
Object Recognition and
Segmentation of Wounds

Robin Wåsjø

Master's Thesis Spring 2015

Object Recognition and
Segmentation of Wounds

Robin Wåsjø

1st February 2015

Department of Informatics

Faculty of Mathematics and Natural Sciences

University of Oslo

Oslo, Norway

The Interventional Centre

Oslo University Hospital, Rikshospitalet

Faculty of Medicine

University of Oslo

Oslo, Norway

© Robin Wåsjø

2015

Object Recognition and Segmentation of Wounds

Robin Wåsjø

https://www.duo.uio.no/

Print: University Print Centre, University of Oslo

https://www.duo.uio.no/

III

Abstract

Object recognition and segmentation of objects is a complex task. Our goal is to develop

an algorithm that can recognize and segment wound objects in images. We attempt to

solve the object recognition and segmentation problem by using a hypothesis

optimization framework. This method optimizes the object segmentation by assigning

objective function values to the object segmentation hypotheses. The optimization

algorithm is a genetic algorithm. The objective function relies on textural and shape

properties, and the textural properties relies on classification of superpixel-segments

and superpixel-edges within wound images. Superpixel-segments and superpixel-

edges within the same image are dependent samples. We use combined

hyperparameter and feature selection methods to train classification models, and we

evaluate the impact of dependent samples on these methods. To our knowledge, no

study has evaluated model-selection methods when the data contains known groups of

dependent samples. Our results confirm that dependent samples results in biased error

estimates. Biased error estimates can cause suboptimal feature and hyperparameter

selections, and therefore reduce the classification performance. Finally, we obtain

promising results by using hypothesis optimization to solve object recognition and

segmentation of wounds. These results are important because of the flexible nature of

hypothesis optimization; they demonstrate that hypothesis optimization is a strong

candidate for general-purpose machine-learnable object recognition and

segmentation.

IV

V

Sincere thanks to my family, friends, and thesis advisors,

Ole Jacob Elle, Kim Mathiassen, and Mats Erling Høvin.

VI

Contents

1 Introduction .. 1

1.1 On the Recognition and Segmentation of Wounds .. 1

1.2 Early Work ... 3

1.3 Thesis Overview ... 6

2 Background .. 7

2.1 A Brief Literature Review on Object Recognition and Segmentation 7

2.2 Software.. 8

2.3 Data Material .. 8

2.4 Color Representation .. 9

2.5 Statistical Theory.. 10

2.5.1 Dependent Random Variables ... 10

2.5.2 Moments .. 11

2.5.3 Sampling Distribution of Statistics .. 11

2.5.4 Monte Carlo Method .. 12

2.6 Image Segmentation ... 12

2.6.1 Overview .. 12

2.6.2 Superpixels from Simple Linear Iterative Clustering 13

2.7 Superpixel Feature Extraction .. 14

2.7.1 Overview .. 14

2.7.2 Moments .. 15

2.7.3 Entropy ... 16

2.7.4 Sobel Mean .. 16

2.7.5 Co-occurrence .. 17

2.7.6 Euclidean Moments.. 18

2.8 Machine Learning... 19

2.8.1 Overview .. 19

2.8.2 Gaussian Classifier... 20

2.8.3 Gaussian Mixture Model Classifier ... 21

2.8.4 K-Nearest Neighbor ... 21

2.8.5 Random Forests ... 22

2.8.6 Support Vector Machines... 22

VII

2.8.7 Kernel Methods .. 23

2.8.8 Model Selection Methods .. 24

2.8.9 Feature Selection .. 25

2.9 Optimization ... 26

2.9.1 Overview .. 26

2.9.2 Genetic Algorithm Optimization ... 27

3 Model Selection Methods for Dependent Samples .. 28

3.1 Introduction .. 29

3.2 Method: Data .. 30

3.2.1 Dataset of Wound Images .. 30

3.2.2 Samples Regarded as Random Variables... 33

3.2.3 Synthetic Data Model... 35

3.3 Method: Model Selection Methods .. 37

3.3.1 Unbiased Error Estimates from Dependent Samples 37

3.3.2 Hyperparameter Selection .. 37

3.3.3 Selected Hyperparameter Selection Methods .. 41

3.3.4 Bucket of Models using Nested Cross-validation .. 43

3.3.5 Feature Selection .. 44

3.4 Method: Monte Carlo Simulation... 46

3.5 Method: MATLAB Framework for Model Selection Methods 49

3.6 Results .. 52

3.6.1 Synthetic Data Model Parameters .. 52

3.6.2 Monte Carlo Simulation ... 54

3.6.3 Wound Dataset ... 56

3.7 Discussion .. 62

3.7.1 Out-of-sample Error Distribution... 62

3.7.2 Cross-validation Error and Out-of-sample Error Dependency 63

3.7.3 Split-by-source Versus Balance-by-source .. 64

3.7.4 Wound Dataset and Feature Groups .. 64

4 Object Recognition and Segmentation of Wounds .. 67

4.1 Introduction .. 68

4.2 Method: Hypothesis Objective Function.. 69

4.2.1 Shape Properties... 70

VIII

4.2.2 Textural Properties ... 72

4.2.3 Combining the Object Properties ... 73

4.3 Method: Genetic Algorithm Optimization ... 74

4.3.1 Overview .. 74

4.3.2 Initial Population .. 74

4.4 Results .. 75

4.4.1 Superpixel Segmentation and Classification.. 75

4.4.2 Genetic Algorithm Optimization ... 80

4.5 Discussion .. 84

4.5.1 Results Evaluation.. 84

4.5.2 Comments on the Hypothesis Objective Function....................................... 86

4.5.3 Comments on the Genetic Algorithm .. 86

4.5.4 Comments on Hypothesis Optimization .. 87

4.5.5 Preventing Bias .. 88

4.6 Future Work ... 90

4.6.1 Better Object Properties ... 90

4.6.2 Post Processing the Hypothesis Boundary ... 91

4.6.3 Learning the Hypothesis Objective Function... 91

4.6.4 Hypothesis Optimization using a Comparison Function 93

4.6.5 Probabilistic Classification of Local Structures ... 93

4.6.6 Context Based Multi-object Recognition... 94

4.6.7 Tracking ... 95

5 Conclusions .. 97

5.1 Model Selection Methods for Dependent Samples .. 97

5.2 Object Recognition and Segmentation of Wounds .. 98

List of Abbreviations .. 100

References .. 101

IX

List of Figures, Tables, and Algorithms

Figure 1-1 Object Recognition and Segmentation Flowchart .. 2

Figure 1-2 Example Wound Image .. 3

Figure 1-3 Chan-Vese Foreground Background Segmentation ... 4

Figure 1-4 Chan-Vese Wound, Skin, and Background Segmentation 4

Figure 2-1 Segmentation Comparison.. 13

Figure 3-1 Chapter 3 Flowchart ... 28

Figure 3-2 Superpixel Mean Feature Images ... 31

Figure 3-3 Scatter Plot of Color Segment Mean for All Ten Sources...................................... 32

Figure 3-4 Model of Data Distribution... 35

Figure 3-5 Cross Validation Flowchart .. 38

Figure 3-6 Hyperparameter Selection Flowchart ... 39

Figure 3-7 Unbiased Hyperparameter Selection Flowchart ... 39

Figure 3-8 Feature & Hyperparameter Selection Flowchart .. 45

Figure 3-9 Unbiased Feature & Hyperparameter Selection Flowchart 45

Figure 3-10 Example Setup of a Model Selection Method Algorithm 50

Figure 3-11 Complete Distribution of Synthetic Data ... 53

Figure 3-12 Eout and ECV of Gaussian and Random Forest Classifier 56

Figure 4-1 Chapter 4 Flowchart ... 67

Figure 4-2 Detailed Chapter 4 Flowchart ... 68

Figure 4-3 Superpixel Segmentation .. 77

Figure 4-4 Superpixel Segment Classification ... 78

Figure 4-5 Superpixel Edge Classification ... 79

Figure 4-6 True Hypotheses ... 81

Figure 4-7 Predicted Hypotheses ... 82

Figure 4-8 Hypothesis Optimization .. 83

Table 2-1 Trauma.org Wound Images ... 9

Table 2-2 Dr. Peter Kim Wound Images .. 9

Table 3-1 Class Balance ... 31

Table 3-2 Estimated Parameter Values for Data Distribution Model 53

X

Table 3-3 Error Statistics of Model Sel. Methods with Folds Split-by-source 54

Table 3-4 Error Statistics of Model Sel. Methods with Folds Balanced by Source 55

Table 3-5 Error Statistics of Model Sel. Methods with Independent Samples 56

Table 3-6 Error Estimates of Segment Feature Groups.. 58

Table 3-7 Error Estimates of Segment Feature Groups with Mean ... 58

Table 3-8 Error Estimates of Edge Feature Groups ... 59

Table 3-9 Error Estimates of Edge Feature Groups with Mean ... 59

Table 3-10 Error Estimates of Segments using Feature Selection ... 60

Table 3-11 Error Estimates of Edges using Feature Selection ... 60

Table 3-12 Feature Group Occurrence in Segments .. 61

Table 3-13 Feature Group Occurrence in Edges .. 61

Table 4-1 Objective Function Weights .. 73

Algorithm 3-1 Hyperparameter Selection .. 41

Algorithm 3-2 Unbiased Hyperparameter Selection .. 41

Algorithm 3-3 Feature & Hyperparameter Selection ... 46

Algorithm 3-4 Monte Carlo Simulation of Model Selection Methods 47

Algorithm 3-5 Generate Source ... 48

1

1 Introduction

1.1 On the Recognition and Segmentation of Wounds

The challenge underlying the wound recognition topic is the creation of an autonomous

robot operating system. One of the many requirements for an autonomous robot

operating system is being able to recognize and segment wounds, particularly for

wound closure tasks. Having an accurate description of the wound boundary is

essential for being able to plan where the place the stitches, staples, glue strips, or

whatever else the system would use for wound closure.

Solving object recognition for wounds closely aligns with solving the problem of

object recognition in general. While there are some successful uses of object

recognition in machines, it is by far, inferior to their biological counterparts in humans

and other animals. Therefore, object recognition remains a largely unsolved problem.

While I focus on object recognition for wounds, I have attempted solve the problem by

using an approach applicable to a large variety of objects. Any wound object

recognition algorithm heavily relying on certain wound-specific cues, will probably

have counterexamples. Therefore, I believe it is important to focus on a more general-

purpose object recognition algorithm.

It is important to note the distinction between object recognition, where we

acquire a segmentation of the object, and object classification. In the most basic case,

an object classification task consists of predicting whether the image contains an

object. We can describe this simple classification task as a function mapping the high

dimensional image to a single binary output. For, the segmentation task, we have a

function mapping the high dimensional image to some high dimensional segmentation

description. Obviously, this is a more complex task.

Figure 1-1 shows a process flow diagram of the object recognition and

segmentation method proposed in this thesis. Later in this thesis, I show diagrams that

are more detailed. The algorithm consists of a training part, and a prediction part. By

omitting the training part, the algorithm consists of the following steps:

1. Partition the image into small homogenous segments, also called superpixels.

2. Classify superpixel-based local structures.

2

3. Use optimization to find the optimal hypothesis. A hypothesis consists of a

group of superpixels. The objective function to optimize, considers both the

shape and local structures classifications of the hypothesized object.

Figure 1-1 Object Recognition and Segmentation Flowchart

The flowchart shows an overview of our approach to recognize and segment wound images.

Rectangles represents processing steps. Parallelograms represents objects. Curved Blocks

represents data.

A big part of this thesis has been devoted to how we should classify superpixels

and superpixel edges. These are local structures in images, and local structures f rom

images of the same wounds are dependent. That is, the samples are dependent, and I

study the general topic of model selection methods when faced with dependent

samples.

By itself, object recognition of a single wound is of limited value. The

autonomous robot operating system must be able to recognize multiple kinds of

objects. This is outside the scope of this thesis. However, in section 4.6.5 I outline a

multi-object recognition algorithm by using multiple single-object recognition

algorithms akin to ours.

Chapter 4: Object Recognition and Segmentation of Wounds

General
Objective
Function

Segment Image
Into Superpixel

Image

Hypothesis Search

Training
Images

Label
Images

Segment Images
Into Superpixel

Images

Data Set
Folds

Create
Dataset

Models

Cross-Validation
Error Measure

Model Selection
Methods

Test
Image

Best
Hypothesis

Solution

Chapter 3: Model Selection Methods for Dependent Samples

3

1.2 Early Work

Solving the problem of wound recognition and segmentation turned out to be a much

bigger challenge than my initial hopes. I will briefly go over some of the methods I tried

in the earlier stages of the thesis. My early test procedures were more flawed, and

therefore results should be taken with some caution; in particular, the results were

biased due to hand-tuning hyperparameters and features. I have used methods not

discussed anywhere else in this thesis, but I will keep explanations to a minimum, and

instead rely on references. For readers unfamiliar with machine learning and image

analysis, it is advisable to read sections 2.6 and 2.8 first.

Figure 1-2 Example Wound Image

A complex wound image taken from a pig. The wound is partially occluded with medical

instruments. The wound itself contains many types of tissues. Humans have no problem discerning

the wound from other elements in the image; yet replicating that with a machine is a difficult task.

Most segmentation techniques would be ill suited for the wound image shown

in Figure 1-2. The boundary is complex, and there are other, more pronounced edges

in the image. We can find the same or very similar color pixel values in both skin,

wound, and other objects. On top of that, the object is partially occluded, yet a human

could easily infer the actual boundary of the wound with great accuracy. I knew the

methods I used were unable to deal with images of this complexity, but they could work

for simple images, and also, I saw no better option at the time.

In the initial approach, I computed the probability of every pixel to belong to a

wound. I then used the Chan-Vese segmentation algorithm on the resulting probability

image. The initial version of the Chan-Vese algorithm is a region based active contours

model, dividing the image into two groups. The algorithm iteratively moves the

boundaries of these two groups such that they minimize the internal variance of the

4

intensity of the image [1]. However, this technique would most likely fail; even for

simple images, it had locations were the segmentation edges did not adhere to the

wound edge. In an attempt to overcome this, I used the multiphase Chan-Vese

segmentation algorithm, which is capable of capturing more details by dividing the

image into more than two groups [2].

Figure 1-3 Chan-Vese Foreground Background Segmentation

(A) A wound image manually segmented into wound and background. (B) The image shows the

probability of pixels to belong to the wound class. (C) The image shows a multiphase Chan-Vese

segmentation of the probability image, using four groups.

Figure 1-4 Chan-Vese Wound, Skin, and Background Segmentation

(A) A wound image manually segmented into wound, skin, and background. (B) The image shows

the probability of pixels to belong to wound, skin or background. The probability of wound, skin,

and background are encoded in red, green, and blue respectively. (C) The image shows a

multiphase Chan-Vese segmentation of the probability image, using four groups.

In Figure 1-3, we show the correct segmentation, the probability image, and the

resulting segmentation of the example pig wound image. The segments does adhere

fairly well to the edges, but we now face the problem of correctly selecting which

segments belongs to the wound, which is at least as big a challenge. Note that the

probability image in Figure 1-3 used the image itself for training the predictor, and

therefore the results are greatly optimistically biased.

CA B

CBA

5

Among one of the many issues with the previous technique, is that the visual properties

of wound and skin are quite similar in comparison to other background objects. This

tended to result in a weak edge between wound and skin, and therefore an unreliable

segmentation. This led to the method of having a class for both wound, skin and

background. The resulting probability image, were a 3-dimensional image containing

the probability for a pixel to belong to either wound, skin or background. Figure 1-4

shows the correct segmentation, the probability image, and the resulting segmentation

of this technique.

A thing not yet discussed is how I obtained the probability images. To compute

the probability of any given pixel, I used a 𝑁 × 𝑁 region around the pixel as features.

Furthermore, I used principal component analysis (PCA) to reduce the dimensionality,

and then train a multilayer perceptron network using the PCA components as inputs.

Principal component analysis uses a set of samples, and picks orthogonal linear

projections, by iteratively selecting the component with the largest variance [3]. These

orthogonal linear projections corresponds to the eigenvectors of the of the covariance

matrix of the data. To evaluate the effectiveness of using PCA, I used the

misclassification rate of the neural network as an error measure. A correct

classification would be if the correct class and the most probable class were the same.

The number of features from a region could be quite high, so using PCA did certainly

improve performance over using the raw features, but the simple combination of mean

and variance of every color channel had an even better performance than anything PCA

could offer; only using the mean were almost as good as using PCA. Furthermore, the

three first PCA components were approximately equal to a linear combination of the

three, color means of the region. Based on this, the PCA did not appear as anything

more than glorified region mean features.

For the three-class scenario in Figure 1-4, the multilayer perceptron network

had three outputs, encoding for the probability of wound, skin, and background. To

obtain these probability values, I used the softmax activation function in the output

layer; this scales the outputs such that the summation of the outputs is one, and the

values are between zero and one [4]. We can interpret the corresponding output values

as probability values, but I have been unable to verify whether it does indicate

probability, or whether it is just a pseudo measure of probability.

