On a problem of S. Wainer

(The real ordinal of the 1-section of a continuous functional)

By Dag Normann, Oslo - 76

In [5] S. Wainer introduces a hierarchy for arbitrary type-2-functionals. Given F, he defines a set of ordinal notations 0^{F} , and for each a $\in 0^{F}$ a function f_{a} recursive in F and an ordinal $|a|^{F} < \omega_{1}^{F}$. For any f recursive in F there is an a $\in 0^{F}$ such that f is primitive recursive in f_{a} .

Let ρ^{F} be the least ordinal α such that for any f recursive in F there is an $a \in 0^{F}$ with $|a|^{F} < \alpha$ such that f is primitive recursive in f_{a} . If $\rho^{F} < \omega_{1}^{F}$ the hierarchy breaks down. In Bergstra-Wainer [2] ρ^{F} is described as "the real ordinal of the 1-section of F".

Using standard methods (originally due to Kleene) one may prove that if F is normal, then $\rho^{F} = \omega_{1}^{F}$. Feferman has proved that if F is recursive, then $\rho^{F} = \omega^{2}$.

Let l-section (F) = l-sc(F) = {f; f is recursive in F} where f is a total object of type l.

Grilliot [4] proved that FN 1-sc(F) is continuous if and only if F is not normal. In Wainer [5] it is stated that if F is not normal, then $\rho^{\rm F} < \omega_1^{\rm F}$. We are going to disprove this by proving

Theorem 1

There is a continuous function G of type two such that $\rho^{G} = \omega_{1}^{G}$.

L. Harrington proved the following:

Let F be nonnormal and let h be the canonical associate for F. Then

$$\rho^{\rm F} < \omega_1^{\rm F} \Leftrightarrow 1-{\rm sc}({\rm F}) \in \Delta_1^{\rm l}({\rm h})$$

The statement in Wainer [5] was proved using this result of Harrington and as a hidden lemma that the right hand side of the equivalence above would always hold. The hidden lemma is false, and we obtain Theorem 1 by combining Harrington's result with:

Theorem 2

There is a continuous function G of type 2 recursive in 0^1 such that 1-sc(G) $\in \Pi_1^1 \sim \Sigma_1^1$.

Here 0^1 is a complete recursively enumerable set. Theorem 2 is the main result of the paper.

Let Σ_{γ}^{0} consist of those hyperarithmetic sets with notations of order $\leq \gamma$. We define Π_{γ}^{0} and Δ_{γ}^{0} in the obvious way.

Adopting methods from the proof of theorem 2 we may prove

Theorem 3

Let $\gamma < \omega_1^{CK}$. Then there is a continuous functional G of type 2 recursive in 0^1 such that $\underline{i} \quad \gamma < \rho^G < \omega_1$ $\underline{ii} \quad 1-sc \in \mathfrak{E} \Sigma_{\gamma}^{O}$.

Clearly, for any functional F, 1-sc(F) is closed under recursion, so 1-sc(F) defines an upper semilattice of degrees. We say that 1-sc(F) is <u>topless</u> if 1-sc(F) contains no maximal degree.

<u>Corollary</u> (J. Bergstra [1])

There exists a continuous functional G of type 2 such that 1-sc(G) is topless.

- 2 -

<u>Proof</u> Let G be obtained from theorem 2 or from theorem 3 with $\gamma \ge 5$. If 1-sc(G) is not topless, let $\alpha \in 1-sc(G)$ be of maximal degree. Since α is recursive in 0^1 , $\alpha \in \Delta_2^0$. But 1-scG = { β ; β is recursive in α } $\in \Sigma_3^0(\alpha) \le \Sigma_5^0$

Many of the ideas in the following construction are due to M. Hyland, J. Bergstra and S. Wainer. The inspiration from Bergstra-Wainer [2] is clear, and several of the technical details are borrowed from Bergstra [1]. We take the liberty to repeat them here.

Lemma 1 (R.O. Gandy [3])

<u>a</u> There is a recursive, linear ordering A on |N| such that the maximal wellordered initual segment B is Π_1^1 but not Δ_1^1 . <u>b</u> Let $\gamma < \omega_1$. There is a recursive, linear ordering A on |N| such that the maximal well-ordered initial segment B is Δ_1^1 but

not Σ_{γ}^{0} .

<u>Remark</u> Only <u>a</u> is stated in Gandy [3], but <u>b</u> is proved in the same manner.

