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For a long time, several mathematicians have studied the proper-

* ties of product states on UHF C -algebras. To the best of our 

knowledge, few results have been obtained on non-product states on 

UHF c*algebras. In this note, which is an attempt in this direc-

tion, we prove as an example some properties of ~tates defined by 

L. Accardi and called Markov states. 

These states are a generalization to the non-commutative case of 

Markov measures of the classical ergodic theory. Moreover, they 

allow us to construct non-commutative dynamical systems generali

zing Bernoulli shifts. 

Recall that a matrix P = (p .. ) E M (C) 
~J m-

is a stochastic matrix if 

for all i,j. For all positive integers p .. ;;. 0 
~J 

n let 

and 2: . p .. = 1 
J ~J 

Pn = ( { n) ) . • 
Pij , P is called irreducible 

such that p~~) > 0. If 
l.J 

if for each pair 

i,j there is n > 0 is irredu.cible 

it i$ well known that there exists a unique vecto:r A :;:: 0. 1 , .. , A.m) 

with AP =A and 2:. A..= 1, A.. > 0 (see for example [D.G.s.]). 
~ l ~ 

Moreover, one says that P is aperiodic if there exists 

such that P (·n·) > 0 for all n' n and all ; J. p 0 ~, • 
l.J 

Given an irreducible stochastic matrix p E Mo = Mm(S)' we con~ 

struct a shift-invariant state ¢ on the * C -algebra c ::;: 
~z Mo 

which we call a Markov state on c. 

VJe prove that the von Neumann algebra obtained by the GNS con-

struction of C for ~ is a factor if and only if P ~P 

aperiodic. Assuming that ~ is faithful, we then prove that the 

cent.ralizer of ¢ in M is the hyperfini te II 1 factor R and 
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that the Connes-St¢rmer entropy of the restriction 8 of the 

shift to R is 

H( 8) = - I 
it j 

'A .p .. log p ... 
l lJ l] 

This result has been obtained in [Be] . Finally v!e show that the 

dynamical system (R,8) can be obtained using the Krieger's 

crossed product. 

Similar results have been announced in [st2], but they have not 

been published. 

* * "K * 

Let M0 be the I <-factor 
m 

( m> l ) 

complete system of matrix units in 

irreducible stochastic matrix and 

and {e .. } .. 1 be a 
l] l,J= , ... ,m 

r-1 0 .Let P=I .. p .. e .. be 
l, J 1.] l] 

A = ('A 1 , ••• ,A.m) be the left 

an 

eigenvector for ·the eigenvalue i . Denote by <j> 0 the state on M0 

defined by h=L:.'A.e .. , 
l l ll 

trace on M0 • 

Let vl i E M0 
k 

~v=I.e .. ®W~ 
l ll l 

be defined by 

and let y 

* 

<!J = Tr{he ) 
0 where Tr is the usual 

w . = l: .p .. e . . and w E M0 ® M0 be 
l J l] JJ 

be the completely positive linear map 

Let c be the C -algebra c = ®z M0 ; we will denote by n. 
J 

the 

canonical injection of H0 in the j-th factor of C. For k .;;; ~ 

let r{. be the c*-algebra generated by {nj(M0 ),j==k, ... ,~}. If 

n n 
xk E M0 , k = 0, ... ,n we define the state <Po on M0 by 

and if a is the shift on r .._, we define the state 
1 

q,k 
~ 

on Mk by 

1 (jl~-k(a ~k(x)) <j>k(x) = Vx E ~{. 



Definition 1_ [Ac] The state ¢ on C defined by the family 

called a Markov state on C. 

Notice that we can obtain the same definition for ¢, using [Pi]. 

Lemma 2. For E M - l 0 
( k) 

-I: .. x .. e .. 
l,J 1.] l.J 

we have 

n( . . ( )) \' .,. p. (0) (n) 
<!J 0 n; 0 ( XO ) • , • n; n X" . . "" L " . • • • p . . X. . • • • X • . 

_ ., . . 1 0 1 0 , 1. 1. n-l , 1. n 1. 0 , l 0 1 , 1. 10 , , •. , ln n n 

The proof is easy and is left to the reader. 

Proposition 3. If W. = hn for all i = l, ... ,m, then ¢ is a 
l \J 

product stat.e. 

Proof, hie have v1 = z .e 
]. 

' y \ 

k 
h 2 • so 0 

q.e.d. 

