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DIVISORS OF FINITE CHARACTER 

1. Introduction 1 ) 

Karl Egil Aubert 

11Therefore, when one widens the realm of ele
ments to that of ideals in a given ring, one 
sometimes gains and sometimes loses. One gets 
the impression that, generally speaking, the 
truth lies halfway: if the domain of integers in 
many cases is too narrow 9 the domain of ideals 
is in most cases too wide." 

Hermann Weyl (in [45] p. 38) 

In its most general and purest form, the study 

of the notion of divisibility appears as a strictly multiplicative 

theory, In spite of this, the majority of the abstract investigations 

concerning the notion of divisibility have been carried out within the 

setting of integral domains. The tradition of studying divisibility 

properties in rings or fields rather than in monoids or groups 2 ) goes 

back to the early days of algebraic number theory. Dedekinds ideal 

concept is a ring-theoretic concept and not a purely multiplicative one 

(although it turned out later that in the classical case of algebraic 

integers his ideals may be given a purely multiplicative interpretation 

as 'divisorial ideals'). Thus, a somewhat blurring and irrelevant 

additive ingredient was brought into the general theory of divisibility 

right from the start. 

On the other hand, ideals reappeared much later in a more truly 

additive context, namely as kernels of ring hoJnomorphisms. Viewed from 

the standpoint of present day mathematics it is really this latter fact 

which is ~t the root of the widespread use of ideals, going far beyond 

1) The work on the present paper was initiated while the author was 
visiting University of Western Ontario, Canada in December 1977, 
Thanks are especially due to professor G. Thierrin for assitance from 
his Grant A 7877 of the National Research Council of Canada. 

2) The groups, rings and monoids considered in this paper are all 
commutative, 
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their historical and arithmetical origin. The Dedekind notion of 

an ideal acquires its full significance in connection with its addi

tive and linear aspects, which are also tied up in an essential way 

with general module theory. It seems, however, that the prestige 

which this ideal concept has acquired from additive sources also 

has tended to give the Dedekind notio~ an unjustified position in 

purely multiplicative contexts. There are many signs of this and 

the development toward a 'multiplicative liberation' has been slow. 

Only around 1930, more than fifty years after the pioneering 

work of Kummer, Dedekind and Kronecker, did there appear several 

investigations by Arnold, van der Waerden, Artin, Prlifer and Krull 

dealing with a purely multiplicative ideal concept - the so-called 

v-ideals or divisorial ideals (simply called 'divisors' by Bourbaki). 

But characteristically enough, these ideals were (apart from Arnolds 

work) still considered in the setting of rings and were only viewed 

as a more restricted brand of Dedekind ideals (the latter being 

called d-ideal~ in the sequel). 

The true multiplicative liberation came with Lorenzen's thesis 

[33] in 1939. It is the purpose of the present paper to try to 

revive and continue some of the work of Lorenzen. It seems to us 

that although his 1939 paper is widely cited it is rather poorly 

understood. Papers (and also several books such as [12] , [18 J , [19] 

and [32]) which dea~ with divisors and multiplicative ideal theory 

are still being published without taking account of Lorenzen's most 

basic ideas. Their treatment of several topics is decidedly in

ferior to what can be extracted (admittedly, sometimes with pain) 

from Lorenzen's work. Only Jaffard's monograph [21] seems to us to 

do full justice to Lorenzen's ideas. This is really a very fine 

book, but it is written in a style and uses a terminology which may 
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have prevented many from reading i-t who otherwise could have been 

attracted by its rich content. 

We shall let the present paper revolve around the concept of 

a divisorial ideal of finite character - called t-ideals for short. 

Our main objective will be to present some of the evidence which 

points in favour of t-ideals as the building blocks of a general 

arithmetic. They seem to form the true arithmetical divisors with 

nice properties, shared neither by the d-ideals nor by the 

v-ideals. In view of this evidence it may be hard to understand 

how the v-ideals and even the d-ideals have survived in many 

multiplicative contexts where the t-ideals turn out ot be superior. 

Bourbaki's treatment of divisors, in Chapter VII of his Commutative 

Algebra, is for instance based on v-ideals instead of t-ideals, 

therby missing (both in the main text and in the exercises) a 

smoother treatment and a better understanding of such matters as 

Krull rings, factorial domains, localization, Kronecker function 

rings etc. 

In particular, we should like to point at the very basic, but 

much neglected concept of a Lorenzen group, which advantagously 

replaces that of a Kronecker function ring. The concept of a 

Lorenzen group leads to a functor - here called the GCD-functor -

which gives the ultimate solution to the classical problem of pro

viding greatest common divisors, and at the same time as it ties 

up with valuation theory in a very satisfactory way. This functor 

also exhibits the distinguished and universal role played by the 

t·-ideals. In fact the GCD-functor appears as the left adjoint of 

a forgetful inclusion functor which is defined in terms of t-ideals. 

It should also be mentioned in passing that the concept of a 

Lorenzen class group represents a natural generalization of the 
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ideal class group of a Dedekind domain and the divisor class group 

of a Krull domain, putting these two concepts on an equal footing. 

Another feature of the Lorenzen groups is that they make us fully 

understand the intimate ties that exist between the two basic 

arithmetical notions of greatest common divisor and integral closure. 

More specifically they give us the precise relationship between 

various notions of integral closure and the ways in which a directed 

group can be embedded into a GCD-group 3 ) ( = lattice ordered gr'oup, 

Theorem 3 and its corollaries). The further embedding of such a 

GCD-group into a direct product of totally ordered groups is also 

best achieved by using the t~system - namely by localization with 

respect to prime t-ideals. It is really a tour de force to use 

' 
rings and d-ideals in order to get this embedding via the so-called 

Krull-Kaplansky-Jaffard-Ohm theorem (as is for instance done in rn~~ 

The two instances which we have just described are typical of 

the philosophy which emerges from Lorenzen's work: The use of the 

Kronecker function ring (as defined by Prlifer and Krull) conceals 

the fact that it is really the property of being t-Bezout (every 

finitely generated t-ideal is principal) which matters and not 

the fact that this ring 1s d-Bezout. Similarly the essential 

property of a GCD-group is thai: it is t-Bezout. The property 

that such a group can be represented as the divisibility group of 

an integral domain which is d-Bezout (the Krull-Kaplansky-Jaffard-

Ohm theorem) is interesting in itself, but introduces an unneccessary 

complic.J.tion which is alien to the purely multiplicative problems 

at hand. 

3) In our arithmetical context we prefer the more suggestive term 
of a GCD-group to that of a lattice ordered group or 1-group. 
This also achieves a uniform terminology which is in harmony with 
the term 'GCD-functor' and the already established notion of a 
GCD-domain. 
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Another topic which is illuminiated by the introduction of 

Lorenzen groups is the axiomatic approach to the theory of divisors 

as treated for instance by Krull in [29] and by Borevic-Shafarevic 

1n [11]. We indicate how the present point of view leads to a 

generalization and a sharpening of the exposition of Borevic

Shafarevic. 

We should also like to emphasize two other general features 

of considerable importance in connection with t-ideals. Firstly, 

1n contrast to the v-ideals, the t-ideals are defined by means 

of a closure property which is of finite (algebraic) character, 

meaning that a t-ideal generated by a set A is the set-theoretic 

union of the t-ideals generated by finite subsets of A. This is 

an essential property when it comes to such matters as the use of 

Zorn's lemma, the creation of a reasonable theory of localization, 

the proof that invertible t-ideals are finitely generated etc. 

Secondly, there is a useful kind of 'duality' between the 

prime t-ideals and the prime 1-ideals in a GCD-group (an 1-ideal 

being an absolutely convex (isolated) subgroup of such a group). 

This duality may be quite helpful in the study of t-ideals because 

it may reduce this study to the case of the simpler and more manage

able 1-ideals. The simplicity of this latter ideaJ system has at 

least two sources: In the first place, it is defined relative to 

the multiplication I a I A I b I ~Jhich is essentially an idempotent 

operation. Secondly, the 1-ideals have certain pleasant 'additive' 

~spects, being just the kernels of morphisms of GCD-groups. 

In the two last paragraphs of the present paper we shall show 

that the notion of a prime t- ideal and that of a t -valuation seem to 

provide the best foundation for a coherent theory of both sectional 

and functional representation of ordered groups. Again, the GCD-
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functor plays an organizing and clarifying role and brings about 

ameliorations and precisions of earlier work of Keimel [25] and 

Fleischer [17] on sectional, respectivcly functional representation 

of ordered groups. 

The present paper lS to a certain extent expository and 

it does not really presuppose much specific knowledge from the 

theory of ideal systems (x-systems), although our own inspiration 

comes from this more general theory. However, it is only when 

viewed against this more general background that the special 

virtues and the distinguished role of the t-ideals become appear

ant. In particular, this is the case in connection with the notion 

of integral closure where the theory of ideal systems offers a 

more refined and satisfactory treatment than the classical set-up 

of ring theory. If the reader feels that some preparatory reading 

is needed in connection with the Lorenzen groups, he should in 

particular consult Lorenzen's own paper [33] and Jaffards book ~1 J, 

Other points where we come into closer contact with the general 

theory of x-systems are in connection with localization and 

especially with a counter-example of Dieudonn~. (Here [ 3] may 

serve as a supplementary reference). We have included some remarks 

on this latter example because it concerns t-ideals and seems to 

be best understood in the light of the general notion of additivity 

for x-systems. Dieudonne 1 s example together with a general theorem 

on additive ideal systems disclose that the t-system is not ln 

general additive. This seemingly negative property opens up some 

new problems. The lack of additivity of the t-system makes it 

doubtful whether a Krull domain may be characterized as an integral 

domain where every integral t-ideal can be written as a t-product 

of prime t-idaals without imposing unicity. We also show that the 
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above reasoning may be used to prove that a score of other ideal 

systems are non-additive. For instance, it follows that the 

system in a GCD-group G is additive if and only if G is 

totally ordered. 

s ·a 

2. The basic problems of divisibility theor~. Our topic will be 

a part of algebra, sometimes referred to as divisibility theory, 

sometimes as general arithmetic. It is concerned with the most 

general and basic questions surrounding the notion of divisibility 

in a set D where there is given a commutative and associative 

multiplication. We put b I a (or b < a ) for two elements a, bE D 
if there exists a third element c Eb-
such that a = be , and we then say that a is divisible by b . 

The notion of divisibility is generally studied within the setting 

of rings, especially in integral domains or fields, within ordered 

(abelian) groups - or simply within monoids. In order to emphasize 

the purely multiplicative nature of divisibility theory we shall 

work within a monoid D (i.e. a commutative semigroup with an 

identity element e ) . For simplicity we shall also assume that D 

satisfies the cancellation law and hence can be embedded in a 

group G . If U denotes the group of units (invertible elements) 

of D we define the devisibility group of D as the factor group 

G;u equipped with order which is induced by the divisibility rela-

tion in G, taking· D as the monoid of integral elements. Equi-

valently, we may regard the divisibility group as the group of 

(fractionary) principal ideals, putting (b) ~ (a) whenever 

(a) c ~b) • An alternative approach is to start out with a directed 

abelian group G and recover D = G+ as the monoid of all integral 

(positive) elements of G . (Note that in the case of an integral 

domain R where D = R- {0} , the latter approach is more general 
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than the first: There are directed groups which cannot be repre

sented as the divisibility group of an integral domain.) 

Among the most basic topics in divisibility theory are the 

following three: 

1. The problems surrounding the notion of a greatest common 

divisor (g.c.d). Especially to find constructive methods 

for adjoining g.c.d's in case they are missing, and to 

determine the exact conditions under which such an extension 

process is possible (and can be achieved in a 'minimal' and 

unique way). 

2. The similar problems concerning unique factorization into 

a product of prime (irreducible) elements: On the one hand 

to find necessary and sufficient conditions assuring such 

a unique decomposition. On the other hand to determine the 

exact conditions under which such a unique factorization can 

be restored by an extension process and how this extension 

can be achieved in a 'minimal', unique and constructive way. 

3. Decomposition of a divisibility relation into a conjunction 

of total (linear) divisibility relations. 

The main bulk of the present paper will consist in showing 

how the notion of a divisorial ideal of finite character (t-ideal) 

plays a crucial role in connection with giving optimal solutions 

to these three problems. 

3. Ideal systems. Although our main concern in the sequel will be 

the t-ideals, their universal and distinguished role will only 

appear clearly when viewed against the more general background of 

ideal systems. For the convenience of the reader we shall there

fore collect some of the pertinent material from this theory. 
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(i) x~systems and r-systems. An ideal system or x-system 

(D,x) is a monoid D together with a closure operation A+ A 
X 

defined on the subsets of D such that this closure operation is 

algebraic (of finite character) and is related to the multipli-

cation in D by the following axiom 

( 3 • 1 ) AB c B n(AB) 
X X X 

whenever A and B are subsets of D . If A = A we say that 
X 

A is an x-ideal. The operations of sum (x-union) and product 

(x-product), denoted by + and o , are defined by A+ B = (AUB)x 

and A o B = (A a B ) x . 

Let (~,x 1 ) and (D 2 ,x2 ) be two ideal systems. A mapping 

~ from D1 into D2 is said to be an (xl,x2 )-morphism (or 

simply a morphism) if the following three conditions are satisfied: 

(i) ~(el) = e2 where e. 
l 

is the identity element in D. • 
l 

(ii) ~(ab) = ~(a)~(b) and (iii) tp(Ax ) c (~(A) >x . 
1 2 

The notion of an x-system is more general than the notion of 

an r-system as originally defined by Lorenzen in [3 3 ] • Lorenzen's 

theory is directed exclusively towards arithmetical goals, using 

integral domains and their groups of divisibility as the model. 

Accordingly, D is in his theory supposed to be the integral 

(positive) part of a directed group G with the inclusion 

aB c (aB) strengthened to an equality aB = (aB) and such 
X X X X 

that (a)x = Da (the x-system is principal). With these extra 

hypothesis we speak of a Lorenzen syste~ (r-system in Lorenzen's 

terminology). The main motivation for restricting the attention 

to Lorenzen systems in an arithmetical context lies in their prin-

cipali ty and ·the fact that they are exactly the ideal systems which 

allow for a reasonable theory of fractionary ideals. See [2] p. 29 

for the definition of a fractionary ideal system. 
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(ii) Additive ideal systems. The notion of 'additivity' is 

absent from Lorenzen's theory, but seems to be crucial for an 

abstract commutative algebra based on the notion of an x-system. 

Our considerations in connection with Dieudonne's counterexample 

in paragraph 11 will show, however, that the concept of additivity 

is also of relevance in contexts with a more distinctly arithmeti-

cal flavour. 

To any x-ideal A 
X 

in an x-system 

a canonical congruence relation by putting 

(D,x) we can associate 

b = c(A ) 
X 

whenever 

A + {b} = A + {c} • 
X X 

This is the unique coarsest congruence rela-

tion in D such that any x-ideal containing A 
X 

is a union of 

congruence classes. This leads to a factor monoid D = DfA and 
X 

a canonical map tp : D + D . There exists a unique finest ideal 

system x such that lP : (D,x) + (D,x) is a morphism. This means 

in particular that q>(A ) c: (q>(A) )-
x X 

for any A c: D . If this 

inclusion is an equality we say that the given ideal system is 

additive. Equivalently, an x-system is additive iff any canonical 

map lP of the above kind is closed, in the sense that x-ideals 

are mapped onto x-ideals. For more information on additive ideal 

systems see [ 3 ]. 

