O. Besson

Institute of Mathematics, University of Oslo, Norway

For a long time, several mathematicians have studied the properties of product states on UHF c^{\star}-algebras. To the best of our knowledge, few results have been obtained on non-product states on UHF C^{\star} algebras. In this note, which is an attempt in this direction, we prove as an example some properties of states defined by L. Accardi and called Markov states.

These states are a generalization to the non-commutative case of Markov measures of the classical ergodic theory. Moreover, they allow us to construct non-commutative dynamical systems generalizing Bernoulli shifts.

Recall that a matrix $P=\left(p_{i j}\right) \in M_{m}(C)$ is a stochastic matrix if $P_{i j} \geqslant 0$ and $\Sigma_{j} P_{i j}=1$ for all i, j. For all positive integers n Iet $p^{n}=\left(p_{i j}^{(n)}\right) ; \quad P$ is called irreducible if for each pair i, j there is $n>0$ such that $P_{i j}^{(n)}>0$. If P is irreducible it is well known that there exists a unique vector $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ with $\Lambda P=\Lambda$ and $\Sigma_{i} \lambda_{i}=1, \lambda_{i}>0$ (see for example [D.G.S.]). Moreover, one says that P is aperiodic if there exists $n_{0}>0$ such that $P_{i j}^{(n)}>0$ for all $n \geqslant n_{0}$ and all i, j.

Given an irreducible stochastic matrix $P \in M_{O}=M_{m}(\underline{C})$, we construct a shift-invariant state ϕ on the C^{\star}-algebra $C=\otimes_{\underline{Z}} M_{0}$ which we call a Markov state on C.

We prove that the von Neumann algebra obtained by the GNS construction of C for ϕ is a factor if and only if P is aperiodic. Assuming that ϕ is faithful, we then prove that the centralizer of ϕ in M is the hyperfinite $I I_{\text {, }}$ factor R and
that the connes-størmer entropy of the restriction θ of the shift to R is

$$
H(\theta)=-\sum_{i, j} \lambda_{i} p_{i j} \log p_{i j}
$$

This result has been obtained in [Be]. Finally we show that the dynamical system (R, θ) can be obtained using the Krieger's crossed product.

Similar results have been announced in [St2], but they have not been published.

Let M_{0} be the I_{m} factor ($m>1$) and $\left\{e_{i j}\right\}_{i, j=1, \ldots, m}$ be a complete system of matrix units in M_{0}. Let $P=\Sigma_{i, j} p_{i j} e_{i j}$ be an irreducible stochastic matrix and $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ be the left eigenvector for the eigenvalue 1 . Denote by ϕ_{0} the state on M_{0} defined by $h=\Sigma_{i} \lambda_{i}{ }^{e}{ }_{i i} . \phi_{0}=\operatorname{Tr}\left(h_{\bullet}\right)$ where Tr is the usual trace on M_{0}.

Let $W_{i} \in M_{0}$ be defined by $W_{i}=\Sigma_{j}{ }^{P_{i j}}{ }^{e}{ }_{j j}$ and $W \in M_{0} \otimes M_{0}$ be $W=\Sigma_{i} e_{i j}{ }^{\otimes} W_{i}^{\frac{1}{2}}$ and let γ be the completely positive linear map from $M_{0} \otimes M_{0}$ to M_{0}. defined by

$$
\gamma(x \otimes y)=E_{f}(W(x \otimes y) W)
$$

where $E_{1}: M_{0} \otimes M_{0}$ is given by $E_{1}(x \otimes y)=x \operatorname{Tr}(y)$.
Let C be the C^{*}-algebra $C=\otimes_{\underline{Z}} M_{0}$; we will denote by π_{j} the canonical injection of M_{0} in the j-th factor of C. For $k \leqslant \ell$ let M_{k}^{l} be the C^{\star}-algebra generated by $\left\{\pi_{j}\left(M_{0}\right), j=k, \ldots, \ell\right\}$. If $x_{k} \in M_{0}, k=0, \ldots, n$ we define the state ϕ_{0}^{n} on M_{0}^{n} by

$$
\phi_{0}^{n}\left(\pi_{0}\left(x_{0}\right) \ldots \pi_{n}\left(x_{n}\right)\right)=\phi_{0}\left(\gamma\left(x_{0} \otimes \gamma\left(x_{1} \otimes \ldots \otimes \gamma\left(x_{n-1} \otimes x_{n}\right) \ldots\right)\right)\right)
$$

and if α is the shift on C. we define the state ϕ_{k}^{ℓ} on M_{k}^{l} by

$$
\phi_{k}^{\ell}(x)=\phi_{0}^{\ell-k}\left(\alpha^{-k}(x)\right) \forall x \in M_{k}^{l} .
$$

Definition 1 [Ac] The state on C defined by the family $\left\{\phi_{-n}^{n}\right\}$ is called a Markov state on C.