In the internal layers, I used the hyperbolic tangent function, and the inputs

were scaled to have zero mean and a standard deviation of one. Moreover, I did use

6

back-propagation algorithm introduced by Rumelhart, Hinton, and Williams; note

that their article refers to back-propagation as using the generalized delta rule [5].

I evaluated the usage of Gaussian mixture models with the expectation

maximization algorithm as a probabilistic predictor, but the classification results I

obtained were subpar, and the algorithm failed to reliably adapt to simple 2-

dimensional multi-cluster datasets; Bilmes gives an account for this algorithm [6].

Predicting the probability of a pixel falls in the category of predicting the

probability of local structures. However, due to the weak theoretical background and

performance of probabilistic predictors, I moved on to using classification instead of

probability values; this however may have been an unwise move, as classifying local

structures in wound images appears to be of limited value. In section 4.6.5, we discuss

using probabilistic classification in future works. Furthermore, we will be using

classification of superpixel based local structure instead of classifying pixels as a tool

for object recognition and segmentation.

1.3 Thesis Overview

Chapter 2 covers software, algorithms, and theory utilized in this thesis. Chapter 2.1

provides a brief literature review on object recognition and segmentation, which is the

main topic of this thesis. Chapter 3 covers model selection methods for the learning

problem of classifying local structures within images. Classification of local structures

is an essential component of the object recognition and segmentation algorithm

presented in this thesis. Chapter 4 builds upon chapter 3, and proposes an algorithm

for object recognition and segmentation of wounds. Chapter 5 concludes the thesis. All

abbreviations used in this thesis, are listed at the end, in the List of Abbreviations.

Our somewhat unusual thesis structure is because the thesis covers two topics,

separated into the third and fourth chapter. Combining the two topics in common

method, results and discussion chapters, would result in a less readable thesis. In the

current structure, they share background, covered in the second chapter, and the

fourth chapter skips content already covered in the third one.

The third and fourth chapters have their own abstracts. The chapter abstracts

assumes a greater degree of knowledge of the background material.

7

2 Background

2.1 A Brief Literature Review on Object Recognition

and Segmentation

In the field of computer vision, object recognition is a broad term that can refer to any

technique attempting to make some prediction on objects. For instance, it may refer to

object classification images containing one prominent object, or object detection,

which locates an object within an image.

A primary motivation of segmentation algorithms is to segment objects, but few

do directly address that. For instance, Chan Vese segmentation may result in multiple

object candidates [1], and watershed segmentation parses the image into multiple

segments [7]. In addition, these two algorithms rely on pre-processing of images such

that the object is assigned different pixel values than the environment. From the early

work discussed in section 1.2, we determined the object segmentation problem to be

wholly intertwined and therefore not feasibly solved using standard segmentation

algorithms.

Typical of segmentation algorithms, their goal tends to concern segmenting the

most pronounced edges, or dissimilar regions in images. A problem is that the objects

of interest may not have pronounced edges, or be dissimilar from other regions. Skin

and wound textures have similar pixel color values, and therefore they do not have the

most pronounced edges, nor the most dissimilar regions.

We have been unable to find robust segmentation algorithms directly applicable

to our scenario, although it may just be that they have eluded us. The article by

Andreopoulos and Tsotsos [8], and the book by Szeliski [7], are two good sources

covering object recognition.

Note that the work by Levinshtein et al. shares similarities with ours [9]. What

they refer to as superpixel grouping, is essentially hypothesis optimization on subsets

of all superpixels. Their method attempts to find the object with the most distinct edge

within an image.

8

2.2 Software

We have used MATLAB R2013B for all code in this thesis. MATLAB is a high-level

language oriented for numerical computing. MATLAB is dynamically typed, which

makes it suitable for quickly developing the functions we have had to write. MATLAB

already comes with a large portion of the functionality we need, much of it via

toolboxes. Most notably for our use, MATLAB has functionality for image processing,

image analysis, machine learning, optimization, and creating graph plots.

Additionally, we have used the VLFeat open source library [10]. The library

contains implementations for a selection of computer vision algorithms. It is written

in C; but it is compatible with interfaces in MATLAB.

2.3 Data Material

Because this thesis attempts to attain recognition and segmentation of wounds, we rely

a dataset of wound images. These wound images aid in developing an algorithm, and

they provide the required training and testing data for the algorithm.

Unobstructed wound images suitable for this thesis were hard to come by due

to restrictions concerning this type of images. Ideally, we should have a large set of

wound images captured from different wounds, and from different environments. The

images we have been able to acquire, originate from three separate sources. Most of

these only partially display a wound, but we still make use of them for predicting the

class of superpixels and other local structures.

Eleven images originate from Trauma.org. These are wounds resulting from

injuries. These images are subject to the Attribution-NonCommercial-ShareAlike 4.0

International license [11]. The images from Trauma.org are in Table 2-1. Furthermore,

we make use of four images from Dr. Peter Kim, which we have listed Table 2-2. These

are wounds resulting from surgical incisions. The final image is the image of an incision

of a pig, seen in Figure 1-2. We acquired this image from the Oslo University Hospital,

Ullevål.

9

Table 2-1 Trauma.org Wound Images

The table lists all images from Trauma.org that we use in this thesis. The images and label images are

identifiable by their unique image names. These images are in the resources attached to this thesis.

The reference column references the original source of every image.

Image Name Label image name Reference

trauma1B.jpg trauma1BL.png [12]

trauma3.jpg trauma3L.png [13]

trauma6B.png trauma6BL.png [14]

trauma10B.jpg trauma10BL.png [15]

trauma11B.jpg trauma11BL.png [16]

trauma12B.jpg trauma12BL.png [17]

trauma13B.png trauma13BL.png [18]

trauma17B.png trauma17BL.png [19]

trauma18B.jpg trauma18BL.png [20]

trauma19B.jpg trauma19BL.png [21]

trauma20B.jpg trauma20BL.png [22]

Table 2-2 Dr. Peter Kim Wound Images

The table lists all images from Dr. Peter Kim that we use in this thesis. The images and label images

are identifiable by their unique image names. These images are in the resources attached to this thesis.

The reference column references the original source of every image.

Image Name Label image name Reference

peterkim_video3_im1.png peterkim_video3_im1L.png [23]

peterkim_video3_im2.png peterkim_video3_im2L.png [23]

peterkim_video3_im3.png peterkim_video3_im3L.png [23]

peterkim_video6_im1.png peterkim_video6_im1L.png [24]

The image resolution ranges from 0.15 to 1.92 megapixels, and the size of the wound

portion of the image, also has a large variation. The images denoted by a capital B in

their name, are cropped versions to balance the relative size of the wounds in the

images. Cropping improves computational performance, but it also has implications

for the predictive performance. All of these images are available in the data attachment

to this thesis.

2.4 Color Representation

In this thesis, we use the RGB color space for feature extraction. The RGB color space

simply expresses a pixel value, with its intensity in red, green, and blue. Pixel values of

10

similarly perceived colors have a low Euclidean distance, but the color space is not

perceptually uniform.

In a perceptually uniform distance, Euclidean pixel value differences are

proportional to differences perceived by humans. The international committee on

calorimetry has defined several color representations, attempting to make them

perceptually uniform; of them we will utilize the L*a*b (Lab) color space. The L-

component of the Lab color space, closely matches human perception of lightness. The

two other components express color. Paschos compares the RGB, HSV, and Lab color

space for color texture analysis; he uses Gabor filters for feature extraction and a

nearest-centroid classifier. The HSV color space has the highest performance, followed

by Lab, and then RGB [25].

Drimbarean and Whelan, also compares color spaces to extract features from,

namely, RGB, Lab, HSI, CIE-XYZ, and YIQ. None of the color spaces proved

sufficiently superior [26].

2.5 Statistical Theory

This section briefly describes some of the basic statistical theory used. Books for

introductory statistical courses usually covers these topics. We use book [27], as a

reference for section 2.5.1, 2.5.2, and 2.5.2.

2.5.1 Dependent Random Variables

Let 𝑋 = [𝑥1,𝑥2, … , 𝑥𝑁] be a multivariate random variable with a continuous

distribution. Two random variables 𝑥𝑖 and 𝑥𝑗 (𝑥𝑖, 𝑥𝑗 ∈ 𝑋) are independent if and only if

the following equation holds:

 [
𝑓𝑥𝑖

(𝑦)

𝑓𝑥𝑗
(𝑦)] = [

𝑓𝑥𝑖
(𝑦|𝑥𝑗)

𝑓𝑥𝑗
(𝑦|𝑥𝑖)

] , ∀𝑦 ∈ ℝ (2.1)

Here, 𝑓𝑥𝑖
, and 𝑓𝑥𝑗

 are probability density functions of 𝑥𝑖, and 𝑥𝑗. The unconditional

probability density functions are called marginal distributions functions. Note that we

could let 𝑥𝑖 and 𝑥𝑗 be multivariate random variables themselves, and therefore subsets

of 𝑋 (𝑥𝑖 ,𝑥𝑗 ⊆ 𝑋). Equation (2.1) would then refer to independence between these two

subsets.

11

2.5.2 Moments

Let 𝑋 be a random variable, and let 𝜇𝑋 be its expected value (mean). Expected values

of powers of 𝑋 − 𝜇𝑋 are called central moments. In other words, central moment 𝐾 is:

 𝐸[(𝑋 − 𝜇𝑋)𝐾] (2.2)

The second central moment is called variance. It is a measure of dispersion. The

standard deviation (𝑆𝐷(𝑋), or 𝜎𝑋) is the square root of the variance. The third central

moment is a measure non-symmetry, but it is scale independent. We obtain scale

independence by dividing the third central moment with 𝜎𝑋
3. Kurtosis is the fourth

central moment divided by 𝜎𝑋
4. In other words these third, fourth, fifth … order

statistics are:

 𝐸[(𝑋 − 𝜇𝑋)𝐾] 𝜎𝑋
𝐾⁄ (2.3)

These statistics provides some information on the distribution of 𝑋. The correlation

coefficient of two random variables (𝑋 and 𝑌), is a statistic for how strongly they are

dependent. The correlation coefficient is:

𝜌𝑋,𝑌 =
𝜎𝑋,𝑌

𝜎𝑋𝜎𝑌
=

𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
=

𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌

The correlation coefficient is more formally known as the Pearson product-moment

correlation coefficient.

2.5.3 Sampling Distribution of Statistics

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from a distribution with 𝜇𝑋 and 𝜎𝑋 for mean and

standard deviation. Let 𝜇̂𝑋 be the sample mean. Then:

 𝐸[𝜇̂𝑋] = 𝜇𝑋 (2.4)

 𝑆𝐸𝑀(𝑋) = 𝑆𝐷(𝜇̂𝑋) = 𝜎𝑋 √𝑛⁄ (2.5)

It is common to refer to 𝜎𝑋̅ as the standard error of the mean (SEM). This prevents

confusion between the standard deviation (𝜎𝑋) and the standard deviation of the mean

(𝑆𝐷(𝜇̂𝑋)).

An alternative to the standard error is to use confidence intervals. Due to the

central limit theorem, the standard error of the mean (given a sufficient sample) is

approximately normally distributed. The 95% confidence interval, assuming a normal

distribution is ±1.96 × 𝑆𝐸𝑀(𝑋). Note that the sample mean, is only approximately

normally distributed, and furthermore we only have an estimate to its variance.

12

Therefore, there is risk that a normal distribution assumption is optimistic. For small

sample sizes, we use the percentiles (critical values) of the t-distribution. The t-

distribution is sample size dependent, assuming larger tails for smaller sample sizes.

For instance, a sample size of 𝑛 = 30 (𝑑𝑓 = 29), and a 95% (two-sided 𝛼 = 0.05)

confidence interval is ±2.05 × 𝑆𝐸𝑀(𝑋).

2.5.4 Monte Carlo Method

Monte Carlo Methods (or experiments, or simulations) are a class of algorithms that

performs repeated random sampling to obtain numerical results. For example, in

chapter 3 we train classifiers with small sampled datasets. For each run, the dataset is

different, and hence the error values vary. By performing multiple experiments where

we train classifiers on a sampled dataset, we can obtain statistics for the error values.

2.6 Image Segmentation

2.6.1 Overview

Image segmentation partitions an image into sets of pixels, called segments or

superpixels. Image segmentation attempts to simplify an image into something that is

easier to analyze, compared to the pixel value array of the image. Image segmentation

is commonly associated with the task of separating an object from its surroundings.

The result of an image segmentation may be in the form of a single region that

supposedly corresponds to the object of interest, or a label for every pixel on whether

they belong the objet.

Image segmentation is not limited to finding a single object, nor a binary

distinction between object and non-object (foreground/background segmentation is a

common binary segmentation problem). A common topic in image segmentation is the

detection and localization of boundaries in natural scenes, without any prior

information about the particular scene [28]. The Berkeley Segmentation dataset and

benchmark [29] enables the comparison of this type of algorithms. The benchmark

relies on ground truths by human subjects, on what is and what is not a boundary.

13

Figure 2-1 Segmentation Comparison

(A) Original Image. (B) Image segmented into 443 segments using SLIC, a superpixel

segmentation algorithm. (C) Image segmented into 23 segments using "Automatic Segmentation"

by Berkeley [30].

A family of segmentation algorithms, often denoted as superpixel algorithms

partitions the image into in a large number of smaller segments [31,32,33]. Figure 2-1

illustrates a comparison of conventional segmentation and superpixel segmentation

algorithms. The idea behind superpixel segmentation is to capture all structures with

a spatial frequency above the region size of the individual segments. For example, the

over-segmentation in Figure 2-1.B would not be able to separate the leaf-sized

structures, but it does separate all individual pieces of clothing, and the building in the

background. Earlier, we said segmentation partitions an image into segments.

Alternatively, we could regard segmentation as grouping pixels we believe belongs to

the same object. A superpixel algorithm employs a conservative grouping of pixels,

thereby reducing its risk of incorrectly grouping together pixels that belongs to

separate objects. Furthermore, due to the small superpixel segment sizes, any

erroneous segmentation is contained to be within a small area.

2.6.2 Superpixels from Simple Linear Iterative Clustering

R. Achanta et al [33], introduced the Simple Linear Iterative Clustering (SLIC)

algorithm. SLIC is a segmentation algorithm that partitions the image into a large

14

number of segments. These segments carry more information than individual pixels,

and adhere better to edges than rectangular blocks hence the name superpixels.

A color image pixel has five values. Two space coordinates, and three color space

values. SLIC is a specialized k-means algorithm [34] that finds clusters of pixels in this

5-dimensional space. The algorithm has two parameters, a superpixel size parameter,

𝑆, and a regularization parameter that weights the importance of color vs position.

The initialization places cluster centers in a grid, using 𝑆 as the grid step. The

clusters are relocated to the lowest gradient position in a 3 × 3 neighborhood. This is

to prevent initialization on edge, which may be an undesired equilibrium. The

regularization parameter can ensure that most superpixels are compact and of similar

size, by putting a larger emphasis on the spatial coordinates.

After initialization, SLIC moves the cluster centers iteratively, where each

iteration assigns pixels to the closest cluster center, and relocates the cluster center to

the mean of these pixels. This iterative procedure is identical to the k-means algorithm.

The difference is that SLIC only computes the distance to the pixels that are within a

2𝑆 × 2𝑆 region (in spatial coordinates) of the initial cluster center locations. For 𝑁

pixels, 𝑘 clusters, and 𝐼 iterations, the basic k-means algorithm has a 𝑂(𝑘𝑁𝐼)

complexity. 𝑆 relates to the number of clusters and pixels by 𝑆 ≈ √𝑁 𝑘⁄ 𝑚, and 𝑆2 is the

number of pixels evaluated per cluster. The SLIC complexity is 𝑂(𝑘𝑆2 𝐼) ≈ 𝑂(𝑁𝐼),

meaning it is independent of the number of clusters.

The article claims a rule of using ten iterations suffices for most images.

Furthermore, Ren and Reid [35] uses a GPU implementation of SLIC in a technical

report, showing large performance gains. For the GPU implementation, a 1280×960

image clustered with 256 clusters takes 86ms, whereas the sequential implementation

uses 1522ms.

2.7 Superpixel Feature Extraction

2.7.1 Overview

Classifying the class of superpixels (local regions or segments) may aid the task of

object recognition. The object recognition task would be trivial if we could classify

segments with 100% accuracy. We can classify superpixels by extracting a fixed set of

15

features from them. We are also interested in classifying edges between two

superpixels, in which case we can use features from both segments. Possibly, the

simplest feature one can think of is the superpixel mean color value; the remaining

features are described in section 2.7.2-2.7.6. The features are primarily defined for

single-channel images (greyscale images). We extend these features to color images,

by extracting the same feature from all three channels separately. We call this set of

three features, a feature group.

Drimbarean and Whelan [26] compares several methods to classify 𝑁 × 𝑁

regions of color texture images. They investigate local linear transforms, Gabor

filtering, and co-occurrence. These methods encode spatial information. The linear

transform had the highest predictive performance, followed by Gabor filter and then

Co-occurrence. Among these methods, we have used Co-occurrence matrices, because

the method has a simple generalization for non-rectangular regions. Concerning their

method, they use the same images for classification and testing. This could have

affected the conclusions.