We give a quick sketch of the proof:

<u>a</u> Let \prec be the Kleene - Brouwer ordering of the sequence numbers. Let R be recursive such that

 $(\mathfrak{X}) \alpha \in \Delta_1^1 \Leftrightarrow \forall \beta \exists n \exists R(\langle \alpha, \beta \rangle \hbar))$

where σ_1 is a subsequence of σ_2 and $R(\sigma_1) \Rightarrow R(\sigma_2)$. Let A be \prec restricted to R.

A is a recursive linear ordering without hyperarithmetic descending sequences, but A is not well-ordered. Then the initial wellordered segment must be Π_1^1 but not Δ_1^1 . <u>b</u> A closer analysis of the proof of <u>a</u> gives a k such that when we replace x by

$$\alpha \in \Sigma_{n+1}^{\cup} \Leftrightarrow \forall \beta \exists n \neg R(\overline{\langle \alpha, \beta \rangle}(n))$$

then the maximal initial wellordered segment of A will not be Σ_{γ}^{0} , but $\Sigma_{\gamma+k_{1}}^{0}$ for some $k_{1} \in \omega$.

Lemma 2

Let A be a recursive linear ordering of |N|. There exists an r.e. set $X \subseteq |N|^2$ such that when

 $X_n = \{ <i, m > \in X; m \le_A n \}$ and $Y_n = \{ <i, m > \in X; m \le_A n \}$ then X_n is not recursive in Y_n .

<u>Proof</u> This is proved by a standard priority argument using the finite injury method.

In lemmas 3-8, let A,B be as in lemma $1.a, X, X_n$ and Y_n as in lemma 2.

Let $B^{\mathbf{X}} = \{\alpha; \alpha \text{ is recursive in } X_n \text{ for some } n \in B\}.$

Lemma 3

 $B^{\mathbf{x}} \in \pi_1^{\mathbf{l}} \sim \Sigma_1^{\mathbf{l}}$

The proof is trivial.

We want to construct G so that $1-sc(G) = B^{*}$.

<u>Conventions</u>

If $n \in \omega$, $\alpha \in tp(1)$, let $n \cap \alpha(k) = \begin{cases} n & \text{if } k = 0 \\ \alpha(k-1) & \text{if } k > 1 \end{cases}$

Let $\alpha^{-}(k) = \alpha(k+1)$

If F is a (partial) type two functional, let $F_n(\alpha) = F(n^{\alpha})$. Let T be Kleene's T-predicate with the following properties: Each r.e.set is on the form $W_a = \{p; \exists qT(a,p,q)\}$ For any p,a there is <u>at most one</u> q such that T(a,p,q), and $T(a,p,q) \Rightarrow q \ge 1$

There are recursive functions ϕ and ψ such that $Y_n = W_{\psi(n)}$ and $X_n = W_{\phi(n)}$. Field (A) = |N|. Definition (Bergstra [1]) Let σ be a sequence number. a $R_{a}(\sigma) \Leftrightarrow \exists p,q(1 \leq p,q \leq 1h(\sigma) \land T(a,p,q) \land \sigma(p) < q)$ $F_{a}^{b}(\alpha) = \begin{cases} \mu t[T(b,\alpha(0),t) \land \neg R_{a}(\overline{\alpha(t)})] \text{ if such t exists} \\ 0 \text{ otherwise.} \end{cases}$ b F_a^b is recursive in W_b uniformly in a,b. Lemma 4 (Bergstra [1]) $\forall \alpha, n[R_{\alpha}(\overline{\alpha(n)}) \Rightarrow R_{\alpha}(\overline{\alpha(n+1)})]$ a If W_a is not recursive in α , then $\exists nR_a(\overline{\alpha(n)})$ ь There exists a recursive in W_a such that $\forall n \exists R_a(\overline{\alpha(n)})$ С Proof Trivial a <u>b</u> Assume $\forall n \in \mathbb{R}_{a}(\overline{\alpha(n)})$. Then $p \in W_a \Leftrightarrow \exists q \leq \alpha(p)T(a,p,q)$ and W_a is recursive in α Let p > 0. If there is a q such that T(a,p,q) let $\alpha(p) = q$. C Otherwise let $\alpha(p) = 0$. We may let $\alpha(0)$ be anything we want. Definition

Define the partial recursive function H_a^b by the following instruction for computation:

Find the least t_0 such that $R_a(\overline{\alpha(t_0)})$ (If such t_0 does not exists, $H_a^b(\alpha)$ is undefined.) Then, if there is a $t < t_0$ such that $T(b,\alpha(0),t) \wedge 7R_a(\overline{\alpha(t)})$, let $H_a^b(\alpha)$ be the one such t. If there is no such $t < t_0$, let $H_a^b(\alpha) = 0$. Lemma 5

 $H_a^b \in F_a^b$, $H_a^b(\alpha)$ is defined if W_a is not recursive in α and H_a^b is recursive uniformly in a,b.

