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1. Introduction

The ptyx was introduced in Girard [2] and it is a higher type
version of the dilator introduced in Girard [I]. Girard and
Ressayre [5] gave an alternative approach to the ptykes and they
gave several applications.

In this paper we will investigate a category of generalized
binary relations and we will see how the ptykes can be represented
as objects in this category.

We will review the decomposition of a ptyx and prove a hier-
archy-theorem for the corresponding decomposition trees. Employ-
ing the functorial bounding theorem from Girard and Normann [ 4] we
will see how the recursion theorem provides us with a general
notion of functorial recursion over the decomposition trees. Parts
of the paper will be a review of known results or simple generali-
zations of such. In these cases we omit or give minor hints to the
proofs. Familiarity with an introduction to dilators or denota-
tion systems (Girard [i], [2] or Girard-Normann [3]) will be an

advantage.

2. Types and Classes

We will base our study of Hé—logic, the ptykes and related

objects on one category, the universal type U. U 1is a generali-

zation of the category of binary relations:

2.1 Definition

a) A pair <f£,X> is in the universal type U if X 1is a set

and f:X?2 -» §=






b) If <£,X» and <g,Y> are two elements of U then
b: X » Y

X, € X we

is a called an imbedding if ¢ is 1-1 and for all x 5

|
have

f(x].xz) = g(<l>(x]), ¢(x2))

When no information is lost we will write f for <f,X>, and
if nothing else is made explicit, f,g etc. will denote elements of

u.

2.2 Definition

If £, € U, then I(f,g) 1is the set of imbeddings from f

to g.

2.3 Definition

a) A class C 1is a subcollection of U such that if g € C
and ¢ € I(f,g) then f €C.

b) A pretype T is a class of finite objects

c) If T is a pretype, then the type TP(T) of T is the class
of all objects such that each finite subfunction is in T.

d) If C 1is a class then PT(C) is the class of all finite

elements of C and TP(C), the type of C, is TP(PT(C)).

As a trivial observation we get

2.4 Lemma

Let C be a class. Every f € TP(C) is the limit of a
directed system from PT(C).

We let UO denote the class of all finite elements of U. If
f € Uy then f is isomorphic to some g:n? > N (n={0,...,n-1})

Using some standard enumeration of finite sequences, we may code

g as a natural number.



2.5 Definition

a) For each f € U let D(f) be the g:n2 > N isomorphic to

OI
f with the lowest number code. We call D(f) the distinqui-

shed version of f.

b) Let U, = {D(£) | £¢ UO}

If C 1is a class, let

=Cnu

C={D(f)lfecnU0} 5

D

c) A class C 1is recursively based if CD is recursive.

2.6 Definition

a) Let AO be the subclass of U

nontrivial automorphisms.

0 containing all f with no

b} Let A = A, N U and let A = TP (A,) -
c) A class C 1is an A-class if C < A.

Let C Dbe an A-~class, f € A. Let Jf be the set of finite

subfunctions of f. For each g € J there will be a unique iso-

£

-1
morphism yg:D(g) > g. If gc he Jf, let th =Yy -yg. Then

f = 1lim <D(g).ygh>.

We will write f = Lig <fi,yij> and call it the canonical limit-

construction of £.

Now let Cl and C2 be two A-classes. Let F;CI > C2 be a func-

tor commuting to pullbacks and direct limits.

Let f:X? » N be in C and let F(f) = g:Y2 » N.

1
Let <fi,¢ij> be the canonical limit-construction of f

with imbeddings ¢,:f, » f. Let 9= F(fi) and F(¢i) =y

i > g

i%9%
Let y € Y. Since F commmutes to pullbacks there is a

unique minimal i such that vy ¢ Im(Yi). Let ¥, be such that




gi:Yiz > M. Then there is a unique c € Y, such that

We call (c:;¢ ;f) a denotation for y. Given F and £, this

denotation will be unique.

2.7 Definition

Let CE’C2 and F Dbe as above.
a) A bone for F 1is a pair (c,f) where f ¢ Uy, © is in the
domain of F(£f) and for all g € Upr ¢ € I(g,f), if g*f

then c § Im(F(¢)).

b) The skelleton of F 1is the set of bones for F.
c) The dimention of F 1is the cardinality of the skelleton.