2.7.2 Moments

A simple approach to texture description is to use statistical features that describe the

distribution of the pixel color values such as mean, variance, covariance, skewness and

kurtosis. We defined these statistics in section 2.5.2, but here we go in further detail,

and specifically describe them for color images. These features are also known as

histogram moments, because we could have derived them from the pixel histogram of

the superpixel.

We assume RGB images, but the same approach applies to other color or

multispectral spaces. Let R, G and B be vectors comprising the red green and blue pixel

color values of a superpixel, where = [𝑟1,𝑟2,⋯ , 𝑟𝑛]
𝑇

, 𝐺 = [𝑔1,𝑔2, ⋯ , 𝑔𝑛]
𝑇

, 𝐵 =

[𝑏1,𝑏2, ⋯ , 𝑏𝑛]
𝑇

, and 𝑛 is the number of pixels in the superpixel. Additionally, let 𝑋 =

[𝑥1,𝑥2,⋯ , 𝑥𝑛]
𝑇

, and 𝑌 = [𝑦1,𝑦2, ⋯ , 𝑦𝑛]
𝑇

refer to any of the three colors. As there are three

colors, there are three mean, standard deviation, skewness and kurtosis measures.

They are defined as follows:

 𝐸[𝑋] = 𝜇𝑋 =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 (2.6)

16

 𝑆𝐷(𝑋) = 𝜎𝑋 = √
1

𝑛 − 1
∑(𝑥𝑖 − 𝜇𝑋)2

𝑛

𝑖=1

 (2.7)

 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑋) =

1
𝑛

∑ (𝑥𝑖 − 𝜇𝑋)3𝑛
𝑖=1

𝜎𝑋
3

 (2.8)

 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋) =

1
𝑛

∑ (𝑥𝑖 − 𝜇𝑋)4𝑛
𝑖=1

𝜎𝑋
4 (2.9)

The correlations might also be of interest. The Correlation between two different colors

are:

 𝐶𝑜𝑟𝑟(𝑋, 𝑌) = 𝜌𝑋,𝑌 =

1
𝑛 − 1

∑ (𝑥𝑖 − 𝜇𝑋)(𝑦𝑖 − 𝜇𝑌)𝑛
𝑖=1

𝜎𝑋𝜎𝑌
 (2.10)

Lastly, we could have considered other image moments, such as coskewness and

cokurtosis moments.

2.7.3 Entropy

In addition to moments, entropy is another useful feature based on the color intensity

histograms. Entropy is a measure of randomness, introduced by Shannon (1948) [36].

Let 𝑝(𝑧) be the probability of intensity value 𝑧, of color 𝑋, of the pixels in a superpixel.

Further, let ℳ be the set of all intensity values with non-zero probability:

 ℳ = {𝑥 ∈ ℳ𝐿 |𝑝(𝑥) ≠ 0}, ℳ𝐿 = {0,1, … , 𝐿} (2.11)

Then, the entropy is:

 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑋) = − ∑ 𝑝(𝑧) log2(𝑝(𝑧))

𝑧∈ℳ

 (2.12)

The reason we ignore zero probability values, is because log2(0) is undefined.

2.7.4 Sobel Mean

When classifying superpixel edges, the image gradient at the superpixel edge may be

of value. Therefore, we have included a feature group based on the Sobel operator. The

Sobel operator, named after Irwin Sobel, provides an approximation for the image

gradient magnitude. We apply the Sobel operator on all three-color channels, and take

17

the mean value of all pixels on the edge between the two superpixels. We call this the

Sobel mean feature group, and it comprises three features.

The Sobel operator convolves two 3 × 3 kernels with a color channel of the

image, resulting in the horizontal and vertical gradient approximations, 𝐺𝑥 and 𝐺𝑦. For

a single-channel image I, these are defined as:

 𝐺ℎ𝑜𝑟𝑧 = [
−1 0 +1
−2 0 +2
−1 0 +1

] ∗ 𝐼, 𝐺𝑣𝑒𝑟𝑡 = [
+1 +2 +1
0 0 0

−1 −2 −1
] ∗ 𝐼 (2.13)

The gradient magnitude, for any point (𝑥, 𝑦) in the image, is:

 𝐺(𝑥, 𝑦) = √𝐺ℎ𝑜𝑟𝑧(𝑥, 𝑦)2 + 𝐺𝑣𝑒𝑟𝑡 (𝑥, 𝑦)2 (2.14)

In a comparison of image detection techniques, the Sobel operator is described

as inaccurate and sensitive to noise [37]. The article recommends the Canny edge

detection algorithm. However, it is important to note that our scenario differs. The

superpixel edges already corresponds well to real edges, filtering out most of the false

edges. In addition, using the mean of all values across the superpixel edge, adds

robustness to noise. Preliminary testing by visual inspection of the Canny, Laplacian

of Gaussian, Robert, Prewitt, and Sobel techniques, indicated the Sobel operator to be

most suitable for our purposes.

2.7.5 Co-occurrence

Haralick et al. introduced textural features extracted from co-occurrence matrices

[38]. Co-occurrence features are frequently called GLCM features, as an abbreviation

for gray-level co-occurrence matrices. However, the technique is not limited gray-level

images. A co-occurrence matrix is the distribution of pixel values co-occurring at a

given offset. A co-occurrence matrix for a rectangular 𝑛 × 𝑚 region with intensity

values 𝐼, and offset [∆𝑥, ∆𝑦]𝑇, is defined as:

 𝑝∆𝑥,∆𝑦(𝑖, 𝑗) = ∑ ∑ {
1, 𝑖𝑓 𝐼(𝑝, 𝑞) = 𝑖 𝑎𝑛𝑑 𝐼(𝑝 + ∆𝑥, 𝑞 + ∆𝑦) = 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑚−∆𝑦

𝑞=1

𝑛−∆𝑥

𝑝=1

 (2.15)

For a specific 𝑖 and 𝑗, 𝑝∆𝑥,∆𝑦 (𝑖, 𝑗) is the probability to go from intensity value 𝑖, to

intensity value 𝑗, when the offset is [∆𝑥, ∆𝑦]𝑇. We discretize the intensity into 16 values.

To extend this definition to segments, we let the region be the bounding box of

the segment, and only count pixel pairs where both pixels belong to the segment. An

implementation trick is to compute the co-occurrence matrix of the bounding box,

18

where the values outside the segment is set to negative one. All we now have to do is

remove the negative one column and row of 𝑝∆𝑥,∆𝑦(𝑖, 𝑗).

Co-occurrence matrices are high dimensional; therefore, we extract a smaller

set of features from them. Haralick et al. suggested 14 features, but we will use the four

features implemented in MATLAB R2013b. These are:

 𝐺𝐿𝐶𝑀 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑|𝑖 − 𝑗|2𝑝(𝑖, 𝑗)

𝑖,𝑗

 (2.16)

 𝐺𝐿𝐶𝑀 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑝(𝑖, 𝑗)

𝜎𝑖 𝜎𝑗
𝑖,𝑗

 (2.17)

 𝐺𝐿𝐶𝑀 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑝(𝑖, 𝑗)2

𝑖,𝑗

 (2.18)

 𝐺𝐿𝐶𝑀 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑
𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
𝑖,𝑗

 (2.19)

The MATLAB features are similar to some of the 14 features by Haralick et al. The

MATLAB features, corresponds to the first, second, third and fifth Haralick et al.

feature, but with some variations. For instance, GLCM Homogeneity is similar to the

fifth Haralick et al. feature, defined as:

 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑀𝑜𝑚𝑒𝑛𝑡 = ∑
𝑝(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2

𝑖,𝑗

 (2.20)

They both measure the distribution’s closeness to the GLCM diagonal, but with

different weights.

2.7.6 Euclidean Moments

We have defined a set of features, which we have called Euclidean moments. These are

features defined for multi-channel images, unlike the previous features that are

defined for mono-channel images. Regular moments use the difference from the mean.

Euclidean moments use the Euclidean difference from the mean.

Let 𝑋 = [𝑥1,𝑥2, ⋯ , 𝑥𝑛]
𝑇

 refer to the color values of all 𝑛 pixels, where 𝑥𝑖 is a 3 × 1

vector of all color values of a single pixel. Then, the mean, Euclidean standard

deviation, Euclidean skewness, and Euclidean kurtosis are defined as follows:

19

 𝐸[𝑋] = 𝜇𝑋 =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 (2.21)

 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑆𝐷(𝑋) = 𝜎𝑋 = √
1

𝑛 − 1
∑|𝑥𝑖 − 𝜇𝑋|2

𝑛

𝑖=1

 (2.22)

 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑋) =

1
𝑛

∑ |𝑥𝑖 − 𝜇𝑋|3𝑛
𝑖=1

𝜎𝑋
3

 (2.23)

 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋) =

1
𝑛

∑ |𝑥𝑖 − 𝜇𝑋|4𝑛
𝑖=1

𝜎𝑋
4 (2.24)

The Euclidean standard deviation, skewness and kurtosis, are the second, third and

fourth order Euclidean moments. Higher order moments are more sensitive to pixels

far from the mean. Because we use the Euclidean distance instead of the difference, the

Euclidean skewness will always be positive.

Each feature is its own feature group, and these are the only feature groups that

have one, contrary to three features.

2.8 Machine Learning

2.8.1 Overview

Machine learning is an academic discipline, concerning the construction and study of

systems that can learn from data. It is a multidisciplinary field, building heavily on

mathematical theory, statistical theory, and computer science. Its applications vary

even more widely, being useful for, forensics, physics, marketing, biology, engineering,

and more. In this and the remaining subsections, we will look at utilized machine

learning algorithms, and model evaluation procedures.

Supervised learning is the task of learning a model from a data set of input and

output values that correctly models the relation between the input and output

variables. More formally, given a training set of 𝑁 input-output pairs (𝑥⃗1,𝑦1),

(𝑥⃗1, 𝑦1), ⋯ , (𝑥⃗𝑁 , 𝑦𝑁), discover a function 𝑓(𝑥⃗) = 𝑦, that minimizes the expected error

on new examples.

20

If the output consists of a finite set of values, we call it a classification problem

and we want the output to be arg max𝑦𝑗
𝑃(𝑦𝑗|𝑥⃗). We use the term regression analysis

or function approximation when the output is a number. Probabilistic classification

falls between classification and regression. It has the same data as a classification

problem, but it models the outcome probabilities of the data. In other words,

probabilistic classification models 𝑃(𝑦𝑗|𝑥⃗), where the output(s) are finite and

constrained to sum to one. The term soft classification has been used in place of

probabilistic classification.

The supervised learning problem may also involve multiple labels. Probabilistic

classification for instance, has multiple labels in multi-class scenarios, with the

constraint that they sum to one.

Unsupervised learning concerns the task of finding structures in a data set

without using labels. One use of unsupervised learning is to express the data in a more

compact way, either by reducing the dimensionality of the feature space, or to group

data together into a set of clusters.

2.8.2 Gaussian Classifier

The Gaussian classifier assumes classes to be distributed according to a normal

distribution, determined by the sample mean and sample variance of the class samples.

Let 𝜇𝑛 and Σ𝑛 be the mean and covariance of class 𝑛, and let the classes be denoted by

the numbers 1,2, … , 𝑁. Then, the probability density of sample 𝑥 for class 𝑛 is:

 𝑝(𝑥|𝐶𝑙𝑎𝑠𝑠 = 𝑛) =
1

√(2𝜋)𝑘|Σ𝑛|
𝑒−

1
2

(𝑥−𝜇𝑛)𝑇Σ𝑛
−1(𝑥−𝜇𝑛)

 (2.25)

Using this approximation of the probability density, and Bayes’ theorem, we can

compute the class probability of sample 𝑥:

 𝑝(𝐶𝑙𝑎𝑠𝑠 = 𝑛, 𝑥) =
𝑝(𝑥|𝐶𝑙𝑎𝑠𝑠 = 𝑛)𝑝(𝐶𝑙𝑎𝑠𝑠 = 𝑛)

𝑝(𝑥)
 (2.26)

The Gaussian classifier selects the most probable class, and given that all classes have

the same 𝑝(𝑥) fraction, we can omit that from the equations:

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑙𝑎𝑠𝑠 = argmax
𝑛

{𝑝(𝑥|𝐶𝑙𝑎𝑠𝑠 = 𝑛)𝑝(𝐶𝑙𝑎𝑠𝑠 = 𝑛)} (2.27)

21

The classification accuracy of the Gaussian classifier can be quite good, even if the

assumed probability distribution is very inaccurate. However, the Gaussian classifier

is unreliable, when the class distribution is made up of multiple clusters.

2.8.3 Gaussian Mixture Model Classifier

In section 3.2.1 we show how our data originates from a small set of sources. This

motivated us to test a classifier that modeled the data of every source as a normal

distribution. We refer to this as the Gaussian mixture model (GMM) classifier. This is

not to be confused with training Gaussian mixture models using the expectation-

maximization algorithm. Let the sources be denoted by the numbers 1,2, … , 𝑆, and let

𝜇𝑛,𝑠 and Σ𝑛,𝑠 be the mean and covariance matrix of samples belonging to class 𝑛 and

source 𝑠. Then, the probability density of sample 𝑥 is defined as:

𝑝(𝑥|𝐶𝑙𝑎𝑠𝑠 = 𝑛) = ∑

𝑝(𝑆𝑜𝑢𝑟𝑐𝑒 = 𝑠)

√(2𝜋)𝑘|Σ𝑛,𝑠|

𝑒−
1
2

(𝑥−𝜇𝑛,𝑠)
𝑇

Σ𝑛
−1(𝑥−𝜇𝑛,𝑠)

𝑆

𝑠=1

(2.28)

Otherwise, the GMM classifier uses the same principles as the Gaussian classifier, by

using Bayes’ theorem to select the most probable class.

2.8.4 K-Nearest Neighbor

The k-nearest neighbor (k-NN) classifier uses the entire training set, and predicts the

class of a new sample 𝑥, to be the mode of the classes of the 𝑘 training samples with the

shortest distance from 𝑥. The mode is a statistical term, and it simply means the most

occurring class, of the k samples. To avoid confusing the 𝑘 hyperparameter with other

concepts, we will call it the 𝐻𝐾−𝑁𝑁 hyperparameter. The k-nearest neighbor classifier

can generate highly nonlinear classification results, despite of its simplicity. We use the

Euclidean distance as the distance measure. The classification accuracy is highly

dependent on the choice of 𝐻𝐾−𝑁𝑁; in section 3.3.3, we describe how we have chosen

to select this hyperparameter.

Many algorithms use the principle of classifying new samples based on their

proximity to the training samples. The most primitive variant is to determine the class

of a sample by its single nearest neighbor, also known as the 1-NN algorithm. Our rule

of selecting the mode of the k-nearest neighbors may also be known as the voting rule.

22

Denoeux introduced a k-nearest neighbor classification rule based on Dempster-

Shafer theory [39]. He compares it to the voting rule, and the weighted k-nearest

neighbor rule. On the two real world, and one artificial datasets, the Dempster-Shafer

rule had the highest performance, whereas the voting rule had the lowest performance.

Judging by this, we could have seen better results from something else than the voting

rule.

2.8.5 Random Forests

The random forest classifier is an ensemble learning method that constructs multiple

decision tree classifiers, and outputs the class that is the mode (most occurring class)

of the individual classification tree predictions. Breiman developed the algorithm [40].

Classification trees are trained using random subsets of the full data, and randomly

selected features. We select the features at random for every decision split. We will

refer to the number of features to select by random, as the 𝐻𝑅𝐹 hyperparameter. A rule

of thumb is to set 𝐻𝑅𝐹 equal to the square root of the number of features, which a study

suggest is near-optimal in most cases [2].

2.8.6 Support Vector Machines

Support vector machines are binary discriminative classifiers trained using a fully

labeled dataset. Cortis and Vapnik [41] introduced the support vector machines in

1995. The algorithm builds upon the max margin hyperplane algorithm introduced by

Vapnik and Lerner in 1963 [42], and other intermediate work. The max margin

hyperplane is the hyperplane that maximizes its distance to the closest training vector

on either side of the hyperplane. The algorithm has limited use due to the constraint

that the data must be linearly separable. I will refer to points in input space or mapped

space as vectors, as used by the SVMs article.

SVMs use a soft margin hyperplane, which is a modified version of the max

margin hyperplane, allowing some vectors to violate the margin of its class. The soft

margin hyperplane minimizes the sum of deviations of these violations, and maximizes

the margin for the correctly classified vectors. The soft margin hyperplane enables the

algorithm to handle noise and overlap between classes.

23

SVMs can map input vectors to a very high dimensional space, such that the

training data is linearly separable. In particular, SVMs can use the kernel trick, greatly

elevating the ability to find complex nonlinear decision boundaries in the input vector

space.

SVMs must calculate the distance of a vector to the hyperplane; however, we can

express the hyperplane as a linear combination of training vectors. The training vectors

that have nonzero weights are called support vectors and to classify a new vector we

must calculate the dot products between the new vector and the support vectors. The

use of support vectors is what enables SVMs to use the kernel trick. For a maximum

margin hyperplane, the support vectors are the training vectors that lies on the

margins. For a soft margin hyperplane, the support vectors are the training vectors that

either lies on the margins, or violate them.