(iii) Integral closure. One of the arithmetical assets of ideal 

systems is that this concept allows for a more satisfactory and 

refined treatment of the notion of integral closure than is possible 

when restricting ourselves to the classical ring-theoretic situation, 

Let (G,x) denote a directed (abelian) group (written multi

plicatively and with an identity element e ) equipped with a (frac-

tionary) Lorenzen system x • \!Je then say that G - or its integral 

part D = G+ = {a I a ?: e} - is integrally x-closed, or shortly x-closed 

if Ax :Ax c D for any finite set A c: G . This notion reduces to 
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the ordinary notion of integral closure if G is the group of 

divisibility of an integral domain R equipped with the Lorenzen 

system which comes from the ordinary d-ideals in R . 

Two other cases are of particular importance. To any directed 

group there is canonically attached a unique finest Lorenzen system 

(the s-~ystem) as well as a unique coarsest Lorenzen system (the 

t-system). An s-closed (~emi~·closed) group G is characterized 

by the implication an E G+ .,. a E G+ whereas the property of being 

t-closed is a generalization of what Bourbaki calls 'regularly inte-

grally closed' in the case of integral domains. 

(iv) Localization. The method of localization may be generalized 

to ideal systems as follows. Let (D,x) denote an ideal system and 

let S be a submonoid of D . There then exists a unique ideal 

system -1 
(S D,x8 ) which solves the universal problem of factorizing 

uniquely those morphisms g : (D,x) + (D',x') such that g(s) is 

invertible in D' whenever s E s . The xs-ideals of s- 1 D are 

exactly the sets of the fOT'm s- 1A where A is an x-ideal in D. 
X X 

The property that the family of x8-ideals is closed under arbitrary 

intersections relies heavily on the fact thaT an x-system is sup-

posed to be of finite character. If the given ideal system is a 

Lorenzen system, then its localizations are also Lorenzen systems. 

In this case S- 1 G+ may be identified with a submonoid of G 

containing G+ . This induces a new divisibility relation on G 

with s- 1 G+ as its integral part and one proves the globalization 

formula 

,--~ 

f 1 A 
s xs 

= 

where S runs over all complements of maximal x-ideals of G+ . 

For more details consult [ .4 ] • 
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(v) Shadow functors. When dealing with the application of the 

general theory of ideal systems to particular cases one encounters 

a kind of forgetful functors which we have termed shadow functors 

(see [ 5] ). These are functors from the category of commutative 

rings, commutative differential rings, distributive lattices, 

lattice ordered groups etc., into the category of ideal systems. 

We have for instance a shadow functor Id from the category of 

commutative rings into the category of ideal systems which takes 

a ring R into the usual ideal system (R,d) and a ring homo-

morphism r.p : R1 + R2 into the induced morphism of ideal systems 

We say that (R,d) is the d-shadow 

(or just the shadow) of R and similarly that Id(~) is the 

shadow of (f) • 

A series of problems arises as to the beh~viour of the 

various shadow functors. In particular whether they g1ve rise 

to full embeddings ornot, and to what extent they commute with 

various operations such as product formation, factor (quotient) 

formation, localization etc. In our situation it is of particular 

interest that the natural shadow functor It relating GCD-groups 

to the t-system produces a full embedding and that this functor 

commutes with localization. 

4. Divisors and t- ideals. A directed group G is said to be 

factorial if it is isomorphic to an ordered direct sum of copies 

of ~ (a free abelian group with pointwise order). Such a fac

torial group is written ~(I) for some set I and is interpreted 

as the set of all functions from I to Zl , zero outside of a 

finite set - with pointwise addition and ordering. If G is order

isomorphic to a subgroup of a factorial group we shall say that G 
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is a prefactorial grou2. A unique factorization domain (respect

ively a Krull domain) is an integral domain whose divisibility 

group is factorial (respectively prefactorial). (We note, however, 

that in the case of an arbitrary directed group one ought to make 

a distinction between a prefactorial group and a Krull group. We 

define a Krull group as a prefactorial group which admits an em

bedding ~ into a group SD =~(I) with the following approxi-

mation property: To any element ~ ESQ and any finite subset 

J c I there exists an element g E G such that (p(a) agrees 

with a on J and ~(g) > ~ elsewhere. In case of the divisi

bility group of an integral domain, the notions of a prefactorial 

group and a Krull group coincide (see [21] Theorem 6 p. 84). 

Since there are examples of prefactorial groups which are not 

Krull groups, this shows that there are directed groups which are not 

divisibility groups of integral domains.) 

The situation of a prefactorial group exhibits the original 

arithmetical content of the concept of a 'divisor' and a 'prime 

divisor'. The divisors which are adjoined in order to achieve 

unique factorzation are conceived of as finite products (or sums) 

of the canonical generators (the prime divisors) of the free 

abelian group ~ (I) . It is reasonable, however, to restrict the 

use of the term 'divisor' somewhat further. For we are not really 

interested in 'unnecessarily big' extensions with no definite ties 

between G and 7l (I ) . It turns out that for a prefactorial group 

G we can always choose 'fJ = 7l (I) in a unique minimal way (i.e. 

such that ~ lS contained in all factorial groups containing G 

as an ordered subgroup) - namely as the group of fractionary t-ideals 

of G Thus the t-ideals - which we are now finally going to in-· 

traduce in some more detail - appear as the true arithmetical divisors. 
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Let A denote a bounded subset of the directed group G 

(i.e. there exists an element g E G such that 

The set 

11 (a) 
A c (a) 

+-gA c G ~D) • 

or equivalently A = D: (D:A) v 1s then the divisorial ideal or 

the v·::_ideal_ generated by A . ; \tJe define the t-ideal generated 

by A as the set-theoretic union of all the v-ideals generated 

by finite subsets of A• . 
u N 

NcA v 
N finite 

An important technical difference between v-ideals and t-ideals 

is given by the fact that the t-generation is of finite character 

whereas the v-generation is not. The t-system forms the unique 

coarsest Lorenzen system in G . 

If G is a GCD-group with the g. c. d. -operation denoted by 1\ , 

the definition of a t-ideal assumes a more appealing form as the 

conjunction of the two properties 

1. DAt c At 

2 . a , b E At ~ a 1\ b E At 

As opposed to ordinary d-ideals, the presence of a g.c.d. 

for two (or a finite number of) elements is measured faithfully 

in terms of t-ideals: Two elements a and b have a g.c.d. 

if and only if the t-ideal generated by a and b 1s principal. 

Otherwise expressed: The divisibility group of the monoid D is 

a GCD-group if and only if D is t-Bezout (every finitely gene

rated t-ideal is principal). Already at this elementary level 

the advantage of t-ideals over d-ideals is hence clear (also 
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apart from the fact that d-ideals only make sense in the case of 
of integral domain~ 

divisibility groups'./), For a d-ideal (a, b) may fail to be prin-

cipal also 1n case a and b have a g.c.d. For a d-ideal (a,b) 

to be principal it is not only required that a and b have a 

g.c.d., but that this g.c.d. be a linear combination of a and b. 

Thus d-ideals bring in an extraneous additive condition which is 

alien to the purely multiplicative situation at hand. 

The problem of providing g.c.d. 's by a suitable extension 

process will be taken up in connection with the notion of a 

Lorenzen group and the associated GCD-functor. 

Here we shall content ourselves by summing up the result 

which essentially takes care of the second problem formulated in 

paragraph 2. 

Theorem 1 (i) A directed group G is pr~factorial if and only 

if the (fractionary) t-ideals of G form a group under t-multi

plication. This group 2J of ·t-ideals is automatically factorial 

and any factorial extension of G contains ~ as an ordered sub-

~oup. In other words, if unique factorization can at all be 

restored by extension, it can also be achieved by means of t-ideals 

and this 1n a canonical and minimal way. 

(ii) G is prefactorial if and only if every integral t-ideal 

can be written uniquely as a t-product of prim~ t-ideals. 

in turn, is equivalent to the condition that G is t-Noetherian 

and integrally t-closed (";r:>egularly integrally closed 11
). 

(iii) G is factorial if and only if every t-ideal in G 

is principal. 

Although t-ideals are conspicuously absent from the most 
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well-known books treating divisibility theory - we can nevertheless 

refer the reader to various sources for the proof of the above 

results. Parts of it go back to Arnold [1 ] and Clifford [13] . 

Essential ingredients of the theorem may also be found in Lorenzen 

[33] (especially on pages 542, 543 (footnote) and p. 552), although 

Lorenzen is strangely casual about this central issue. For (i) 

and ( ii) see especially his Satz 7 and commenting lines, V.7hereas 

(iii) is relegated to a footnote on p. 543. A full proof of the 

theorem can also be put together by consulting Jaffards book [21 ] 

(Theorem 5 and its Corollary 2 on p. 82, Proposition 4 on p. 83 

and Corollary 1 on p. 32). We shall also have occasion to return 

to the above theorem in paragraph 9. 

When the above theorem is applied to the divisibility group 

of an integral domain it shows in particular that Krull domains 

basically exhibits the same behaviour with respect to t-ideals as 

Dedekind domains with respect to d-ideals. One should not expect, 

however, that this analogy between Krull domains and Dedekind 

domains goes all the way, in the sense that any characterization 

of Dedekind domains in terms of d-ideals may be translated 1nto a 

similar characterization of Krull domains in terms of t-ideals, 

simply substituting t for d . Considered from the viewpoint of 

the general theory of ideal systems there are some notable differ

ences between the d-system and the t-system, stemming from the 

fact that the former is additive whereas the latter is not. This 

fact may very well disturb the above mentioned analogy between 

Dedekind domains and Krull domains at certain points. (See para

graph 11.) 

Another comment on the above theorem is perhaps in place. 

Namely, that the difference between t-ideals and v-ideals may 
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seemsto be only slight in this connection since the t~ideals 

of a prefactorial group are finitely generated and hence are 

v-ideals anyhow. But this in only a consequence of the theorem 

and not a fact which allows us to substitute v for t in the 

characterizations themselves. The factorial groups are far from 

being those directed groups where every v-ideal (or every finitely 

generated v-ideal) is principal - and the prefactorial groups are 

certainly not characterized by the v-ideals (or the finitely gene

rated v-ideals) forming a group. On this background it rather 

appears as a surprising fact that we may substitute v for t in 

Cii) and still have a characterization of prefactorial groups. 

(See Satz 7 in [33] and p.119 in [27].) 

5. Lorenzen groups. We shall now enter a subject which, in spite 

of being almost entirely neglected, seems to us to form the deepest 

and most interesting part of the general theory of divisibility. 

Exploiting the original ideas of Kronecker, Prtifer and especi

ally Krull defined and used the so-called Kronecker function rings 

in order to study the arithmetic of integral domains. The main 

virtue of the extension process which leads from an integrally 

closed domain R to its Kronecker function ring is the fact that 

the latter is a Bezout domain (finitely generated d-ideals are 

principal) and hence provide g.c.d.'s. This enables us to get a 

better grasp of the valuation overrings of R , establishing in 

particular that these are in one-to-one correspondence with the 

prime ~deals of the corresponding function ring. 

The subject of the Kronecker function rings was generalized, 

clarified and simplified by Lorenzen when he defined the purely 

multiplicative object of a 'Lorenzen group', freeing the initial 
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construction of a Kronecker function ring from any intervention 

of an additive operation as well as from the Kroneckerian scheme 

of adjunction of indeterminates. In spite of this face lift, 

however, the Kronecker function rings have also in their new dis

guise as Lorenzen groups remained a neglected and poorly understood 

area. The follo\-7ing presentation of the rudiments of this subject 

is offered in the hope of contributing to a better understanding of 

Lorenzen's ideas. We shall do this by stressing functorial proper

ties as well as the universal role which is played by the t-system 

in this connection. This will also bring out some facts which are 

not made sufficiently explicit in [33] and [21], the only sources 

we know of, treating the subject of Lorenzen groups. 

The main way of motivating the introduction of Lorenzen groups 

is via the old problem of providing g.c.d.'s by a suitable extension 

process. On an entirely general level, this extension problem is 

related to ideal systems as follows: To inject a directed group G 

isomorphically into an ordered monoid M possessing g.c.d. 's amounts 

to the same thing as to define a Lorenzen system in G (see [ 21 ] p. 22). 

This almost trivial observation may be considered as the arithmetical 

raison d'etre of ideal systems. It provides a systematic method of 

adjoining 'divisors' (in the form of x-ideals) so as to obtain a 

more well-behaved theory of divisibility. In this generality, how

ever, this extension process is of little use. What one wants is a 

condition which assures that the monoid M of finitely generated 

x-ideals satisfies the cancellation law such that it can be further 

embedded into a GCD-group. From this point on one may in turn have 

an embedding into a factorial group, this being the ultimate goal 

of any arithmetical extension process of this kind. 
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We now proceed to fill in some of the most essential technical 

details. Let G be a directed group equipped with a (fractionary) 

Lorenzen system x . We suppose that G is x-closed ln the sense 

of paragraph 3. To the glven x-system we can associate another 

fractionary ideal system in G which is denoted by xa and which 

is determined by 

A = {clcN c:.AoN for some finite NeG} 
Xa X X X 

whenever A is a finite subset of G • The x -ideal generated a 

by a (general) bounded subset B of G is then equal to the set-

theoretic union of all the x -ideals generated by finite subsets a 

of B. 

The crucial property of the xa-system is that the monoid of 

finitely generated x -ideals (under x -multiplication) satisfy a a 

the cancellation law and hence possesses a group of quotients 

A (G)= A (see [21) p. 41-42 for a proof). This group is made 
X X 

into an ordered group by putting whenever 

and is as such called the Lorenzen x-grou12_ associated to G . The 

main property of the Lorenzen x-group of G is that it is a GCD-

group which contains G as an ordered subgroup. It prvides the 

g.c.d.'s which may be missing in G and when the x-system is 

suitably chosen it does this in the most economical way. In fact, 

whenever G is an ordered subgroup of a GCD-group H , it is also 

an ordered subgroup of a suitable Lorenzen group A (G) 
X 

sitting in 

H . It is sufficient to choose the x-closed system in G which 

is the trace of the t-system in H (see [21] p. 44-45 and for the 

notion of a trace-system on p. 52 in the same book). A similar 

minimality property holds for an embedding of G ln a factorial 

group H . In this case the Lorenzen t-group is factorial and 
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sits between G and H (see Proposition 4 p. 83 1n [21] and 

see also paragraph 9). 

The construction of Ax(G) depends heavily on the condition 

that G 1s x-closed. The weakest assumption is here obtained 

by considering the finest possible x-system - i.e. the s-system 

1n G , defined by + A = G A. s The resulting condition of s-closure 

(see (iii) paragraph 3) represents the necessary and sufficient 

condition for a directed group to be embeddable with all its struc-

ture in a GCD-group (see Corollary 3 of theorem 3 in paragraph 7). 

We shall later return to the more precise ties which exist between 

a directed group G and its various Lorenzen groups. 

In passing, let us just mention that the concept of a Lorenzen 

group gives a most natural generalization of the notion of a class 

group - comprising the ideal class group of a Dedekind domain and 

the divisor class group of a Krull donain as special instances. 