Let M be the Neumann algebra obtained by the GNS construction 

for the Harkov state ¢ * C -algebra c. 

Porposition 4. M is a factor if and only if the matrix P is 

aperiodic. 

Proof. a) Assume that ¢ is factorial. It is clear that the 

system (C,a) is asymptotically abelian, i.e. 

II xa: n ( v) -ex n ( v) x II + 0 'II X, y E C • 
' J. .. _l n->oo 

Hence by [ Pe, 7. l 3 . 4] we deduce ·that 



In particular, if X"" n 0 (e .. ) 
ll 
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and y='Jto(e.o) 
JJ 

then 

( n) 
¢('Jt 0 (eo .)'Jt (e .. ))= A. 0 p .. -+A. .A. 0. 

ll n JJ 1 lJ 1 J 

Hence 
(n) 

p .. -+ )\, 
lJ J 

so 

b) Now assume that 

p 

p 

is aperiodic [D. G. S. , 8, l 6] • 

is aperiodic. Then l . ( n) 
lin p.. = 

n-+ro lJ 
A.. V'i,j. 

J 

By [ Po, 2 • 5 ] , <!> factorial if and only if for all x E C there 

is n ~ 0 such that 

icf!(xy)-ql(x)<j>(y)i < llyll 

for all y E 

Let x 0 E C and E > 0 be given and let k 
x E H_k be such that 

II x-x0 II < e: and il xil ,;; il x 0 11 (Kaplansky' s density theorem). Let 

be such that 

all i,j,k,l and all n) n 0 . 

< £ 
(2n) 

A. j PiJ. for 

Let n > no be fixed 

y E (~1n-l )en Hq 

and let 
n~l c 

Yo E (M_n+l} ~ there exist q > n 

and 
~n+l -q 

It is easy to see that 

~iJe will see that i<P(xy)~¢J(x)<)>(y)i < 16E:IIxllllyll. He will then have 

So by choosing e:: < ( 2 ( 1 +9!1 II ) ) -1, we will obtain that <P is 

factorial. 

By polarization and linearity, it is sufficient to prove that 

i<P(xy)-¢(x)¢(y)j < Ellxllllyll for X > 0 of the form 

Xg = I x ~ 1.) e 0 • 

.. . ' . lJ lJ 
l' J 
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and for y E (Mn-l ) 'n Mq , y ;.. 0 
-n+l -q 

of the form 

y = n (y ) ••• 'It (y )n (y ) •• • n (y ) 
-q -q -n -n n n q q 

with en Yn =L:. · Y·. e .. 
A ~~J 1.,) l,J 

By Lemma 2 we have 

Jl. ••• 1 
-q -n 

(2n) 
A. 1 PJI. Jl. • • ·P1 1 P 1 Jl. PJI. Jl. • • ·PJI. Jl. 

-q -q'-q+l -n-1'-n -n'n n'n+l q-l'q 
<!> (y) = 

Jl. ' •• 1 n q 
(-q) (-n) (n) (q) 

YJI. ,JI. • • ·YJI. ,JI. Y1 Jl. • • •Y,t Jl. 
-q -q -n -n n' n q' q 

and 

<!> ( xy) = " (n-k-1) 
L A. 1 P1 Jl. ···P1 i P1 ,i 

i ... 1 -q -q' -q+l -n-1' -n -n -k 
-q -n 

i ... Jl. 
n q 

(-q) (-n) (-k) (k) (n) (q) 
* Y,t J_, •• •Y,t Jl. X. . ••• x. . Y,t Jl. •• •Y,t i . 

-q' -q -n' -n 1-k'~-k 1k'~k n' n q' q 

So we have 

I 2: 2: A. Jl. pi , 1 1 • • • p Jl. 1 ' Jl. pi k , i -k + 1 
ik ... ik Jl. ••• 1 -q -q -q+ -n- -n --q -n 

i ... i 
n q 

(-k) (k) (-q) (-n) 
• X. • • • .x. · Yo o • • •Yo o 

~-1~~~-k ~k'l.k ~ lA A pA 
h ~ -q -q -n -n 

Y(n) y(q) • 
i Jl. • • • Jl. Jl. 