Although SVMs is a binary classifier, we can extend any binary classifier to

classify multiple classes. One strategy is to train a classifier for each class against all

the other classes. The classifier that places new data in the best position relative to the

boundary labels the new data to its corresponding class.

2.8.7 Kernel Methods

One machine learning technique is to transform the input feature vectors, to another

feature space. This enables linear classifiers, such as support vector machines, to form

highly nonlinear decision boundaries in the original feature space. We could do this

with any classifier. Kernel methods however, only uses the feature vectors in inner

products between pairs of samples. This enables the usage of transformations with

simple inner products, but very hard to compute transformations. Hofmann et al.

published a review on kernel methods in machine learning [43].

The RBF-SVMs, discussed in section 2.8.6, uses the radial basis function kernel.

Let 𝑥 and 𝑦 be two feature vectors, where 𝜑(𝑥), and 𝜑(𝑦) are the transformed feature

vectors, then the kernel function is:

𝐾(𝑥, 𝑦) = 〈𝜑(𝑥), 𝜑(𝑦)〉 = 𝑒
−

||𝑥 −𝑦||
2

2𝐻𝜎
2

The transformed feature vectors have an infinite dimension, making it impossible

actually compute the transformed feature vectors. The inner product however, is only

24

a simple computation using the two input feature vectors. 𝐻𝜎 is a free parameter, and

by extension a hyperparameter of the RBF-SVMs classifier.

2.8.8 Model Selection Methods

Learning algorithms, such as support vector machines and k-nearest neighbors have

hyper-parameters we must select. In the context of supervised learning, a method that

selects hyper-parameters and trains a predictive model based on a dataset; is referred

to as a model selection method. In addition, it can include the task of obtaining an

estimate for the predictive performance. It should preferably be an unbiased estimate

of the predictive performance. Guyon et al. [44] provides an up-to-date (2009)

overview on the topic of model selection methods.

A common approach to select hyper-parameters is to select the hyper-

parameters that minimizes the cross-validation error. Kohavi [45] compares accuracy

estimation of cross-validation and bootstrap; recommending ten-fold stratified cross-

validation for model selection (as a rule of thumb). In stratified cross-validation, we

balance the number of samples per class for every fold. In this thesis, we always ensure

every fold has an equal number of samples per class.

A problem with selecting hyperparameters that minimizes the cross-validation

error is that the cross-validation error becomes optimistically biased. However, we can

use an external cross-validation loop or a separate test set to estimate the out-of-

sample error (predictive performance).

Cawley and Talbot [46] emphasizes the importance of a low variance, model

selection criterion, to reduce over-fitting in model selection. One of their

demonstrations serves as a good example on the over-fitting of cross-validation. Using

a Monte Carlo simulation on a synthetic data set, they demonstrate how a kernel ridge

regression classifier, over-fits the hyper-parameters. They tune hyper-parameters

using an iterative procedure that minimizes the cross-validation error. The expected

value of the cross-validation error is monotonically decreasing. The out-of-sample

error on the other hand, first shows a decrease, but then starts to increase after a

certain point. This is the exact same behavior typically seen by training neural

networks, where the test data monotonically decreases, whereas the out-of-sample

error (estimated using a validation set) eventually shifts and begins to increase. The

difference is that, instead of over-fitting parameters (perceptron weights) we over-fit

25

hyperparameters. Additionally, the cross-validation error, rather than the training

error shows a monotonic decrease.

The over-fitting cases in the previous paragraph are not surprising; both

scenarios attempt to fit some parameters using a predictive performance criterion. To

compare, a support vector machine optimizes the parameters (support vectors) that

minimizes the training error. Similarly, the hyperparameter optimization optimizes

the hyperparameters using the cross-validation error. In other words, the cross-

validation error is the training error with respect to the optimization of the

hyperparameters.

2.8.9 Feature Selection

Feature selection is a sub-problem of model selection methods. The subset of features

we select from the complete feature set is a hyperparameter optimization problem.

Expressed more formally, let 𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 be the number of features, and 𝑃𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 be a

𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 1 binary vector. A true value indicates the corresponding feature is selected,

and a false value indicates the corresponding feature is not selected. The optimization

problem, consist of selecting the 𝑃𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 value that maximizes the predictive

performance. Guyon and Elliseef provides an overview on feature selection [47].

Kohavi and John [48] thoroughly examined using an error estimate (such as

cross-validation) of the learning algorithm to search for the optimal features. They

referred to this as the wrapper approach, and the others as filter approaches.

Primarily, filter methods are not designed for a single learning algorithm. Note that

Whitney [49] had earlier (1971) used a wrapper method to select features with a k-

nearest neighbor classifier.

If training the learning algorithm is time consuming, then training the learning

algorithm repeatedly for a large set of feature combinations can be too time consuming.

Therefore, filter methods may still be the best choice in some scenarios. However, note

that we can use a wrapper method for a fast learning algorithm as a feature selection

filter for a slow learning algorithm. We could also use a hybrid method; use a filter for

feature ranking, and then select the number of features that minimizes the error

estimate of the learning algorithm.

For wrapper methods, there are many feature selection search strategies. In fact,

we could use any binary optimization algorithm. In this thesis, we will use the greedy

26

forward selection algorithm. The greedy forward selection algorithm, first used by

Whitney [49] for feature selection, consists of iteratively adding the best features. In

the context of cross-validation, we first select the best feature according to majority

vote of the cross-validation errors. Then we fix this first feature, and repeat the cross-

validation for all second feature candidates. Again, we select the best feature according

to majority voting. We repeat this until the performance ceases to improve.

On the opposite end from forward selection, we have exhaustive search. Testing

all feature combination may be prone to over-fitting. Additionally, it has a bias to select

roughly half of the features. For example, there are more ways to select five out of ten

features (252) than two out of ten features (45).

The sequential forward floating selection, algorithm by Pudil et al. is popular for

feature selection [50]. It follows a repeated include 𝑙 exclude 𝑟 (𝑟 < 𝑙) procedure. The

algorithm is capable of removing features rendered obsolete due to high dependence

with other features, yet it does not drastically increase the computation time.

2.9 Optimization

2.9.1 Overview

An optimization problem is the problem of finding the optimal solution from all

candidate solutions. A candidate solution is simply a member of the set of all possible

solutions. We make use a function with a real-valued output to describe the quality of

a given candidate solution. We call this function, the objective function. It is most

common to let lower values indicate better candidate solutions. Let 𝑓 be the objective

function, 𝑋∗ be the optimal solution, and 𝒜 be the set of all candidate solutions. A

correct objective function must then satisfy:

 𝑋∗ = arg min
𝑋∈𝒜

𝑓(𝑋) (2.29)

In this thesis, the optimal solution will be the minimum of the objective function. A

loss function specifically refers to a function we want to minimize. A function we want

to maximize may be called a utility function. Some other names for objective functions

are energy functions, fitness functions, and cost functions. To find the optimal solution

we employ a search algorithm. Search algorithms that converges to the optimal

27

solution puts constraints on the objective function, and they restrict the constraints we

can set for candidate solutions.

2.9.2 Genetic Algorithm Optimization

A genetic algorithm is a search heuristic, which relies on techniques inspired by natural

selection. A genetic algorithm can refer to any algorithm that mimics evolution of a

population of candidate solutions. Genetic algorithms have a long history with multiple

contributors. We use the version implemented in Matlab R2013B to solve binary

optimization problems. Adhering to the Matlab documentation, the genetic algorithm

consists of the following steps:

1. Initialize a set, or population, of candidate solutions.

2. Create a sequence, using the population at one iteration, to create the next

population. The steps per iteration are:

a. Compute the objective function value for every candidate solution

b. Select a subset of parents from the population based on their score.

c. Select a subset of the highest-scoring (elite) members to be in the next

population.

d. Produce children from the parent’s subset, by using mutation and

crossover.

e. Replace non-elite members with children.

3. Stop when a stopping criterion is met.

For a more broad and general overview on genetic algorithms we refer to a book by

Mitchell, dedicated to genetic algorithms [51].

28

3 Model Selection Methods for Dependent

Samples

Figure 3-1 Chapter 3 Flowchart

Model selection methods for classifiers encompasses the methods we use to select

features and hyperparameters. There are many previous studies on model selection

methods. However, our learning problem consists of classifying groups of dependent

samples. To the author’s knowledge, no study has evaluated model selection methods

for this specific learning problem. We evaluate hyperparameter selection for multiple

classifiers on a synthetic dataset, and the results shows optimistically biased error

estimates when we use dependent samples. Further, we evaluate combined feature and

hyperparameter selection on classifying superpixel segments and superpixel edges

from a dataset of wound images. These model-selection methods reliably selects

rational hyperparameter values and features, and they should be a core part of any

complete classification algorithm.

Chapter 4: Object Recognition and Segmentation of Wounds

General
Objective
Function

Segment Image
Into Superpixel

Image

Hypothesis Search

Training
Images

Label
Images

Segment Images
Into Superpixel

Images

Data Set
Folds

Create
Dataset

Models

Cross-Validation
Error Measure

Model Selection
Methods

Test
Image

Best
Hypothesis

Solution

Chapter 3: Model Selection Methods for Dependent Samples

29

3.1 Introduction

Consider a machine-learning task where we want to create a probability model for the

age and gender of drivers passing a waypoint, using only the velocity of the car as a

feature. Now, also consider that the data gathering is faulty. On some occasions, the

velocity of a car is measured twice. The velocity measurements of these duplicate

observations are dependent samples. In our case, we have a small set of wounds, and

we want to learn the class membership of local structures in images of these wounds.

Figure 3-1 illustrates this learning problem.

Local structures from the same wound are dependent, and therefore our data

consists of known groups of dependent samples. Unlike the duplicate observations of

car velocities, we actually know which samples are dependent, allowing us to compute

unbiased error estimates of classification models.

We will refer to a single wound as a source, and the set of local structures within

the images of a wound as samples. Note that the term source has a more general

concept than images of a wound. Sources relates to the concept of groups with within-

group dependency between samples. We use the source term to avoid confusion with

other concepts that occasionally uses the group term. The learning problem, is to learn

a model that can classify samples from new sources when the within source samples

are dependent.

A complicating factor is that we only have a small set of sources, rendering

unreliable error estimates. To improve the reliability of different model-selection

method comparisons, we run Monte-Carlo simulations on generated datasets. We

define a synthetic two-dimensional data distribution consisting of two parts. The first

part is a distribution of the sources. The second part is a within source distribution of

the samples.

Our evaluation of model selection methods, are split into two parts. The first

part is based on the Monte-Carlo simulation, and answers questions that does not

involve feature selection. We have selected a small set of classifiers requiring

hyperparameter tuning. These are the k-nearest neighbor, random forest, linear-SVM,

and RBF-SVM classifiers. Furthermore, we compare these classifiers, to the Gaussian

and the GMM classifiers, which do not require tuning of hyper-parameters. We also

combine all of the aforementioned methods in a bucket of models method, using nested

30

cross-validation to provide an unbiased error estimate of each model selection method.

We can pose the first evaluation part as three questions:

(1) What is the distribution of the out-of-sample error?

(2) What is the relation between the out-of-sample error and the cross-

validation error?

(3) What is the effect of balancing folds by source versus splitting by source?

We have addressed these three questions in the discussion sections 3.7.1, 3.7.2, and

3.7.3 respectively.

The second evaluation part uses the results from the wound images dataset.

Here we look at the out-of-sample error of the feature groups, and classifiers

incorporating feature selection. The advantage of using the wound dataset is that we

actually use the data we are interested in classifying. The downside is that we have a

limited amount of data, and therefore the results are unreliable.

3.2 Method: Data

3.2.1 Dataset of Wound Images

The data consists of features extracted from superpixels, originating from an image set

of ten wounds. These images are a subset of the images listed in section 2.3. Figure 3-2

contains a superpixel color mean feature image of every source, with varying numbers

of superpixels per image. In our set, we will sample data using multiple settings for the

superpixel region size.

The SLIC regularization parameter, see section 2.6.2, is 40 times the region size.

Preliminary results indicated that this parameter-setting rule would result in decently

formed superpixels, for both small and large region sizes. More optimal ways to decide

the regularization parameter surely do exist, but we ignore that in this thesis.

We distinguish parts of the image into three categories. Wound, skin, and

background. We group skin and background superpixels into class 1, and we let wound

superpixels belong to class 2. Table 3-1 lists the proportion of each category. We define

a superpixel to belong to wound, skin, or the background category, based on what

category is most dominant among the pixels, from manually segmented ground truth

images.

31

Figure 3-2 Superpixel Mean Feature Images

Mean Feature images of one image from every source in the wound dataset. There are two other

images in the source that the upper right image is a part of, and the source containing the lower

right image, has one other image as well. Otherwise, there is only one image per source. We call

these mean feature images, because we have colored the region of each superpixel with its color

mean value. The number of superpixels differs per image.

Table 3-1 Class Balance

 Class 1 Class 2

 Non-skin Background Skin Wound

 25% 25% 50%

The class balance yields a simple two-class evenly balanced classification

problem. We have not based this class proportion on the proportion observed in the

images. It may be a reasonable choice of proportion in the full object recognition

algorithm, but that is a very uncertain claim. We used under-sampling to adjust the

class/category proportions to the desired value. With the under-sampling technique,

we randomly select a subset of samples in each category such that they adhere to the

desired proportion. Additionally, we under-sample each source such that they are of

equal size.

32

Figure 3-3 Scatter Plot of Color Segment Mean for All Ten Sources

The horizontal direction is the a* component of Lab color space, and the vertical direction is the b*

component of Lab color space. The circles represent the distance of one and two SD’s from the class

mean.

Concerning the ideal class proportion, the goal is object recognition, not

minimizing the percentage of misclassified segments in images. Presumably, class 1

and class 2 have a large overlap regardless of what feature we extract from the

segments. Furthermore, say the true proportion of the wound class is 1 to 1000.

Subsequently, training with severe class overlap and the 1 to 1000 class proportions

would lead to always picking class 1. That would be useless for object recognition.

The superpixels are not the only local structure of interest. Other local structures

may also aid the object recognition algorithm. One such type of structure is the

-20

0

20

40

60

80

-20

0

20

40

60

80

-20

0

20

40

60

80

-20

0

20

40

60

80

-20 0 20 40 60 80

-20

0

20

40

60

80

-20 0 20 40 60 80

Skin/Background

Wound

33

superpixel edge. This is the combination of two superpixels sharing borders. The

shared border is the edge. We let a superpixel edge going from wound to edge, be a

wound edge, and everything else be non-wound edges. We balance the proportion of

both classes, although a wound edge is much rarer than the opposite. However, using

the actual proportions would yield models always predicting an edge to, not be a wound

edge. Again, that would be useless for object recognition.

For visualization purposes, and a basis for the synthetic data model, we use

superpixel features. For feasible modelling of the data distribution, we have chosen to

use no more than two features. We have selected the two color components of Lab color

space (a* and b*) as the pair of features. They have an intuitive interpretation, and we

were unable to find another feature pair candidate with significantly better preliminary

classification results. Figure 3-3 visualizes a* and b* color mean data for all ten sources.

3.2.2 Samples Regarded as Random Variables

This section is highly theoretical. we describe how out data are dependent multivariate

random samples, and what that really means.

The samples of source 𝑖, were drawn from some distribution, which we will

denote 𝑓𝑥𝑖
. The learning goal is to train and select a model that minimizes the

classification error of samples drawn from unknown sources. Therefore, we should

select the model that minimizes the classification error of the complete distribution of

samples (𝑓𝑥). Note that we let each sample be a multivariate random variable consisting

of its class label, and feature values. By doing this we get one distribution for samples,

rather than one for every class, thereby hiding redundant information.

We have a finite set of sources, and each source has a finite set of samples.

Therefore, the set of all sources is a set of sets. The goal of the synthetic data model is

the ability to generate these sets of sets. Whether the actual distribution of the synthetic

data model matches the real distribution, is not so important. First, we use |𝐴| to

denote the number of elements of a given set 𝐴. This is also called the cardinality of set

𝐴. Furthermore, let 𝑥𝑖,𝑗 be sample 𝑗 of source 𝑖. Let 𝑋 be the set of all samples. Let 𝑆𝑖 be

the set of all samples from source 𝑖. We will refer to 𝑆𝑖 as set-source 𝑖. Finally, let 𝑆 be

the set of all set-sources, and let |𝑆| = 𝑁𝑆. That means 𝑆 is a set of sets. Putting all this

together, we can express the sets as follows:

34

 𝑆𝑖 = {𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,|𝑆𝑖 |}, 1 ≤ 𝑖 ≤ 𝑁𝑆 (3.1)

 𝑋 = ⋃ 𝑆𝑖

|𝑆|

𝑖=1
 (3.2)

 𝑆 = {𝑆1,𝑆2, … , 𝑆𝑁𝑆
} (3.3)

Note that the set-sources are non-overlapping, so the intersection between two set-

sources is the empty set:

 𝑆𝑖 ∩ 𝑆𝑘 = {}, 𝑖 ≠ 𝑘 (3.4)

In section 3.2.3, we transition from sets to develop models for the probability

distributions of these sets.

