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For a long time, several mathematicians have studied the proper-
ties of product states on UHF C*—algebras. To the best of our
knowledge, few results have been obtained on non-product states on
UHF C*algebras. In this note, which is an attempt in this direc-
tion, we prove as an example some properties of states defined by

L. Accardi and called Markov states.

These states are a generalization to the non-commutative case of
Markov measures of the classical ergodic theory. Moreover, they
allow us to construct non-commutative dynamical systems generali-

zing Bernoulli shifts.

Recall that a matrix P = (pij) € Mm(g) is a stochastic matrix if

> 0 and I. pij =
- ?n))
]

pij 1 for all 1i,j. For all positive integers

n .
n let P = (p;

~a

P 1is called irreducible if for each pair

(n)

i
i,j there is n > 0 such that Pjj > 0. If P 1is irreducible

)

it is well known that there exists a unique vector A = (k1,..,km
with AP = A and Loy =T A >0 (see for example [D.G.S.]).
0

i i
Moreover, one says that P 1is aperiodic if there exists ng >

such that pg?) >0 for all n > n, and all 1i,73.
Given an irreducible stochastic matrix P € MO = Mm(g), we con-

struct a shift-invariant state ¢ on the @k—algebra c = e, M

0
which we call a Markov state on C,

We prove that the von Neumann algebra obtained by the GNS con-

struction of C for ¢ is a factor if and only if P is
aperiodic. Assuming that ¢ is faithful, we then prove that the

centralizer of ¢ in M 1is the hyperfinite IT, factor R and



that the Connes-Stgrmer entropy of the restriction 6 of the

shift to R 1is

H{®) = - ) Kipijlog Pyae
i, J

This result has been obtained in [Be|. Finally we show that the
dynamical system (R,9) can be obtained using the Krieger's

crossed product.

Similar results have been announced in [St2], but they have not
been published.

* K Kk %K

1 - > d

Let My be the I -~factor (m>1) and {elj}l,3=1,...,m be a
complete system of matrix units in My Let P = Zi,jpijeij be an
irreducible stochastic matrix and A = (K1,,.a,xm) be the left

eigenvector for the eigenvalue 1. Denote by ¢O the state on M0

defined by h = Zikie‘i s bg T Tr{(he) where Tr 1is the usual
trace on MOQ

] defined b . = L.p..e.. d
Let Wi € MOl be define N4 Wl Ljpljejj an W € MOG MO be
W=23.,e,.0 W2 and let Y be the completely positive linear map

1 1l

o

afq
from MO® MO to MO , defined by

y (xey) = E. (W(xey)W)
where E1: My® Mg is given by E](x&y) = x Tr(y).

* .
Let C Dbe the C -algebra C = ®, MO; we will denote by mw. the

=) J
canonical injection of M, in the j-th factor of C. For k < 2
let Mﬁ be the C*—algebra generated by {nj(MO),j=k,...,x}. If
. . n n
xk € MO , k=0,...,n we define the state ¢O on MO by
n

¢O(WO(XO)-~»nn(Xn)) = ¢O(Y(XO®Y(X1®"°®Y(Xn—]®xn)"')))

. . . , 2 L
and if « 1s the shift on C, we define the state ¢y on Mk by

(x) = og e K () vx € M.



Definition 1 [Ac] The state ¢ on C defined by the family

o)

is called a Markov state on C.

{0

Notice that we can obtain the same definition for ¢, using [Pi].

Lemma 2. FoOr $.,...,% & M. , % = %, .xgk)e.. , we have
—— ¢ n 0 k i,3713 Tij
n _w (0) _{n)
b (mg(xg)eeom (x 1)) = ) ; kiOPiA,i <. Py i Xio,i0°°°xi i
igressedy G' ™1 n-1 n n‘ " n

The proof is esasy and is left to the reader.

Proposgition 3. If wi = h for all i =1,...,m, then ¢ 1is a

A

product state.

[9)

Proof. We have W = % .e,.® h

1 L
v{zoy) = E, ({1ehj){xey)(1shj))

L.
= x Tr(hg v hé) = X ¢0(y)
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Let M ©be the Neumann algebra obtained by the GNS construction

for the Markov state ¢ of the ¢ -algebra C.