Notice that we can obtain the same definition for ϕ, using [Pi].
Lemma 2. For $x_{0}, \ldots x_{n} \in M_{0}, x_{k}=\sum_{i, j} x_{i j}^{(k)} e_{i j}$, we have
$\phi_{0}^{n}\left(\pi_{0}\left(x_{0}\right) \ldots \pi_{n}\left(x_{n}\right)\right)=\sum_{i_{0}} \ldots i_{n} \lambda_{i_{0}} p_{i_{0}}, i_{1} \cdots p_{i_{n-1}}, i_{n} x_{i_{0}}^{(0)} i_{0} \ldots x_{i_{n}}^{(n)} i_{n}$.
The proof is easy and is left to the reader.

Proposition 3. If $W_{i}=h_{0}$ for all $i=1, \ldots, m$, then ϕ is a product state.

Proof. We have $W=\Sigma_{i} e_{i} h_{0}^{\frac{1}{2}}=h_{0}^{\frac{1}{2}}$. so

$$
\begin{aligned}
\gamma(x \otimes y) & =E_{1}\left(\left(1 \otimes n_{0}^{\frac{1}{2}}\right)(x \otimes y)\left(1 \otimes h_{0}^{\frac{1}{2}}\right)\right) \\
& =x \operatorname{Tr}\left(h_{0}^{\frac{3}{2}} y h_{0}^{\frac{3}{2}}\right)=x \phi_{0}(y)
\end{aligned}
$$

Hence $\phi_{0}^{n_{n}}\left(\pi_{0}\left(x_{0}\right) \ldots \pi_{n}\left(x_{n}\right)\right)=\phi_{0}\left(x_{0}\right) \ldots \phi_{0}(y)$.
q.e.d.

Let M be the Neuman algebra obtained by the GNS construction for the Markov state ϕ of the c^{*}-algebra C.

Porposition 4. M is a factor if and only if the matrix P is aperiodic.

Proof. a) Assume that ϕ is factorial. It is clear that the system (C, α) is asymptotically abelian, i.e.

$$
\left\|x x^{n}(y)-\alpha^{n}(y) x\right\| \underset{n \rightarrow \infty}{ } 0 \quad \forall x, y \in C .
$$

Hence by $[P e, 7.13 .4]$ we deduce that

$$
\phi\left(z \alpha^{M}(y)\right) \rightarrow \phi(x) \phi(y) \quad \forall x, y \in C .
$$

In particular if $x=\pi_{0}\left(e_{i i}\right)$ and $y=\pi_{0}\left(e_{j j}\right)$ then

$$
\phi\left(\pi_{0}\left(e_{i j}\right) \pi_{n}\left(e_{j j}\right)\right)=\lambda_{i} p_{i j}^{(n)} \rightarrow \lambda_{i} \lambda_{j}
$$

Hence $p_{i j}^{(n)} \rightarrow \lambda_{j}$ so p is aperiodic [D.G.S., B.16].
b) Now assume that P is aperiodic. Then $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=\lambda_{j} \forall i, j$. By $[P 0,2.5], \phi$ is factorial if and only if for all $x \in C$ there is $n \geqslant 0$ such that

$$
|\phi(x y)-\phi(x) \phi(y)| \leqslant\|y\|
$$

for all $y \in\left(M_{-n}^{n}\right)^{C}=\left(M_{-n}^{n}\right) \cdot n C$.
Let $x_{0} \in C$ and $\varepsilon>0$ be given and let $x \in M_{-k}^{k}$ be such that $\left\|x-x_{0}\right\|<\varepsilon$ and $\|x\| \leqslant\left\|x_{0}\right\|$ (Kaplansky's density theorem). Let $n_{0}>k$ be such that $\left|p_{i j}^{(n-k-1)} p_{k l}^{(n-k-1)}-\lambda j_{j \ell}^{(2 n)}\right|<\varepsilon \lambda_{j} p_{i \ell}^{(2 n)}$ for all i, j, k, l and all $n \geqslant n_{0}$.