By the Lorenzen x-class group of an x-closed group G , we 

understand the factor group 

In case of an x-Prlifer group G (see paragraph 8), Ax(G) may 

be identified with the group of finitely generated x-ideals and 

when G is x-Dedekind~ A (G) becomes the group of all (fracx 

tionary) x-ideals under x-multiplication. By specializing this 

latter case to the d-system and the t-system of the divisibility 

group of an integral domain, we obtain the two classical instances 

of class groups mentioned above. 

6. The GCD-functor. Let V denote the category of integrally 

closed directed groups. An object in this category is a directed 
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(abelian) group G equipped with a Lorenzen system x such that 

G is x-closed. A morphism in ~ is a morphism of ideal systems 

<P (G,x) + (H,y) where (G,x) and (H,y) E J . 
The category :J contains in particular two distinguished full 

subcategories, corresponding to the cases x = s and x = t 

respectively: The category Y of all semi-closed directed groups 

with orderpreserving group homomorphisms as morphisms and the 

category GCD of all GCD-groups with homomorphisms of GCD-·groups 

as morphisms. The proof of these two facts is simple and we shall 

content ourselves by treating the case which interests us most: 

Lemma. The t- shadow functor It provides a full embedding of the 

category of GCD-groups into the category of integrally closed 

directed groups. 

Proof. Obviously, any GCD-group 1s t-closed. It hence suffices 

to show that the natural map 

is a surjection, i.e. any (t,t)-morphism of GCD-groups is really 

a homomorphism of GCD-groups. First of all, any morphism 

tp: (G,x) + (H,y) between ·two Lorenzen systems (and hence 1n parti-

cular any (t,t)-morphism) is order preserving. For a > b is equi-

valent.to a E (b)x which implies ~(a) E <P((b)x) c (~(b))y which 

in turn is equivalent to (f)(a) ~ ~(b) . On the other hand 

<f>((a,b)t) c (tp(a),q>(b))t reduces to ~(a" b) > 1.p(a) Atp(b). Since 

<P( a "b) :: <P( a) "<;>(b) is a consequence of <P being order preserving, 

it follovJS that <.p( a " b) = <.p( a) "<P( b) and (j) is a homomorphism of 

GCD-groups. 

The following theorem could appropriately be termed 'Main theorem 
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of div~sibility .!~Y..'. It shows hoH the Lorenzen groups act as 

universal objects with respect to the basic arithmetical completion 

process of providing g.c.d. 1 s. 

Theorem 2. The passage from an x-closed group (G,x) to its 

Lorenzen group Ax(G) defines a faithful functor from the category 

:J onto the category GCD such that GCD appears as a full reflective 

subcategory of ' - i.e. the indicated functor is the left adjoint 

of the t- shadow functor. 

We shall call the functor alluded to here for the GCD-functor 

and denote it by A . 

Proof. So far we have only defined how the functor ~ acts on the 

objects of :J If 1.p: (G,x) + (H,y) is a morphism in .:J we 

define A(~) = ~ by putting 

( 6. 1 ) = 

When ~ve identify G with its group of principal ideals it is clear 

that the restriction of ~ to G is just ~ 3 showing that A is 

faithful. To verify that ~ is a homomorphism of GCD-groups is 

routine and we content ourselves by showing that ~ is a lattice 

homomorphism - the proof that ~ is a group homomorphism being 

similar. T:Je can assume that the two given LJ.UOtients have the same 

denominator and then we get 

(q>(A) )y (q>(B))y (Ax) (Bx \ 
~-r.:="l,......_--=a A a _ ~ a A 4> a}. 
(r.p(C))y ((j)(C) )y - Cx Cx 

a a a a 
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where A and B are finite subsets of G . That A is com-

patible with composition is obvious. We have a commutative diagram 

( 6. 2) 

where the natural inclusion maps and 

morphism and a (ya,t)-morphism, respectively. Since every finitely 

generated t-ideal in A (G) is principal it suffices to show that 
X 

-1 is xa-ideal G whenever Ax(G) If Tx ((c\) an 1n c E 

b1, ... ,bn E 
-1 

Tx ((c)t) and b E (b1, ... ,b >x' 
n a 

Tx(b) may be identi-

fied with the principal ideal it generates in G and hence 

T (b)> (b1 , ... ,b )X 
x - n a = T (b1 ) 1\ • •. 1\ T (b ) > C 

X X n -

with respect to the order relation which is defined in A (G) • 
X 

This entails as required. (Since the xa-system is 

coarser than the x-system this shows in particular that is an 

(x,t)-morphism.). 

By letting H be a GCD-group and putting y = t , the diagram 

6.2 gives rise to the following one 

( 6. 3) 

(A (G) ,t) 

7 X~ 
(G,x) c.p --+ (H,t) 

Here c.p and are (x,t)-morphisms, whereas is a homomorphism 

of GCD-groups, or equivalently a (t,t)-morphism. The diagram (6.3) 

exhibits the universal role of the Lorenzen group with respect to 

(x,t)-morphisms into GCD-groups. For ~ is in fact uniquely deter

mined by the formula 
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( 6. 4) 

which 1s just a particular case of (6.1). We know already that 

A is faithful, such that the above remarks establish an injection 

( 6. 5) 

It remains to be shoWn that this map is also a surjection, thereby 

proving that A is the left-adjoint of the shadow functor It . 

Let and put ((> = 8oT 
X 

Since is an 

(x,t)-morphism, the same is true of ~ . Furthermore A(((>) = e, 

because there is just ~extension of ((> to a (t,t)-morphism 

of Ax(G) (given by the formula (6.4)). • 

We want to specialize Theorem 2 in such a way as to obtain 

Lorenzen's main result on the groups Ax(G) and to establish 

contact with Krull's researches on the Kronecker function rings. 

Both of these applications will stress the links with valuation 

theory. 

The natural generalization of the classical notion of a 

valuation to the setting of ideal systems is the following one: 

By an x-valuation of a directed group G equipped with a Lorenzen 

system x we understand an (x,t)-morphism of G onto a totally 

ordered group r . (Note that a totally ordered group is charac-

terized by the fact that s = t , i.e. it carries only one Lorenzen 

system (of finite character). We could hence equally well speak 

of an x-valuation as an (x,s)-morphism onto r .) 

In the case of the divisibility group of an integral domain, 

equipped with the d-system, the notion of a d-valuation is 

nothing but an ordinary Krull valuation. The condition that inverse 
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1mages of t-ideals are d-ideals is in fact equivalent to the 

classical inequality v(a±b) ~ Min(v(a),v(b)). 

Corollary-~ (Lorenzen). There is a bijection between the x-valu

ations of an x- closed group G and the t- valuations of the corre

sponding Lorenzen gPoup Ax(G). Furthermore these t-valuations 

are in one-to-one correspondence with the prime t-ideals of Ax(G)+. 

(See [33] Satz 13 and [21] Theorem 4 p.49.) 

The first and main part of this corollary is nothing but a 

specializa·tion of the bijection ( 6. 5) to the case where H is a 

totally ordered group. The correspondence between t-valuations 

and prime t-ideals is not contained in Theorem 2, but is a rather 

simple matter to which we shall return later in connection with 

t-localization. It is also a special case of Theorem 9. 

Among the consequences of Corollary 1 lS the fact that a 

group G is x-closed if and only if G+ is an intersection of 

x-valuation monoids. We shall have occasion to return to this fact 

in the next section (Corollary 2 of Theorem 3). Here we specialize 

Corollary 1 one step further: 

Corollary 2. Jhere is a bijection between the Krull valuations of 

an integrally closed domain R and the Krull valuations of its 

corresponding Kronecker function ring. 

The Kronecker function r1ng J{CR) alluded to here is the 

canonical one corresponding to the da-system. In order to derive 

this corollary from the preceding one we first notice that the 

monoid Ad (G)+ t.Jhere G is the divisibility group of R , is 

isomorphic to the monoid of the principal and integral d-ideals 
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of ~7{(R) , This allows us, in a multiplicative context, to 

consider a Kronecker function ring as a special case of a Lorenzen 

group. Having established this identification it remains only to 

see that any d-valuation of ~(R) is in fact a t-valuation. 

This follows from the fact that JC(R) is a Bezout domain, since 

this implies that finitely generated d-ideals are t-ideals. 

The following corollary extends one of Krull's other results 

on the Kronecker function ring. ([28] , Satz 19. See also [21 ], 

Proposition 2 and subsequent remarks on p. 45,) 

Corollary 3. All the Lorenzen groups of an s- closed grouP.. G 

appear as the localizations (or factors) of the Lorenzen s- group 

Proof. If G is x-closed~ it is automatically s-closed and 

the identity map (G,s) + (G,x) is an (s,x)-morphism giving, by 

the above theorem, r1se to a surjective homomorphism of GCD-groups 

tAJe thus have an isomorphism of GCD-groups 

A ( G) D! As ( G )/ 
x Ker <P 

where Ker <ll is an 1-ideal (absolutely convex subgroup) of A (G) • 
s 

Alternatively, this factor GCD-group may be considered as a locali-

zation arising from A (G) 
s by choosing as a monoid of 

integral elements in A (G) , 
s S designating the multiplicatively 

closed subset + + 
A (G) ' (A (G) n Ker <P ) • s s 

7. Greatest common divisors and integral closure. The construction 

of the GCD-functor _)L relies heavily on the condition of integral 

closure (x-closure). We shall now give a result which clarifies the 

exact relationship between integral closure and the ernbeddability in 
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a GCD-group. For this purpose we shall g1ve a few preparatory 

remarks. 

To any morphism of Lorenzen systems <P : ( G1 ,x1
) + ( G2 ,x2

) 

we can associate a map ~ between their respective monoids of 

ideals: 

( 7. 1 ) 

Just as for the functor A it is a routine matter to verify that 

I is a morphism of monoids: 

directed group equipped with a Lorenzen system x is said to be 

regularly x-closed if the implication 

A o C = B o C -. A = Bx X X X X X 

holds true for any finitely generated x-ideal c 
X 

With the above notation and terminology we have the following 

obvious 

Lemma. If G2 1s regularly _3- 2 -closed and <P 1s injective, then 

G1 is regularly x 1 -closed. 

With this in mind we can now prove the following 

Theorem 3. A directed group C is x- closed if and only if it can 

be considered as an ordered subgroup of a GCD-group in such a way 

that the resulting injection 1s an (x,t)-morphi_~l_!l_.:. 

Proof. That an x-closed group can be isomorphically (x,t)-in-

jected into a GCD-group is part of the proof of Theorem 2 where it 

was established that the canonical injection G + A (G) 
X 

is an 

(x,t)-morphism. That this map identifies G with an ordered sub-

group of Ax(G) is clear. 



- 29 -

totally ordered group and v. 
l 

is an x-valuation of G into 

r. leads to an (x,t)-injection 
l 

and vice versa. 

G ~ TT r. 
l 

As another consequence of Theorem 3 we note the following 

well-known result 

Corollary ~· G lS semi-closed (s-closed) if and only if it 1s 

an ordered subgroup of some GCD-group. 

This is a consequence of Theorem 3, simply because the 

notion of an order-preserving group homomorphism is the same thing 

as an (s,t)-morphism. 

The two following corollaries give specializations to the 

cases x = t and x = d respectively. 

Corollary 4_. G is regularly integrally closed (t-closed) if 

and only if it can be considered as an ordered subgroup of a 

GCD-group in such a way that the resulting injection is a (t,t)

morphism. 

Note that the notion of a (t,t)-morphism is the same as what 

is called a V-homomorphism 1n [34] p. 5. When Corollary 4 is 

applied to the divisibility group of an integral domain it gives 

the Corollary 3. 3 of [ 34] p. 8. 

Corollary 5. An integral domain 1s integrally closed if and only 

if its divisibility group can be isomorphically (d,t)-injected 

into a GCD-gro~. 

This latter corollary is not surprising since the reader will 
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have no difficulty in showing that the morphism condition 

~(Ad) c (~(A))t for an arbitrary bounded set A 1s equivalent 

to the familiar inequality ~(a±b) ~ Min(~(a),~(b)) of a 

Krull valuation (taking the purely multiplicative condition for 

granted). Combining this observation with Corollary 1 or 2, we 

get the usual characterization of an integrally closed domain as 

an intersection of valuation rings. 

8. Regularly x-closed groups and ~rufer group~. In his funda

mental paper [39] , Prlifer considered in particular two conditions 

on the divisibility group of a domain, each of which are stronger 

than integral closure. One of these is Prufers condition r , which 

by Krull was given the name 'arithmetisch brauchbar 1 or rather 

1 endlich arithmetisch brauchbar'. Bourbaki ([12] p. 554) introduces 

this notion only in the case of v-ideals (divisors in his termin

ology) and then speaks of an integral domain as being 'regularly 

integrally closed'. The general notion is the one introduced above 

as a regularly x-closed group. 

A slightly stronger condition is offered by the following 

definition: G is said to be an x-Prlifer group if the finitely 

generated x-ideals in G form a group under x-multiplication. 

For many Lorenzen systems (G,x) there 1s no difference between 

the concepts of a regularly x-closed group and an x-Prufer group. 

It is for instance well knovm that in the case x = d , a Prufer 

domain may be characterized by either of these two properties. A 

more comprehensive result of this kind will be given in paragraph 11. 

Here we shall characterize the concepts of a regularly x-closed 

group and an x-Prlifer group in terms of the map ~ introduced in 

the preceding paragraphs. 
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In the following theorem, G is an x-closed group, ~ 

denotes the canonical (x,t)-injection (G,x) + (Ax(G),t) and 

~ is defined by ~(Ax) = (~(Ax))t = At where A is any bounded 

set in G . If there exists a family '1.Y of valuations ( :-: s- valu-

ations) of the group G such that for any bounded A c G, 

n v- 1 ((v(A)\) 
v E'lr 

we say that the given x-system is defined by a family of valu

ations. (See [ 21] p. Lf7 and [ 19] p. 398,) 

Theorem 4. The following conditions are equivalent for an x-closed 

group G 

1. G is regularly x-closed, 

2. The map 41 is inj ecti v~. 

3. The x-system in G is the trace of the t-system in some 

GCD-group which contains G as an ordered subgroup. 

4. The x-system coincides with the x -system in G . a -

5. The x-system is defined by a family of valuations. 

Furthermore the following two conditions are also equivalent 

6, G is an x-Prlifer group. 

7. The map 41 is bijective. 

In case the given x-system is additive, all the above seven 

conditions are equivalent. 

We shall not go into any details with respect to the proof 

of this theorem since such a proof can be more or less extracted 

from [ 21 ] (especially from Proposition 7, p. I+ 9, Theorem 5, p. 50 

and Theorem 3, p. 55). The only statement in the theorem which 
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really needs a proof, is the last one concerning additivity. This 

will follow, however, from Theorem 6 below. For a further elabora

tion on the properties 5. and 6. in the case x = d, the reader 

should consult [ 19] p. 303 and Theorem 32.12 p. 402. 

9. Divisors revisited. J.he axiomatic approach of Borevic-Shafarevic. 

We shall now indicate how the material developed so far may be 

used 1n order to put the axiomatic introduction of divisors of 

Borevic-Shafarevic into a slightly differen·t perspective. This will 

lead to both a generalization and a sharpening of their treatment. 

Few introductory books on algebraic number theory take the 

trouble to explain the notion of a divisor properly. Hasse in his 

classical 'Zahlentheorie 1 puts considerable emphasis on the concept 

of a divisor, but without clarifying the most fundamental issues. 