Porposition 4. ™M is a factor if and only if the matrix P is

aperiodic.

Proof. a) Assume that ¢ is factorial. It is clear that the

system (C,a) 1s asymptctically abelian, i.e.

n, n
Ixa (y)-a (y)xi ol 0 vx,y € C.

Hence Dy [Peﬁ7,1394] we deduce that



In particular, if x = =x {eii) and vy =1 (ejj) then

¢(n0(811)ﬁn(ejj)) = }\i Pi?) > }\lx] .

Hence pig) > 3 2o P is aperiodic [D.G.Sw!8.16],
b) Now assume that P is aperiodic. Then 1lim p§?) = Kj vi,J.
N>

By [PO,Z.S], ¢ is factorial if and only if for all x € C there
is n » 0 such that

o (xyd=o (x)o(y)| < Uyl

noco_ o0
for all vy € (an) (M_ny n c.
Let x5 € C and e > 0 be given and let x ¢ MEk be such that
Ix-xgl < & and Hxi < ﬁxoﬁ {Kaplansky's density theorem). Let
. (n-k=1)_ (n-k-1) (2n) (2n)
> » D S N o3 < . P
ny, > k be such that [pl] Piq APy l e My Piy for

all i,j,k,2 and all n 2 nye

-1
n ) ©

Let n > ny be fixed and let yq, € (M_ .,

-1
n+l

; there exist g > n

and ¥y ¢ (Mf ) n ng such that Py=ygl < el yql and Iyl < tyqt -

It is easy to see that

lo(xgygi=o(xgloly )] < 2ely l (11 x 0 )+]o (xy)=0 (x)o (y) ] .

We will see that |¢{xy)-¢{x)¢(y)| < T6elxltyl. We will then have

|¢(xoyg)m¢§xo)¢(yo)! < 28Hyoﬂ(1+9ﬂxoﬂ)e

So by choosing & < (2{1+9ﬁxOH))‘1, we will obtain that ¢ is

factorial.

By polarization and linearity, it is sufficient to prove that

lo(xy)-0(x)o(y)] < elxltyl for x € MEk ;, X » 0 of the form
, (2)
X = ﬁmk(xmk}ﬂuunk(xk) with x, = ¥ Xi4 €54

i, 3



and for vy € (Mf;l])'n M?q , v > 0 of the form
y = %mq(y_q),.,n_n(y_n)nn(yn)...nq(yq)
. _ (2}
With ¥y = 73,5 Yi,3 %1,
By Lemma 2 we have
o(x) = ¥ NPy N N i xi_k)i ...xgk)i
i_k, ..,ik -k T=kT~k+1 k-1'"k “-k’7"-k k'"k
(2n)
oly) = ] A, P -..p 2 p ce.p
—q"'l—n k-q luqil—q+1 L=t ten rontn Fnrtan JLq---"l”Qq
ool
vod (-q) (-n)  _(n) (q)
- -n n
T Yy q,i Yy o Yoo e "'qu,x
-q'"=q -n’"=-n “n’"n a’'"q
and
= (n~-kx-1)
o) = 1 Iy By g eemy g ptTN
Ipreessdy Aol Tmq -q' " -qtl -n~-1""-n "-n’'"-k
k q n
ce ol
n q
* P P (k1) P y
o gy Iy rly lk’ln Rn’ln+1 lq—1'lq
(-q) (-n) (-k) (k) (n) (q)
oy ce oy X A S Y
£~q’£~q Q—n'l-n 1l g 1, 01, 2 ,ln lq,lq
So we have
o (xy)=o(x)o(y)]| =
) } N, P P - .
IS N T Log tegqrteqer Henm1ton Lokt
se ol
n gq o s P P P 4
SRS S SIS 2oty
(-k) (k) (~q) (-n) (n) (q)
* X, I S, ' ey y PR .
1l 1priy qu,i_q N e xq'lq
(n-k-1)_(n-k-1) (2n)
(p : : -\, P )|.
£~n’l—k lk'kn x JL—n"gn
By, the choice of n we have
(n-k-1) {(n-k-1) (2n) (2n)
P . . -A. P < e A, p
' 2-—n’l—-k J'k’in Tox R—n”Qn T x l—n’xn

Hence

l¢(xy)m¢(X)¢(y) < e ¢(x)o(y) < elxtnyl.