In contrast to the common topic of dependence between features, we are

concerned with the dependence between samples. The confusing aspect about

dependence between samples is that we only have one instance of any given sample.

First, let 𝑓𝑥 be the marginal distribution of any given sample, not knowing what source

it was sampled from. Let 𝑓𝑥𝑖
 be the distribution of the samples in set-source 𝑖. All the

𝑥𝑖,𝑗 samples, were sampled from the distribution of their respective source, which gives

us:

 𝑓𝑥𝑖,𝑗
= 𝑓𝑥𝑖

 (3.5)

The key point about equation (3.5), is that knowing some 𝑥𝑖,𝑗 values for a source (fixed

𝑖), infers information on the sample distribution of the source (𝑓𝑥𝑖
), thereby inferring

information on every other 𝑥𝑖,𝑗 of that source. From that follows, that the samples

within a source must be dependent, and therefore the unconditional marginal

distribution (𝑓𝑥) of each sample, is not equal to the conditional distribution:

 𝑓𝑥(𝑥) ≠ 𝑓𝑥(𝑥|𝑥𝑖,𝑗), 𝑥 ∈ 𝑆𝑖 (3.6)

Conversely, two samples from different sources are independent:

 𝑓𝑥(𝑥) = 𝑓𝑥(𝑥|𝑥𝑖,𝑗), 𝑥 ∉ 𝑆𝑖 (3.7)

Note, equation (3.6) does not hold in the special case where the distribution of a source

is equal to the marginal distribution (𝑓𝑥 = 𝑓𝑥𝑖
), which we will ignore. This is fine,

because we have a zero probability that these two distributions are exactly equal.

35

3.2.3 Synthetic Data Model

We want to build a generative model that attempts to mimic the properties of the data

extracted from the wound images, as observed in Figure 3-3. Our goal is not to create

an accurate model for the complete distribution, but rather to create a model that can

generate sets of sources with individual within source distributions. Such a model will

enable us to analyze what inferences we can make about the out-of-sample error based

on a small set of sources. We can also use it to compare model selection methods.

While there are many approaches to create a distribution of distributions for two

classes, we have decided to use a model consisting of four independent multivariate

random variables, which we assume to be normally distributed. Normal distributions

are defined by their means and covariance matrices, so when we need a distribution of

sources, we really need a distribution of source means, and source covariance matrices.

Figure 3-4 contains a graphical representation of the random variables.

Figure 3-4 Model of Data Distribution

The figure shows the distribution of the two classes from a given source. The [𝑑𝑥, 𝑑𝑦] vector is the

offset between the two class means 𝜇1, and 𝜇2.The within source distributions have covariance

matrices 𝛴1 and 𝛴2, and the circles represent the standard deviations of the two classes.

The first multivariate variable is the source mean of the wound class (𝜇2 =

[𝜇𝑥2
, 𝜇𝑦2

]). The second multivariate variable is the offset from the wound class to the

background class (𝑑 = [𝑑𝑥, 𝑑𝑦]), which we use to calculate the mean of the other class.

It is obvious that the mean of the two classes are dependent, but the same is not true

0 10 20 30 40 50 60 70
10

15

20

25

30

35

40

45

50

55

a* (from Lab color space)

b
*
(f
ro

m
 L

a
b
 c

o
lo

r
s
p
a
c
e
)

Source mean of skin/background class

Source mean of wound class

𝝁𝟏 = [𝝁𝒙𝟏
𝝁𝒚𝟏]

𝝁𝟐 = [𝝁𝒙𝟐
𝝁𝒚𝟐]

𝒅𝒙 = 𝝁𝒙𝟏
− 𝝁𝒙𝟐

𝒅𝒚 = 𝝁𝒚𝟏
− 𝝁𝒚𝟐

𝚺𝟏 = [
𝝈𝒙𝟏

𝟐 𝝈𝒙𝟏𝒚𝟏

𝝈𝒙𝟏𝒚𝟏
𝝈𝒚𝟏

𝟐] 𝚺𝟐 = [
𝝈𝒙𝟐

𝟐 𝝈𝒙𝟐𝒚𝟐

𝝈𝒙𝟐𝒚𝟐
𝝈𝒚𝟐

𝟐]

𝝈𝒙𝟏

𝝈𝒚𝟏

𝒚

𝒙

36

for the offset, nor is that important. By using the offset rather than the mean, we avoid

having to estimate the distribution of four dependent random variables.

The third and fourth multivariate variables are the covariance matrices of the

source distribution for the two classes. The 2 × 2 covariance matrices (Σ1 and Σ2) are

symmetric, and therefore contains three unique parameters each of which we model as

the vectors Σ1
′ and Σ2

′ .We can express the four multivariate random variables, and the

2 × 2 covariance matrices mathematically as follows:

 Σ1 = [
𝜎𝑥1

2 𝜎𝑥1𝑦1

𝜎𝑥1𝑦1
𝜎𝑦1

2] , Σ2 = [
𝜎𝑥2

2 𝜎𝑥2𝑦2

𝜎𝑥2𝑦2
𝜎𝑦2

2] (3.8)

 𝜇2 = [𝜇𝑥2
, 𝜇𝑦2

]~ 𝒩 (Ê[𝜇2], 𝐶𝑜𝑣̂(𝜇2)) (3.9)

 𝑑 = [𝑑𝑥, 𝑑𝑦]~𝒩(𝜇̂𝑑, Σ̂𝑑) (3.10)

 Σ1
′ = [𝜎𝑥1

2 , 𝜎𝑦1
2 ,𝜎𝑥1𝑦1

]~𝒩 (Ê[Σ1
′],𝐶𝑜𝑣̂(Σ1

′)) (3.11)

 Σ2
′ = [𝜎𝑥2

2 , 𝜎𝑦2
2 , 𝜎𝑥2𝑦2

]~𝒩 (Ê[Σ2
′],𝐶𝑜𝑣̂(Σ2

′)) (3.12)

By assuming the multivariate random variables to be normally distributed, we need

estimates for their means and covariance matrices. We obtain these estimates from the

sample means and sample covariance matrices given by the data from the wound

images, as seen in Figure 3-3.

Note that covariance matrices for the within source distributions (Σ1 and Σ2)

must have non-negative diagonal elements, and the matrix must be positive-

semidefinite (non-negative eigenvalues). These conditions are not guaranteed by

sampling Σ1
′ and Σ2

′ according to a normal distribution. We have dealt with this issue

by naively resampling Σ1
′ and Σ2

′ until the conditions are met. This very simple

approach, only works well because we use a low-dimensional feature space. For a high-

dimensional feature space, we can generate covariance matrices by sampling

eigenvalues, and sampling rotation values. We use these rotation values to rotate an

identity matrix, and we let the result be the eigenvector matrix. This results in a valid

uniquely defined covariance matrix.

The optimal solution for this model is to select the class that has the highest

mean probability density for a given feature input. Because 𝜇2 and 𝑑 are normally

distributed, and 𝜇1 is the sum them, then 𝜇1 must also be normally distributed.

Therefore, a Gaussian classifier with the true mean gives the optimal solution,

37

assuming we use the true mean and covariance matrix values for the source means. In

the results section 3.6, the Gaussian classifier based method acts as a marker on what

is possible to achieve for a model selection method.

3.3 Method: Model Selection Methods

3.3.1 Unbiased Error Estimates from Dependent Samples

We use cross-validation to evaluate and compare models. As described in section 3.2,

our data has groups of dependent samples. Any two samples from separate groups

however, are independent. Because we want an estimate for the error of new sources,

a standard cross validation procedure will procure biased results. To ensure unbiased

error estimates, we must ensure that samples from one source cannot exist in multiple

folds.

We compare two methods to separate data into folds. The first method respects

the dependency of the samples by putting all samples from one source in just one fold.

This ensures that we never encounter dependent samples in both the training and

validation set at the same time. The second method evenly balances samples per source

for every fold. In practice, the second method is almost identical to randomly selecting

data for each fold without respecting the dependency between samples.

A recent survey of cross-validation procedures for model selection [52],

discussed cross-validation with dependent data. However, the survey only covered

dependent data in the context of time series and dependent observations. These differ

from our scenario of fully known groups of dependent samples. We were unable to find

sources covering model selection methods for our specific case of dependent samples.

3.3.2 Hyperparameter Selection

One problem of model selection is that obtaining a final model, is more complex than

just training a classifier on training data. Many classifiers rely on tuning hyper-

parameters to perform well, and we must incorporate an automatic hyper-parameter

selection procedure for the classifiers to be complete model selection methods. There

are two key components required for selecting hyper-parameters, and what we choose

those to be, can have a large impact on the results. The first component is the rules that

38

determines what parameters to initially test, and subsequent hyper-parameters to test

based on the performance metrics of previously tested hyper-parameters. The second

component is what performance metric we use to compare hyper-parameters.

We introduced model selection methods section 2.8.8, but it may be difficult to

see exactly what our model selection methods are. To illustrate, Figure 3-5, Figure 3-6,

and Figure 3-7 outlines hyperparameter selection for superpixel segment and edge

classifiers. Figure 3-5 defines cross-validation when training classifiers with

hyperparameters. This cross-validation function is used in Figure 3-6, which shows

hyperparameter selection. Finally, Figure 3-7 shows an outer cross-validation loop

around the hyperparameter selection function in Figure 3-6. Below these figures, we

explain the hyperparameter selection components in more detail. The flowcharts can

be a useful reference, but we will also rely on code algorithms to be more precise, using

consistent mathematical definitions used throughout this chapter.

Figure 3-5 Cross Validation Flowchart

The flowchart shows cross validation for a classifier that is dependent on some parameters.

Rectangles represents processing steps. Parallelograms represents objects. Curved Blocks

represents data.

Data Set
Folds

Training
Folds

Validation
Fold

Cross Validation Loop

Training
Dataset

Hyperparameter

Train Model Model
Compute

Validation Error

Split
Data Set

Merge
Folds

Compute Cross
Validation Error

Cross Validation
Error

Cross Validation
Function

Data Set
Folds

Hyperparameter

Cross Validation
Error

Outputs

Inputs

39

Figure 3-6 Hyperparameter Selection Flowchart

The flowchart shows hyperparameter selection. The algorithm finds the optimal

hyperparameters, and then trains the classifier with these hyperparameters. The cross-validation

error estimate is optimistically biased because it is used for optimization of the hyperparameter.

Rectangles represents processing steps. Parallelograms represents objects. Curved Blocks

represents data. We defined the red cross-validation function in Figure 3-5.

Figure 3-7 Unbiased Hyperparameter Selection Flowchart

The flowchart shows unbiased hyperparameter selection. The algorithm finds the optimal

hyperparameters, and then trains the classifier with these hyperparameters. The cross-validation

error estimate is considered unbiased, as we use an outer loop to compute the cross-validation

error; in practice there is a small pessimistic bias due to a smaller training set for error estimation.

Rectangles represents processing steps. Parallelograms represents objects. Curved Blocks

represents data. We defined the yellow hyperparameter selection function in Figure 3-6.

The rules we use for selecting what parameters to test, are based on a grid-based

search. This involves an initial stage of searching through the range of parameter

values using a coarse grid. The following stages perform subsequent grid searches in

the best performing region using finer and finer masked grids for every iteration. If the

relation between the output performance metric and input hyper-parameters is a

Data Set
Folds

Hyperparameter Selection Loop

Select Next
Hyperparameter

Select Optimal
Hyperparameter

Optimal
Hyperparameter

ModelTrain Model

Training
Dataset

Merge
Folds

Cross Validation
Function

Hyperparameter

Cross Validation
Error

Hyperparameter Selection
Function

Data Set
Folds

Model

Cross Validation
Error

Cross Validation
Error

Unbiased
Hyperparameter Selection

Function

Data Set
Folds

Model

Hyperparameter Selection
Function

Model

Training
Folds

Validation
Fold

Outer Cross Validation Loop

Hyperparameter Selection
Function

Model
Compute

Validation Error
Split

Data Set
Compute Cross

Validation Error

Cross Validation
Error

Data Set
Folds

Cross Validation
Error

40

convex function, then this grid search method will converge to the optimal hyper-

parameter solution.

Although it is possible to find the optimal hyper-parameters for convex

functions, it only means that the hyper-parameters are optimal for the performance

metric. The hyper-parameters, however, may not be optimal for the out-of-sample

error. This is a problem called over-fitting, and it is possible to over-fit both the

training data and the validation data used to evaluate the performance of the hyper-

parameters. We will use k-fold cross-validation, and let the cross-validation error be

the performance metric. The cross-validation error is the mean of the mean validation

error of all sources. If we let 𝐸𝐶𝑉 be the cross-validation error, 𝐸𝑠𝑖 be the validation

error of source 𝑖, and 𝑁𝐾 be the number of folds, then we get:

 𝐸𝐶𝑉 =
1

𝑁𝐾
∑ 𝐸𝑠𝑖

𝑁𝐾

𝑖=1
 (3.13)

Because we want to classify new sources, we hypothesize that sources should not

be split among folds. Because we only have ten folds, we assign every source to their

own individual fold. This is the split-by-source method. We will compare this to the

balance-by-source method. The balance-by-source method involves randomly

distributing the sources in every fold, such that every folds contains an equal number

of samples per class per source. In practice, this is approximately the same as a

completely random selection of samples per fold.

We select the final model, by training, using the full dataset and optimal

parameters. This is the result of the model selection method. Algorithm 3-1 defines the

components of the general model selection method in the context of a function. The

input 𝐷𝐶𝑉 is a structure of 𝑁𝐾 folds, and it is either split-by-source or balanced by

source. Note that the 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 function also makes use of the cross-

validation function, 𝑐𝑣_𝑡𝑟𝑎𝑖𝑛. Subsequently the cross-validation function makes use of

the 𝑡𝑟𝑎𝑖𝑛 function and a 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 function that return the error ratio of the validation

data, given a trained model.

Algorithm 3-2 specifies how we obtain an unbiased estimate of the error for a

given model selection method, using nested cross-validation. We still obtain the hyper-

parameters and final model in exactly the same way as the standard model selection

procedure described in Algorithm 3-1. We train the unbiased validation with 𝐾 − 1

folds, which has no difference from the standard hyperparameter selection procedure.

The difference is that for the unbiased error estimate, we chose hyperparameters based

41

on cross-validation error of models trained with 𝐾 − 2 folds; contrarily, the biased

cross validation error in Algorithm 3-1 uses 𝐾 − 1 folds.

Algorithm 3-1 Hyperparameter Selection

We use capital letters to express the variable type. We use M for models, D for datasets, and E for error

ratio. The function “cv_train”, computes the cross-validation error by picking training and validation

sets from 𝐷𝐶𝑉 and using the optimal hyper-parameters 𝐻 for training. The function “optimal_hyper-

parameters” searches through different hyper-parameter values, and returns the hyper-parameter

values with the lowest cross-validation error, obtained from “cv_train”.

𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 [𝐸𝐶𝑉 ,𝑀𝑓𝑖𝑛𝑎𝑙] = ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐷𝐶𝑉)

𝐻 = 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝐷𝐶𝑉)

𝐸𝐶𝑉 = 𝑐𝑣_𝑡𝑟𝑎𝑖𝑛(𝐷𝐶𝑉 ,𝐻)

𝐷𝑚𝑒𝑟𝑔𝑒𝑑 = 𝑚𝑒𝑟𝑔𝑒_𝑓𝑜𝑙𝑑𝑠(𝐷𝐶𝑉)

𝑀𝑓𝑖𝑛𝑎𝑙 = 𝑡𝑟𝑎𝑖𝑛(𝐷𝑚𝑒𝑟𝑔𝑒𝑑 ,𝐻)

𝒆𝒏𝒅

Algorithm 3-2 Unbiased Hyperparameter Selection

We use capital letters to express the variable type. We use M for models, D for datasets, E for error

ratio, and N for numbers. ‘~’ indicates an unwanted return value. This function makes use of the

“hyperparameter_selection” function; see Algorithm 3-1. 𝐸𝑣𝑎𝑙 is a 𝑁𝑓𝑜𝑙𝑑𝑠 × 1 vector, and 𝐷𝐶𝑉 is a

𝑁𝑓𝑜𝑙𝑑𝑠 × 1 structure array.

𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 [𝐸𝐶𝑉 ,𝑀𝑓𝑖𝑛𝑎𝑙] = 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑_ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐷𝐶𝑉)

𝑁𝑓𝑜𝑙𝑑𝑠 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐷𝐶𝑉)

𝒇𝒐𝒓 𝑖 = 1 𝑡𝑜 𝑁𝑓𝑜𝑙𝑑𝑠

𝐷𝑣𝑎𝑙 = 𝐷𝐶𝑉(𝑖)

𝐷𝑡𝑟𝑎𝑖𝑛 = 𝐷𝐶𝑉(𝑎𝑙𝑙 𝑒𝑥𝑐𝑒𝑝𝑡 𝑖)

[~, 𝑀] = ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐷𝑡𝑟𝑎𝑖𝑛)

𝐸𝑣𝑎𝑙(𝑖) = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑀, 𝐷𝑣𝑎𝑙)

𝒆𝒏𝒅

𝐸𝐶𝑉 = 𝑚𝑒𝑎𝑛(𝐸𝑣𝑎𝑙)

[~, 𝑀𝑓𝑖𝑛𝑎𝑙] = ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐷𝐶𝑉)

𝒆𝒏𝒅

3.3.3 Selected Hyperparameter Selection Methods

We have chosen random forests, k-NN, Linear-SVMs, and RBF-SVMs as the classifiers

we base our grid-based model selection methods on. In our simulations, we will also

include the Gaussian classifier and a special Gaussian mixed model classifier; both of

which do not require tuning of hyper-parameters. For convenience, we will give the

model selection methods, the same name as the classifier they are based on, and refer

42

to them by this name, when the context makes it clear that we are comparing model

selection methods.