Proof Trivial by lemma 4.

Definition

- <u>a</u> Let G be the continuous function defined by $G_n = F_{\psi(n)}^{\phi(n)}$ for all n.
- <u>b</u> Let K^m be the partial functional defined by $K_n^m = G_n$ if $n <_A^m$ $K_n^m = H_{\psi(n)}^{\phi(n)}$ if $m <_A^n$
- \underline{c} Let \underline{L}^{m} be the partial functional defined by

 $L_{n}^{m} = G_{n} \text{ if } n \leq_{A}^{m}$ $L_{n}^{m} = H_{\psi(n)}^{\phi(n)} \text{ if } m <_{A}^{n}$

<u>Remark</u> Each F_a^b is uniformly recursive in W_b, a, b , so G is recursive in 0^1 .

Lemma 6

There is an index e such that for any $n \in B \lambda m\{e\}(G,n,m)$ is the characteristic function of X_n .

<u>Proof</u> We will show how to compute X_n from Y_n (Bergstra [1]). The lemma then follows by a routine application of the recursion theorem.

For each $m \in \mathbb{N}$, choose α_m such that $\alpha_m(0) = m$ and $\forall k \cap R_{\psi(n)}(\overline{\alpha(k)})$. This can be done uniformly recursive in Y_n, n, m by lemma <u>4.C</u>. We then have

 $m \in W_{\theta(n)} \Leftrightarrow F_{\psi(n)}^{\phi(n)}(\alpha_m) > 0 \Leftrightarrow G(n^{\alpha_m}) > 0.$

Corollary

$$B^{\mathbf{H}} \subseteq 1-\mathrm{sc}(G)$$

Lemma 7

- <u>a</u> K^{m} is uniformly recursive in $W_{\psi(n)}$, n
- <u>b</u> L^n is uniformly recursive in $W_{\phi(n)}$, n

<u>c</u> If α is recursive in $W_{\psi(n)}$, then $L^n(\alpha)$ is defined. <u>Proof</u>

- <u>a</u> If $\alpha(0) <_A n$, $K^n(\alpha) = F_{\psi(\alpha(0))}^{\phi(\alpha(0))}(\alpha^-)$. This is recursive in $X_{\alpha(0)}$ which again is recursive in Y_n in this situation. If $\alpha(0)_{A^{\geq n}}$, then $K^n(\alpha) = H_{\psi(\alpha)}^{\phi(\alpha)}(\alpha^-)$. All H_a^b are recursive uniformly in a,b.
- b is proved in the same way.
- \underline{c} For any α such that $\alpha(0) \leq_A n$, $L^n(\alpha)$ is defined.

Let α be recursive in $W_{\psi(n)}$ and assume that $\alpha(0)_A^{>n}$. Then X_n is recursive in $W_{\psi(\alpha(0))}$ and X_n is not recursive in $Y_n = W_{\psi(n)}$. Then α cannot be recursive in $W_{\psi}(\alpha(0))$ and

 $L^{n}(\alpha) = H^{\phi(\alpha(0))}_{\psi(\alpha(0))}(\alpha^{-})$ is defined by lemma 5.

Lemma 8

Let $n \in B$, $||n||_B = \gamma < \omega_1^{CK}$. Let $\{e\}(G, \vec{n}) \sim k$ be a computation of length $\leq \gamma$. Then $\{e\}(L^n, \vec{n}) \sim k$ by the same computation.

<u>Proof</u> We prove this by induction on γ. The lemma is trivial for all initial computations, and the induction is trivial for all cases except application of G. So assume

$$\{e\}(G,\vec{n}) \simeq G(\lambda m \{e_1\}(G,\vec{n},m)).$$

By the induction hypothesis there is for each m $\varepsilon ~ \omega$ an

- 8 -

 $n_m <_A n$ such that $\{e_1\}(G, \vec{n}, m) \simeq \{e_1\}(L^{m}, \vec{n}, m)$

For each m we have $L^{n_m} \subset K^n$, so

 $\alpha = \lambda \hat{m} \{e_1\}(K^n, \vec{n}, m)$ is total. By lemma 7.a α will be recursive in $W_{\psi(n)}$, and by lemma 7.c $L^n(\alpha)$ is defined and equal to $G(\alpha)$.

Since $K^n \subset L^n$, we obtain $\{e\}(G,\vec{n}) = \{e\}(L^n,\vec{n})$, which was what we wanted to prove.