Now let Ci and C2 be A-classes and let F:Cl + C2 be a
functor commuting with pullbacks and direct limits. We will see
how the skelleton supports a natural binary function.

Let (c,f) and (d,g) be two bones for F. The interesting

relation between (c,f) and (d,g) is the set of values
F(h)((c:o:n), (d:y:h))

seen as a function of how the imbeddings ¢ and y are related.
Recursively in f and g we have a list hl”"’hk from

UD and imbeddings ¢i:f > hi' Y9 ” hi such that for all

(ci¢:h), (d:y:h) there is a number i and an imbedding ¢:h, > h

such that

b =¢ o b, ¥ =¢o v,

Then F(h)((c:;o:h), (d:y:h))

= F(hi)((c;¢i;hi). (d;yi:hi))-



= O'.I >
Let NF((c,f),(d,g)) <nl,n2,ml, m where n, and n, are

numbercodes for £,g resp. and

m, = F(hi)((F(¢>i)(c), F(Yi)(d))-

From NF((c,f),(d,g)) we can recover £f and g but not ¢ and 4.

2.8 Definition

Let C and C be A-classes. We let C, » C be the coll-

] 2 ] 2

ection of all functions

N:Z2 » N

=

isomorphic to some NF as described above.

2.9 Theorem

If Cl and C2 are A-classes then Cl > C2 is an A-class.

Proof
Let NF:Z2 > N Dbe given. We have to prove that any substruc-
ture of NF is isomorphic to some NG' Let Y < Z. For each

h € C let G(h) be the substructure of F(h) with domain the

] 14
set of elements with denotations (c;¢;h) where the image of ¢

is in Y. G naturally extends to a functor commuting to pullbacks
and direct limits and N, is isomorphic to No P v? This shows

that C, + C is a class.

1 2
It remains to show that it is an A-class. Let ©N:722 » N be a
finite element of C; > €, with corresponding functor Gy+ Let ¢
be an automorphism on N, h:x2 » N Dbe a non-empty, finite element
of Cl'
Let ¢ Dbe the automorphism on GN(h) induced by ¢. Since
C, 1is an A-class, ¢ 1is the identity. But then ¢ is the identi-

ty, since denotations are unique.




2,10 Remarks
a) We used that <, is an A-class to get a unique denotation

is an A-class to prove that CI +> C is an A-

system and that C 5

2

class.

b) It is not in general correct that Cl > C2 is recursively

based when CI and C2 are recursively based. The classes we

will study later will be recursively based, the methods used to

prove this can be found in Girard [2].

c) The construction of C1 > C2 is uniform. Thus there is one

class coding all partial functors from UA to UA with a class

as the domain.

3. WO-classes

3.1 Definition

Let f:N » N. By f we mean

- rf(<x,y>)-l if f(x,y) > O
£ (x,y) undefined otherwise

b) Let C Dbe a class. By Cw we mean

-

c, = {£:M0 | £ ec]

N
c) A subset A on g_ can be reduced to C if there is a

n=z

recursive F:N -+ N  such that

g € A <=> F(g) ¢ C,

3.2 Lemma

Let C,D Dbe classes, let f € (C+D)w and let g ¢ (Cw)'

Uniformly recursive in f and g we may find h € Dw such that

h = f (g).



The proof is easy and is left for the reader.

The litterature contains several theorems about effective
operators from ptykes to ordinals that can be bounded by ptykes,
the most recent and general is due to Kechris [6]. A standard
method of proof is to functorially find well-founded trees that
dominates the ordinal in question and then linearizing it by e.g.
a Kleene-Brouwer ordering. The WO-classes will be a general family

of classes for which these kinds of arguments works.

3.3. Definition

a) Let WO ©be the class of (characteristic functions of) well-
orderings
b) A class C can be well-ordered if there is a function

©:N > N such that for all f € C, 1 o f € WO.

c) Assume that C can be well-ordered. We call C a WO-class
if for each well-ordered family {fi}i<B there is an f € C
and imbeddings ¢i:fi » f into pairwise disjoint subsets of
f such that the well ordering of f puts ¢i(x) < ¢j(y) if
i< 5.