Let $n>n_{0}$ be fixed and let $y_{0} \in\left(M_{-n+1}^{n-1}\right)$; there exist $q>n$ and $y \in\left(M_{-n+1}^{n-1}\right)^{C} \cap M_{-q}^{q}$ such that $\left\|y-y_{0}\right\| \leqslant \varepsilon \| y_{0}^{\|}$and $\left\|y^{\|} \leqslant\right\| y_{0} \|$. It is easy to see that

$$
\left|\phi\left(x_{0} Y_{0}\right)-\phi\left(x_{0}\right) \phi\left(y_{0}\right)\right| \leqslant 2 \varepsilon\left\|y_{0}\right\|\left(1+\left\|x_{0}\right\|\right)+|\phi(x y)-\phi(x) \phi(y)|
$$

We will see that $|\phi(x y)-\phi(x) \phi(y)| \leqslant 16 \varepsilon\|x\|\|y\|$. We will then have

$$
\left|\phi\left(x_{0} y_{0}\right)-\phi\left(x_{0}\right) \phi\left(y_{0}\right)\right| \leqslant 2 \varepsilon\left\|y_{0}\right\|\left(1+9\left\|x_{0}\right\|\right)
$$

So by choosing $\varepsilon \leqslant\left(2\left(1+9 i x_{0} \|\right)\right)^{-1}$, we will obtain that ϕ is factorial.

By polarization and linearity, it is sufficient to prove that $|\phi(x y)-\phi(x) \phi(y)| \leqslant \varepsilon\|x\|\|y\| \quad$ for $\quad x \in M_{-k}^{k}, \quad x \geqslant 0$ of the form

$$
x=\pi_{-k}\left(x_{-k}\right) \cdots \pi_{k}\left(x_{k}\right) \quad \text { with } \quad x_{\ell}=\sum_{j_{\ell j}} x_{i j}^{(\ell)} e_{i j}
$$

and for $y \in\left(M_{-n+1}^{n-1}\right) \cdot \cap M_{-q}^{q}, y \geqslant 0$ of the form

$$
y=\pi_{-q}\left(y_{-q}\right) \ldots \pi_{-n}\left(y_{-n}\right) \pi_{n}\left(y_{n}\right) \ldots \pi_{q}\left(y_{q}\right)
$$

with $y_{\ell}=\Sigma_{i, j} y_{i, j}^{(\ell)} e_{i, j}$.
By Lemma 2 we have

$$
\begin{aligned}
& \phi(x)=\sum_{i_{-k}, \cdots, i_{k}} \lambda_{i_{-k}} p_{i_{-k}, i_{-k+1}} \cdots p_{i_{k-1}}, i_{k} x_{i_{-k}, i_{-k}}^{(-k)} \ldots x_{i_{k}, i_{k}}^{(k)}
\end{aligned}
$$

$$
\begin{aligned}
& \ell_{n} \cdots \ell_{q}
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { - } p_{i_{-k}, i_{-k+1}} \cdots p_{i_{k-1}}, i_{k} p_{i_{k}, l_{n}}^{(n-k-1)} p_{l_{n}, \ell}^{n+1}, \cdots p_{\ell-1}, \ell_{q} .
\end{aligned}
$$

So we have
$|\phi(x y)-\phi(x) \phi(y)|=$

$$
\begin{aligned}
& l_{n} \cdot{ }^{\prime} \ell_{q} \quad \cdots p_{i_{k-1}}, i_{k} p_{l_{n}, l_{n+1}} \cdots p_{l_{q-1}, \ell_{q}} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { - }\left(p_{l}^{\left(n-k, i_{-k}\right.}\left(p_{i_{k}, l_{n}}^{(n-k-1)}-\lambda_{i_{-k}} p_{l_{-n}, l_{n}}^{(2 n)}\right) \mid .\right.
\end{aligned}
$$

By the choice of n we have

$$
\left|p_{l_{-n} n^{\prime}}^{(n-k-1)} p_{i_{k} \cdot l_{n}}^{(n-k-1)} \lambda_{i_{-k}} p_{l}^{(2 n)} n_{-n^{\prime} \ell_{n}}^{(2 n)}\right| \leqslant \varepsilon \lambda_{i_{-k}} p_{l}^{(2 n)} .
$$

Hence

$$
|\phi(x y)-\phi(x) \phi(y)| \leqslant \varepsilon \phi(x) \phi(y) \leqslant \varepsilon\|x\|\|y\| .
$$

From now we will assume that ϕ is faithful and therefore $p_{i j}>0$ for all $i_{2} j$. Let $h_{p, q}$ be the Randon-Nikodym derivative of ϕ_{p}^{q} with respect to the usual trace $\operatorname{Tr}_{p}^{q}$ on M_{p}^{q}. By definition of ϕ_{p}^{q} we have $h_{p, q}=\alpha^{p}\left(h_{0, q-p}\right)$.