A step towards such a clarification is taken by Borevic-Shafarevic 

in Chapter 3 ('The theory of divisibility') of their book 'Number 

Theory'. Here the notion of 'a theory of divisors' is introduced 

axiomatically as a map ~ from the group of divisibility G of 

an integral domain into a factorial group ~ verifying the following 

three conditions~ 

(1) ~ is an isomorphism which identifies G with an ordered 

subgroup of£; 

(2) If ~(a) > ~ and ~(b) ~ ~ then also ~(a±b) > ~ 

( 3) If 07... and 1J are elements in ;::) such that 

{g E G q>(g) ~ 0!.} = {g E G I ~(g)~;; } then r:tL = h 

The elements of :lJ are called divisors and the divisors of the 

form q>(a) are said to be principal divisors. 
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An equivalent formulation of (3) is to say that any ~ E ~ 
is the infimum of a finite number of principal divisors. Both 

these formulations of (3) express our wish to leave out "unnecessary" 

divisors - i.e. to consider only minimal factorial extensions of G 

The main questions surrounding this notion of a theory of divi-

sors are the questions of existence and unicity and methods for an 

actual construction of :?J fr'om objects definable in terms of G . 

By unicity we mean that if ( :2)1 ,f1 ) and ( 2> 2 ,f2
) are two theories 

of divisors for G then there exists an isomorphism between ~ 1 
and :2) 

2 
which extends the canonical isomorphism between c.p

1 
(G) 

and lP
2 

(G) . 

The exposition of Borevic-Shafarevic is in spite of its virtues 

still blurred by the presence of the additive operation. The 

additive operation is irrelevant for the general treatment of divi-

sors and should be discarded. But also in case one insists on a 

ring-theoretic treatment, the axiom (2) of Borevic-Shafarevic is 

redundant, as was also noticed by L. Skula in [43]. (An earlier 

axiomatic treatment of divisors due to Krull ([29], p. 123), which 

is essentially equivalent to the one by Borevic-Shafarevic, suffers 

from the same redundancy.) A significant forerunner of Skula's 

purely multiplicative treatment is Clifford's paper [13] . 

Our aim here is to look at the axiomatic introduction of 

divisors in the light of the Lorenzen gronps. It is then natural 

to start out with a more general situation where the above axiom 

(2) is discarded and the factorial group 2J is replaced by a GCD-

group~ in the axioms (1) and (3). In that case we shall speak 

of a theory of quasi-divisors for G • We shall not enter into a 

discussion of the exact conditions which assures the unicity of a 
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theory of quasi-divisors for G . We shall content ourselves 

with the following result. 

Theorem 5. A t-closed grou£ G has a unique theory of quasi

divisors determined by the canonical injection of G into its 

Lorenzen t-group At(G) • In case G is the group of divisibilitz 

of an integral domain this injection will automatically be a 

(d,t)-morphism and hence also verify the axiom (2) of Borevic

Shafarevic (and Krull [29]). 

Proof: Let lP : G -+ -f; be a theory of quasi-divisors for G and 

let y denote the trace-system which the t-system in -!J induces 

on G . We shall show that this trace-system actually is the 

t-system in G, thus making ~ into a (t,t)-morphism. Since 

every t-ideal is a d-ideal (in case G stems from an integral 

domain) this will in particular prove the latter part of the theorem. 

By Theorem 4 (property 3), G is regularly y-closed with corres-

pending Lorenzen group A (G) 
y 

and we have a commutative diagram 

where all maps are injections. (That ~ is an injection is again 

a consequence of Theorem t~ (property 2). ) By the minimali ty pro-

perty expressed in axiom 3 He infer the isomorphism 

(see also [21 J p. 44-45). 

A (G) ~-s
y 

On the other hand G 1s t-closed with a canonical (t,t)-

injection ljJ : G -+ At(G) . Regarding this latter map as a (y,t)-

morphism we get another commutative diagram of injective maps 
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G 

establishing in the same manner as above an isomorphism A/G) ~ At(G) . 

Combining these tHo isomorphisms we get ~ ~ At (G) as a GCD

isomorphism which extends the canonical isomorphism between ~(G) 

and 1j! (G) . 

By imposing stronger conditions we obtain a variety of more 

precise results. We first note the following 

Corollary 1. A t-PrUfer group G has a unique theory of quasi~ 

divisors G + At(G) where At(G) 1s isomorphic to the group of 

finitely generated t-ideals in G . 

Proof: The elements of At(G) are of the form 

Since ta = t and G is t-Prufer we can identify this fraction 

with the finitely generated (fractionary) t-ideal Ct which solves 

the equation (bl ' ... ,bn)t 0 ct = (al ' ... ,am)t . 

Another way to look at Corollary 1 is to use the equivalence 

between the properties 6 and 7 in Theorem 4 which gives an iso-

morphism from the group of finitely generated t-ideals of G onto 

the group of principal t-ideals of At(G) , (taking into account 

that the latter group is a GCD-group). 

We may also take the trouble to spell out Corollary 1 in a 

more classical situation: 
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Corollary 2. The divisibility group G of a Prufer domain R 

has a unique theory of quasi-divisors G + At(G) where At(G) 

is isomorphic to the group of all (non-zero) finitely generated 

fractionary t~ideals of R . 

This follows from Corllary 1 in vlew of the implication 

d-Prtifer "* t-Prtifer . 

Moving from quasi-divisors to divisors we first have the 

following 

Corollary 3. If a theory of divisors (verifying (1) and (3)) 

exists for a directed group G it is uniquely determined as the 

canonical injection G + At (G) . 

Proof: By Theorem 5 it suffices to verify that G is t-closed. 

Since a factorial group is obviously completely integrally closed, 

the same is true of G considered as an ordered subgroup of such 

a group. Corollary 3 then follows from the fact that complete 

integral closure implies t-closure. 

Finally, the following corollary gives a general existence 

and unicity result which in particular comprlses the classical 

case of a Dedekind domain ·· and more generally that of a Krull 

domain. 

Corollary 4. A directed group G which is t-Prlifer and satisfies 

the'ascending chain condition for finitely generate~ (int~ral) 

t-ideals has a unique theory of divisors given by the factorial 

group of all the fractionary t-ideals of G . 

Proof: The ascending chain condition for finitely generated 

t-ideals will in view of Corollary 1 correspond to the descending 
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chain condition for integral elements in At(G) . 

is a GCD-group, this means that At(G) is factorial. Every 

t-ideal of At(G) is then principal (the descending chain condi

tion for integral elements assures that any t-ideal ln At(G) is 

finitely generated and the GCD-property entails that they are ln 

fact principal). The equivalence of properties 6. and 7. of 

Theorem 4 gives the desired isomorphism between At(G) and the 

group of fractionary t-ideals of G . 

Corollary 4 has a converse in the sense that if a directed 

group G has a theory of divisors then it must be t-Prufer and 

satisfy the ascending chain condition for finitely generated 

t-ideals. We know already from the proof of Corollary 3 that G 

must be completely integrally closed, i.e. that the v-ideals 

form a group under v-multiplication. It will hence suffice to 

show that any t-ideal of G is finitely generated and thus a 

v-ideal. For as a result of this the two hypothesis of Corollary 4 

will immediately follow. (An easy proof of the fact that every 

t-ideal in a pr~factorial group is finitely generated can for in

stance be found on p. 82 in [ 21 ] . ) 

Many different characterizations of pr~factorial groups have 

been presented. In the present context we shall content ourselves 

with giving the following 

Theorem 6. The following properties are equivalent for a directed 

grou12 G . 

1. G has a theory of divisors. 

2. G has a unique theory of divisors. 

3. G is pr~factorial. 

4. The t-ideals of G form a group under t-multiplication. 
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5. G is t-Prlifer and satisfies the ascending chain condition 

for int~ral t-ideals. 

G. G 1s t-closed and satisfies the ascending chain condition 

for integral t-ideals. 

7. There exists a Lorenzen system x such that G is x-closed 

and satisfies the ascending chain condition for integral 

x -ideals. -a----

Proof: All the implications in the sequence 1 * 2 => 3 => 4 => 5 => 6 => 

7 => 3 ~ 4 => 1 can easily be extracted from what has been said above, 

with the possible exception of 7 => 3 which is proved thus: If G 

is x-closed it is also xa-closed and if every xa~ideal is fini

tely generated this means that G is completely integrally closed, 

1. e. the v-ideals form a group 95 under v-mul tiplication. Since 

the a.c.c. for x -ideals implies the a.c.c, for v-ideals it follows a 

that the GCD-group !V is indeed factorial. 

The contents of this section also gives, essentially, a proof 

of Theorem 1. 

10. t-Localization versus the Krull-Kaplansky-Jaffard-Ohm theore~. 

In the preceding sections we have dealt with the relevance of 

t-ideals in connection with the problem of restoring basic arithme-

tical properties by a suitable extension process. This comprises 

1n particular the problems 1 and 2 mentioned in paragraph 2. 

The third one of the main problems of the theory of divisibility 

is concerned with the decomposition of a divisibility relation into 

a conjunction of linear (total) ones. This issue has also been 

touched upon above in connection with the topic of Lorenzen groups 

(Corollaries 1 and 2 of Theorem 2 and Corollaries 1 and 2 of Theorem 3). In 
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r1ng theory this problem takes the form of writing an integrally 

closed (d-closed) domain as an intersection of valuation rings. 

The purely multiplicative problem consists in embedding a GCD

group into a direct product of totally ordered groups - taking for 

granted that the embedding of a directed group into a GCD-group 

has already been clarified by Theorem 3 and its corollaries. 

In connection with this question some authors have advocated 

a point of view which may be said to be strictly opposite to the 

one which underlies the present paper. These authors have tried 

to solve problems concerning GCD-groups by reducing them to ring 

theory via the so-called Krull-Kaplansky-Jaffard-Ohm theorem 

(see in particular [34] ). This theorem tells us that any GCD-

group is order isomorphic to the divisibility group of a suitably 

chosen Bezout domain. In this way the general theory of GCD-groups 

can profit from what is known about Bezout domains. This method 

can in particular be used in order to realize the embedding of a 

GCD-group into a direct product of totally ordered groups (a result 

which was first obtained by Lorenzen). For if G is a GCD-group 

which is the divisibility group of a Bezout domain R we can 

argue as follows: Being a Bezout domain, R is in particular 

integrally closed (d-closed) and as such equal to an intersection 

of valuation rings v. sitting in the quotient field of R. If 
l 

r. denotes the totally ordered divisibility group of v. then 
l l 

(10.1) G-.. TI r. 
l i 

gives an embedding of the desired type. 

This is simple enough, once the K-K-J-0-·theorem has been 

proved. Still~ it is fair to say thet this proof procedure sue-

ceeds - not because of its relavance for the problem at hand, 
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but rather in spite of its irrelevance. It seems far fetched 

to use d-ideals, d-closure and d-valuations in connection with 

this purely multiplicative problem, just because the sufficient 

amount of commutative algebra happens to be readily available in 

the d-case. The recipe should rather be to use the concept of 

a t-ideal which matches the multiplicative situation perfectly -

and develop the relevant piece of commutative algebra ln the 

t-ease. In fact, only the bare rudiments of a theory of t-locali-

zation is all that is needed. This was already recognized by 

Lorenzen although he did not develop any systematic theory of 

localization for ideal systems. The globaliza-tion formula of 

paragraph 3 (iv) gives in the case X = t and A = G+ : 

(10.2) G+ = n s:- 1 G+ 
S. l 

l 

with S. = G+ - P ( i) running over all the complements of maximal 
l t 

(prime) t-ideals P~i) in G+ . 

Let us now elucidate a little bit the remarks given at the 

very end of paragraph 3. concerning the relationship between 

localization 1n GCD-groups and the t-shadow functor. 

Let G be a GCD-group with D = G+ as its monoid of 

integral elements and let S be a submonoid of D . According 

to the general procedure described in paragraph 3 (iv) we can, 

on the basis of the ideal system (D,t) , form the localized ideal 

system This integral ideal system is a Lorenzen 

system and will hence define a fractionary ideal system in G 

where the new order relation in G is having S- 1 D as its monoid 

of integral elements. It is easy to see that the corresponding 

ordered group is isomorphic to the factor group 
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and is hence again a GCD-group since S- 1 D n SD·~l 1s an 1-·ideal 

(absolutely convex subgroup) of G . This fact can also be seen 

by explicitely computing the g.c.d.'s relative to the new 'local-

ized' ordering, according to the formula 

(10.3) 

Using (10.3) we also see that the 
-1 

t 8 -system defined in S D 

is the same as the t-system in S- 1 D defined intrinsically 

in terms of the order relation given by (10.3). By (10.3) the 

t 8-ideal s- 1A 
t (A cD) lS a t-ideal in s- 1 D and for any 

t-ideal Bt in s- 1D we have Bt = s- 1 
< Bt n D > where Bt n D 

is a t-ideal in D . 

The contents of these remarks may be summarized as follm-Js: 

We have a localization procedure going on at two levels - one 

for GCD-groups and one for ideal systems (the t-system). These 

localization procedures are linked by the t-shadow functor in 

such a way that we obtain an obvious commutative diagram. 

Let r. denote the ordered group which is associated to 
1 

the preordering of G , given by specifying s: 1 n as the monoid 
1 

of integral elements. The injectivity of (10.1) then follows 

from (10.2) and the fact that (10.1) is a morphism of GCD-groups 

follmvs from the map D + S- 1 D being a (t,t
8

)-morphism by con

struction (see [ 4 ]), together with the fullness of the t-shadow 

functor (see the Lemma of paragraph 6). Finally 

tally ordered, due to the fact that s: 1 n is a 
l 

each r. is to-
1 

t-local (pre-

ordered) monoid in the sense that it contains a unique maximal 

t-ideal Ht = Si 1 P~i) which in the associated ordered group 
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simply consists of all elements > e • Since Mt is closed 

under intersection this means that we have the implication 

a > e & b > e ..:. aAb > e and this is characteristic of a GCD

group which is totally ordered. 

One of the features of the duality between prlme t-ideals 

and prime 1-ideals in GCD-groups is that the localization with 

respect to a prime t-ideal is order isomorphic to the factor 

group with respect to the dual prime 1-ideal. Alternatively one 

may therefore obtain the embedding (10.1) by replacing (10.2) by 

the fact that the intersection of all prime 1-ideals in a GCD

group reduces to the identity element and that any factor group 

modulo a prime 1-ideal is to-tally ordered. It seems to us, 

however, that the method of localization may have an advantage 

because of its broader perspective. This will come up again in 

connection with sheaf representation. 

11. Additive ideal systems and a counterexample of Dieudonne. 

The relative strength between the notions of an x-closed 

group, a regularly x-closed group and an x-Prufer group has 

been touched upon in paragraph 8. For the t-system we have 

already noticed that a t-closed group and a regularly t-closed 

group is one and the same thing, simply due to the fact that the 

t-system is the coarsest Lorenzen system (of finite character) 

which exists in a directed group - and hence t = t a 
Theorem 6 

shows that 'x-closed' is even equivalent to 'x-Prufer' in the 

presence of the ascending chain condition for integral t-ideals. 

It was shown by Lorenzen (in [ 33]p. 551) that there exist directed 

groups which are t-closed, but which are not t-Prufer groups. 
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Dieudonn~, (in [16] ), sharpened this result by showing that 

there is a distinction between these two notions also within 

the more restricted realm of divisibility groups of integral 

domains. 