n' n q' q 

(n-k-1) (n-k-1) (2n) I 
• (po • P· o -f..... Po o) • 

A ,1. k ~k'A ]_ k A 1"--n - n - -n n 

By. ;the choice of n we have 

I (n-k-.1) (n-k-1) 'A (2n) I (2n) 
p~ 'i kp ik '5I. - i kp ..1!. 'Jl. ( E A i p..l!. 'Jl. • 

-n - n - -n n -k -n n 

Hence 

I <!> ( xy) - <P ( x) <P ( y) I ( e: <1> ( x) cp ( y) < Ell x II II yll • 
q.e.d. 
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From now we will assume that 4> is faithful and therefore 

E·. > 0 for all i' j_. Let h be the Randon-Nikodym derivative 
l.J p,q 

of <Pq with respect to the usual trace Trq on Mq. By defini-p 
tion of 4>q we have h = oY(h0 ) . p p,q ,q-p 

Lerr®a 5. With the above notations we have 

a) h O,n 

p p 

b) The unitary operator h-it hit 
p-1 'q+l p, q 

belongs to the 

and Mq+l. 
q 

* C -algebra generated by 

Proof. The proof of a) is easy and is omitted. 

If n = q-p, we have 

and 

-it 
h0,n+2 = 

So 

h-it hit 
p-1 ,q+l p,q 

= ap-1 (h-it a (hit ) ) 
O,n+2 O,n 

-it 
. L . ('-J·oPJ·o·J·,·· ·PJ· J. ) 1to(eJo. J. ) •.• 1tnt2(eJ. J. ) 
J n+l n-~-2 ' 0 n+")' n+2 o·····Jnt2 · ~ 

= ~ -it it -it ~ -it 
L f...J. /-]. PJ· J. 1tO(eJ. J. )1tl(eJ. J' ) L PJ· J. 

J. J' 0 1 0 ' 1 0 ' 0 1 ' 1 J. J. n+ 1 ' n+2 
0' 1 n+l ' n+2 

1t 1 (e .. )1t 2 (e .. ), 
n+ Jn+l ,Jn+l n+ Jn+2'Jn+2 

So -it 
h O,n+2 

it 
a(h0 ) 

,n 
belongs to the 

and Mn+2 
n+l and therefore hit 

p-l 'q+l 

Mq+l . 
q 

generated by and 

* c -algebra generated by 

-it 
h p,q is in the * C -algebra 

q.e.d. 

Remark 6. As P is aperiodic, by a similar proof of Proposition 

4, one can see that 4> is strongly mixing with respect to a. 
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Then using Lemma Sa) and Corollary 4.3 of [Stl], it is easy to see 

that M is of type if the quotients A.. /A.. 
l J 

and P · · /P,,o. 
l J JV<. 

are not all contained in the same cyclic subgroup of the group of 

positive real numbers. 

Let ~$ be the modular group for <I! in H and ~(p,q) be the 

modular group for and 
q q+k k 

<I! P = ~ p+koa for 

all k E !• we have 

for all t E R. 

Proposition 7. 

and k "'(p,q) 
a Ovt = 

(p+k,q+k) k 
at oa 

For all x E Hn and all t E R we have -n 

(-n-l,n+l)() = crt x ~ 

Proof. He have and for k > n+l 

(-k,k)( ) 
eft X = 

it -it 
h-k,k xh_k,k 

== hit h-it 
-k+l ,k-1 -k+l ,k-1 

it ( (-k+l ,k-1) )* (-k+l ,k-1 )h-it 
= h-k+l ,k-1 ut xut -k+l ,k-1 

(-k+l,k-1)() 
= crt x . 

So for all k > n+l we obtain 

"'¢t(x) 4> (-k,k) (-n-1 ,n+l) ( ) 
v = atoa ..... t oat x ,. 

b [ 4 ] (-k ' k ) ( ) But y Lo,Lemma . , at x converges strongly to at(x) 

when k.,.. ""· So 

a~ ( x) = a~ -n-1 'n+l ) ( x) 

for all t E R. 
q.e.d. 
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Let N be the centralizer of <P in M. 

Definition 8. The restriction e of a to N is called a 

Markov shift on N. 

As an immediate consequence of Proposition 3 we have 

Corollary 9. If ~Ji = h 0 for all i = 1, •.• ,m, then the automor

phism 8 is a Bernoulli shift. 

For all n E N we define 

Nn = {xEMn icr(-n-l ,n+l )(x)=x for all tEB} 
-n -n t ··~ 

The following proposition is an easy consequence of Proposition 7. 