The random forests classifier described in section 2.8.5, has the 𝐻𝑅𝐹 hyper-

parameter. It ranges from one to the number of features, and we select the optimal

value, using an exhaustive search. Because we only have two features, the grid search

simplifies into testing for the hyper-parameter to be either one or two. We fix the

number of trees in the random forests classifier to 100. Otherwise, we use the default

random forest options of the treebagger function in MATLAB 2013b.

The Linear-SVMs classifier has the 𝐻𝐶 parameter. The RBF-SVMs classifier has

the 𝐻𝐶, and 𝐻𝜎 parameter. We have explained what these are in section 2.8.6. In both

cases, we use grid search, but for the RBF SVMs we use a 2D-grid search. We start by

searching through the following geometric sequence of the parameters (the range

applies to both 𝐻𝐶 and 𝐻𝜎):

10−5, 10−4, … , 109 , 1010

That is 16 parameter choices for the Linear-SVMs and 256 unique parameter

combinations for the RBF SVMs. After having found the optimal parameter

combination, we do a more fine-grained grid search in that area, and repeat that action

six times to fine tune the parameters. For example, if the first stage of a Linear-SVMs

grid search found 103 to be optimal, we would then search through the following

geometric sequence:

102, 102.5, 103 , 103.5, 104

Note that we only need to compute the cross-validation error of two new parameter

choices. For the RBF SVMs we have a 5 × 5 grid and 20 new parameter combinations.

The k-NN classifier described in section 2.8.4 has the 𝐻𝐾−𝑁𝑁 ∈ ℕ parameter,

which determines the number of nearest neighbors to evaluate. We also search through

this using a grid search, but we set a hard cap of 1000. The initial search uses the

following sequence (42 values):

1,2,3, … ,9,10,15,20, … ,45,50,60, … ,140,150,180, … ,270,300,400, … ,900,1000

It makes little sense to have more neighbors, than there are samples per class, and

therefore we modify this sequence by cutting off any parts, larger than the number of

samples per class, and insert this value, as the maximum value. If the initial search

discovers, say 𝐻𝐾−𝑁𝑁 = 50, to be the optimal hyper-parameter, then we finalize with an

exhaustive search in that region by testing the following parameters:

43

45,46, … ,49,50,51, … ,59,60

In the worst-case scenario, this hyper-parameter search method must test 42 + 199

values.

3.3.4 Bucket of Models using Nested Cross-validation

We can combine all the model selection methods mentioned in section 3.3.3, by testing

all of them, and picking the model with the lowest estimated error. However, we cannot

ignore the bias problem of the model selection methods that requires tuning of hyper-

parameters (k-NN, RF, Linear-SVM, and RBF-SVM). The cross-validation error of a

model where we tuned hyper-parameters using the same folds for cross-validation is

not unbiased. This is the bias problem. To circumvent this, we use nested cross-

validation to evaluate the performance of these methods. The cross-validation error of

this outer cross-validation loop is an unbiased estimate of the out-of-sample error.

Note that if we pick the model selection method with the lowest unbiased error

estimate, that error estimate is a biased estimate of our final model. We can interpret

the choice of what sub-model selection method as a hyper-parameter to the bucket of

models method. However, this hyper-parameter has a very limited set of values (6);

therefore, the error estimate presumably has a small bias.

An advantage of the bucket of models method is its flexibility to adapt the

computational constraints of different classifiers. We may set minimum constraints on

how fast the classifiers should predict new samples. This could involve reducing the

number of training samples in the k-nearest neighbor classifier, or reducing the

number of trees in random forests. We may also set constraints to the training time.

Support vector machines does not handle very large datasets well, and so we could train

the Linear-SVMs and RBF-SVMs methods with a limited dataset, but still use the full

dataset for the other methods. For example, the RBF-SVMs method may have the

lowest out-of-sample error with a limited dataset, yet a random forest classifier trained

on the full dataset outperforms it.

We can set up automated procedures where we set training and prediction time

constraints, and the bucket of models method procures the (assumed) optimal result

that satisfies these constraints. All we need are approximate models for the training

time and prediction time of the classifiers, accounting for the number of features,

samples, number of hyper-parameters options tested, and so on. When multiple

44

factors can affect training or prediction time, we have to deal with the dilemma on how

to balance these. For instance, in reducing training time, is it best to reduce the hyper-

parameter search dataset and search through more hyper-parameter combinations, or

use a larger dataset, but search through fewer hyper-parameter combinations?

3.3.5 Feature Selection

We have listed a selection of superpixel and superpixel edge features in section 2.7.

Presumably, a subset of these features yields the lowest out-of-sample error. The

problem of feature selection is how do we select these features? We provided a general

overview of feature selection methods in section 2.8.9. Here we extend the model

selection methods listed in section 3.3.3, to include feature selection. Figure 3-8, and

Figure 3-9, outlines combined hyperparameter and feature selection for superpixel

segment and superpixel edge classifiers.

We will treat the selection of features like an extended version of the

hyperparameter optimization problem. Meaning, we select both the hyperparameters,

and the features that minimize the cross validation error. To search through feature

combinations, we use the greedy forward selection algorithm described in section

2.8.9. Algorithm 3-3 defines the feature and hyperparameter selection. Note that we

use the same cross validation error for optimization of hyperparameters and features.

45

Figure 3-8 Feature & Hyperparameter Selection Flowchart

The flowchart shows feature and hyperparameter selection. The algorithm finds the optimal

feature and hyperparameter subset, and then trains the classifier. The cross-validation error

estimate is optimistically biased, as it is used for optimization of the hyperparameters. Rectangles

represents processing steps. Parallelograms represents objects. Curved Blocks represents data.

We defined the yellow hyperparameter selection function in Figure 3-6.

Figure 3-9 Unbiased Feature & Hyperparameter Selection Flowchart

The flowchart shows unbiased feature and hyperparameter selection. The algorithm finds the

optimal feature subset and hyperparameters, and then trains the classifier. The cross-validation

error estimate is considered unbiased, as we use an outer loop to compute the cross-validation

error; in practice there is a small pessimistic bias due to a smaller training set for error estimation.

Rectangles represents processing steps. We have defined the green feature & hyperparameter

selection function in Figure 3-8.

Feature & Hyperparameter
Selection Function

Data Set
Folds

Feature
Transform

Select Optimal
Feature Transform

Select Next
Feature Transform

Data Set
Folds

Transformed
Training

Folds

Select
Feature Subset

Feature Selection Loop

Hyperparameter Selection
Function

Cross Validation
Error

Transformed
Training

Folds

Select
Feature Subset

Hyperparameter Selection
Function

Model

Optimal
Feature

Transform

Feature
Transform

Model

Feature
Transform

Feature & Hyperparameter
Selection Function Model

Training
Folds

Validation
Fold

Outer Cross Validation Loop

Feature & Hyperparameter
Selection Function

Model
Compute

Validation Error
Split

Data Set

Compute Cross
Validation Error

Cross Validation
Error

Data Set
Folds

Feature
Transform Transformed

Validation
Fold

Select
Feature Subset

Unbiased
Feature & Hyperparameter

Selection Function

Data Set
Folds

Model

Cross validation
Error

46

Algorithm 3-3 Feature & Hyperparameter Selection

We use capital letters to express the variable type. We use M for models, N for numbers, D for datasets,

H for hyperparameters, and E for error ratio. We defined the ‘hyperparameter_selection’ function in

Algorithm 3-1. The ‘greedy_forward_selection’ function is the greedy forward selection algorithm

described in section 2.8.9. It uses the error measure from the ‘hyperparameter_selection’ cross

validation error (𝐸𝐶𝑉). The function “feature_subset” transforms the cross-validation data set to

contain the feature subset referenced by the second argument.

𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 [𝐸𝐶𝑉 ,𝑀𝑓𝑖𝑛𝑎𝑙] = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑎𝑛𝑑_ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐷𝐶𝑉)

𝑀𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
∗ = 𝑔𝑟𝑒𝑒𝑑𝑦_𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐷𝐶𝑉)

𝐷𝐶𝑉
′ = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑢𝑏𝑠𝑒𝑡(𝐷𝐶𝑉, 𝑀𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

∗)

[𝐸𝐶𝑉 ,𝑀𝑓𝑖𝑛𝑎𝑙] = ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐷𝐶𝑉
′)

𝒆𝒏𝒅

3.4 Method: Monte Carlo Simulation

With a generative model of a data distribution, we can evaluate the performance of our

parameter and model selection procedures using Monte Carlo simulation. We perform

repeated experiments where for each experiment; draw a dataset of ten sources (𝑁𝐾 =

10). From this, we feed this to our model selection methods, who return a model and

the cross-validation error. Finally, we sample a large test set containing ten-thousand

sources, which we use to evaluate the out-of-sample error of the trained model. The

results will differ from one run to the next, because the combined distribution from the

ten training sources may significantly differ from the true distribution. We have

described this algorithm in more detail, in Algorithm 3-4. We defined the model

selection function in this algorithm in Algorithm 3-1. Algorithm 3-5 defines the

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑠𝑜𝑢𝑟𝑐𝑒 function that randomly samples a source, and randomly samples a

set of samples from the within source distribution.

The out-of-sample error is the mean error of the test sources, whereas the cross-

validation error, which we defined in equation (3.13), is the mean of the 𝑁𝐾 sources

when used for validation. If we let 𝑁𝑜𝑢𝑡 be the number of sources in the test set (𝑁𝑜𝑢𝑡 =

10000), and 𝐸𝑠𝑖
′ be the error of source 𝑖 of the test set, then we define the out-of-sample

error to be:

 𝐸𝑜𝑢𝑡 =
1

𝑀
∑ 𝐸𝑠𝑖

′
𝑁𝑜𝑢𝑡

𝑖=1
 (3.14)

Note that the out-of-sample error is only an estimate for the out-of-sample error, but

with a large number of test sources, it should be sufficiently accurate. We are not

47

directly interested in the cross-validation error. What we are interested in is how well

the cross-validation error estimates the out-of-sample error. Therefore, the difference

in error is a more interesting variable:

 𝐸𝑑𝑖𝑓𝑓 = 𝐸𝐶𝑉 − 𝐸𝑜𝑢𝑡 (3.15)

The Monte Carlo simulation provides an out-of-sample error value, and

difference in error value for every run.

Algorithm 3-4 Monte Carlo Simulation of Model Selection Methods

We use capital letters to express the variable type. We use M for models, D for datasets, E for error

ratio, B for Boolean value, and N for numbers. 𝐸𝑜𝑢𝑡,𝐸𝐶𝑉, and 𝐸𝑑𝑖𝑓𝑓 are 𝑁𝑀𝐶𝑆 × 1 vectors. We have

defined the generate_source function in Algorithm 3-5.

𝑀𝑑𝑎𝑡𝑎 = {𝐸[𝜇2],𝐶𝑜𝑣̂(𝜇2), 𝜇̂𝑑 ,𝛴𝑑 , 𝐸[𝛴1
′],𝐶𝑜𝑣̂(𝛴1

′),𝐸[𝛴2
′],𝐶𝑜𝑣̂(𝛴2

′)}

𝒇𝒐𝒓 𝑖 = 1 𝑡𝑜 𝑁𝑀𝐶𝑆

𝒇𝒐𝒓 𝑗 = 1 𝑡𝑜 𝑁𝐾

𝐷𝐶𝑉(𝑗) = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑠𝑜𝑢𝑟𝑐𝑒(𝑀𝑑𝑎𝑡𝑎 ,𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

𝒆𝒏𝒅

𝒊𝒇 𝐵𝑏𝑎𝑙𝑎𝑛𝑐𝑒_𝑏𝑦_𝑠𝑜𝑢𝑟𝑐𝑒

𝐷𝐶𝑉 = 𝑏𝑎𝑙𝑎𝑛𝑐𝑒_𝑏𝑦_𝑠𝑜𝑢𝑟𝑐𝑒(𝐷𝐶𝑉)

𝒆𝒏𝒅

[𝑀𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 ,𝐸𝐶𝑉(𝑖)] = ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐷𝐶𝑉)

𝒇𝒐𝒓 𝑗 = 1 𝑡𝑜 𝑁𝑜𝑢𝑡

𝐷𝑡𝑒𝑠𝑡 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑠𝑜𝑢𝑟𝑐𝑒(𝑀𝑑𝑎𝑡𝑎, 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

𝐸𝑠𝑜𝑢𝑟𝑐𝑒𝑠(𝑗) = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑀𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 ,𝐷𝑡𝑒𝑠𝑡)

𝒆𝒏𝒅

𝐸𝑜𝑢𝑡(𝑖) = 𝑚𝑒𝑎𝑛(𝐸𝑠𝑜𝑢𝑟𝑐𝑒𝑠)

𝐸𝑑𝑖𝑓𝑓(𝑖) = 𝐸𝐶𝑉(𝑖) − 𝐸𝑜𝑢𝑡(𝑖)

𝒆𝒏𝒅

We have selected five highly descriptive statistics concerning the three questions

posed near the end of section 3.1. The mean and standard deviation of the out-of-

sample error listed in equation (3.16), describes the distribution of the out-of-sample

error, thereby providing an answer to the first question.

 𝐸[𝐸𝑜𝑢𝑡], 𝑆𝐷(𝐸𝑜𝑢𝑡) (3.16)

The three remaining statistics (listed in equation (3.17)) each contributes some insight

into the relation between the cross-validation and out-of-sample error, and thereby

providing an answer to the second question.

 𝐸[𝐸𝑑𝑖𝑓𝑓], 𝑆𝐷(𝐸𝑑𝑖𝑓𝑓), 𝐶𝑜𝑟𝑟(𝐸𝑂𝑢𝑡 , 𝐸𝐶𝑉) (3.17)

48

The expected value of the difference in error (𝐸[𝐸𝑑𝑖𝑓𝑓]) describes the bias of the model

selection method. A negative value implies that the cross-validation error is on average

lower than the true out-of-sample error. The standard deviation of the difference in

error (𝑆𝐷(𝐸𝑑𝑖𝑓𝑓)) describes the dispersion of the cross-validation error as an estimate

for the out-of-sample error. A high 𝐸𝑑𝑖𝑓𝑓 dispersion does not exclude the possibility of

the cross-validation error being a reliable estimate of the out-of-sample error. It is still

possible that there is a strong dependence between them, which we measure by their

correlation (𝐶𝑜𝑟𝑟(𝐸𝑂𝑢𝑡 , 𝐸𝐶𝑉)). If there is a strong dependence, then there is also hope

that the different classifiers share the same dependence, such that the cross-validation

error is a reliable estimate when used to compare different classifiers.

Algorithm 3-5 Generate Source

We use capital letters to express the variable type. We use M for models, D for datasets, S for sampled

values, and N for numbers. We use the → symbol to refer to values within the 𝑀𝑑𝑎𝑡𝑎 structure. 𝑀𝑑𝑎𝑡𝑎 =

{𝐸̂[𝜇2], 𝐶𝑜𝑣̂(𝜇2), 𝜇̂ 𝑑,𝛴𝑑 , 𝐸[𝛴1
′],𝐶𝑜𝑣̂(𝛴1

′), 𝐸[𝛴2
′], 𝐶𝑜𝑣̂(𝛴2

′)}

𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 [𝐷] = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑠𝑜𝑢𝑟𝑐𝑒(𝑀𝑑𝑎𝑡𝑎 ,𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

𝑆𝜇2
= 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝒩(𝑀𝑑𝑎𝑡𝑎 → 𝐸[𝜇2],𝑀𝑑𝑎𝑡𝑎 → 𝐶𝑜𝑣̂(𝜇2))

𝑆𝑑 = 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝒩(𝑀𝑑𝑎𝑡𝑎 → 𝜇̂𝑑, 𝑀𝑑𝑎𝑡𝑎 → 𝛴𝑑)

𝑆𝜇1
= 𝑆𝜇2

+ 𝑆𝑑

𝑆𝛴1
′ = 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝒩(𝑀𝑑𝑎𝑡𝑎 → 𝐸[𝛴1

′],𝑀𝑑𝑎𝑡𝑎 → 𝐶𝑜𝑣̂(𝛴1
′))

𝑆𝛴2
′ = 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝒩(𝑀𝑑𝑎𝑡𝑎 → 𝐸[𝛴2

′],𝑀𝑑𝑎𝑡𝑎 → 𝐶𝑜𝑣̂(𝛴2
′))

𝑆𝛴1
= [

𝑆𝛴1
′ (1) 𝑆𝛴1

′ (3)

𝑆𝛴1
′ (3) 𝑆𝛴1

′ (2)
] , 𝑆𝛴2

= [
𝑆𝛴2

′ (1) 𝑆𝛴2
′ (3)

𝑆𝛴2
′ (3) 𝑆𝛴2

′ (2)
]

𝒇𝒐𝒓 𝑖 = 1 𝑡𝑜 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠/2

𝑆1(𝑖) = 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝒩(𝑆𝜇1
, 𝑆𝛴1

)

𝑆2(𝑖) = 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝒩(𝑆𝜇2
, 𝑆𝛴2

)

𝒆𝒏𝒅

𝐷 = 𝑚𝑒𝑟𝑔𝑒 𝑆1 𝑎𝑛𝑑 𝑆2

𝒆𝒏𝒅

We can answer the final question by comparing the equation (3.16 statistics, of

the balance-by-source method vs the split-by-source method. We expect the cross-

validation error of the balance-by-source method to be optimistically biased (𝐸𝑑𝑖𝑓𝑓 <

0). We expect this, because the validation samples are sampled from sources also

present in the training data. In other words, dependent groups of samples are split

49

among the training and validation data. In contrast, the samples used in the out-of-

sample error data are not dependent with any data used for training.