Our interest in this somewhat marginal question comes from 

the general theory of additive ideal systems. As we see it, it 

is in the light of the below Theorem 7 that the counterexamples 

of Lorenzen and Dieudonne acquire some additional interest by 

exhibiting the reason for ·the existence of these examples - namely 

the lack of additivity. 

Theorem 7 will generalize a result of Prufer to the effect 

that a regularly d-closed domain is a Prufer domain. Our proof 

will closely follow the proof of this result as given in [21 ], 

p. 26-28. In this generality the theorem was first proved by 

H. Bie Lorentzen in [ 9 ] . 

Lemma 1. G is an x-Prufer group if and only if every x-ideal 

with two gen~rators is invertible. 

Proof: Assume that we have shown that any x-ideal with less 

than n+ 1 generators is invertible and let Ax= (a
1

, ••• ,an+l)x 

with n > 2 • \r.Je then have finitely generated x-ideals Bx , Cx 

and Dx such that 

(11.1) 

(11.2) 

(11.3) 

By putting 

(a 1 , ... ,a) oB =(e) 
n X X 

( a 2 ' • • • ' an+ 1 ) x o C x ·- ( e ) 

( a l ' an+ 1 ) x o D x = ( e ) 

E = a
1

B oD +a +lc oD , a computation, using an 
X X X n X X 

easy consequence of the continuity axiom (3.1) as well as the 
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equations (11 .1-3), shows that A oE = (e) 
X X 

[ 21] p. 27 for details in the case x = d . ) 

as desired. (See 

Lemma 2. Let (G,x) be an additive Lorenzen system and assume 

that G is x-closed. G will then be an x-Prlifer group if 

and only if for all a E G. 

Proof: We are here mainly interested in proving the 'if'-part. 

(The proof of the 'only if'-part is contained in the proof of 

Theorem 7.) By Lemma 1 it suffices to show that any x-ideal of 

the form (b,c)x is invertible. Since (b,c)x = (b)xo(e,~)x it 

is in turn sufficient to show that (e,a) is invertible for any 
X 

a E G • From the assumption a E (e,a 2 ) 
X 

if follows by additi-

vity that 

(11.'+) 

for a suitable + g E G 

(a,a 2 ) 
X 

In particular a E (g,a 2 ) 
X 

which by 

additivity and principality gives 

(11.5) 

for some 

(g,a) = (g,ha2) 
X X 

E G+ • h . Putting A 
X 

-1 -1 = (ga ,h) o(e,a) = (ga ,g,l1,ah) 
X X X 

it will be sufficient to show that A = G + • From ( 11 . 5 ) we 
X 

infer that 

(11.6) -1 -1 ( ga , e ) = ( ga , ha) 
X X 

-1 
which entails e E (ga ,ha)x c: Ax + showing that G c A 

X 

It remains to be shown that ga- 1 and ha belong to G+ since 

this will give A 
X 

c: G+ . We get g(e,a) ::: (g,ga) c (g,a) = 
X X X 

= (a,a 2 ) = a(e,a) llsing (11.4) and (11.5) 
X X 

as well as the gact that g and h are integral elements of G . 
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F ( ) ( ) t ga- 1 E G+ . rom g e,a c a e,a we ge s1nce 
X X 

x-closed. Together with (11.6) this also yields 

G is 

ha E G+ . 

Theorem 7. Any regularly x-closed group is an x-Prllfer group 

provided that the given fractionary x-system is additive. 

Proof: By Lemma 2 it is sufficient to show that the property of 

regular x-closure implies that a E (e,a2) for all 
X 

We have 

(a) o(e,a) = (a,a 2 ) c (e,a2) o(e,a) 
X X X X X 

a E G • 

and (a) c (e,a2 ) results by cancellation (noting that can-
x X 

cellation with respect to equalities is equivalant to cancellation 

with respect to inclusions). 

In [16] Dieudonne gives an example of an integral domain 

which is regularly t-closed but not t-Prllfer (regularly inte

grally closed but not pseudo-Prllfer in Bourbaki's terminology 

[12] p. 554and 561). ~vhen this is combined with the above 

Theorem 7 we get the following 

Corollary 1. There exists an integral domain where the divisorial 

ideals of finite character do not form an additive ideal system. 

A sharpening of this result is the following 

Corollary 2. There exists a t-closed divisibility group where 

no xa- system is additive. 

Proof: If the directed group G 1s t-closed it is x-closed for 

a.ny Lorenzen system x in G . If an xa-system in G were addi-

tive for some x it would follow from Theorem 7 that G is 

x ~Prufer, hence also t-Prllfer (according to [21] Theorem 1 ,2° a 

p. 25 ) contradicting Theorem 7 . 
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A more explicit result in the same direction is the following 

corollary which exhibits an abundance of non-additive ideal systems. 

Corollary 3. The sa-system in a GCD-group G is additive if and 

only if G is totally ordered. 

Proof: If G is totally ordered, all ideal systems in G coincides 

with the s-system which is additive. Assume conversely that G is 

a GCD-group which is not totally ordered. There then exist strictly 

positive elements + a, b E G such that a A b = e . This entails 

(a , b) t = ( e ) and (a , b) 8 a * ( e ) . The latter fact follows from a 

result of Lorenzen ([33]p. 538) and shows that (a,b)s 
a 

cannot be 

invertible since it as such would be a t-ideal, contradicting 

(a,b)sa * (a,b)t. 

This latter corollary shows that the property of additivity is 

not generally transmitted from an x-system to the corresponding 

12. Sheaf representation over the t- spectrum. Among the most 

important types of ordered groups are on the one hand the multipli

cative groups arising from the theory of divisibility (divisibility 

groups, groups of ideals, groups of divisors, Lorenzen groups, etc.), 

and on the other hand additive groups of real~valued functions. 

Although these two types of ordered abelian groups arise in differ

ent contexts, the preceding paragraphs have shown that there is a 

common meeting ground for them within the theory of divisibility. 

In fact, the most satisfactory arithmetical situations arise exactly 

when either the divisibility group itself or a suitable group of 

ideals form a nice function-group like an additive group of integer

valued functions vanishing outside of finite sets. 
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Viewing factorial and prefactorial groups from the point of 

v1ew of a functional representation of these groups over the family 

of prime t-ideals, this suggests a more general representation 

theory for ordered groups which closely parallels the well-known 

sectional representation of commutative rings. 

We shall here content ourselves by giving the full sectional 

representation of the integral part of a GCD-group. This also 

accomplishes a sectional representation of a semi-closed group via 

the embedding into its Lorenzen s-group. 

Let + D = G denote the monoid of integral (positive) elements 

of a GCD-group G . By the t-spectrum of D , denoted by X= Spect D 

(or Spect G ) , we understand the family of all pr1me t-ideals of D , 

equipped with the usual spectral topology where the basic open sets 

are given by the sets of the form D(a) = {Pt!a ~ Pt}. Whenever S 

is a submonoid of D we can form the usual monoid of quotients 

-1 Dc:S DcG. As explained on pages 40-41 the monoid 

S- 1 D induces a preorder in G , and it is the restriction of this 

preorder to S- 1 D which will be considered in the sequel. This 

makes S- 1 D into a preordered GCD-monoid according to (10.3) p. 41. 

The particular case where S is of the form Sa= {e,a,a2 , ••• } 

gives rise to a presheaf of preordered GCD-monoids over Spect D . 

For D(b) c D(a) is by the Krull-Stone theorem for x-ideals ([2] 

Theorem 12) equivalent to b E y(a) . By putting bn = ga this 

gives rise to a well-defined homomorphism of GCD-monoids 

m 
where ~a(~) = ~ . 

b am bm·n 
D(c) cD(b) cD(a). In 

Obviously whenever 

this way the assignment defines 

a pre sheaf of GCD-monoids on the basis { D( a) ,a E D} and hence 
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determines a presheaf r X on X = Spect D . In much the same 

way as for commutative rings we can prove the following 

Theorem 8. The presheaf ~ is a sheaf. In particular there is 

an isomorphism of GCD-monoids D orr (X,~) • Furthermore the stalk 

of :J;_ at P t is isomorphic to the totally pre ordered monoid S -
1 

D 

where S = D ' P t . 

Proof: As usual one must verify that the presheaf o; satisfies 

the two defining properties of a sheaf. These two properties 

correspond, respectively, to the injectivity and the surjectivity 

of the natural map D-+ r(X, ~) • The injectivity is obvious in 

this case, since we operate within a group where cancellation is 

available. Let us show the surjectivity, i.e. that any global 

section of the given presheaf comes from an element in D • By the 

(quasi)compactness of X ([ 2] p. 35) the problem reduces to the 

following one: Given a finite covering of X by basic open sets 

X= D(a 1 ) UD(a
2

) U ... UD(ak) and given a corresponding family of 

elements s. E S- 1 D such that 
1 a s. and s. 

l J 
have the same 

'restriction' to D(ai) n D(aj) = D(aiaj) - we want to exhibit an 

element dE D whose 'restriction' to D( a.) is s .• 
l l 

Since we are dealing with a finite cover1ng we can adjust the 

representation of s. as a quotient in such a way that the exponent 
l 

d· 
in the denominator is independent of i.e. s. l for all i . l ' = 

l a.n 
l 

The fact that s . and s . by the presheaf restriction maps are 
l J 

mapped onto the same element in 
-·1 

Sa.a.D gives rise to the equations 

(12.1) 

Using the equality 

n a.d. 
J l 

n = a.d. 
l J 

D(a~) = D(a.) 
l l 

l J 

and the fact that the sets 

form a covering of X . we deduce the identity 

D(a.) 
l 
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n n n n 
( a 

1 
, • • • , ak ) t = ( a 

1 
A • • • A ak ) = D 

which simply means that 

(12.2) n n 
a 

1 
A ••• A ak = e . 

Putting d = d
1 

A •• , A dk and using (12.1) and (12.2) we get 

n = a d. A 
1 l 

This shows that 

... 

d 
d = - = e = s. 

l 
when compared in and 

thus proves that dE D gives r1se to the given section s E r(X, ~). 

The verification of the isomorphism is routine 

and may be left to the reader. (Here S = D 'P t and the inductive 

limit is taken with respect to all a 1£ P t . ) 

By replacing each stalk S-
1 

D in the sheaf ~ by the group 

G equipped with the preordering which is induced by choosing S-
1
D 

as the monoid of integral elements - we can easily extend the above 

sheaf representation from D to G • In fact, any element g E G 

may be written uniquely in the form 

-1 
and g = g ve both belong to D = 

ponding to g is then defined by 

G+ . The section s g 

+ g = g v e 

corres-

This will indeed be a section if we extend the definition of the 

topology on the disjoint union of the stalks by declaring all sets 

which ltlay be written as a union of sets of the form 

as open. 

We have thus obtained a sheaf representation of a GCD-group 
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1n terms of a sheaf which is built up of totally preordered groups 

as stalks. From there on we can easily go one step further by 

passing from the preorder to the associated order in each stalk, 

i.e. to pass from G to the (totally) ordered factorgroup G8 = Gt88 -l 

and redefine the sections accordingly. \!Je may formulate this as a 

Corollary 1 • Every (ordered) GCD- grou:r G may be represented as 

the GCD-group of all sections in a sheaf of totally ordered groups 

over the quasi-compact space Spect G • 

Let us also give a more special corollary concerning represen-

tations by "real-valued" sections. By a Feal gro~ we shall under

stand an ordered subgroup of the ordered additive group of real 

numbers. We shall further say that a GCD-group G is regular if 

every prime t-ideal in G+ is maximal. (This terminology is chosen 

because von Neumann regular rings and regular GCD-groups both yield 

examples of the notion of a regular ideal system, introduced in the 

next paragraph.) 

Corollary 2. Any regular GCD- group G is isomorphic to the GCD

group of all sections 1n a sheaf of real groups over the quas1-

compact space Spect G . 

According to Theorem 8 the stalk at P t is isomorphic to the 

factor group GfHp = Gt 88 -l where Hp is the prime 1-ideal 

corresponding to P t . If every prime t-ideal of G is maximal, 

it will also be minimal. Hence, each Hp will be maximal and the 

corresponding factor group will be totally ordered and archimedian, 

thus a real group. 

Corollary 1 gives a sharpening of the purely algebraic em

bedding (10.1) of a GCD-group into a direct product of totally 

ordered groups. Using a language which corresponds to the one 
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which we used in connection with divisors we may say that the 

'principal sections' corresponding to the image of G in the 

general and 'discontinuous' representation 

G ~TTr. 
l 

of paragraph 10 are here characterized (selected) as the continuous 

ones with respect to the topological restrictions imposed by the 

given sheaf. 

The above approach seems to give the simplest and most general 

access to a full sectional representation of GCD-groups by means 

of totally ordered groups. It is based on a Grothendieck approach 

in terms of localization rather than on a Gelfand-like approach in 

terms of factor formation, The sheaf-representation of various 

classes of lattice ordered groups and rings has been extensively 

studied by Klaus Keimel ( [10] , [24] and [25]) who has preferred to use 

a Gelfand-type of approach. As far as we can see this seems to 

have some slight disadvantages in the case of GCD-groups: (1) It is 

less simple than the approach in terms of localizations. ( 2) It is 

less general in the sense that it requires extra conditions on the 

given GCD-group in order to obtain a full representation over a 

quasi-compact space. (3) The stalks are not in general totally 

ordered and hence less simple and appealing. This latter disadvan-

tage may be compensated for in Keimels approach by passing to the 

subspace of minimal prime 1-ideals which is in addition Hausdorff 

and zero-dimensional (but generally not compact). We shall return 

to a somewhat closer comparison with Keimels approach in the next 

paragraph. 

In a sense localization and factor formation are dual proce

dures. In ring theory the 'self-dual' case (where ~Q:! R/'P for 

all prime ideals ~ ) is represented by the class of von Neumann 
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regular ~ings. In this case the two representation procedures 

coincide as far as the stalks are concerned. The classical repre-

sentation theory of Boolean rings may thus be considered from 

either point of view, although it is the Grothendiek approach which 

allows us to extend Stone's theory to general commutative rings. A 

similar advantage of the approach in terms of localization also 

prevails in the case of GCD-groups. These groups bear in fact a 

considerable resemblance to regular rings in that they exhibit a 

similar duality, although this duality for GCD-groups involves two 

different ideal systems rather than one. We have already alluded 

to the bijection between the prime t-ideals and the prime 1-ideals 

of a GCD-group and the correspondence which it induces between 

localization with respect to a prime t-ideal and the factor forma

tion with respect to the corresponding prime 1-ideal. One aspect 

of this duality which is of particular relevance to functional and 

sectional representation of GCD-groups is the fact that the 'semi

simplicity' for the 1-system~he Krull-Stone theorem applied to 

the zero-ideal) corresponds to the globalization formula (10.2) for 

the t-system. (In terms of our notation the bijection between 

prime t-ideals and prime 1-ideals is given by 
-1 

Pt -+ Hp = SS 

where + S = G -Pt. See remarks at the end of paragraph 10.) See 

also Theorem 11 and its consequences for a further substantiation 

of the analogy between regular rings and GCD-groups. 