3.4 Lemma

If C 1is a class then C » WO is a WO-class.

Proof
Let {f,}, be some enumeration of
(c»>wo) n Up

and let fm =7 fi. Each fi has a canonical imbedding
€



If FeC~» WO, let (c,f) and (d,g) be two bones for

order them by the values of the denotations

(c: ; fw) (d: vy : fw)

Yfl g

We leave the details for the reader.

Our classes are not only closed under function-spaces but

also under Cartesian products:

3.5 Definition

a) Let fy""’fn be elements of U.
£.:X2 + N. Let <f,,...,f_ > Dbe the function
1 i = 1 n
f:({l}xxl Yoot {n}xxn)2

defined by

f((i,xl), (i.xz)) = <i,fi(x],x2)> + 1

£((i,x), (F,y)) =0 if i%j.

b) If Cl""'cn are classes, let C;x...x C, be the ¢lass of
those f that are isomorphic to some <fl,...,fn> where
f. € ¢, for i=l,...,n
i i
It is easily seen that this really defines a class. If
Cysre++,C ~are WO-classes then C;x...xC ~ is a WO-class, using

lexicographical orderings.

We have the following:

3.6 Theorem

Let C be a WO-class and let A Dbe reducible to C

via the

recursive function F. Then the complement ~2A can be



reduced to C » WO via some recursive G such that if
g € A there is an infinite descending sequence in

G(g) (F(g)") uniformly recursive in gq.

Proof

Let g be given and let f € C. Let h:N » dom(f). Define a
tree Tg(f) such that h 1is a branch in Tg(f) if and only if
g' = F(g) is an element of U and hldom g' is an imbedding of
g' into f£. This can be done functorially. Tg(f) is a tree on f
and using the well-ordering of f it can be linearized to Og(f)
which will be an element of C + WO if g€ A. If g € A then
take f to be F(g) . The identity -imbedding of F(g)  extended

to a map from N to £ will be a branch in Tg(f), so Og(f) is

effectively not well-founded.

3.7 Definition

Let C be a WO-class.

We call A c §= a Il .-set if A can be reduced to C » WO via a

recursive F. A is II if it can be reduced to C + WO via a

N

]
C
I
C
continuous F.

The Hé—sets have many properties in common with the Hk~

sets. The following result is stated without proofs:

3.8 Theorem

a) The union of a recursively enumerated family of Hé—sets is
1
a Hc—set
b) The intersection of recursively enumerated family of Hé—sets

. 1
1is a Hc—set



c)y If A is i _-set, then
B = {x |Vy<x,y»€Al
1s a Hé«set
. | . . 1
aj There is a chset that is universal for gc-sets.

In a) we construct a tree T(f) such that a branch in T(f) will
contain a branch in all the orderings Fi(f). If no Fi € C » WO
, and since C 1is a WO-class we can

s into one f which will give a branch in T(f).

ft

) F. € C > O <=> F, € C» WO for all i.

) is proved by a tedicus bui simple coding of Vx into C » WO
and d) 1is based on the fact that the set of continuous functionals
is H% and thus reducible to WO. We are now ready to define the

roperties are given inductively using

ptyvkes. The main structural

e}

theorems 3.6 and 3.8.

3.9 Definition

a) Let Pt(0) = WO
Pt{k+l) = Pt(k) + WO.

b) The elements of Pt(k) are called ptykes of pure type.

3.10 Definition

Let & = }{p.| P, is a recursive

element of Pt(k)}

CK .
5 is essentially Wy Girard and Ressayre [ 5] has shown

0

the supremum of all nl!-well-

is the ordinal = X

that ak(ak_}) K

orderings of subsets of N.



CK

We can effectively decide if an ordinal « = w, but a
similar fact does not hold for Ek in general. We will find a
remedy for that and indicate how it can be used.

3.11 Definition

Let {fi}iEN be a recursive enumeration of all the partial
recursive functions. Let Ay = ‘{ilfi is total and.fIGPt(k)}.
a) (Precise definition)

B, =} £,

k iEAk i
b) Let F be recursive such that

. - .

