a, then 3nR (a(n)) 
a 

c There exists a recursive in Wa such that Vn IRa (a(n)) 

Proof 

a Trivial 

b Assume Vn l R (a(n)). Then 
a 

p E w .. 3q s a(p)T(a,p.,q) 
a 

and wa is recursive in a 

c Let p > o. If there 1.s a q such that T(a,p,q) let a(p) = q. 

Otherwise let a(p) = o. We may let a(O) be anything we want. 

Definition 

Define the partial recursive function by the following 

instruction for computation: 

Find the least to such that Ra<a<t0 >> (If such to does 

not exists, Hb(a) 
a is undefined.) Then, if there is a t < to 

such that T(b,a(O),t) /\IRa (a(t)), let H~(a) be the one such t. 

If there is no such t < to, let Hb(a) = 0. a 
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Lemma 5 

c Fb Hb(a) is defined if w is not a' a a 

and Hb is recursive uniformly in a,b. 
a 

Proof Trivial by lemma 4. 

Definition 

a Let G be the continuous function defined by 

Gn = F*~~~ for all n. 

b Let I(Il be the partial functional defined by 

I(R = G if n <Am n n 

I(ll = H<f>(n) if m ~An n lP~n) 

c Let Lm be the partial functional defined by 

Lm = G if n < m 
n n -A 

Lm = H<f>(n) if m <An n llJ(n) 

recursive in 

Remark Each F~ is uniformly recursive in Wb,a,b, so G is 

recursive in o1 . 

Lemma 6 

a 

There is an index e such that for any n € B Am{e}(G,n,m) 

is the characteristic function of X . 
n 

Proof We will show how to compute Xn from Yn (Bergstra [1]). 

The lemma then follows by a routine application of the recursion 

theorem. 

For each m E IN , choose am such that a (0) = m and m 

Vk I RllJ(n) (a(k)). This can be done uniformly recursive in 

Yn,n,m by lemma I.J..C. We then have 
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Corollary 

s* c; 1-sc(G) 

Lemma 

a 

b 

c 

Proof 

b 

c 

7 

I(ll is uniformly recursive in wtjJ(n) ,n 

Ln is uniformly recursive in w<j>(n)'n 

If a. is recursive in wlP<n>' then Ln(a) is defined. 

which again is recursive in y 
n 

in this situation. 

n <j>(a))( -) If a(O) A~n, then K (a) = HtjJ(a)) a • All are 

recursive uniformly in a,b. 

is proved in the same way. 

For any a such that a(O) SAn' Ln(a) is defined. 

Let a be recursive in wtjJ(n) and assume that a{O) A>n. 

Then X is recursive l.n wlP(a{O) > and X is not n n 
recursive in Yn = WtjJ(n)• Then a cannot be recursive in 

WlP{a(O)) and 

is defined by lemma 5. 

Lemma 8 

Let n € B, llnll 8 _= y < CK 
wl . Let {e}(G,ib ,..., k be a 

computation of length < Y· Then {e}(Ln;~) ,..., k by the -
same computation. 

Proof We prove this by induction on y. The lemma is trivial 

for all initial cpmputations, and the induction is trivial 

for all cases except application of G. So assume 
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{e}(G,~) Q:l G(Am{e1 }(G,~,m)). 

By the induction hypothesis there is for each m E (I) an 

1 nm 1 

nm <An such that {e1 }(G,n,m) Q:l {e1 }(L ,n,m) 

For each m we have so 

a = Xrn {e1 HKn,n,m> is total. By lemma 7 .a a will be 

recursive in wl/J ( n)' and by lemma 7.c Ln(cx) is defined and 

equal to G(a). 

Since Kn = Ln, we obtain {e}(G,~) = {e}(Ln,ti), which 

was what we wanted to prove. 

We may now prove theorem 2: 

Let G be as constructed above, B* as defined above. 

Let a = Am{e}(G,m). Let y = sup{le,G,ml+l; mE (1)}, I lnl 18 = y. 

By lemma 8 then a = A.m{e} q. n ,m). By lemma 7b, a is recursive 

in Xn, so a E B*. This shows, with the corollary of lemma 6, 

that B* = 1-sc G. Q.E.D. 

Now, let A,B be obtained from lemma l.b with y ~ w. 

Define G,B*, Kn and Ln from A,B as above. We are going to prove 

the following 

Claim 

i 
H B = 1-sc G 

ii 

Proof of theorem 3 from the claim 

Let Yo be given. Let Y ~ Yo + w, and let B*, G, B be 

as in the claim. If IIBII < Yo there is a k such that 

B E l: This contradicts lemma l.b. By Claim ii G 
> Yo. 

Yo+k 
. p 
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If for some k. But B is not in 

Definition 

Let C = field {A)' B. 

Let c* = {a; (Vn E C)(a is recursive in Xn)}. 

Lemma 6 still gives us that B* c 1-sc G. 

Lemma 9 
... Let {e}(G,n) ~ k be a computation, n E C. Then 

{e}(~n) ~ k by the same computation. 

I:o 
y 

The proof is as in lemma 8 by induction on 6 = the 

length of the computation. In order to prove this for n,o, we 

use the induction hypothesis for some n0 <A n, n0 € C, and then 

act as in lemma 8. 

Corollary 

1-sc{G) c:; c* 

Now assume that 

in 01 • We then have 

n E B ~ n € 

But then B E t:.o 
k 

So c* = a* and 

A 

In order to verify 

& (J is not 

for some k, 

a E A0 since 
2 

recursive· in. 

a is recursive 

X • 
n 

contradicting the choice of 

a* = 1-sc{G). Claim i is verified. 

claim ii we prove that if a E OG is 

a notation in the Wainer-hierarchy such that for some n E a, 

y. 

la1 8 = I lnl Ia, then fa is recursive in 

kind of argument as in lemma 8. So, if 

Xn • We use the same 

X 
n 

is primitive 

recursive in fa, then la1 8 ~ I lnl Ia, and we obtain 

pG ~ tlal I· PG < w1 since 1-scG E Ai. 



- 10 -

In this note we have constructed continuous functionals 

with 1-sections of various degrees of definability. They all have 

a few properties in common. 

1. 1-sc(G) € nl 
1 

2. 1-sc(G) c;; Ao 
2 

3. 1-sc(G) is generated by its r.e.elements. 

It still is an interesting problem to decide the nature of all 

1-sections of continuous functionals of type 2, or as partial 

solutions find criteria that guarantees that a given class of 

functions is the 1-section of some continuous functional. In this 

direction, we offer the following problem: 

If A € 1 
nl, Ac;; 0 

A2' A is closed under paining and recursion 

and a € A if and only if there is an r.e.set a € A such that 

a is recursive in a, is then A the 1-section of some continuous 

functional? 
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