Lemma 5. With the above notations we have
a) $h_{0, n}=\sum_{i_{0}, \ldots, i_{n}}{ }_{i_{0}} p_{i_{0}, i_{1}} \ldots p_{i_{n-1}}, i_{n}{ }^{\pi} 0\left(e_{i_{0}, i_{0}}\right) \ldots \pi_{n}\left(e_{i_{n}, i_{n}}\right)$.
b) The unitary operator $u_{t}^{(p, q)}=h_{p-1, q+1}^{-i t} h_{p, q}^{i t}$ belongs to the C^{\star}-algebra generated by M_{p-1}^{p} and $M_{q}^{q^{+1}}$.

Proof. The proof of a) is easy and is omitted.
If $n=q-p$, we have

$$
h_{p-1, q+1}^{-i t} h_{p, q}^{i t}=\alpha^{p-1}\left(h_{0, n+2}^{-i t} \alpha\left(h_{0, n}^{i t}\right)\right)
$$

and
$\left.h_{0, n+2}^{-i t}=\sum_{j_{0}, \cdots, j_{n+2}}^{(\lambda} j_{0} p_{j_{0}} j_{j}^{\cdots} \cdot p_{j_{n+1}} j_{n+2}\right)^{-i t} \pi_{0}\left(e_{j_{0}} \cdot j_{0}\right) \ldots \pi_{n+2}\left(e_{j_{n+2}} \cdot j_{n+2}\right)$
$\alpha\left(h_{0, n}^{i t}\right)=\sum_{i_{1}, \ldots, i_{n+1}}\left(\lambda_{i_{1}} p_{i_{1}, i_{2}} \ldots p_{i_{n}, i_{n+1}}\right)^{i t} \pi_{1}\left(e_{i_{1}, i_{1}}\right) \ldots \pi_{n+1}\left(e_{i_{n+1}}, i_{n+1}\right)$.
So $h_{0, n+2}^{-i t} \alpha\left(h_{0, n}^{i t}\right)=$
$=\sum_{j_{0}, j_{1}}^{\lambda}{\underset{j}{0}}_{-i t}^{j_{0}}{\stackrel{j}{j_{1}}}^{i t} p_{j_{0}}^{-i t} j_{1} \pi_{0}\left(e_{j_{0}}, j_{0}\right) \pi{ }_{1}\left(e_{j_{1}, j_{1}}\right) \sum_{j_{n+1}, j_{n+2}} p_{j_{n+1}}^{-i t}, j_{n+2}$ $\pi_{n+1}\left(e_{j_{n+1}}, j_{n+1}\right) \pi_{n+2}\left(e_{j_{n+2}}, j_{n+2}\right)$ 。

So $h_{0, n+2}^{-i t} \alpha\left(h_{0, n}^{i t}\right)$ belongs to the C^{\star}-algebra generated by M_{0}^{1} and M_{n+1}^{n+2} and therefore $h_{p-1, q+1}^{i t} h_{p, q}^{-i t}$ is in the c^{\star}-algebra generated by M_{p-1}^{p} and M_{q}^{q+1}.

$$
q \cdot e \cdot d
$$

Remark 6. As P is aperiodic. by a similar proof of Proposition 4, one can see that ϕ is strongly mixing with respect to α.

Then using Lemma 5a) and Corollary 4.3 of $[S t 1]$, it is easy to see that M is of type $I I I_{1}$ if the quotients $\lambda_{i} / \lambda_{j}$ and $p_{i j} / p_{k l}$ are not all contained in the same cyclic subgroup of the group of positive real numbers.

Let σ^{ϕ} be the modular group for ϕ in M and $\sigma(p, q)$ be the modular group for ϕ_{p}^{q} in M_{p}^{q}. As $\phi o \alpha=\phi$ and $\phi_{p}^{q}=\phi_{p+k}^{q+k}{ }_{p}^{k}$ for all $k \in \underline{Z}$, we have

$$
\sigma_{t}^{\phi} o \alpha=\alpha \circ \sigma_{t}^{\phi} \quad \text { and } \quad \alpha_{o \sigma_{t}}^{k}(p, q)=\sigma_{t}^{(p+k, q+k)_{o \alpha} k}
$$

for all $t \in \underline{R}$.