1 € Ak < F(i) € Ak+l

Let 6 = ] f£_,...

k iex, F(i)
k
3.12 Lemma

Let P ¢ Pt(k) , Q € Pt(k+l). We may set-recursively decide

if
(P,Q) = (ak,Ok)
Proof
By the well-ordering we may recursively decide if two ptykes
are isomorphic. Now let P and Q be given. Let {fi}iEN be as
in 3.11. Inductively let
1€na, if ] £+ £,
3<d
jea,

is isomorphic to an initial seqment of P.

If P+ ) f; then P % =

i€a, k

If P =) £, , let Q_ = g £, .\
iea, * P g, TO)

If Q. =Q then we have P = &

p x @790

k



othaerwise not.

Set~recursion is defined in Normann [ 7]

3.13 Corollary

If ~<: is a well-ordering of N recursive in a complete
Hé+i—set, then there is a recursive functor
F € Pt(k)xPt(k+l) » WO such that IF(E,,0,)1 > =< .

Proof

This follows from 3.12 and well-known bounding theorems.

4. Decomposition of a ptyx

The ptykes of type | are also called dilators. One of the
main structural properties of dilators is the well-founded decom-
position of a dilator into "smaller" dilators. A principal tool is
recursion over this decomposition and a principal obstacle is the
need of getting functorial operators out of these recursions.

Girard constructed a similar decomposition of ptykes. We will
review this decomposition and prove a hierarchy~theorem for it. In
the next section we will combine it with the functorial bounding
theorem from Girard-Normann [4] to give a general method for

recursion over the decomposition.

. Definition

a) 1f {p,} is a family from Pt(k) we define P. in the

i’ i< .
1° 1<ax i<a

usual way.
b) P € Pt(k) 1is called connected if P is not a nontrivial sum
= <+ N
P P] P2

We have



4,2 Lemma

All ptykes is the unique sum of a well~ordered family of
connected ptykes.
The proof is essentially as in the dilator case.

From now on assume that k>»1.

4.3 Definition
Let P € Pt(k) and let (c,f) be a bone for P. Let

£ =] £, where £, is connected,
i<n * a
Let h =) (£,+£.) and let ¢;+f > h Dbe the imbedding that
i<n

for j#i sends fj on the first corresponding occurence in h

while it sends fi on the second.

We say that £, is more important than £y if
. [ > g . .
(ci¢,th) (c:¢37h)

Note that it is the indexed occurence of fi that is more
important than the ditto of fj'

As in the dilator-case we will slow down a connected Ptyx by
laying restrictions on its most important part.
4.4 Definition

a) Let P € Pt(k) be connected, P#l. Let h, € Pt(k-1). Let

be the order-type of the subset of P(hoﬁh,) given by the

denotations
(ciot+brhyth)

where (c,f) is a bone for P, i is the most important

index,




o: 1 £, h,
j<i
¢z ) £, > h,
i<j<n J
b) If P € Pt(k) and P = Z Pi where B > 1 and each Pi is
i<p |
connected, then each Pi is a comgonent of P. i
c) If P € Pt(k) is connected and h € Pt(k-1) then pl is a

component of P if Ph#g.

d) A component of a component of P is itself a component of P,

4.5 Theorem (Girard, unpublished)

The decomposition tree of P, i.e. the tree of sequences

(Pl""’Pn) where P, =P and each P is a component of

! i+l

Pi, is well-founded.

The proof is an elaboration of the proof in the dilator case,

and is based on a sequence of lemmas leading up to that result,

We would not gain much if the decomposition trees of a Ptyx
coyld be dominated by that of a dilator, Our next task will be to
show that this is not the case.

We first define a family of projections Ty :PE(k) > Pt(k-1)

and inverses vk:Pt(k—I) > Pt(k):

4.6 Definition
a) Let nI(D) be the collapse of a dilator D to a well~
ordering. Let v](a) be the constant « dilator,
b) . Assume that L and v, are defined for some k » |. Let
g (B)(R) = P(vy(h))
where P € Pt(k+!), h € Pt(k-1). Let vk(D)(E) = D(wk(E)). These

maps are extended to functors in the canonical way,



4.7 Lemma

If D¢ Pt(k) and k> 0 then

( (D)) =D

T+l Vgl

Proof

Use induction on k. The induction start is obvious and the

induction step is standard.