Pro12osition 1 0. Let E<l> be the normal and faithful conditional 

expectation from M to N which preserves <I> • Then E<P (M~n) = 
so N is generated by the sequence { Nn } . 

-n 

Now our aim is to show that N is a factor, so it will be the 

hyperfinite II 1 factor. To prove this, we will see that N can 

be obtained as the Krieger's crossed product of a standard Borel 

space by an countable locally finite ergodic group. 

Let x0 = { 1 , ••• , m L X = II X z 0 and be the shift-invariant 

Nn 
.,..n 

Markov measure on X with initial distribution A and transition 

matrix P. We will still assume that the p .. 's are strictly 
l.J 

positive. 

Let be the restriction of to and let 

G~ be the the group of automorphisms g of ~ such that 

for all w E ~ 

and 
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In [Kr2] w. Krieger has proved the following theorem. 

Theorem 11. The group G = u 
nEN 

acts ergodically on (X,fl). 

vve recall now briefly the construction of the Krieger's crossed 

product [Krl] as it is done in [Gui]. 

Let Y be a standard Borel space with non atomic probability 

measure v. Let H be a countable ergodic group of automorphisms 

of Y preserving the measure v. 

For all w E Y u let Hw be the orbit of w under the action of 

H and let K = 1 2 (Hw) with canonical Hilbert basis (E ,1.), 
w w,~ 

<jJ E Hw. If E (g) = E , then the set of E (g) is a fundamental 
w w ,gw 

family of mesurable vector fields [Di,II.l]. One can therefore 

define the Hilbert space 

g E H, let M a 

(M ~) a w 

and U g 

= a(w)l; 
w 

K = f ~ K , dfl ( w ) • For a E LCD ( Y, v ) 
-~ w 

be the operators on K defined by 

and 'l' -l (l; -1 ) g,g w g w 

and 

where 'l' g,w is the isomorphism from K 
w 

onto K gw defined by 

'¥ (£ ) = E • 
g,w w,~ gw,~ 

Then U is a unitary representation of H in K and we have the 

relations 

u ~(h) = ~(hg-1) 
g 

where ga(w) = a(g-lw). 

and UMif =H 
g a g ga 

The von Neumann algebra B = { M , aE LCD ( Y 1 v ) } 
a is isomorphic to 

L00 (Y,v), so we will identify them. 

By hypothesis on the group H, the von Neumann algebra R = R(Y,B) 

generated by B and { u I gE H} g is a factor of type rr 1 , hyper-

finite if H is amenable, which will be called the Krieger's 

crossed product of Y by H. 

In our case, as G is locally finite, R = R(X,G) is the hyper-

finite rr,-factor. 
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Let Ao be the maximal abelian subalgebra of Ho generated by 

the {e .. } and let Aq be the canonical image of @q A in M. 
ll p p 0 

The von Neumann algebra A generated by {A~n} is maximal 

abelian in M and clearly A c N, As A can be identified with 

acts on A. Since any element of gives 

rise to a permutation of the minimal projections of Aq , there 
p 

exists a unitary representation v 
g 

of in Mq. Moreover 
p 

the canonical conditional expectation Ek 

preserves ~~k' For all g E G~k and all 

from Mk 
-k 

k+l 
x E M-k-l 

k+l * 
= ~-k-1 (vgEk+l (x)vg) 

k+l 
= f!-k-1 ( g ( Ek+ 1 (X) ) ) 

k+l 
= ~-k-1 ( Ek+ 1 (X)) :::: 

k+l 
cp-k-l(x). 

onto 

we have 

Therefore v E N for all g E G; thus the Krieger's crossed 
g 

product R = R(X,G) is a subfactor of N. 

Let now Rk be the finite dimensional subalgebra of R generated 

by Ak and {v ,gEGkk}. To see that N is the hyperfinite rr 1 -k g -

factor, it is sufficient to show that Nk 
-k 

c Rk+l . As Ak 
-k 

c ~+l 
and A~k is regular in N~k , it is sufficient to see that the 

1 . f k . Nk ( k) . . L ( k) norma 1zer o A_k 1n -k N A_k , 1s 1n Rk+l . et u E N A_k 

then ( -k-1 D k+ l ) I ) f 11 t E R th A. k+ 1 ( * ) at \U = u _or a _, us o/-k-l uxu = 
A. k + 1 (x ) k+ l . f k+ 1 
o/-k-J for all x E i'1_k-l. In part1cular, or all a E A-k-l 

k+l * k+l 
•-k-l (uau ) = •-k-l (a), so u defines an element of 8 k+l 

-k-1 and 

therefore u E ~+l • Thus we have proved the following theorem. 