We shall now further clarify the relative virtues of the 

different candidates for a notion of a 'spectrum' for a partially 

ordered group. As v1e have indicated, the prime t -ideals are super-

ior to the prime 1- ideals even in the case of GCD-groups although 

this is more visible in connection with sectional representation 

than 1n the functional case. We shall next show that the applicabi-

li ty of the prime t- spectrum for 
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a sectional representation of partially ordered groups, which are 

not necessarily GCD-groups, is in a certain precise sense limited 

to the Prufer groups. For integrally closed groups which are not 

Prufer groups one preferably passes to a spectrum consisting of 

x-valuations. Again it is the GCD-{unctor and Lorenzens theorem 

(Corollary 1 of Theorem 2) which gives the clue to this insight. 

Thus it is the concept of an x-valuation which turns out to have 

the widest scope when it comes to the problem of picking the 

points of the representation space. 

Definition. The topological space Specval G (called the 
X 

x-valuation spectrum of G) consists of all (equivalence classes 

of) x-valuations of an x-closed group G with the sets 

D(a) = {vI v(a) = e , a E G+} as basic open sets. (The notion of 

equivalence of x-valuations extends in an obvious way the usual 

notion of equivalence between Krull-valuation~) 

For every x-closed group G we have a commutative diagram 

Spec valt(Ax(G)) 
6 

Spect(Ax(G)) --+ 

(12.3) a! ttS 
Spec val G 

y 
Spec G --+ 

X X 

where a 1s the restriction map related to Lorenzens theorem 

(Corollary 1 of Theorem 2), t5 is the map P t + P t n G and y is the map 

v + v- 1 ((Imv)+'-{e}). Finally 13 is just the specialization of 

y to the case x = t . 

By Lorenzens theorem, a is a bijection. This bijection is obvi-

ously continuous, but seemingly not in general a homeomorphism. 

It follows from the following theorem, however, that a is surely 

a homeomorphism when G 1s an x-Prufer group. This theorem also 

shows that 13 is a homeomorphism for any x-closed group G . The 
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maps y and o are both continuous but in general not bijective. 

If they are bijective they are also homeomorphisms. More pre-

cisely: 

Theorem 9. The following conditions are equivalent for an 

x-closed group G . 

1. G is an x-Prufer group 

2. Every localization at a pr1me x-ideal of G+ yields an 

x-valuation monoid in G . 

3. The map y: Spec val G + Spec G is a (surjective) 
X X 

homeomorphism. 

4. The map o : Spect(Ax(G)) + Specx G is a (surjective) 

homeomorphism. 

Proof: We first show that 1. and 2. are equivalent. If G is 

x-Prlifer it is clear that G 

complement of a prime x-ideal 

is also 

P 1n 
X 

xs-Prlifer where S is the 

+ D = G . It 1s sufficient 

to observe that the equality AxoBx = D entails the equality 

Ax oBx = S- 1D. (VJe have quite generally that S- 1 (A oB ) = 
S S X X 

S- 1A oS-
1

B where the latter~ denotes the xS-multiplication.) 
X X 

In order to establish the implication 1 ~ 2 it is hence suffi-

cient to show that an x-local and x-Prlifer monoid is an x-valu

ation monoid (observing that S- 1
D is an xS-local monoid in the 

sense that the set S- 1 P of all non-units of S-
1

D forms a 
X 

maximal xs-ideal of S- 1 D ). The fact that S- 1 D produces a 

total order in G is proved in the case x = d 1n Proposition 4 

p. 67 in [21] and this proof carries over to the general case 

without change. By an x-valuation monoid in G we understand 

a set of the form v- 1 <r+) where v: G + r is an x-valuation 
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of G , (see Corollary 2 of Theorem 3). In the present situation 

the canonical map v: G + G/SS-1 = r will in fact be an x-valu-

ation with -· 1 S D as corresponding valuation monoid. For if 

{a1 , ... ,an} c: S-
1

D , there exists an element s E S such that 

s{a
1 ... an} c: D and hence also s{a 1 • · · an} x c: D since D is 

(by definition) an x-ideal in G . Thus {a
1

, ••• ,a} c s- 1 D 
n x 

and v- 1 <r+) lS an x-ideal in G. By 'translation' it follows 

that inverse images of principal ideals in r are x-ideals in G • 

Since the given x-system is supposed to be of finite character we 

conclude that 
-1 

v (At) is an x-ideal in G for any bounded set 

A c r. 

In order to show that 2 ~ 1 it is (according to Lemma 1 1n 

paragraph 11) enough to prove that every x-ideal of the form 

(a,b) is invertible. By the fact that every localization at a 
X 

prime x--ideal gives rise to a total order, v7e must have 

or 

This entails easily that 

s- 1 ((a) o(b) ) = s- 1 ((a,b) o((a) n(b) )) 
X X X X X 

which by the globalization formula of paragraph 3, (iv) gives 

( ab )x = (a) o (b) = (a, b) o ( (a) n (b) ) . 
X X X X X 

Since a principal x-ideal is invertible, it follows that 

is invertible. 

(a,b) 
X 

By assuming 2, we see that the map y has an inverse, as 

constructed in the first part of the proof. In fact.,. y is then 

a homeomorphism because the basic open sets in the two topologies 

correspond to each other as follows: 

{vlv(a) =e} ~{y(v)!a(y(v)}. 
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That 3. implies 2. is obvious. From the implication 1 =~"> 3 and 

the fact that a GCD-group is always a t-Prlifer group it follows 

that there is a bijection between the t-valuations and the prime 

t-ideals in such a group. This establishes of course that e is 

a homeomorphism for any x-closed group G . It follows that y 

is bijective if and only if o 1s bijective. This shows in parti-

cular that 4 * 1 (since the bij ectivi ty of y implies 1 • ) • On 

the other hand if G is an x-Prlifer group (i.e. ~ is bijective) 

then o will be bijective. More precisely, it follows in conjunc-

tion with the equivalence of 6. and 7. in Theorem 4 that o and 

the map ct> of that theorem are inverses of each other v1hen ct> is 

restricted to Spec G . 
X 

From this we can infer that a basic open 

set D(a) = {Ptla ( Pt} cSpect A(G) by o corresponds to an open 

set 1n Spec G . For a E G+ this is obvious since then o ( D( a)) 
X 

= {P I a E: P } . In case a E A( G)+' G+ we can prove that 
X X 

(12.4) o(D(a)) 

or equivalently 

(12.5) 

Since + + aEPt ~(a) nG cPt nG the implication ~ in ( 12.5) is 

clear. Conversely, since ct> is the inverse of o it follows that 

the t-ideal in At(G) which is generated from (a) n G+ is (a) 

If + + (a) n G c P t n G we ther•efore obtain a E P t as desired. 

Since the right-hand side of (12.4) is evidently a union of 

basic open sets in Specx G it follows that o is an open map and 

this completes the proof of the theorem. • 

It is clear from the above proof that the mere bijectivity of 

either of the maps y or o is sufficient to assure that G is an 
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x-Pri.ifer group. In case of y the bicontinui ty follows immediately 
) . 

from the bijectivi ty whereas our proof of the openness of IS relies 

on Theorem 4. 

We spell out two special cases 

Corollary 1. An integrally closed domain R is a Prlifer domain 

if and only if the map IS induces a homeomorphism between the 

prime spectra of R and its Kronecker function ring X< R) • 

(See Corollary 2 of Theorem 2 and succeeding remarks.) 

Corollary 2. A t -closed group G is a t- Prlifer group if and 
I 

.~mly if the map o gives a homeomorphism between the pr1me 

t-spectra of G and its Lorenzen t- group. 

~~e shall say that a subgroup G of a GCD-group !Z) is dense 

it the axiom (3) of 'a theory of quasi-divisors' is satisfied (see 

p. 32). As a joint corollary of Theorems 8 and 9 we get 

Corollary 3. Every x- Prlifer group G may be represented as a 

dense subgroup of the GCD-group of all sections in a sheaf of 

_t_o_t_a_l_l_.y.__o_r_d_e_r_e_d__.g .... r_o_u..,.p_s_o_v_e_r __ t_h_e_q..._u_a_s_i_-_c_o_m.;.p._a_c_t __ s ..... p_a_c_e __ S.._p_ecx_G_. 

In fact, the axiom (3) of paragraph 9 amounts to the condition 

that any element in the GCD-group is an infimum of a finite number 

of elements of the given dense subgroup. In the case of a pa1r 

G c..+ A (G) the latter denseness property is equivalent ·to G being 
X 

an x-Pri.ifer group. (See Theorem 3 in [21] P· 55.) 

In all the cases where the map a (in the commutative diagram 

(12.3) ) is a homeomorphism we obtain a sheaf representation of the 

group G over Spec val G , 
X 

simply by restricting the full sec-

tional representation of Ax(G) to G. In case of an arbitrary 

x-closed group we can obtain the same type of representation by 
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transferring the topology of Spec valt (Ax (G)) to Spec valx G 

via the bijection a . It seems reasonable to conjecture that a 

is a homeomorphism if and only if G is an x-Prufer group. 

When trying to prove that a is an open map one encounters a 

problem which is analogous to the one in connection with the open-

ness of o • By the very definition of the GCD-functor (see 

(6.4)) we get 

Ax.a_ 
(12.6) a(D(Bx )) = a{vESpecvalt(Ax(G))IvCa

1
)A ... Av(am)[v(b

1
)A ... Av(bn)]-

1
=e} 

a 

where Ax = (a
1 

••• a )x c (b 1 ••• b )x = B 
a m a n a x 

Without any further hypothesis it is not clear how the set (12.6) 

can be written as a union of basic open sets D(a) c Spec val G 
X 

with + a E G • If G lS an x-Prufer group, however, we know 

that an element in Ax(G)+ may be identified with an integral 

and finitely generated x-ideal Cx = (c
1 

••• ck)x (i.e. with all 

+ c. E G ) • 
l 

In this case 

and a is hence an open map. 

Although this seems to reconfirm that the openness of a 

depends on the x-Prufer condition we have not been able to prove 

the converse: a is open~ G is an x-Prufer group. 

13. Germinal ideals and real representations. We shall now relate 

the ma~erial of the preceding paragraph to Keimel's sectional re-

presentation theory for GCD-groups. His approach is based on the 

notion of a germinal 1-ideal which in a purely algebraic form imi-

tates the analytical notion of an ideal of vanishing germs at a 
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given point. Without us1ng Keimels general machinery this notion 

will quickly lead us to a quite satisfactory sectional represen-

tation theorem for regular GCD-groups with a formal unit (bearing 

in fact a considerable resemblance to Stone's representation theorem 

for Boolean algebras). 

The 1-ideals of a GCD-group form an ideal system with respect 

to the 'multiplication' a..-b = laiA!bl . Let Spec1 G denote the 

family of prime 1-ideals P equipped with the spectral topology 

where the basic open sets are given by E(a) = {P E Spec1G!a ( P} 

(For simplicity we are dropping the subscript 1 in the prime 

1-ideals, thereby also avoiding any confusion with t-ideals.) 

For any subset A cG , E(A) denotes the open set {PIA¢P} = U E(a). 
aEA 

\ve now fix P E Spec1 G and let U denote an open 

neighbourhood of P . We put 

and 

(where the latter union is taken over all open neighbourhoods 

U of P ) . 

The set OP is an 1-ideal contained in P which 1s called the 

germinal 1- ideal associated with P . A sheaf of GCD-groups 

may now be defined over Spec1 G by choosing Gfo p as the stalk 

corresponding to P . Every element g E G will give rise to a 

'section' g in the disjoint union F of these stalks by putting 

g(P) ::; 

where denotes the residue class in Gfop to which g 

belongs. This induces a projection map 1T : F + Spec1 G by putting 

In order to make (Spec1 G,F,1T) into a sheaf of 

GCD-groups we equip F with the finest topology making all the 

" maps g continuous. 
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An alternative approach, leading to the same sheaf is to 

start out with the presheaf U ~ Gfou = G(U) where every inclusion 

V c U g1ves rise to a canonical homomorphism of GCD-groups 

Gfou ~ Gfov. 

In case G has a formal unit (i.e. an element u such that 

{u} 1 = G ) Keimel proves that the map " g + g gives an isomorphism 

of G onto the GCD-group T'< Spec1 G, F) consisting of all global 

sections of F. As already indicated, this sectional representation 

has the disadvantage that the stalks need not be totally ordered. 

A natural condition which assures this is the condition that every 

prime 1-ideal is identical with its associated germinal 1-ideal: 

This condition is in turn equivalent to the condition 

that every prime 1-ideal is maximal. This equivalence results 

from the fact that Op equals the intersection of all (minimal) 

prime 1-ideals contained in P (see Proposition 6.6. in [25] ). 

The notion of a germinal ideal offers another opportunity to 

spell out the analogy between (von Neumann) regular rings and 

regular GCD-groups in a more precise way than we have done so far. 

In fact we have here two situations which give rise to a regular 

ideal system in the sense of the following 

Definition. An x-system (D,x) (see paragraph 3 (i) ) is said to 

be (von Neumann) regular if it satisfies the following conditions 

(i) D has an x-zero element 0 satisfying {0} = {0} • 
X 

(ii) D is reduced in the sense that it has no non-zero 

nilpotent elements. 

(iii) Every prime x-ideal in D is a maximal x-ideal. 

(One can easily verify that under the assumption of (i) and (ii)~ 
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(iii) is equivalent to Spec D 
X 

being Hausforff and also to 

Specx D being a regular (Hausdorff) space. There is thus a 

happy and unexpected coincidence between the algebraic and the 

topological terminology.) 

On the basis of this definition and the fact that the notion 

of a germinal ideal carries over to arbitrary x-systems we can 

give a more general and satisfactory answer to the problem of 

characterizing those situations where a prime ideal always coincides 

with its associated germinal ideal: 

Theorem 10. An additive x-system (D,x) with an x-zero element 

is regular if and only if every prime x-ideal in D coincides 

with its associated germinal x-ideal. 

Since this theorem is somewhat of a digression with respect 

to the main content of the present paper, we shall omit its proof 

and rather refer the reader to a forthcoming paper [6]. For the 

proof of Theorem 10 one should notice that it is not necessary to 

assume that D has a multiplicative identity (as has been the tacit 

assumption throughout this paper). What we have in mind is really 

that D has an x-identit:t: in the sense of [2] p. 34. This is an 

element u such that u E D2 and {u } = D . The identity element 
X 

of a ring and a formal unit of a GCD-group (with respect to the 

'multiplication' lalA!bl ) are both examples of x-identities. 

With this in mind we note the following consequences of Theorem 10. 

A. A commutative ring R (with an identity element) is a von 

Neumann regular ring if and only if any of its prime ideals 

coincides 'vi th the associated germinal ideal. 

B. A GCD-group with a formal unit is regular if and only if 

every prime 1-ideal coincides with its associated germinal 

1-ideal. 
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C. A distributive lattice with a greatest and a least element 

is a Boolean lattice if and only if any of its prime lattice 

ideals is equal to the associated germinal lattice ideal. 

(In the case C. the distributivity assures that the lattice ideals 

form an ideal system with respect to " as a 'multiplication' . ) 

Superficially, the case B. seems to give a link between 

Keimels sheaf representation and ours (see Corollary 2 of Theorem 8). 

There are, however, considerable differences between the two situ

ations. Hhereas our approach yields quasi-compactness of the base 

space and total order of the stalks for general GCD-groups, the 

corresponding properties are obtained in Keimels approach only 

when G has a formal unit and the germinal 1-ideal which is asso

ciated to a prime 1-ideal is itself prime. (See Theorem 10.6.2 

in [10] and its corollaries.) For regular GCD-groups the two 

approaches give sectional representations which bear a certain 

resemblance to each other in that they both have real groups as 

stalks. But apart from this there are marked differences, stemming 

above all from the different topological properties of Spect G 

and Spec1 G . 