4.8 Remark

Observe that = and v will commute with sums, with pull-

k
backs and with direct limits.

k

4.9 Definition
let D € Pt(k). Let

Pp(E) = D(r,(E))

4,10 Lemma

Py € Pt(k+l) and the decomposition tree of D can be imbed-

ded into the decomposition -tree of PD’

Proof

We use induction on the decomposition of D.

1. If D =Lk then PD= lk+l and the decomposition trees are
isomorphic. '

2, If D=) D, then Pp=1 P, ~and the induction is trivial,
| i<a * i Ui

3. Let D#l, be connected, let h € Pt(k~1). Let hy = v (h).

‘ ‘ h
We will show that P h can be imbedded into Pry ', and by

the induction-~hypothesis the lemma will follow,

Let us consider



h
PDh(E) = D (nk(E)).
The value is a subset of
D(h+nk(E))

where the most important part of each denotation is taken from h,

the rest from wk(E).

h
Now PD](E) E-PD(hI+E) where the most important part of the

denotation is taken from h] and the rest from E. Since
PD(h]+E) = D(wk(hl+E)) = D(h+nk(E)).

to each denotation for PD we find a denotation for D using

T so v, gives us the desired imbbedding.

k’
4.11 Theorem

There is an element P ¢ Pt(k+l) that is connected and such

that P_ is isomorphic to PP for all D € Pt(k).

D
Proof

We will describe the denotation-system for P Each bone

D
(c,f) will be on the form (c,fl+f2) where £, 1is any singleton
(d,g) that may serve as a possible bone for some element in
Pt(k~-1), and f, is minimal such that g E_uk(fz). |

To be more precise, for each g € UD N Pt(k~1) take any
£, € Pt(k) such that g E~nk(f2) while for no proper subfunction
3 € f, we have g E_nk(f3). Let £, be any element of Pt(k)

with exactly one bone of the form (d,g). Let f € U_ be isomor-

D

phic to f1 + f2.
For each such choice of f, let (c,f) be a bone for P.

So far ¢ can be anything, its canonical valuye will he determined



when we have described the ordering between denotations.
Let (c,s ¢,+6,5: h) and (cz: b3ty h) be two denotations

based on
(cl, f|+f2), g, and (ca,f3+f4), 9

as above.

If ¢| and ¢3 sends f and f3 into different addends

1
of h, then we order the denotations by the order of the addends

(This makes £, resp. £, to the most important parts). Now

assume that h is an addend of h and essentially ¢]; fl > hl’

]
by £, - h,. Let h2 be the part of h that is above h,. The

maps ¢, and L2 give us two hlwbones (dl'gl) and (da,g3).
Let

by = m oM g e, = (0D gy
Then

(dl; boi nk(hz)) and (dzz Gyl nk(hz))

are two hl(nk(hz))-denotations. We order (c‘: ¢l+¢2:h) and
(cy: ¢3+0,: h) by the value of these denotations.
It is now easy to see that P, and pP will be isomorphic

for all D.

4.12.Corollarx
For each k there is a recursive ptyx P of type k+1 such
that the decomposition tree of D c¢an be imbedded into the

decomposition tree of P for all D € Pt(k).




5., The functional recursion_scheme

One important aspect of the decomposition of a dilator is the
functorial recursion one may define over it. One problem is to
arrange the definitions in such away that the result is a functor.
The A-operator of Girard [1] is an example of a successful
inductive definition.

Let us make a crude atempt to generalize A. We will define
A(P) to be an operator from Pt(k-l) to Pt(k~l), where
P € Pt(k), and we will use induction on P:

AL, ) (h) = hth for h € Pt(k-1)
A(P+Q) (h) = A(P)(A(Q)(h))
if @ is connected

AC TP )R =] AC] (P))(h)

i< i< j<i J
if B is a limit ordinal and each P, are connected.
h
ap) () = a(e® B M)y (4 (R (n))

If P#l is connected.

k

This is of course nonsense, this A is not going to be
functorial, and the recursive definition will break down because
if wont't make any sense.