Theorem 12. N is the hyperfinite II 1-factor. 

Theorem 13. Let 8 be the Markov shift on N. Then the entropy 

of e is 

H ( e ) = - I 7\ . p . . log p ... 
. ' 1 lJ 1] 
l' J 



Proof. Hencefort.h \ve will use the notations of [c.s.] for the 

entropy. By Kolrnogolov-Sinai's theorem of Cannes and St¢rmer 

[c.s.] and Proposition 10 we have 

H( e) =lim H(Nn ,e). 
-n 

n+oo 

For all k E Z let 
n+k 

N -n+k n we have 

H(N11 ,e) = lim 
-n 

) -1 ( n ( n ) 2q ( n ) , HN ,eN , ••• ,e N , -n -n -n 

=lim (2q)-l H(Nn ,Nn++ll , ... ,Nn++22q). 
-n -n -n q 

" 7 n+k 
x E 1~-n+k and all t E R 

(-n-1 ,n+2q+l) _ (-n-1 ,n+2q+l) (-n+k-1 ,n+k+l )( ) 
at (x) -at oa_t x 

= hit -it 'h it -it 
x h-n+k-1 ,n+k+l h-n-1 ,n+2q+l -n-1 , n+2q+ l "--n+k-1 , n+k+l 

and by a same argument as in Lemma 5 b) we see that hit • 
-n-1 ,n+2q+l 

-it 
h-n+k-1 , n+k+ 1 belongs to the * C -algebra generated by k-n-1 M_ 11_ 1 and 

n+2q+1 
Mk+n+l ~ thus this operator commutes with X and therefore 

X E Nn+2q. 
-n 

By the properties (C) and (D) of [c.s.] we obtain 

( n n+l _n+2q . H(Nn+2q) 
H t-J I N -1 1 g (!I " .;;, , N 12- J ~ = -n -n- -nT q -n 

= H(A~n+2q) • 

Furthermore for all r > 0 

I TJ<J>(rc 0 (e .. ) ••• rc (e .. )) 
. . 1 0 ,10 r lr,lr 
lo, .•. ,lr 

= I 
i 

log A.. - r I A. • p . . log p ... 
. l . . l lJ l] 

l' J 
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So H(Nn ,e) ~ -LA. .p .. log p .. 
-n . . 1- lJ lJ 

1' J 

and then H ( e ) ~ - L f... • p . . log p ... 
. . l lJ lJ 
l' J 

On the other hand, for all n we have H(e);.. H(An ,e) 
-n 

H(An ,e) = lim q~ 1 H ( An , . . . , e q ( An ) ) 
-n -n -n q+oo 

= lim -1 ( n n+q ) q H A , ... ,A + 
q+co 

-n -n q 

= lim -·1 H(An+q) 
q -n 

q+oo 

- - L f... • p . . log p ..• 
1 l.J l] 

i' j 

and 

q.e.d. 

Proposition 14. Let (X,G 8 ~) be as before, and let S be the 

shift on (X,~). Then S extends to an automorphism ~ of R = 

R(X,G) and the dynamical systems (N,e) and (R,o) are conju-

gate. 

Proof. It is clear that SGs-l = G because SGn s-1 c Gn+l 
-n -n-1 

Thus Gs- 1w = s-1Gw for all w E X. Using the same notations as 

before Theorem l 2 ' the linear mapping gi : K + Ks-lw defined by w w 

¢w(Ew,~) = Es-lw,s-1~ is an isomorphism, and by [Di,II.2] the 

field w + ¢ is mesurable. Furthermore it is easy to see that w 

the operator V on K defined by 

is unitary and has the properties 

* S(a) for all L"" (X,~ ) VaV = a E 

vu v* = u for all g E G. 
g sgs- 1 

Therefore the automorphism (J of R defined by o ( x) * = VxV , 

X E R extends s. 



r.1oreover if J is the isomorphism from N to R identifying A 

with Lw(X,!J.) c R 

then JeJ-1 =cr. 

in the canonical vvay, and sending v onto u , 
g g 

q.e.d. 
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