It should be noted, however, that Keimel is able to dispense 

with the condition that Op is a prime 1-ideal and still obtain 

a sheaf representation with totally ordered stalks. This 1s done 

by restricting the given sheaf to Spec min1 G consisting of the 

minimal prime 1-ideals with the subspace topology induced from 

Spec1 G. For a minimal prime 1-ideal is always identical with 

its associated germinal 1-ideal and the stalk is hence totally 

ordered. It seems, however, that the restriction to Spec min1 G 

further damages the fullness of the representation. \1-Ti thout a 

formal unit Keimel can only claim that sections with quasi-compact 
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support on Spec1 G come from elements in G . \.Jhen restricting 

the sheaf to Spec min1 G even this is no longer true. 

Although this is a digression from the main theme of the 

present paper we shall close these considerations on sheaf repre-

sentation of GCD-groups by proving the following rather special-

ized representation theorem (which in spirit comes close to Stones 

topological representation of Boolean algebras). 

Theorem 11. Every regular GCD-group with a formal unit is 

isomorphic to the GCD -·group of all sections in a sheaf of real 

groups over a totally disconnected, compact Hausdorff space. 

Proof: We shall g1ve a direct proof of this theorem which is 

based on the notion of a germinal 1-ideal but which avoids any 

use of the material in Chapter 10 of [10]. In particular we shall 

avoid the use of Keimel's 'standard construction' (10.4.7 p. 212 

in [10]) and the succeeding main theorem 10.6.2. Instead we shall 

base the proof on the consideration of the presheaf &ey defined 

over the space Y = Spec1 G by the assignment U -+ Gfou = G(U) 

and combine this with the use of Nakano's chinese remainder 

theorem for 1-ideals [36] • 

Let us first verify the topological properties of Spec1 G 

announced in the theorem. A formal unit is an (integral) element 

u in G such that {u} 1 = G • It is easily seen that the existence 

of a formal unit in G is equivalent to the quasi-compactness of 

(seep. 16 in [25] ). The Hausdorff property is likewise 

an immediate consequence of the fact that there exists no inclusion 

relation between two different prime 1-ideals in G . That Spec1 G 

is totally disconnected results from the fact that the basic open 

sets Ua = E(a) are also closed. In fact, for any a and 
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we have the relations 

and 

This follows from the fact that exactly one of the two relations 

aEP or a.l c P holds for each aEG. 

We shall next verify that the presheaf :J.y is a sheaf. 

Hence, let { U a} with a E A c G be a covering of Y by basic 

open sets and let the family { ga E G(Ua) I a E A} be selected in 

such a way that for each pair of elements a ,bE A the presheaf 

images of and in 

that there exists a unique 

is for all aEA. 

G(Uanub) 

gEG=G(Y) 

are equal. We must show 

whose image in G(U ) a 

Since the unicity is obvious let us pass to the existence. 

Consider the diagram 

The two 1 exterior' maps lP and 1/J are ordinary pre sheaf maps 

whereas the 'inner' maps ~,B,y are canonical maps induced on 

the factor groups by the inclusions Ou 'Ou c ou + Ou c: Ou n u . 
a b a b a b 

The crucial point is that the regularity CODdition in the theorem 

(every prime 1-ideal is maximal) assures that also Ou n n c: Ou + Ou 
a -n a b 

such that y becomes the identity map. In fact, when this latter 

inclusion 1s interpreted in the spectral topology of Y it simply 

amounts to the inclusion Dan Db c uanub which is trivially true 

since Ua and Ub are closed sets. 
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By the compactness of Y we can select a subcovering 

{ U } with b ~ B for some finite subset B of A . a 

We now apply Nakano's chinese remainder theorem for 1-ideals [36] 

to the finite families {oub1 and tg~) . Actually, by the ini-

tial compatibility condition on the g 's we have a 

which by the identity o = oub + ouc Ub('l Uc 
amounts to 

forall b~cEB. By Nakano's theorem there exists a g E G such 

that 

(13.1) 

This means that g is mapped onto gb for all bEB by the given 

pre sheaf maps G(Y) + G < ub > • ttJe now claim that 

(13.2) g 5 g (mod Ou ) a a 

for all aEA. Since 0 cO 
ub uanub 

(13.1) gives 

(13.3) g 5 gb (mod OU nu ) . 
a b 

Combining (13.3) with the initial condition ga 5 gb(mod Ouanub) 

we obtain 

(13.4) g = ga (mod Ouanub) 

for all bE B . 

Using (13.4) together with we get (13.2) as 

desired. This finishes the proof is a sheaf and that 

we hence have an isomorphism of GCD-groups G ~ r (Y, ~) • 

For the remaining part of the theorem we observe that the very 

definition of a direct limit gives 
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where op is the germinal 1-ideal belonging to p and the limit 

is taken over all spectral (basic) open neighbourhoods of P. 

Since P is a minimal prime 1- ideal it follows that 0 = n Q = P 
p QcP 

and the stalk at P of the sheaf ~ will hence be isomorphic to 

the totally ordered group G/p . Since P is a maximal 1- ideal of 

G this stalk will be order isomorphic to a subgroup of the group of 

real numbers and this completes the proof of the theorema 

This paper deals with basic arithmetical questions linked to 

the notion of a t-ideal. With respect to this perspective, one 

may say that our considerations on germinal 1-ideals and the asso-

cia ted sheaf representation are somewhat marginal. Prime 1- ideals 

are, however) intimately linked to the prime t-ideals and it is 

essential to be able to play on both of these types of objects and 

the duality between them. It should also be noted that the crux 

of the preceding proof (i.e. the chinese remainder theorem of 

Nakano) has a distinctly arithmetical origin. Nakano's theorem 

arose directly out of considerations by Krull [30] and Ribenboim 

[42] concerning approximation theorems in valuation theory. (For 

a more general treatment of the relationship between sheaf repre-

sentations and chinese remainder theorems see Cornish [14].) 

Theorem 11 deals with real sectional representation of GCD 

groups. Let us now turn to real functional representation of 

(partially) ordered groups. The literature on this topic is some-

what confusing and difficult to penetrate. There seems to be a 

need for a comprehensive exposition which surveys the whole field 

and which clarifies the interrelations between the different approa-

ches and the different underlying assumptions. A comparison is made 

difficult by the fact that different authors have different candi-
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dates as to the objects which are chosen as the points of the 

representation space (i.e. the points making up the domain of 

definition for the representing functions). We shall now show 

that a neat exposition of the topic of real functional represen-

tation of ordered groups is achieved by the use of the Lorenzen 

t-group and the GCD-·functor. This is really nothing more than 

applying the language of the present paper in order to give a 

more clear exposition of the main content of an interesting but 

rather cryptic paper by I. Fleischer [17]. 

Theorem 12. A completely integrally closed group G (* {e} ) 

with an archimedian element (strong unit) is order isomorphic to 

a separating group of continuous real-valued functions on a compact 

(Hausdorff) space. 

Proof: We recall that an archimedian element of G is an element 

u>e such that for every gEG there exists n > 1 with n 
u ~ g • 

Since G is completely integrally closed, it can be embedded (order

isomorphically) in its group of v- ideals G* . In particular, G 

is t-closed (Proposition 4 in [21] p. 26) and we have a commutative 

diagram of (not necessarily surjective) isomorphisms of ordered groups 

(13.5) 

G 

All the maps 1n ( 1 3. 5) are ( t, t) - morphisms and the diagram ( 1 3. 5) 

is just a particular case of (6.3) with ~ defined as in (6.4) 

(from which its injectivity results). The GCD-group At(G) is 

again completely integrally closed with the same archmedian element 
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as G . It is known that for a GCD- group with an archimedian 

element the condition of complete integral closure amounts to the 

property that the intersection of the maximal 1-ideals of G 

reduces to the identity element (or equivalently to the fact that 

its monoid of integral elements is equal to the intersection of 

all the t-valuation monoids arising from localization at minimal 

prime t -ideals). A short proof of the part of this result which 

interests us here runs as follows: For any GCD -group H with an 

archimedian element u>e we can to each prime 1- ideal P. select 
1 

a maximal 1- ideal Mi containing Pi (which is itself prime due to 

the presence of u ) . This gives rise to obvious homomorphisms of 

GCD-groups 

H lP Tf H;p. 
i E I 1 

where lP = {lPi}iEI is known to be injective. Assume now that H 

is completely integrally closed and that Ker (~o~) * {e} . Since 

Ker(~oq>) is an 1-ideal we can assume a E Ker(~otp) with a> e , 

and we must then have an * u for a certain n ~ 1 , because of the 

complete integral closure. In view of the fact that tp is an iso-

morphism and 

for some 1 • 

follows that 

positive in 

Hfp. is totally ordered, this entails 
1 

Since lPi(u) is an archimedian element 

<,D.(u) (M. and hence that (~. o~. (a) )n 
1 1 1 1 

From this we infer that ~.o~.(a) 
1 1 

(p. ( a)n > cp. (u) 
1 1 

in Hfp, it 
1 

is strictly 

is different 

from the identity element in H;H. , contradicting that a E Ker(~o(.,O). 
1 

Once the"Btrong 1 -semisimplici ty" has been proved, the func-

tional representation of 1\.t(G) over the set Specmint(J\.t(G)) (or 

equivalently over the set Spec max
1 

(At (G)) , results immediately 

since Gfp 
1 

is a real group for any maximal 1 -ideal P 
1 

. Endowing 
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the set Spec mint (At (G)) with the coarsest topology making all 

the representing functions continuous, we clearly obtain a repre-

sentation of At(G) which has the properties announced in the 

theorem. 

It remains to be seen how the representation of At(G) ln

duces the desired representation of G via the inclusion map T 

in (13.5) and how the representation space may be described ln 

terms of entities in G . It is convenient to do the latter part 

first: We know already that the maps a. and a in the diagram 

(12.3) are bijections (a. is a bijection because of Lorenzens 

theorem and a is a bijection since a GCD -group is a t-Pri.ifer 

group). These two bijections induces the bijections 

( 1 3. 6) Spec max valt G +::=+ Spec max valt At (G) +--+ Spec mint At (G) 

where the left hand side denotes the set of all maximal t-valu-

ation monoids of G - or equivalently the set of all real-valued 

t-valuations of G . We thus only transport the above-mentioned 

weak topology of the right-hand side of (13.6) to the left-hand 

side, which indeed consists of a family of objects directly 

attached to G . 

We must finally show that the restriction of the represen-

tation from At(G) to G retains the property of point-separation. 

Assume hence that g(v
1

) = g(v 2 ) for v
1 

,v
2 

E Spec max valt G and 

all g E G . This means that v 1 (g) = v 2 (g) for all g E G • By 

the Lorenzen theorem, v 1 and v 2 
-1 -1 v' = a. (v ) 

1 1 
and v~ = a. (v

2
) E 

notation of (12.3)). Thus vi(h) 

all h E At (G) • 

as desired.. • 

This means that 

are uniquely extendible to 

Spec max valt At(G) (using the 

= v~(h) or h(vi) = h(v~) for 

v' = v' 1 2 and hence 
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At first sight, the reader will probably have some difficulty 

in recognizing the above proof as a precision of Fleischers proof, 

which hardly contains more than hints. But if one observes that 

the group G occurring at the bottom of page 261 of [17] is noth

ing but the Lorenzen t- group of G and that the 'maximal closed 

semigroups' in the second paragraph of page 262 coincide with our 

maximal t -valuation monoids, one sees that the spirit of our proof 

is in fact quite close to Fleischers proof-suggestions - although 

we make a much more explicit use of our heritage from Lorenzen. 

Another exposition of Fleischers work has been given by P. Ribenboim 

in [41]. As to the origin of Theorem 12, it goes back to more ana

lytical work of Yosida and Stone and a later paper by Ky Fan [31] 

The present neat formulation seems to be due to Fleischer. Ribenboim 

[411 (Theorem 11 p 75) gives reference to Jaffard [22] for a similar 

result, but this reference does not seem to be quite accurate. 

Theorem 12 occurs also, essentially, as a corollary of a more com

plicated and more general representation theory given in [38]. 

14. Historical remarks. There does not seem to exist any compre

hensive and satisfactory account of the history of the theory of 

divisibility. Here, we shall content ourselves by stressing a few 

points of this history which are of particular relevance to the 

present paper. 

When considering Dedekinds work in algebraic number theory on 

the one hand and his introduction of real (irrational) numbers on 

the other, one is struck by the close analogy between the two situ

ations. In the former case we have the multiplicative group of 

non-zero elements of an algebraic number field giving rise to an 

ordered group with respect to the divisibility relation which 1s 
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induced by the algebraic integers of the given field. In the 

latter case we have the rational numbers considered as an ordered 

group with respect to addition and the usual ordering of the ratio

nals. Dedekind was here faced with two classical completion problems 

which he solved in essentially the same manner - although he did not 

himself realize how far the analogy goes. In retrospect we can now 

see that the objects he adjoined in order to achieve the completion 

are the same in both cases. In fact, the upper half of a Dedekind 

cut is nothing but a v-ideal ('divisor') in the ordered additive 

group of rational numbers. On the other hand Dedekind was fully 

aware of the fact that the fractional ideals of an algebraic number 

field form a group under ideal multiplication (see his Supplement XI 

to Dirichlet's 'Vorlesungen liber Zahlentheorie' p 553 in the fourth 

edition from 1894). From this one infers immediately that any ideal 

OL= <Ol-I)- 1 is a divisorial ideal and that OL is equal to the 

intersection of all the fractional principal ideals containing it. 

With respect to divisibility as ordering relation, this amounts to 

saying that OL is the set of all upper bounds of the set of all 

lower bounds of Ot - i.e. the upper half of a Dedekind cut. It 

does not seem that Dedekind was aware of the fact that his 'cu~' 

and his 'ideals' are formally identical objects. 

Viewed against this background it would not have been very 

surprising if Dedekind had discovered divisorial ideals more than 

half a century before they finally appeared on the scene around 1930 

in the works of Arnold, Artin and van der Wa~rden. But such an 

early discovery by Dedekind would not have been of any great impor

tance for the development of the theory of algebraic number fields. 

This is so simply because rings of algebraic integers are not only 

Krull domains, but are Dedekind domains where the destinction 
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between ordinary ideals and divisorial ideals is obliterated. 

One is rather tempted to say that a purely multiplicative concept 

of ideals, in the form of divisorial ideals, could have been harm

ful to progress at this early stage of the game. In algebraic 

number theory one is also highly interested in the additive services 

which are rendered by Dedekind ideals in connection with the gener

alization to rings of algebraic integers of the familiar notion of 

a congruence in elementary number theory. 

Several books on algebraic number theory show a surprisingly 

great preoccupation with the ''rivalry" between Dedekind and Kronecker 

with respect to their alternative foundations of algebraic number 

theory. (In addition to the difference between the approaches of 

Dedekind and Kronecker one can also distinguish a third line of 

development which emphasizes the 'local' and 'valuation-theoretic' 

point of view and which is associated with such names as Kummer, 

Weierstrass, Hensel and Hasse.) 