The problem is the equalities, but for most applications it
will be satisfactory just to find a A such that the
righthandside can be imbedded in the lefthandside, and we will
show that there is indeed a recursive A satisfying this. The
method is quite general and will be called the fungtqrial

recursion scheme

The construction is based on the following result from

Girard-Normann[4]:



5.1 Proposition

Let k,n be given. Let F be a partial set~recursive
function. Then uniformly recursive in an index for F there is a
functor P commuting to pullbacks and direct limits such that for
all D € Pt(k), if F(E) ¢ Pt(n) for all E that can be imbedded
into D then P(D) € Pt(n) and F(D) can be imbedded into
P(D). This will also hold if we replace Pt(k) with a mixed type
of ptykes.
Now assume that we have a partial recursive functor A.

Uniformly in the index for A we define the set-~recursive

function @,: Pt(k)xPt(k-1) » Pt(k-1) by

2,(P,h) = h+h  if P = 1

®, (P,h) = A(P])(A(Pz)(h))

if Py¥0, is connected.
If P =) P, . B is a limit ordinal

i<B
and each Pi are connected, then

® (P,h) = A () (PL))(n)
A i§3 Ei 8]

If P#lk is connected, let

h
2, (2,m) = 4@ P 1y (),

We then use proposition 5.1 to find a functor WA(P) such that
kh@A(P,h) can be imbedded into WA(P).

By the recursion theorem there will be an index e for a partial

operator A such that WA= A. Tt is then not difficult to see by

induction on P that A will be defined everywhere and A will

be functorial since YA is functorial.



5.2 Remark

We will not state the functorial recursion scheme as a pre-
cise result since we have not found a good optimal formulation.
Any combination of the recursion theorem and a functorial bounding
prinéiple in order to bound an operator recursively defined over
the decomposition of a ptyx will be an instance of the scheme.

We will end this paper by showing that the decomposition of
ptykes is optimal in a certain sense.

As a trivial observation we see

5.3 Lemma

Let P Dbe recursive Ptyx of type k > 1. Then the decomposi-
tion tree of P restricted to countable elements of Pt(k=l) can

be realized as a well-founded Hi—relation

Proof

The decomposition is A% and the restriction to elements of

- 1 1
Pt(k~1) is Hk.

We will show that any Hiwwellwfounded relation can be
imbedded into the decomposition-tree of a ptyx. We need the follo-

wing.

5.4 Lemma
Let K:Pt(k-1) » Pt(k) be functorial. Then there is a conne-

cted functor P ¢ Pt(k) such that for all h € Pt(k~1)

K(h) can be imbedded into P]+h

The proof is simple and is left for the reader.

5.5 Theorem

Let < be a well-founded Il-relation. Then there is a
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recursive P &€ Pt(k) and an order preserving map ¢:domﬁ<) >
countable part of the decomposition tree of P.

Proof

We replace < by its tree T of descending sequences.
Uniformly recursive in each node ¢ in T we will define
Pc such that the tree TG of nodes below o can be mapped into
the decomposition-tree of P_.
The definition will be by induction on o and we will use
the recursion theorem to tie the whole definition together.

Without loss of generality we may assume

1) The domain of < is ni

2) There is a fixed recursive least element ag in <.

We are then ready to give the definition: If v ends with ag we
let PT = lk'
Now let o € T. T, = {t]|t€TAT extends o} is Hi. Thus there

is a continuous function F_ uniformly recursive in o such that

Fc(r) € Pt(k-1) <=> 1 ¢ 'I‘0

By a version of the functorical bounding theorem from Girard-
Normann [4], there is a functor Q : Pt(k-1) » Pt(k) such that
for all tv and h € P(k-1):

If FG(T) can be imbedded into h

then PT can be imbedded into Qq(h).

+
Let P_  Dbe such that Qc(h) can be imbedded into P; h, by lemma

5.4. Then T_  can be imbedded into the decomposition tree of P~

Finally let P = P_ . Then < can be mapped into the decom-

position-tree of P.



5.6 Remark

When we reduce a Hi—set to Pt(k-1) we can make the

reduction I-1 by coding the real into the ptyx (k»2) and then

this proof relly gives an imbedding.
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