Besides the split-by-source and balance-by-source method, we will also do

Monte Carlo simulations where all samples are independent. We will use this to

compare the effects of dependent data and independent data. We have only included

the k-NN and Gaussian model selection methods in this simulation. We use them as

representative examples for the other model selection methods.

Due to computational constraints, we run Monte Carlo simulations with a

limited number of runs (𝑁𝑀𝐶𝑆 = 200 ∨ 1000). Therefore, the statistics listed in

equation (3.16) will not be entirely accurate. It is important to determine if the

comparisons we make between statistics of model selection methods are statistically

significant, and if the differences are large enough to be important. For the expected

value statistics, we will use the standard error of the mean to. We defined the standard

error of the mean in equation (2.5). For example, for 𝐸𝑜𝑢𝑡 , with a standard deviation of

0.1 (𝑆𝐷(𝐸𝑜𝑢𝑡) = 0.1), simulated with 200 Monte Carlo runs (𝑁𝑀𝐶𝑆 = 200), we get:

 𝑆𝐸𝑀(𝐸𝑜𝑢𝑡) = 𝑆𝐷(𝐸[𝐸𝑜𝑢𝑡]) =
𝑆𝐷(𝐸𝑜𝑢𝑡)

√𝑁𝑀𝐶𝑆

=
0.1

√200
= 7.0711 ∗ 10−4 (3.18)

3.5 Method: MATLAB Framework for Model Selection

Methods

The algorithms we have represented in this chapter specifies what the model selection

methods do, and they are similar to the actual MATLAB code we used for the Monte

Carlo simulation results. This code however, has some issues. Since the early works of

this thesis (see section 1.2), we have attempted to use different classifiers,

hyperparameter values, and features. Gradually we refined upon the code, attempting

to reuse code such as cross-validation methods for different classifiers. However,

adding new capabilities such as feature selection of groups, deciding where to use

cross-validation, or having classifiers use the source information (GMM classifier),

were tedious and required alterations in many parts of the code. To address these

issues, we have made a new general framework for model selection methods that can

easily be extended. We used the new code implementation for the results in 3.6.3. We

will discuss the most important concepts of this framework here.

50

For clarity, we will explain the framework using an example model-selection

configuration. We have a k-NN classifier with the hyperparameter search method

described in section 3.3.3. Furthermore, we use greedy forward selection for feature

selection, using the same cross-validation error that we use for hyperparameter

selection. Lastly, we obtain an unbiased error estimate by wrapping this in an outer

cross-validation loop. Figure 3-10 illustrates this configuration.

Figure 3-10 Example Setup of a Model Selection Method Algorithm

Minimalistic illustration of the model-selection method framework, training a classifier with

hyperparameter selection, feature selection, and an outer cross-validation loop for unbiased error

estimates. The MSM prefix of class names is an abbreviation for model selection method.

All subclasses of MSelMethod inherits the prediction function, and has the same

interface for training. The superclass also contains other functionality not necessarily

specific to a single subclass. Every MSelMethod object contains a sub MSelMethod

object, except the MSMHyperparam object, which contains a classifier object. A,

MSelMethod object is trained by training the sub MSelMethod object.

Subclass:
MSMUnbiased

Subclass:
MSMFeatureSel

Subclass:
MSMHyperparam

Class:
Classifier

Function Handle:
Feature Selection

Function Handle:
Predict Data

Function Handle:
Train Classifier

Function Handle:
Hyperparameter Selection

Class:
Mapping

Abstract Class:
MSelMethod

51

The train function of an MSelMethod serves three functions. The first is learning

the optimal features or hyperparameters. The second is to train a model using the full

dataset. The third function is to provide an estimate of the error, via either cross-

validation, or inheriting the cross-validation error of the sub MSelMethod object.

The MSMUnbiased object has no feature or hyperparameters to optimize. It simply

performs cross-validation on the sub MSelMethod object, obtaining an unbiased error

estimate. Therefore, the MSMUnbiased object is always configured to provide an error

estimate via cross-validation, rather than inheriting the error from the sub

MSelMethod object. It only makes sense to use the MSMUnbiased object as the outer

object, to provide an unbiased error estimate of the entire model-selection method

training.

The MSMFeatureSel uses the feature selection function handle to select a subset

of the feature groups. The feature subset is learned as a mapping stored in a Mapping

object. The Mapping object has a function that transforms input data. In this case the

function returns the data with the selected feature groups. To reduce the computational

complexity, we have chosen to inherit the error from the MSMHyperparam object. Had

we added a cross-validation loop here, we would get feature selection based on an

unbiased estimate of the mode with optimal hyperparameters. Instead, we select

feature using a biased estimate, because it were also use to select hyperparameters.

The MSMHyperparam object has some small alterations from other

MSelMethod objects, as it contains a Classifier object, rather than a sub MSelMethod

object. For hyperparameter selection, it extracts the hyperparameter search function

stored in the classifier.

Normally when calling train on the MSMHyperparam and MSMFeatureSel

objects, it initiates a feature search. However, we can configure the object to be pre-

learned, in which case they will skip the hyperparameter selection and feature

selection. We exploit this concept in the selection functions by taking the calling object

as an argument, configuring them to be pre-learned with the hyperparameter or

features we want to test, and then calling their training function. Using this, the calling

object decides how to compute the error estimate, making the design of the selection

functions very simple.

After training the entire model selection method, it is capable of predicting new

data. The MSelMethod superclass has a predict function that takes input data,

transforms it by passing it through a mapping function (if a mapping exists), calls the

52

predict function of the sub object, and then returns the predictions obtained by the sub

object. As such, calling predict on the model of Figure 3-10 will first call the prediction

function of the MSMUnbiased object. It will call the MSMFeatureSel predict function,

which will transform the data to the subset of the selected features before calling the

MSMHyperparam predict function. The MSMHyperparam predict function calls the

predict function handle of the classifier. In this case the predict function normalizes

the in accordance with the mean and standard deviation of the training set before

calling the knnclassify function in MATLAB. Normalizing data is a functionality we

should have as an option integrated in the Classifier class, which would be easy to

implement.

To simplify the setup of an entire model selection method, each class has a

default configuration. The configuration is a class in itself, and has an overwrite fields.

As such, we can overwrite the default configuration whenever we want to make a

change deviating from the default.

We only used the bucket of models, selection method for the synthetic data

model. Its excessive computational time discouraged further use. We did not use the

bucket of models for the wound dataset due to excessive computations. Therefore, we

skipped supporting it in the new model-selection method framework; however, it

would be easy to implement.

3.6 Results

3.6.1 Synthetic Data Model Parameters

The generative dataset model described in section 3.2.3 relies on mean and variance

estimates of four multivariate random variables. We computed these to be the sample

means and the unbiased sample variances of these variables from the dataset described

in section 3.2.1. Table 3-2 is a list of these estimates. Because we derived these estimate

from no more than ten samples, they are very uncertain estimates of the true mean and

covariance matrix values.

Figure 3-11 visualizes the complete distribution of the synthetic data model.

Note that there is a significant class overlap making it impossible to obtain low error

values.

53

Figure 3-11 Complete Distribution of Synthetic Data

The scatter plot sampled only one sample per class from each source. The scatter plot contains 300

samples per class. The circles represent the distance of one and two standard deviations from the

class mean.

Table 3-2 Estimated Parameter Values for Data Distribution Model

The parameters are the means and covariance matrices of the multivariate random variables, 𝜇2, 𝑑,

𝛴1
′ and 𝛴2

′ , which we have described in section 3.2.3. These parameters define the distribution of the

variables because we assume multivariate random variables to be normally distributed.

Parameters Estimated Values

𝐸[𝜇2] [42.0878 33.7809]

𝐸[𝑑] [−29.5821 −12.9007]

𝐸[𝛴1
′] [195.0305 174.7942 126.3716]

𝐸[𝛴2
′] [161.2562 130.9111 110.4004]

𝐶𝑜𝑣̂(𝜇2) [
91.0864 73.6737
73.6737 112.6606

]

𝐶𝑜𝑣̂(𝑑) [
43.9988 19.7659
19.7659 46.8937

]

𝐶𝑜𝑣̂(𝛴1
′) 104 ∗ [

1.6553 0.4208 0.8168
0.4208 1.1001 0.4446
0.8168 0.4446 0.5043

]

𝐶𝑜𝑣̂(𝛴2
′) 103 ∗ [

7.2165 4.3271 4.5027
4.3271 3.7331 2.7772
4.5027 2.7772 3.4426

]

-50 0 50 100
-50

0

50

100

a*

b*

54

3.6.2 Monte Carlo Simulation

Table 3-3 and Table 3-4 lists the error statistics for the model selection methods, with

folds split-by-source and folds balanced by source respectively. The table description

lists the numbers used for the Monte Carlo simulation, and also we randomly

resampled the full training and validation sets for every method and for every run. The

Monte Carlo simulation uses hyperparameter selection shown in Figure 3-6, to train

classification models.

Due to the Monte Carlo simulation being quite time consuming, we only used

200 runs per model selection method. RBF-SVMs used approximately 600 seconds per

run. The standard error of the mean values gives reasonable grounds to evaluate

whether the difference in performance is significant. Note that the abbreviation SEM

refers to the standard error of the mean, which we defined in section 2.5.3.

Table 3-3 Error Statistics of Model Sel. Methods with Folds Split-by-source

The Monte Carlo simulations used 10000 test sources per run (𝑁𝑜𝑢𝑡 = 10000), 10 training/validation

sources per run (𝑁𝐾 = 10), and 100 samples per source (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 100). The data were split into ten

folds, isolating samples from a source to their own respective fold.

Model Sel. Method 𝐸[𝐸𝑜𝑢𝑡] (𝑆𝐸𝑀) 𝐸[𝐸𝑑𝑖𝑓𝑓] (𝑆𝐸𝑀) 𝑆𝐷(𝐸𝑜𝑢𝑡) 𝑆𝐷(𝐸𝑑𝑖𝑓𝑓) 𝐶𝑜𝑟𝑟(𝐸𝑜𝑢𝑡, 𝐸𝐶𝑉) 𝑁𝑀𝐶𝑆

Gaussian Classifier 0.1841 (.0002) 0.0009 (.0011) 0.0068 0.0332 0.1067 1000

GMM Classifier 0.1905 (.0003) 0.0029 (.0011) 0.0107 0.0342 0.3412 1000

Random Forest 0.2120 (.0009) 0.0018 (.0021) 0.0131 0.0303 0.7190 200

K-NN 0.1927 (.0003) −0.0096 (.0010) 0.0108 0.0302 0.3165 1000

Linear-SVMs 0.1885 (.0003) −0.0061 (.0010) 0.0096 0.0314 0.1967 1000

RBF SVMs 0.1885 (.0009) −0.0104 (.0024) 0.0133 0.0333 0.0965 200

Bucket of Models 0.1862 (.0005) −0.0009 (.0022) 0.0075 0.0316 0.0061 200

55

Table 3-4 Error Statistics of Model Sel. Methods with Folds Balanced by Source

The Monte Carlo simulation used 10000 test sources per run (𝑁𝑜𝑢𝑡 = 10000), 10 training/validation

sources per run (𝑁𝐾 = 10), and 100 samples per source (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 100). The data were split into ten

folds containing an even number of samples from every source. (*) The Gaussian and GMM classifiers

have no hyper-parameters and therefore there is no difference in how the out-of-sample errors are

computed compared to Table 3-3.

Model Sel. Method 𝐸[𝐸𝑜𝑢𝑡] (𝑆𝐸𝑀) 𝐸[𝐸𝑑𝑖𝑓𝑓] (𝑆𝐸𝑀) 𝑆𝐷(𝐸𝑜𝑢𝑡) 𝑆𝐷(𝐸𝑑𝑖𝑓𝑓) 𝐶𝑜𝑟𝑟(𝐸𝑜𝑢𝑡, 𝐸𝐶𝑉) 𝑁𝑀𝐶𝑆

Gaussian Classifier 0.1839 (.0002)∗ −0.0156 (.0009) 0.0068∗ 0.0287 0.0840 1000

GMM Classifier 0.1906 (.0003)∗ −0.0244 (.0009) 0.0106∗ 0.0274 0.2663 1000

Random Forest 0.2132 (.0010) −0.0229 (.0018) 0.0140 0.0261 0.7315 200

K-NN 0.1931 (.0003) −0.0253 (.0009) 0.0110 0.0284 0.2196 1000

Linear-SVMs 0.1875 (.0003) −0.0135 (.0009) 0.0081 0.0295 0.0865 1000

RBF SVMs 0.1893 (.0007) −0.0330 (.0020) 0.0101 0.0279 0.1702 200

The expected 𝐸𝑑𝑖𝑓𝑓 values in Table 3-3, suggests that the cross-validation error

is negatively biased for Linear-SVMs and RBF-SVMs, meaning it underestimates the

out-of-sample error. The bias for the random forest is too small to evaluate. The other

classifiers have near zero bias values. For folds balanced by source, we see similar out-

of-sample error statistics.

For both fold-split methods, the expected out-of-sample error has a positive

correlation with its standard deviation. Additionally, 𝐸𝑑𝑖𝑓𝑓 has a large standard

deviation (≈ 0.03). It is likely to both greatly overestimate and greatly underestimate

the out-of-sample error. The standard deviation of the learned models out-of-sample

error is more moderate (≈ 0.01).

Figure 3-12 contains the 𝐸𝑜𝑢𝑡 histograms of the Gaussian and random forest

classifier using the split-by-source method. These are also representative for the other

model selection methods.

56

Figure 3-12 Eou t and ECV of Gaussian and Random Forest Classifier

The two histograms to the left were computed from the MCS results using the split-by-source

method. The dots in the scatter plot to the right shows the out-of-sample error and cross-validation

error for each run. We choose the Gaussian and Random forest classifiers because they are at both

ends of the spectrum in mean and dispersion of the out-of-sample error. Additionally, the random

forest classifier has the most extreme correlation.

Table 3-5 contains error statistics when all samples are independent. We

calculated the statistics for the Gaussian and k-NN classifier as representative

examples of all the model selection methods. The learned models have a lower expected

out-of-sample error, including a lower dispersion. Additionally, the error estimate has

a lower dispersion (𝑆𝐷(𝐸𝑑𝑖𝑓𝑓)).

Table 3-5 Error Statistics of Model Sel. Methods with Independent Samples

The Monte Carlo simulation used 10000 test sources per run (𝑁𝑜𝑢𝑡 = 10000). Training/validation data

consists of 10 folds (𝑁𝐾 = 10), and 100 samples per fold (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 100). Every sample were drawn

from a new source. SEM is the standard error of the mean of 𝐸𝑜𝑢𝑡 and 𝐸𝑑𝑖𝑓𝑓.

Model Sel. Method 𝐸[𝐸𝑜𝑢𝑡] (𝑆𝐸𝑀) 𝐸[𝐸𝑑𝑖𝑓𝑓] (𝑆𝐸𝑀) 𝑆𝐷(𝐸𝑜𝑢𝑡) 𝑆𝐷(𝐸𝑑𝑖𝑓𝑓) 𝐶𝑜𝑟𝑟(𝐸𝑜𝑢𝑡, 𝐸𝐶𝑉) 𝑁𝑀𝐶𝑆

Gaussian Classifier 0.1769 (.0000) 0.0001 (.0004) 0.0011 0.0122 0.0472 1000

K-NN 0.1835 (.0001) −0.0088 (.0004) 0.0043 0.0124 0.0801 1000

3.6.3 Wound Dataset

For every picture of all ten sources, we extracted features from superpixel segments

and superpixel edge samples, using multiple settings for the superpixel region size. We

chose superpixel region sizes based on visual inspection, choosing an upper and lower

bound to ensure superpixels accurately followed the edges, and that they were not too

fine grained. We added smaller step sizes between the upper and lower bound on

images that generated few samples, which primarily were due to a low resolution. The

0.18 0.2 0.22 0.24 0.26
0

10

20

30

40

50

60

70

E
out

Gaussian Classifier

0.18 0.2 0.22 0.24 0.26

E
out

Random Forest

0.16 0.18 0.2 0.22 0.24 0.26 0.28

0.1

0.15

0.2

0.25

0.3

E
out

E
CV

Gaussian Clasifier

Random Forest

57

superpixel scales shown in Figure 3-2 is representative for the variation we have used

to extract samples. After balancing the number of samples such that we have an equal

number of samples per class per source, we end up with 8400 superpixel samples, and

3200 superpixel edge samples. We omitted the bucket of models, model selection

method due computational limitations. It would take weeks to compute on a laptop

with an Intel i7 4500U processor.