Proposition 7. For all $x \in M_{-n}^{n}$ and all $t \in R$ we have

$$
\sigma_{t}^{\phi}(x)=\sigma_{t}^{(-n-1, n+1)}(x)
$$

Proof. We have $\sigma_{t}^{\phi}(x)=\sigma_{t}^{\phi} \sigma_{-t}^{(-k, k)}{ }_{o \sigma_{t}^{(-k, k)}(x)}^{(x)}$ and for $k>n+1$

$$
\begin{aligned}
\sigma_{t}^{(-k, k)}(x) & =h_{-k, k}^{i t} \mathrm{xh}_{-k, k}^{-i t} \\
& =h_{-k+1, k-1}^{i t} h_{-k+1, k-1}^{-i t} h_{-k, k}^{i t} h_{-k, k}^{-i t} h_{-k+1, k-1}^{i t} h_{-k+1, k-1}^{-i t} \\
& =h_{-k+1, k-1}^{i t}\left(u_{t}^{(-k+1, k-1)}\right)^{\star}{ }_{x u_{t}}^{(-k+1, k-1)_{h}^{-i t}}{ }_{-k+1, k-1} \\
& =h_{-k+1, k-1}^{i t} x_{-k+1, k-1}^{-i t} \\
& =\sigma_{t}^{(-k+1, k-1)}(x)
\end{aligned}
$$

So for all $k>n+1$ we obtain

$$
\sigma_{t}^{\phi}(x)=\sigma_{t}^{\phi} \circ \sigma_{-t}^{(-k, k)} o \sigma_{t}^{(-n-1, n+1)}(x)
$$

But by $\left[\right.$ Lo, Lemma 4], $\sigma_{t}^{(-k, k)}(x)$ converges strongly to $\sigma_{t}^{\phi}(x)$ when $k \rightarrow \infty$. So

$$
\sigma_{t}^{\phi}(x)=\sigma_{t}^{(-n-1, n+1)}(x)
$$

for all $t \in R$.

Let N be the centralizer of ϕ in M.

Definition 8. The restriction θ of α to N is called a Markov shift on N.

As an immediate consequence of Proposition 3 we have

Corollary 9. If $W_{i}=h_{0}$ for all $i=1, \ldots, m$, then the automorphism θ is a Bernoulli shift.

For all $n \in N$ we define

$$
\mathbb{N}_{-n}^{n}=\left\{x \in M_{-n}^{n} \mid \sigma_{t}^{(-n-1, n+1)}(x)=x \text { for all } t \in R\right\}
$$

The following proposition is an easy consequence of Proposition 7.

Proposition 10. Let E_{ϕ} be the normal and faithful conditional expectation from M to N which preserves ϕ. Then $E_{\phi}\left(M_{-n}^{n}\right)=N_{-n}^{n}$ so N is generated by the sequence $\left\{N_{-n}^{n}\right\}$.

Now our aim is to show that N is a factor, so it will be the hyperfinite $I I$ factor. To prove this, we will see that N can be obtained as the Krieger's crossed product of a standard Borel space by an countable locally finite ergodic group.

Let $X_{0}=\{1, \ldots, m\}, X=I_{\underline{Z}} X_{0}$ and μ be the shift-invariant Markov measure on X with initial distribution Λ and transition matrix P. We will still assume that the $P_{i j}$'s are strictly positive.

Let $X_{k}^{\ell}=\Pi_{k}^{\ell} X_{0}, \mu_{k_{k}}^{\ell}$ be the restriction of μ to X_{k}^{l} and let G_{k}^{ℓ} be the the group of automorphisms g of X_{k}^{ℓ} such that

$$
(g \omega)_{k}=\omega_{k} \cdot \quad(g \omega)_{\ell}=\omega_{\ell} \quad \text { for all } \omega \in X_{k}^{\ell}
$$

and

$$
g \mu_{\mathrm{k}}^{\ell}=\mu_{\mathrm{k}}^{\ell}
$$

In $[\mathrm{Kr} 2] \mathrm{W}$. Krieger has proved the following theorem.

Theorem 11. The group $G=\bigcup_{n \in \mathbb{N}}^{G}{ }_{-n}^{n}$ acts ergodically on (X, μ). We recall now briefly the construction of the Krieger's crossed product $[\mathrm{Krl}]$ as it is done in [Gui].

Let y be a standard Borel space with non atomic probability measure v. Let H be a countable ergodic group of automorphisms of Y preserving the measure v.