From now we will assume that ¢ is faithful and therefore

Eij >0 for all 1i,j. Let hD q be the Randon-Nikodym derivative
of ¢g with respect to the usual trace Trq

) .

on Mg. By defini-

tion of ¢q we have h = ¢P(n
p p.q 0,q-p

Lemma 5. With the above notations we have

a) h = y A: Ps  : eooDs . wale. o )ee.m (e, L),
igseeeidy 1o 1o hy n- 0" 1541 oo ihety

u(p,q) = n it hlt belongs to the

b) The unitary operator + p-1,q+1 P.,q

C*~algebra generated by ME_] and M§+],

Proof. The proof of a) is easy and is omitted.

If n = g-p, we have

-it it p-1,,.-it
p=1.,qg+] p.q @ (hO,n+2

~-it
{e.

) no(ejo,jo)...er_2 3 )

N o T o 38 . .
b Yol T Inn1 dne2 42 Int2

n.(e. . )...n (e. . ).
177144, LN S S

0,n+2 %0

0O,n
—-it. it -it

2 AL A o .

j] JO ,J]

..‘t
DR ) i
Jor 34 0

Jn+1']n+2

= T (e. . )'ﬂ? (e- : )
0" 3J~.7] 1 3, .7 . .
0°-0 T 3n+1'3n+2

) (

(e.

. ),
jn+1']n+1

n T
n+l n+2

e, .

it
O,n

-it
So hO,n+2 a(h
n+2

n+]

) belongs to the C*-algebra generated by Mé

h1t h—1t is in the C*walgebra
P"1 ,CI'H r.q

Mat?!,

and M and therefore

generated by Mg_] and

Remark 6. As P 1is aperiodic, by a similar proof of Proposition

4, one can see that ¢ 1is strongly mixing with respect to «.



Then using Lemma 5a) and Corollary 4.3 of [St1], it is easy to see

that M 1s of type III1 if the quotients ki/hj and pij/pkl

are not all contained in the same cyclic subgroup of the group of

positive real numbers.

Let G¢ be the modular group for ¢ in M and G(p.q) be the

atk k

p+k°a for

modular group for ¢g in Mg. As o¢oa = ¢ and ¢g = ¢

all k € Z, we have

¢ ¢

otoa = Qoo and o

+k, g+
4 (ptk,q k)oak

k (p,q) _
00’t —0’t

for all t ¢ R.

Proposition 7. For all x € an and all t € R we have

) _ _(=n-1,n+1)
ct(x) = oy (x) .
Proof. We have c¢(x) = o¢oo(“k'k)oo(_k'k)(x) and for k » n+l
Zroox & £%9-¢ £
(-k,k) it -it
o (x) = h—k,k Xh-k,k
it -it it -it it -it
= h 1, k=1 Pkt ,x-1 Pok,k¥P-k,k Pokt1,k-1 Dok, k=1
it (=k+1,k=1) *  (=k+1,k-1). -it
= hp4y, k-1 (9 ) xup h_p1, k-1
_ it -it
= h e k-1 ok, k1

o (=k+1,k-1)
= g

N (x).

So for all k > n+l we obtain

¢ . ) ("klk) ("I'l‘] In+] )
o (x) = oLo0_, oo (x).
(-k.k) ¢
But by [Lo,Lemma 4], o (x) converges strongly to oy (x)

when k » «. So
T t

for all t € R.
g.e.d.



Let N be the centralizer of ¢ in M.

Definition 8. The restriction 0 of « to N is called a

Markov shift on N.

As an immediate consequence of Proposition 3 we have

Corollary 9. 1If Wi = ho for all i=1,...,m, then the automor-

phism 6 is a Bernoulli shift.
For all n € N we define

(
t

N® = [xeM” |0
-n

-n-1,n+l} )(X)=X for all tEB}

The following proposition is an easy consequence of Proposition 7.