We may now prove theorem 2:

Let G be as constructed above, $B^{\mathbf{X}}$ as defined above. Let $\alpha = \lambda m\{e\}(G,m)$. Let $\gamma = \sup\{|e,G,m|+1; m \in \omega\}, ||n||_{B} = \gamma$. By lemma 8 then $\alpha = \lambda m\{e\}(L^{n},m)$. By lemma 7b, α is recursive in X_{n} , so $\alpha \in B^{\mathbf{X}}$. This shows, with the corollary of lemma 6, that $B^{\mathbf{X}} = 1-sc G$. Q.E.D.

Now, let A,B be obtained from lemma l.b with $\gamma \geq \omega$. Define G,B^{*}, Kⁿ and Lⁿ from A,B as above. We are going to prove the following

Claim

 $i B^{\mathbf{H}} = 1 - \mathrm{sc} G$

 \underline{ii} ||B|| < ρ^{G} < ω_{1}

Proof of theorem 3 from the claim

Let γ_0 be given. Let $\gamma \ge \gamma_0 + \omega$, and let B^* , G, B be as in the claim. If $||B|| \le \gamma_0$ there is a k such that $B \in \Sigma_{\gamma_{0+k}}$. This contradicts lemma l.b. By Claim <u>ii</u> $\rho^G > \gamma_0$. If $B^* \in \Sigma^0_{\gamma_0}$, $B \in \Sigma^0_{\gamma_0+k}$ for some k. But B is not in Σ^0_{γ} .

Definition

Let $C = field (A) \setminus B$.

Let $C^{\mathbf{H}} = \{\alpha; (\forall n \in C) (\alpha \text{ is recursive in } X_n)\}.$

Lemma 6 still gives us that $B^{*} \subseteq 1$ -sc G.

Lemma 9

Let $\{e\}(G,\vec{n}) \simeq k$ be a computation, $n \in C$. Then $\{e\}(L,\vec{n},\vec{n}) \simeq k$ by the same computation.

The proof is as in lemma 8 by induction on $\delta =$ the length of the computation. In order to prove this for n,δ , we use the induction hypothesis for some $n_0 <_A n$, $n_0 \in C$, and then act as in lemma 8.

Corollary

 $1-sc(G) \subseteq C^{H}$

Now assume that $\alpha \in C^{\times} \setminus B^{\times}$. $\alpha \in \Delta_2^0$ since α is recursive in 0^1 . We then have

 $n \in B \Leftrightarrow n \in A \& \alpha \text{ is not recursive in } X_n.$ But then $B \in \Delta_k^0$ for some k, contradicting the choice of γ . So $C^{\mathbf{H}} = B^{\mathbf{H}}$ and $B^{\mathbf{H}} = 1 - \operatorname{sc}(G)$. Claim <u>i</u> is verified. In order to verify claim <u>ii</u> we prove that if $a \in 0^G$ is a notation in the Wainer-hierarchy such that for some $n \in B$, $|a|^G = ||n||_B$, then f_a is recursive in X_n . We use the same kind of argument as in lemma 8. So, if X_n is primitive recursive in f_a , then $|a|^G \ge ||n||_B$, and we obtain $\rho^G \ge ||B|| \cdot \rho^G < \omega_1$ since $1 - \operatorname{sc} G \in \Delta_1^1$. In this note we have constructed continuous functionals with l-sections of various degrees of definability. They all have a few properties in common.

- 1. 1-sc(G) $\in \Pi_1^{\perp}$
- 2. 1-sc(G) $\subseteq \Delta_2^0$
- 3. 1-sc(G) is generated by its r.e.elements.

It still is an interesting problem to decide the nature of all 1-sections of continuous functionals of type 2, or as partial solutions find criteria that guarantees that a given class of functions is the 1-section of some continuous functional. In this direction, we offer the following problem:

If $A \in \Pi_1^1$, $A \subseteq \Delta_2^0$, A is closed under pairing and recursion and $\alpha \in A$ if and only if there is an r.e.set $\beta \in A$ such that **a** is recursive in β , is then A the l-section of some continuous functional?

References

- J. Bergstra: Computability and continuity in finite types, Disertation, Utrecht 1976.
- J. Bergstra S. Wainer, The "real" ordinal of the l-section of a continuous functional, paper contributed to Logic colloquium'76
- R.O. Gandy, Proof of Mostowski's conjecture, Bulletin de l'Académie Polonaise des Sciences 9 (1960) 571-575.
- 4. T. Grilliot, On effectively discontinuous type-2 objects,
 J.S.L. 36 (1971) 245-248.
- S.S. Wainer, A hierarchy for the 1-section of any type two object, J.S.L. 39 (1974) 88-94.