For all $\omega \in Y$, let $H \omega$ be the orbit of ω under the action of H and let $\mathrm{K}_{\omega}=\ell^{2}(\mathrm{H} \omega)$ with canonical Hilbert basis ($\varepsilon_{\omega, \psi}$), $\psi \in H \omega$. If $\varepsilon_{\omega}^{(g)}=\varepsilon_{\omega, g}$, then the set of $\varepsilon(\mathrm{g})$ is a fundamental family of mesurable vector fields [Di,II.l]. One can therefore define the Hilbert space $K=\int_{X}^{\oplus} K_{\omega} d \mu(\omega)$. For $a \in L^{\infty}(Y, v)$ and $g \in H$, let M_{a} and U_{g} be the operators on K defined by

$$
\left(M_{a} \xi\right)_{\omega}=a(\omega) \xi_{\omega} \quad \text { and } \quad\left(U_{g} \xi\right)_{\omega}=\Psi^{g} g g^{-1}\left(\xi_{g} g_{\omega}^{-1}\right)
$$

where $\Psi_{g, \omega}$ is the isomorphism from K_{ω} onto $K_{g \omega}$ defined by

$$
\Psi_{g, \omega}\left(\varepsilon_{\omega, \psi}\right)=\varepsilon_{g \omega, \psi} .
$$

Then U is a unitary representation of H in K and we have the relations

$$
U_{g} \xi^{(h)}=\xi^{\left(h g^{-1}\right)} \quad \text { and } \quad U_{g} M_{a} U_{g}^{\star}=M_{g a}
$$

where $g a(\omega)=a\left(g^{-1} \omega\right)$.

The von Neumann algebra $B=\left\{M_{a}, a \in L^{\infty}(Y, v)\right\}$ is isomorphic to $L^{\infty}(Y, v)$, so we will identify them.

By hypothesis on the group H, the von Neumann algebra $R=R(Y, H)$ generated by B and $\left\{U_{g}, g \in H\right\}$ is a factor of type I_{1}, hyperfinite if H is amenable, which will be called the Krieger's crossed product of Y by H.

In our case, as G is locally finite, $R=R(X, G)$ is the hyperfinite I^{\prime}, factor.

Let A_{0} be the maximal abelian subalgebra of M_{0} generated by the $\left\{e_{i i}\right\}$ and let A_{p}^{q} be the canonical image of $\theta_{p}^{q} A_{0}$ in M. The von Neumann algebra A generated by $\left\{A_{-n}^{n}\right\}$ is maximal abelian in M and clearly $A \subset N$. As A can be identified with $L^{\infty}(x, \mu)$, the group G acts on A. Since any element of $G p$ gives rise to a permutation of the minimal projections of $A P_{p}^{q}$, there exists a unitary representation $g \rightarrow V_{g}$ of G_{p}^{q} in M_{p}^{q}. Moreover the canonical conditional expectation E_{k} from M_{-k}^{k} onto A_{-k}^{k} preserves ϕ_{-k}^{k}. For all $g \in G_{-k}^{k}$ and all $x \in M_{-k-1}^{k+1}$ we have

$$
\begin{aligned}
\phi_{-k-1}^{k+1}\left(v_{g} X v_{g}^{\star}\right) & =\phi_{-k-1}^{k+1}\left(E_{k+1}\left(v_{g} x v_{g}^{\star}\right)\right) \\
& =\phi_{-k-1}^{k+1}\left(v_{g} E_{k+1}(x) v_{g}^{\star}\right) \\
& =\mu_{-k-1}^{k+1}\left(g\left(E_{k+1}(x)\right)\right) \\
& =\mu_{-k-1}^{k+1}\left(E_{k+1}(x)\right)=\phi_{-k-1}^{k+1}(x) .
\end{aligned}
$$

Therefore $V_{g} \in N$ for all $g \in G$; thus the Krieger's crossed product $R=R(X, G)$ is a subfactor of N.

Let now R_{k} be the finite dimensional subalgebra of R generated by $A_{=k}^{k}$ and $\left\{v_{g} g_{-k \in G^{k}}^{k}\right\}$. To see that N is the hyperfinite I_{1} factor, it is sufficient to show that $N_{-k}^{k} \subset R_{k+1}$. As $A_{-k}^{k} \subset R_{k+1}$ and A_{-k}^{k} is regular in N_{-k}^{k}, it is sufficient to see that the normalizer of A_{-k}^{k} in $N_{-k}^{k}, N\left(A_{-k}^{k}\right)$, is in R_{k+1}. Let $u \in N\left(A_{-k}^{k}\right)$ then $\sigma_{t}^{(-k-1, k+1)}(u)=u$ for all $t \in \underline{R}$, thus $\phi_{-k-1}^{k+1}\left(u x u^{\star}\right)=$ $\phi_{-k-1}^{k+1}(x)$ for all $x \in M_{-k-1}^{k+1}$. In particular, for all $a \in A_{-k-1}^{k+1}$, $\phi_{-k-1}^{k+1}\left(\right.$ uau $\left.^{*}\right)=\phi_{-k-1}^{k+1}(a)$, so u defines an element of G_{-k-1}^{k+1} and therefore $u \in R_{k+1}$. Thus we have proved the following theorem.