Proposition 10. Let E¢ be the normal and faithful conditional

expectation from M to N which preserves ¢. Then E¢(an) = N

"

n

n
-n

so N 1is generated by the sequence [N

Now our aim is to show that N 1is a factor, so it will be the

hyperfinite II] factor. To prove this, we will see that N can

be obtained as the Krieger's crossed product of a standard Borel

space by an countable locally finite ergodic group.

Let X, = {1,...,m}, X = m, X, and p De the shift-invariant

0 0
Markov measure on X with initial distribution A and transition

matrix P. We will still assume that the piJ s are strictly

positive.

L R 2 L
Let Xk = Hk XO Py be the restriction of u to Xi and let

Gi be the the group of automorphisms g of Xi such that
(gw)k = w0, (gw)l = w, for all o € Xi
and
L _ 2
guk"“k'



In [Kr2] W. Krieger has proved the following theorem.

Theorem 11. The group G = acts ergodically on (X,u).

U G_
neN
We recall now briefly the construction of the Krieger's crossed

product [Krl] as it is done in [Gui].

Let Y Dbe a standard Borel space with non atomic probability
measure v. Let H be a countable ergodic group of automorphisms

of Y preserving the measure V.

For all w € Y, let HWw be the orbit of w under the action of
H and let K = 22 (Hw) with canonical Hilbert basis (ew ¢),
’
(g)

¢ € Hw. If € =€ go then the set of e(g) is a fundamental

family of mesurable vector fields [Di,II.]]. One can therefore

®
X

g € H, let M, and Ug be the operators on K defined by

define the Hilbert space K = | K, dp(w). For a € L (Y,v) and

(Mai)w = alw)g and (Ugi)w = ‘I’g,g—lw(éng)

where Wg is the isomorphism from Kw onto ng defined by

14

v (e ) = & .

Then U 1is a unitary representation of H in K and we have the

relations

-1
gl - gha™) g umv =w
g gag ga

where ga(w) = al(g-lw).

The von Neumann algebra B = {Ma, acL” (Y¥,v)} is isomorphic to

L°(Y,v), so we will identify themn.

By hypothesis on the group H, the von Neumann algebra R = R(Y,H)
generated by B and {Ug,gEH} is a factor of type II, , hyper-
finite if H 1is amenable, which will be called the Krieger's
crossed product of Y by H.

In our case, as G 1is locally finite, R = R(X,G) 1is the hyper-

finite II]~factorg



- 1O -

Let AO be the maximal abelian subalgebra of MO generated by

0 in M.

The von Neumann algebra A generated by {A?n} is maximal

the {eii} and let Ag be the canonical image of ®g A

abelian in M and clearly A < N. As A can be identified with
Lm(x,u), the group G acts on A. Since any element of Gg gives
rise to a permutation of the minimal projections of Ag , there

exists a unitary representation g =» vg of 6% in MY Moreover

the canonical conditional expectation E, from M onto Aﬁy
: +
preserves ¢Ek' For all g ¢ Gik and all x ¢ Mﬁkl] we have
k1 o+, Kkl *
¢_k,]avngg) = ¢_k_1(Ek+](vngg))
k+1 *
= w_k_](ngk+1(x)vg)

W (g, (x0))

i

_ k+4 _ k#
- H_,k_»] (Ek+] (X)) - (b—k—] (x)°

Therefore vg € N for all g € G; thus the Krieger's crossed

product R = R(X,G) 1is a subfactor of N.

w R be the finite dimensional subalgebra of R generated

by A and {vg,gEGE To see that N is the hyperfinite 1II

k}° 1
k

. . .. k
factor, it is sufficient to show that N_k<: Rk+1 . As A—k ot Rk+1
k k

and A—k is regular in Nmk , it is sufficient to see that the

. k . k k . . k
normalizer of A;k in N—k . N(A_k), is in Rk+1' Let u € N(A_k
~k- 1 +
then cé k=l k) = for all t € R, thus ¢§k1](uxu*)

= u
N . +1
¢§k1]&) for all x € Mfk11° In particular, for all a ¢ Afk—1 ’

)

+ . +
Ekl](a}, so u defines an element of Gfkll and

therefore u ¢ Rk+1' Thus we have proved the following theorem.