Among the classical textbooks on algebraic number theory which 

make a point of expressing a spiritual alliance with Kronecker 

rather than with Dedekind one can mention the following three: 

H. Weyl: Algebraic Theory of Numbers (Princeton 1940), H. Hasse: 

Zahlentheorie (Berlin 1963) and M. Eichler: Einflihrung 1n die Theorie 

der algebraischen Zahlen und Funktionen (Basel 1963). We do not con

test the interest and the relevance of many of the remarks made by 

these authors concerning their inclination towards a Kroneckerian 

point of view. But one gets the impression that these authors are 

not always equally well informed about the developments in divisi

bility theory which have taken place since 1930. 

Weyl gives in [45] an interesting account of the Kroneckerian 

theory of divisors, but apparently without knowing of previous work 
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of Prlifer and Krull on this subject. In particular, Weyl shows 

no awareness of the basic connection between the Kronecker function 

ring and valuation theory - a connection which first showed up 1n 

Krull's work [28]. Krull discovered that there is a bijection be

tween the valuation rings which are canonically associated with an 

integrally closed domain and the prime ideals of the corresponding 

Kronecker function ring. 

One of the paragraphs in Weyl's book has the headnig 'Our dis

belief in ideals'. Weyl's disbelief seems here to be rooted in the 

misconception that there exists only one brand of ideals - namely 

Dedekind ideals. Only in an 'amendment' at the end of his book 

does Weyl hastily mention v-ideals. 

It is of some historical interest to note that Weyl seems to 

have been the first to present an axiomatic introduction of divisors 

(p 38 in [45]), preceding the works of Krull [29], Borevic-Shafarevic 

[11] and Skula [43] which we have referred to in paragraph 9. Weyl 

enumerates altogether 17 axioms, but a major bulk of them just ex

presses that the group of divisors is supposed to contain the divisi

bility group of a field as an ordered subgroup (relative to a given 

notion of divisibility). 

Bourbaki [12, p 584) gives an account of the history related to 

the 'rivalry' between Dedekind and Kronecker, but plays down the 

differences when he says: "Kroneckers adjunction of indeterminates, 

when the Theory of Numbers is concerned, is scarcely in our eyes 

more than a variant of Dedekinds''. But neither Bourbaki gives any 

account of the developments in divisibility theory after 1930, de

velopments which open up for new clues as to the relationships be

tween the approaches of Dedekind and Kronecker. Prlifers paper [39J 

is a milestone in this connection, representing the main inspiration 
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for succeeding papers by Krull and Lorenzen. Lorenzen's multi

plicative version of a Kronecker function ring has brought about 

a very harmonious fusion of the approaches of Dedekind and Kronecker 

and at the same time incorporating the valuation-theoretic point of 

view. This fusion is in the present paper summarized in one basic 

theorem which we have taken the liberty of calling 'the main theorem 

of divisibility theory' (Theorem 2) and which is the pivotal result 

around which our paper turns. The completion processes of Dedekind 

and Kronecker are here united in the explicit solution of a univer

sal problem - formulated in a convenient categorical language. 

It is an intrigueing question to try to explain the total 

absence of the notion of a 'divisor of finite character' (t-ideal) 

from virtually all the main texts on divisibility theory - be it 

books on the multiplicative ideal theory of rings or be it books 

on ordered groups. It is certainly quite understandable that Weyl 

as a non-specialist (in 1940) did not know of the small paper by 

Arnold on t-ideals, published in 1929 in a Russian journal. And 

if he had known about it, one can hardly expect that he should have 

perceived that the t-ideals really furnish the answer to the quot

ation from his 'Algebraic Theory of Numbers' which we have chosen 

as the epigram of the present paper (seep. 1). 

In spite of his life-long enthusiasm for .algebraic number 

theory Hermann tveyl must still be said to have been somewhat of an 

outsider when it came to divisibility theory. The same thing can 

hardly be said about Krull who made outstanding contributions to 

the arithmetic theory of integral domains over a period of more 

than 30 years. In view of this it is surprising that Krull never 

seemed to grasp the relevance of t-ideals for divisibility theory, 

at least if we are to judge from his published works. We have not 
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been able to find any trace of t-ideals in his 'Idealbericht' 

nor in his long series of papers entitled "Beitrage zur Arithmetik 

kommutativer Integritatsbereiche'', nor ln his papers on Krull rings 

('Endliche diskrete Hauptordnungen'). In his paper [30] from 1957 

there are some rather casual remarks about prime t-ideals, but 

only in the case of GCD- groups where the full importance of this 

notion is not yet apparent. The absence of t -ideals from Krull's 

works must seem rather astonishing to anybody who is familiar with 

Krull's life-long and remarkable occupation with the arithmetic of 

integral domains. The notion of a t-ideal lies at the cross-road 

of several of Krull's pet topics such as "Endliche diskrete Haupt

ordnungen" and "Gruppensatze". In his last paper (Beitrag VII from 

1943) in the aforementioned series, Krull makes extensive reference 

to Lorenzen's paper [33] and to the crucial 'finite character pro

perty of ideal systems' which is shared by the t -ideals but not 

by the v-ideals. With this in mind it becomes an outright puzzle 

when one reads his short bibliographical note on v-ideals on p. 121 

in his 'Idealbericht' where he refers among other things to Arnolds 

paper [ 1 ]. In order to describe the content of that paper, Krull 

writes in a parenthesis: ( 11 v-Ideale in Halbgruppen"). But Arnolds 

paper is concerned with t -ideals and not with v -ideals! The only 

conclusion one can draw from all this seems to be that Krull had 

not really studied the works of Arnold and Lorenzen very carefully. 

There is not much to be added to the history of t- ideals after 

Lorenzen. The only other author who has let them play a prominent 

role in his works is Jaffard who used them in sereral of his papers. 

For instance, he introduces in [23] the spectral topology for prime 

t-ideals although he only makes rather superficial use of this in 

connection with a characterization of irreducible representations of 
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the kind (10.1). The most important reference to t-ideals besides 

Lorenzen [33] lS certainly Jaffards monograph [21], where the notion 

of a t-ideal plays a significant role throughout the book. 

15. Remarks on terminology. The theory of divisibility is crowded 

by a varying and rather confusing terminology. It seems that the 

language of ideal systems may here offer a more systematic viewpoint. 

General concepts such as 'x-closed', 'regularly x-closed', 

'x-Pruferian', 'x-Bezoutian', etc. give by putting x = s,d,t,v 

a host of special notions which have been considered in the liter

ature and which have been given varying names which do not suffi

ciently reflect the underlying systematic ties between these notions. 

We shall here mention a few instances which are particularly perti

nent to the present paper. 

(i) 't-ideal'. This terminology is employed by Lorenzen ~3] 

and Jaffard [21) whereas for instance Arnold [ 1 ] and Brandal [46] 

simply talk about ideals instead of t-ideals. In the case of a 

GCD-group the term 'prime filter' is frequently used instead of 

prime t- ideal ( [ 7 ] , [19]). Krull [ 30] speaks in this case of a 

'Primhalbgruppe'. 

(ii) 'regularly t-closed'. Here Bourbaki [12] p. 554 speaks of 

'regularly integrally closed' and so do I. Beck [ 8 ] p. 8 8 and 

N. Railland [40]. The German term "endlich arithmetisch brauchbar 11 

was .employed especially by Krull, but it is also in use in non-German 

literature (as for instance in [19] p. 394). Jaffard uses the term 

't-y fini' inspired by Prufers original terminology used in [39]. 

In case of rings the term 'v -domain' is in use ( [19] p. '+18). 
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(iii) 't-Prufer(ian)' In the case of rings, this is the notion 

'pseudo-Pruferian' in Bourbaki [121 p. 561. Jaffard uses the 

designation 'v-8 fini' for this notion (again a remnant from Prlifers 

original terminology). Griffin [20] speaks of a 'v-multiplication 

ring' and Gilmer [19] p. 427 of a 'Prlifer v-multiplication rings'. 

(iv) 't-Bezout(ian)'. In the case of rings the most frequently 

used term seems to be the term of a 'GCD-domain' (also called a 

HCF-domain). Bourbaki's term is here 'pseudo-Bezoutian' [12] p. 551. 

PrUfers original terminology was 'vollstandig' whereas Lorenzen 

speaks of 't-vollstandig' (or 'v-vollstandig') as a particular case 

of 'r-vollstandig' for ordered groups in general. 

In the present arithmetical context we have found it more 

natural and suggestive to use the term 'GCD-group' instead of the 

familiar term of a lattice (ordered) group or 1-group. This is 

also in better harmony with the term 'GCD-functor' and the already 

existing notion of a GCD-domain. Actually, the term 'GCD-group' 

would have been a very natural choice of terminology right from the 

start since this notion was first formulated and studied abstractly 

by Dedekind in the context of divisibility theory (see [151 § 6). 



- 78 -

References 

[1] Arnold, J.: Ideale in kommutativen Halbgruppen, Rec.Math.Soc. 

Moscou 36 (1929), 401-407. 

[2] Aubert, l<.E.: Theory of x-ideals, Acta Math. 107 (1962), 1-52. 

[3] Aubert, K.E.: Additive ideal systems, Journal of Algebra 18 

(1971), 511-528. 

[4] Aubert, K.E.: Localisation dans les syst~mes d'ideaux, 

C.R. Acad. Sci. Paris, SerA 272 (1971), 465-468. 

[5] Aubert, K.E.: Ideal systems and lattice theory II, J. fur 

die r. und angew. Math. 298 (1978), 32-42. 

[6] Aubert, K.E.: von Neumann regular ideal systems, in prepa

ration. 

[7] Banachewski, B.: On lattice-ordered groups, Fund. Math. 55 

(1964), 113-·123. 

[ 8 ] 

[ 9 ] 

[ 1 0 ] 

Beck, I.: Theory of ring systems,Thesis, Oslo 1969. 

Bie Lorentzen, H.: Lokalisering i x-systemer med anvendelser, 

Thesis Oslo 1968. 

Bigard-Keimel-Wolfenstein: Groupes et anneaux reticules, 

Springer Lecture Notes No 608 (1977). 

[11] Borevic-Shafarevic: Number Theory, Academic Press, New York 1966. 

[12] Bourbaki, N.: Commutative Algebra, Hermann, Paris 1972. 

[ 1 3 ] 

[ 14 ] 

Clifford, A.H.: Arithmetic and ideal theory of commutative 

semigroups. Ann. of Math. 39 (1938), 594-610. 

Cornish, W.H.: The Chinese remainder theorem and sheaf 

representations, Fund. Math. 96 (1977), 177-187. 

[15] Dedekind, R.: Uber Zerlegungen von Zahlen durch ihre grossten 

gemeinsamen Teiler, Ges. Werke, Vol 2, 103-148. 

[16] Dieudonne, J.: Sur la theorie de la divisibilite, Bull.Soc. 

Math. de France 49 (1941), 133-144. 

[17] Fleischer, I.: Functional representation of partially ordered 

groups, Annals of Math. 64 (1956), 260-263. 



[ 18 ] 

[ 19 ] 

[ 20 ] 

[ 21 ] 

[ 22 ] 

- 79 -

Fossum, R.M.: The divisor class group of a Krull domain, 

Ergebnisse der Math. 74, Springer (1973). 

Gilmer, R.: Multiplicative ideal theory, M. Dekker, New York1972. 

Griffin, M. : Some results on Priifer v -multiplication rings, 

Canad. J. Math. 19 (1967), 710-722. 

Jaffard, P.: Les systemes d'ideaux, Dunod Paris 1960. 

Jaffard, P.: Contribution a l'etude des groupes ordonnes, 

J. Math. pures et appl. 32 (1953), 203-280. 

[23] Jaffard, P.: Sur le spectre d'un groupe reticule et l'unicite·. 

des realisations irreductibles, Ann. Univ. Lyon, 

[ 24 ] 

[ 2 5 ] 

[ 2 6 ] 

[ 2 7 ] 

[ 2 8 ] 

[ 2 9 ] 

[ 3 0 ] 

[ 31 ] 

[ 3 2 ] 

Sect. A 22 (1959), 43-47. 

Keimel, K.: Representation de groupes et d'anneaux reticules 

par des sections dans des faisceaux. Th~se,Paris(1970). 

Keimel, K.: The representation of lattice-ordered groups and 

rings by sections in sheaves, Springer Lecture Notes 

in Math. 248 (1971), 1-96. 

Kronecker, L.: Grundzlige einer arithmetischen Theorie der 

algebraischen Gr¢ssen, J. reine u. angew. Math. 92 

(1882), 1-122. 

Krull, W.: Idealtheorie, Ergebnisse der Math. Vol. 4 (1935). 

Krull, W.: Beitrage zur Arithmetik kommutativer Integritats

bereiche I, Math. Zeitschr. 41 (1936), 545-577. 

Krull, W.: Zur Arithmetik der endlichen diskreten Hauptordnungen, 

J. reine u. angew. Math. 189 (1951), 118-128. 

Krull, W. : Zur Theorie der Bewertungen mit nicht-a.rchimedisch 

geordneter Wertgruppe und der nicht-archimedisch 

geordneten Kerper, Coll.Alg~bre Sup., Bruxelles (1956) 

45-77. 

Ky Fan: Partially ordered additive groups of continuous 

functions, Annals of Math., 51 (1950), 409-427. 

Larsen, D. and McCarthy, P.J.: Multiplicative theory of ideals, 

Academic Press, New York 1971. 



- 80 -

[33] Lorenzen, P.: Abstrakte Begrlindung der multiplikativen 

Idealtheorie~ Math. Z. 45 (1939), 533-553. 

[ 34 ] 

[ 3 5 ] 

[ 36 ] 

[ 3 7 ] 

[ 3 8 ] 

[ 3 9 ] 

[ 4 0 ] 

[ 41 ] 

[ 42 ] 

[ 4 3 ] 

[ 44 ] 

[ 45 ] 

[ 46 ] 

Mott, J.: The group of divisibility and its applications, 

Lecture Notes in Math. 311 (1973), 1-15. 

Mott, J.: Convex directed subgroups of divisibility, 

Canad. J. of Math. 26 (1974), 532-542. 

Nakano, T.: A theorem on lattice ordered groups and its appli

cations to valuation theory, Math. Z. 83 (1964), 

140-146. 

Ohm, J.: Semi-valuations and groups of divisibility, 

Canad. J. of Math. 21 (1969), 576-591. 

Papert, D.: A representation theory for lattice-groups, 

Proc. London Math. Soc. 12 (1962), 100-120. 

Prufer, H.: Untersuchungen liber Teilbarkeitseigenschaften 1n 

Korpern, J. reine u. angew. Math. 168 (1932), 1-36. 

Railland, N.: Sur les anneaux de Mori, C.R. de l'Academie 

des Sci. 286 (1978), 405 

Ribenboim, P.: Theorie des groupes ordonnes, Universidad 

Nacional del Sur , Bahia Blanca ( 196 3). 

Ribenboim, P.: Le theoreme d'approximation pour les valuations 

de Krull, Math. Z. 68 (1957), 1-18. 

Skula, L. : Divisorentheorie einer Halbgruppe, Math. z. 114(1970), 

113-120. 

van der Waerden, B.L.: Algebra IT, Springer Verlag 1967. 

Weyl, H.: Algebraic theory of numbers, Princeton University 

Press (1940). 

Brandal, W.: Constructing Bezout domains, Rocky Mountain J. of 

Math. 6 (1976), 383-399. 