Theorem 12. N is the hyperfinite $I I$,factor.

Theorem 13. Let θ be the Markov shift on N. Then the entropy of θ is

$$
H(\theta)=-\sum_{i, j} \lambda_{i} p_{i j} \log p_{i j}
$$

Proof. Henceforth we will use the notations of [c.s.] for the entropy. By Kolmogolov-Sinai's theorem of Connes and St申rmer [c.s.] and Proposition 10 we have

$$
H(\theta)=\lim _{n \rightarrow \infty} H\left(N_{-n^{\prime}}^{n}, \theta\right) .
$$

For all $k \in \underset{Z}{Z}$ let $N_{-n+k}^{n+k}=\theta^{k}\left(N_{-n}^{n}\right)$. For a fixed n we have

$$
\begin{aligned}
H\left(N_{-n}^{n}, \theta\right) & =\lim _{q \rightarrow \infty}(2 q)^{-1} H\left(N_{-n}^{n}, \theta\left(N_{-n}^{n}\right), \ldots, \theta^{2 q}\left(N_{-n}^{n}\right)\right) \\
& =\lim _{q \rightarrow \infty}(2 q)^{-1} H\left(N_{-n}^{n}, N_{-n+1}^{n+1} \ldots \cdots N_{-n+2 q}^{n+2 q}\right) .
\end{aligned}
$$

For all $k=1, \ldots .2 q$ we have $N_{-n+k}^{n+k} \subset N_{-n}^{n+2 q}$. Indeed for all $x \in N_{-n+k}^{n+k}$ and all $t \in R$

$$
\begin{aligned}
& \sigma_{t}^{(-n-1, n+2 q+1)}(x)=\sigma_{t}^{(-n-1, n+2 q+1)} o_{-t}(-n+k-1, n+k+1)(x) \\
& \quad=h_{-n-1, n+2 q+1}^{i t} h_{-n+k-1, n+k+1}^{-i t} x h_{-n+k-1, n+k+1}^{i t} h_{-n-1, n+2 q+1}^{-i t}
\end{aligned}
$$

and by a same argument as in Lemma 5 b) we see that $h_{-\bar{n}-1, n+2 q+1}^{i t}$. $h_{-n+k-1, n+k+1}^{-i t}$ belongs to the $c^{\star}-$ algebra generated by M_{-n-1}^{k-n-1} and $M_{k+n+1}^{n+2 q+1}$; thus this operator commutes with x and therefore $x \in N_{-n}^{n+2 q}$.
By the properties (C) and (D) of [C.S.] we obtain

$$
H\left(N_{-n}^{n}, N_{-n+1}^{n+1}, \cdots, N_{-n+2 q}^{n+2 q}\right) \leqslant H\left(N_{-n}^{n+2 q}\right)=H\left(A_{-n}^{n+2 q}\right)=H\left(A_{0}^{2 n+2 q}\right) .
$$

Furthermore for all r>0

$$
\begin{aligned}
& H\left(A_{0}^{r}\right)=\sum_{i_{0} \ldots, i_{r}}{ }^{\eta \phi}\left(\pi_{0}\left(e_{i_{0}, i_{0}}\right) \ldots \pi_{r}\left(e_{i_{r}, i_{r}}\right)\right) \\
& \left.=\sum_{i_{0}, \ldots, i_{r}}^{n(\lambda} i_{i_{0}} p_{i_{0}, i_{1}} \cdots p_{i_{r-1}, i_{r}}\right) \\
& =\sum_{i} \lambda_{i} \log \lambda_{i}-r \sum_{i, j} \lambda_{i} p_{i j} \log p_{i j} .
\end{aligned}
$$

So

$$
H\left(N_{-n^{\prime}}^{n} \theta\right) \leqslant-\sum_{i, j} \lambda_{i} p_{i j} \log p_{i j}
$$

and then

$$
H(\theta) \leqslant-\sum_{i, j} \lambda_{i} p_{i j} \log p_{i j}
$$

On the other hand, for all n we have $H(\theta) \geqslant H\left(A_{-n}^{n}, \theta\right)$ and

$$
\begin{aligned}
H\left(A_{-n^{\prime}}^{n} \theta\right) & =\lim _{q \rightarrow \infty} q^{-1} H\left(A_{-n^{\prime}}^{n} \ldots, \theta^{q}\left(A_{-n}^{n}\right)\right) \\
= & \lim _{q \rightarrow \infty} q^{-1} H\left(A_{-n}^{n} \ldots, A_{-n+q}^{n+q}\right) \\
& =\lim _{q \rightarrow \infty} q^{-1} H\left(A_{-n}^{n+q}\right) \\
& =\sum_{i_{, j}} \lambda_{i} p_{i j} \log p_{i j} .
\end{aligned}
$$

q.e.d.