¢§;11(uau*) = ¢

Theorem 12. N is the hyperfinite II]—factor.

Theorem 13. Let 6 be the Markov shift on N. Then the entropy
of 8 1is

H{B) = = AL p.. 1 ..
) ) i Pys 109 Py



Proof. Henceforth we will use the notations of [C.S.] for the
entropy. By Kolmogolov-Sinai's theorem of Connes and St@grmer

[C.S.] and Proposition 10 we have

H(6) = lim H(N"_,68).
N> n
For all k € 2 let NnTk = ek(Nn ). For a fixed n we have
- -tk -n
H(NT ,0) = lim (2g)~1 a(e” ,e(" ), .,029(N" )
I e
= 11 y-1 n n-+1 n+2q
lim (2q) H(N_n,N_n+],...,N_n+2q).
gre
. + +
For all k =1,...,2g we have anfk ft anzq. Indeed for all

n+k .- )
X € N—n+k and all t € R

-n-1,n+2g+ ~n-1,n+2g+ -n+k- +
G( n-1,n+2q T)(x) (=n-1,n+2q 1)06 (-n+k-1,n+k 1)(x)

t £ -t
_ hit }mit x it -it
~n-1,n+2g+1 -n+k-1,n+k+1 -n+k-1,n+k+1 -n-1,n+2q+1
and by a same argument as in Lemma 5 b) we see that hlE 4 a4 ®
== ,nveqgri
-it bel to th C*m lgebra generated b Mk-n_] and
~n+k-1,n+k+1 Ppelongs to e alg g ate v -
n+2qg+l . .
Mk+n+1 ; thus this operator commutes with x and therefore
x ¢ N34,
-n

By the properties (C) and (D) of [C.S.] we obtain

n n+1 n+2q . n+2q, _ n+2q, _ 2n+2q
H(N_n,N_n+1,,..,._n+2q) < H(ND TF) = B(AZ 7)) = H(Aj ).
Furthermore for all r > O
r
H(A,) = ) no(n (e, . ) (e, . ))
0 i, i 0 igrig rooi, i
0 r
= ) n{r, p. P, . )
Lo c00,1% o To't R
0 r
=73 M, log A, - r.X.kipi log Pis:



n

So H(N _,0) < =~ ) AP

log pij
1]

i3

and then H(B) < - ) -
i,

. 1og pi.-
j 799 Pij

On the other hand, for all n we have H(6) > H(A?n,e) and

H(a" ,0) = iim g~lu(a” ,...,0 %A% ))

qém n n
= 1lim q"’lH(An ,...,An+q )

o ~n ~ntq
= lim q“la(Af;q)

gre
= - z A, P.. log p..s

i, + 713 ij
g.e.d.
Proposition 14. Let (X,G,u) Dbe as before, and let S be the

shift on (X,p). Then S extends to an automorphism ¢ of R =
R(X,G) and the dynamical systems (N,8) and (R,0) are conju-

gate.

: - +1
Proof. It is clear that SGS™! = G Dbecause SGEnS l an_]e
Thus GS~lw = S-1Gw for all w € X. Using the same notations as

before Theorem 12, the linear mapping @w: Km* K defined by

s—1ly

@w(e ) = ¢ is an isomorphism, and by [Di,II.2] the

w,d S“lw,S“l¢
field w ~» @w is mesurable. Furthermore it is easy to see that

the operator V on K defined by

= g5l
(Vi)m - éw gS"lw

is unitary and has the properties

*

Vav S(a) for all a € L (X,u)

VU V' = U
g SgS=1

for all g € G.

Therefore the automorphism o of R defined by o(x) = VXV*,

X € R extends S.



Moreover if J ig the isomorphism from N to R identifying A

with Lw(pr) < R in the canonical way, and sending Vg onto u_,
then J6J-! = 5.

g.e.d.
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