Proposition 14. Let (X, G, μ) be as before, and let S be the shift on (X, μ). Then S extends to an automorphism σ of $R=$ $R(X, G)$ and the dynamical systems (N, θ) and (R, σ) are conjugate.

Proof. It is clear that $S G S^{-1}=G$ because $S G_{-n^{n}}^{n} S^{-1} \subset G_{-n-1}^{n+1}$. Thus $G S^{-1} \omega=S^{-1} G \omega$ for ail $\omega \in X$. Using the same notations as before Theoren 12, the Iinear mapping $\Phi_{\omega}: K_{\omega} \rightarrow K_{S}-1 \omega$ defined by $\Phi_{\omega}\left(\varepsilon_{\omega, \psi}\right)=\varepsilon_{S^{-1}} \omega_{,} S^{-1}{ }_{\psi}$ is an isomorphism, and by [Di,II.2] the field $\omega \rightarrow \Phi_{\omega}$ is mesurable. Furthermore it is easy to see that the operator V on K defined by

$$
(V \xi)_{\omega}=\Phi_{\omega}^{-1} \xi_{S^{-1}}
$$

is unitary and has the properties

$$
\begin{aligned}
& \mathrm{VaV}^{\star}=\mathrm{S}(\mathrm{a}) \quad \text { for all } a \in L^{\infty}(X, \mu) \\
& \mathrm{VU}_{g} V^{\star}=U_{\mathrm{SgS}^{-1}} \text { for all } g \in G .
\end{aligned}
$$

Therefore the automorphism σ of R defined by $\sigma(x)=V V^{*}$. $x \in R$ extends S.

Moreover if J is the isomorphism from N to R identifying A with $L^{\infty}(X, \mu) \subset R \quad$ in the canonical way, and sending v_{g} onto u_{g}. then $J \theta J^{-1}=\sigma$ 。
q.e.d.

Acknowledgments. I am grateful to Professor E. Stømer for his Kind invitation at the University of Oslo, and for helpful conversations, and to the Department of Mathematics of the University of Oslo for his hospitality. I thank also the "Fond National Suisse de la Recherche Scientifique" for his financial support.

References

[Ac] L. Accardi; Non commatative Markov chains; Proc.Int.School Univ. Camerino (1974). 268-295.
[Be] O. Besson: Sur l'entropie des automorphismes des algèbres de von Neunann fintes; Thèse Univ. de Neuchâtel 1982.
[C.S.] A. Connes, E. Størmer: Entropy for automorphisms in II $_{1}$ von Neumann algebras: Acta Math. 134 (1975), 289-306.
[Di] J. Dixmier: Les alge̊bres d'opérateurs dans l'espace Hilbertien; Gautier-Villars, Paris 1969.
[D.G.S.] M. Denker, C. Grillenberger, K. Sigmund; Ergodic theory on compact Spaces; Springer Lecture Notes in Math. 527 (1976).
[Gui] A. Guichardet: Systèmes dynamiques non commutatifs; Astérisque 13-14. 1974.
[Krl] W. Krieger; on constructing non \star-isomorphic hyperfinite factors of type III: J. Funct. Anal. 6 (1970) 97-109.
[Kr2] W. Krieger; On finitary isomorphisms of Markov shifts that have finite expected coding time; Z. Wahrscheinlichkeitstheorie verw. Geb. 65 (1983). 323-328.
[Lo] R. Longo; A simple proof of the existence of modular auto morphism in approximately finite dimensional von Neumann algebras; Pacific J. Math. 75 (1978), 199-205.
[Pe] G.K. Pedersen: C^{*}-algebras and their automorphisms groups; Academic Press. London, 1979.
[Pi] J. de Pillis: Noncomutative Markov processes; Trans.Amer. Math.Soc. 125 (1966), 264-279.
[Po] R. Powers: Representation of uniformly hyperfinite algebas and their associated von Neumann rings; Ann. of Math. 86 (1967); 138-171.
[St1] E. St申rmer; spectra of states and asymptotically abelian C^{\star}-algebras; Commun.Math.Phys. 28 (1972), 279-294.
[St2] E. St申rmer: Entropy in finite von Neumann algebras; Symposia Mathematica XX (1976), 197-205.