To recap, the greedy forward selection algorithm iteratively adds the feature

group that improves the performance the most. The algorithm stops if no additional

feature group improved the error.

The error estimates for a specific feature group and classifier in Table 3-6 to

Table 3-9, are very unreliable. Although we use 1000 samples for cross-validation, we

only have 10 sources, and the variance between sources is large. Also note that the

results of Table 3-7, and Table 3-9 highly relies on how well the classifier happened to

perform on the mean feature group, and therefore it is a poor indicator to compare

different classifiers; the intention of these two tables, is to see how good results we can

achieve when we combine two feature groups. The results indicate a large classification

error. We could have used more samples, but this would be very computationally

expensive, in particular for the RBF-SVMs classifier.

58

Table 3-6 Error Estimates of Segment Feature Groups

Error estimates of segment feature groups from unbiased cross-validation. Estimates were computed

using a subset of 1000 samples from the original 8400-sample dataset.

Feature Group Gaussian GMM K-NN Random Forest Linear-SVMs RBF-SVMs

Mean 0.342 0.149 0.229 0.227 0.166 0.220

St. Dev. 0.320 0.263 0.316 0.312 0.324 0.285

Covariance 0.380 0.347 0.355 0.324 0.340 0.361

Correlation 0.411 0.375 0.336 0.404 0.371 0.348

Skewness 0.332 0.243 0.242 0.231 0.231 0.200

Kurtosis 0.453 0.348 0.390 0.333 0.394 0.331

Entropy 0.353 0.257 0.259 0.277 0.425 0.266

Euclidean St. Dev. 0.337 0.328 0.302 0.424 0.344 0.326

Euclidean Skewness 0.345 0.304 0.306 0.391 0.343 0.300

Euclidean Kurtosis 0.475 0.434 0.423 0.493 0.456 0.411

GLCM Contrast 0.355 0.327 0.304 0.333 0.323 0.349

GLCM Correlation 0.523 0.508 0.488 0.465 0.507 0.532

GLCM Energy 0.385 0.323 0.271 0.297 0.422 0.288

GLCM Homogeneity 0.337 0.317 0.334 0.352 0.331 0.394

Table 3-7 Error Estimates of Segment Feature Groups with Mean

Error estimates of segment feature groups from unbiased cross-validation. Estimates were computed

using a subset of 1000 samples from the original 8400-sample dataset. Here we trained models using

the feature groups listed in the left column, and the mean feature group.

Feature Group Gaussian GMM K-NN Random Forest Linear-SVMs RBF-SVMs

St. Dev. 0.261 0.166 0.235 0.202 0.157 0.181

Covariance 0.278 0.184 0.235 0.201 0.171 0.175

Correlation 0.276 0.176 0.235 0.222 0.199 0.173

Skewness 0.269 0.176 0.209 0.201 0.145 0.139

Kurtosis 0.354 0.210 0.323 0.228 0.173 0.176

Entropy 0.308 0.175 0.251 0.199 0.197 0.179

Euclidean St. Dev. 0.294 0.158 0.232 0.202 0.210 0.191

Euclidean Skewness 0.313 0.147 0.215 0.213 0.149 0.152

Euclidean Kurtosis 0.336 0.166 0.336 0.231 0.174 0.191

GLCM Contrast 0.311 0.217 0.247 0.208 0.153 0.163

GLCM Correlation 0.342 0.203 0.328 0.239 0.167 0.221

GLCM Energy 0.344 0.192 0.240 0.211 0.182 0.188

GLCM Homogeneity 0.293 0.217 0.243 0.220 0.184 0.177

59

Table 3-8 Error Estimates of Edge Feature Groups

Estimates were computed using a subset of 1000 samples from the original 3200-sample dataset. The

Feature groups combines the feature groups extracted from both superpixels of the edge.

Feature Group Gaussian GMM K-NN Random Forest Linear-SVMs RBF-SVMs

Mean 0.399 0.302 0.299 0.288 0.206 0.204

St. Dev. 0.320 0.330 0.362 0.350 0.300 0.312

Covariance 0.366 0.363 0.346 0.345 0.333 0.347

Correlation 0.382 0.453 0.380 0.424 0.386 0.346

Skewness 0.401 0.339 0.297 0.298 0.262 0.253

Kurtosis 0.499 0.472 0.420 0.401 0.515 0.397

Entropy 0.377 0.367 0.335 0.317 0.410 0.330

Euclidean St. Dev. 0.333 0.330 0.342 0.346 0.318 0.365

Euclidean Skewness 0.366 0.390 0.356 0.355 0.330 0.320

Euclidean Kurtosis 0.495 0.506 0.462 0.489 0.499 0.468

GLCM Contrast 0.482 0.386 0.353 0.334 0.363 0.419

GLCM Correlation 0.442 0.483 0.492 0.488 0.469 0.493

GLCM Energy 0.396 0.377 0.429 0.359 0.413 0.352

GLCM Homogeneity 0.368 0.352 0.404 0.378 0.373 0.449

Sobel Mean 0.357 0.370 0.346 0.374 0.350 0.359

Table 3-9 Error Estimates of Edge Feature Groups with Mean

Estimates were computed using a subset of 1000 samples from the original 3200-sample dataset. Here

we trained models using the feature groups listed in the left column, and the mean feature group. The

Feature groups combines the feature groups extracted from both superpixels of the edge.

Feature Group Gaussian GMM K-NN Random Forest Linear-SVMs RBF-SVMs

St. Dev. 0.292 0.342 0.319 0.267 0.202 0.241

Covariance 0.335 0.337 0.300 0.277 0.204 0.231

Correlation 0.376 0.368 0.296 0.286 0.216 0.250

Skewness 0.377 0.344 0.265 0.284 0.204 0.191

Kurtosis 0.443 0.330 0.460 0.294 0.208 0.220

Entropy 0.351 0.365 0.317 0.268 0.236 0.224

Euclidean St. Dev. 0.317 0.331 0.311 0.268 0.226 0.224

Euclidean Skewness 0.371 0.316 0.306 0.260 0.181 0.166

Euclidean Kurtosis 0.395 0.319 0.410 0.285 0.252 0.165

GLCM Contrast 0.400 0.388 0.326 0.286 0.237 0.235

GLCM Correlation 0.345 0.388 0.298 0.292 0.225 0.228

GLCM Energy 0.361 0.368 0.318 0.273 0.225 0.211

GLCM Homogeneity 0.356 0.409 0.332 0.292 0.204 0.252

Sobel Mean 0.350 0.318 0.342 0.293 0.201 0.234

60

Table 3-10 and Table 3-11, lists unbiased cross-validation errors using combined

hyperparameter and feature selection shown in Figure 3-9. The feature selection part

uses the greedy forward selection algorithm. We have chosen to train the models using

multiple sample sizes; this provides information on the effect of sample size. We

excluded some estimates due to the excessive time required to compute them.

Table 3-10 Error Estimates of Segments using Feature Selection

The table shows unbiased cross-validation errors of segment classes. The models were trained using

greedy selection algorithm, for feature selection.

Sample Size Gaussian GMM K-NN Random Forest Linear-SVMs RBF-SVMs

200 0.249 0.256 0.240

400 0.246 0.210 0.196

1000 0.240 0.166 0.201 0.183 0.144 0.147

3000 0.248 0.181 0.217

8400 0.251 0.203 0.181

Table 3-11 Error Estimates of Edges using Feature Selection

The table shows unbiased cross-validation errors of edge classes. The models were trained using

greedy selection algorithm, for feature selection. The Feature groups combines the feature groups

extracted from both superpixels of the edge.

Sample Size Gaussian GMM K-NN Random Forest Linear-SVMs RBF-SVMs

200 0.373 0.357 0.323

400 0.309 0.322 0.332

1000 0.323 0.316 0.295 0.258 0.202 0.226

3200 0.324 0.274 0.300

Table 3-12 and Table 3-13 lists the features selected by the greedy forward selection,

feature selection algorithm. Here the all folds (and therefore all sources) were used for

feature and hyperparameter selection. In contrast, in Table 3-10 and Table 3-11, we

had an outer cross-validation loop, so one fold were used for validation. Due to high

computation time for training, we reduced the sample size of the random forest, linear-

SVMs, and RBF-SVMs classifiers.

With multiple independent tests, we could have obtained the likelihood that a

feature is selected. It may be tempting to create multiple tests by varying the number

of samples, or count the selected features for every model in the outer cross-validation

loop; the problem is that these results have a strong dependence, and therefore,

counting the occurrence of feature groups may be misleading.

61

Table 3-12 Feature Group Occurrence in Segments

Selected feature groups marked with ×. Sample sizes are in parentheses under the classifier name.

Feature Group
Gaussian

(8400)

GMM

(8400)

K-NN

(8400)
Random Forest

Linear-SVMs

(1000)
RBF-SVMs

Mean × × × × × ×

St. Dev. × ×

Covariance

Correlation × ×

Skewness × × × × ×

Kurtosis

Entropy ×

Euclidean St. Dev.

Euclidean Skewness ×

Euclidean Kurtosis ×

GLCM Contrast ×

GLCM Correlation

GLCM Energy × ×

GLCM Homogeneity × × ×

Table 3-13 Feature Group Occurrence in Edges

Selected feature groups marked with ×. Sample sizes are in parentheses under the classifier name.

Feature Group
Gaussian

(3200)

GMM

(3200)

K-NN

(3200)
Random Forest

Linear-SVMs

(1000)
RBF-SVMs

Mean × × × × × ×

St. Dev. × ×

Covariance ×

Correlation × × ×

Skewness × × × ×

Kurtosis ×

Entropy × ×

Euclidean St. Dev. ×

Euclidean Skewness × × ×

Euclidean Kurtosis ×

GLCM Contrast

GLCM Correlation

GLCM Energy

GLCM Homogeneity

Sobel Mean × ×

62

3.7 Discussion

3.7.1 Out-of-sample Error Distribution

In section 3.1, we defined three questions, which were to be used to compare the model

selection methods. The first question concerned the distribution of the out-of-sample

error. For the synthetic data model used to test the model selection methods, the

Gaussian classifier has the lowest expected out-of-sample error, whereas the random

forests classifier has the highest. The remaining classifiers falls somewhere in between,

but the differences are not large. We have listed the results in Table 3-3. Table 3-4

contains similar results, only using the balance-by-source method. We will discuss the

differences between the two methods in section 3.7.3.

The dispersion of the out-of-sample error correlates positively with the expected

out-of-sample error. Again, the Gaussian and random forests classifier are at the

extreme ends of the spectrum. We did expect that a slightly larger mean out-of-sample

error had a slightly larger standard deviation, but the difference is quite drastic. The

Random forest standard deviation is double that of the Gaussian classifier (0.0148 vs

0.0077), whereas the Random forest classifier only has a 1.165 times larger expected

out-of-sample error. The Gaussian classifier makes correct assumptions about the

distribution of the data, and is therefore able to infer near optimal models from

training sets. The Gaussian classifier is only slightly off the optimal decision boundary,

but in the immediate region around the decision boundary, both classes are still

somewhat evenly balanced. If we venture further from the optimal decision boundary

though, one class will be more and more dominant. The random forest classifier tends

to lie further off the optimal decision boundary than the Gaussian classifier and

therefore small deviations of this boundary will lead to larger differences in the out-of-

sample error. This is the most plausible explanation for the large differences in

standard deviations of the out-of-sample error that we can think of. Another factor that

could have explained the higher standard deviation of the random forest classifier

would have been outliers, or a higher skewness towards higher values. However, the

data contained no such anomalies; see Figure 3-12.

63

3.7.2 Cross-validation Error and Out-of-sample Error Dependency

The results in Table 3-3 agrees with the intuition that the cross-validation error tends

to have a larger optimistic bias the more extensive the hyper-parameter search is. A

larger optimistic bias is conveyed by an increasingly more negative expected error

difference (𝐸[𝐸𝑑𝑖𝑓𝑓] < 0). There are two factors contributing to the bias. The first factor

comes from optimizing the hyper-parameters on the cross-validation error, which

contributes to an optimistically biased estimate. The second factor is that we train the

final model using all 𝑁𝐾 folds, whereas the cross-validation uses models trained on

𝑁𝐾 − 1 folds. This contributes to a pessimistic bias, as more data will improve the

expected out-of-sample performance.

The Gaussian and GMM classifiers have no hyper-parameter search, so they

should have a small pessimistic bias due to the second factor. The Monte Carlo

simulations does show a small bias, but it is roughly one standard error of the mean,

and therefore not enough to confirm such an argument.

The bias of the random forest method is close to zero, and is as likely to be

optimistic as pessimistic. We only test two hyper-parameter options, and so that

should only contribute to a small optimistic bias. The pessimistic bias due to the

difference in folds used for training may contribute to an overall pessimistic bias.

The k-NN, Linear-SVM and RBF-SVM model selection methods have more

extensive hyper-parameter searches, and they all have an optimistic bias (𝐸[𝐸𝑑𝑖𝑓𝑓]

equals −0.0119, −0.0090, and −0.0104 respectively). It is important to account for this

bias, when comparing model selection methods; this is why we chose to use nested

cross-validation to obtain unbiased error estimates in our bucket of models method.

Somewhat discouraging, are the results on how poor the error estimate (𝐸𝐶𝑉) is.

The difference in error (𝐸𝑑𝑖𝑓𝑓) has a large dispersion (𝑆𝐷(𝐸𝑑𝑖𝑓𝑓) ∈ [0.297,0.374]).

Additionally, the model selection methods only have weak correlations between the

error estimate and the out-of-sample error. The random forest method has a moderate

correlation, but unfortunately, it is also the worst performing classifier. The scatter plot

to the right of Figure 3-12 shows the dependence between the error estimate and the

out-of-sample error. Although the out-of-sample error has a lower dispersion, we do

not know whether our obtained error estimate has an optimistic or pessimistic bias.

For example, we may obtain an optimistic bias (𝐸𝐶𝑉 = 0.13), but the out-of-sample

error is as likely to be 0.08, as 0.21. The encouraging part is that even though the error

64

estimate may be ways off, the learned model is not so far off the optimal model. That

is for our 2-dimensional synthetic data model.

In Table 3-5, we computed the error statistics for model selection methods when

all samples were independent. We used the same amount of training data as with the

split-by-source method in Table 3-3, where the within-fold data were dependent. The

variation in error statistics indicates that training with within-fold dependent data is

similar to training with a reduced set of independent data. With independent samples,

we obtain better models. The mean and dispersion of the out-of-sample error is lower.

Additionally, the error estimates are more accurate. The k-NN model selection method

has a slightly lower bias, indicating it is less able to over-fit the validation data, but

more importantly, the error estimate has a lower dispersion. For example, the standard

deviation of the difference in error for the Gaussian classifier is 2.4 times lower

(𝑆𝐷(𝐸𝑑𝑖𝑓𝑓) = 0.0122 for independent data, and otherwise 𝑆𝐷(𝐸𝑑𝑖𝑓𝑓) = 0.0297).

3.7.3 Split-by-source Versus Balance-by-source

When folds are balanced by source (Table 3-4), we get an optimistically biased cross-

validation error, regardless of model selection methods. However, the out-of-sample

errors seems to be unaffected, meaning we could still use the biased cross-validation

error for optimization of hyper-parameters. A bigger problem is that the bias differs

between model selection methods. The Gaussian and GMM classifier are both unbiased

using the split-by-source method, but when we balance samples by source they have

very different biases (−0.0123 and −0.0278 respectively). Using nested cross-

validation would not fix this problem, because the fault lies with splitting dependent

samples across several folds. We would be unable to pick among model selection

methods without bias. In other words, we would tend to pick one model over another,

because it has a more optimistic bias, not because it has the lowest out-of-sample error.

That is something we do not want.

3.7.4 Wound Dataset and Feature Groups

The classification results of superpixel segments and superpixel edges in section 3.6.3

are not very promising. No combination feature group and classifier combination

achieves a low classification error for neither segment nor edge. Note that the error

65

results have a large degree of uncertainty, and so we limit our discussion to the most

significant trends.

For segments (Table 3-6), the GLCM correlation has the weakest classification

error; it roughly has a 50% classification error, indicating zero discriminative power.

The next worst is the Euclidean kurtosis with a classification error in the 41-49% range.

None of the Euclidean feature groups achieves a low error, but they also only consist of

one feature, in contrast to three. The mean feature group has the lowest classification

error, and skewness the second lowest.

An interesting trend is that the Gaussian classifier performs poorly. This is in

contrast to the synthetic data model, where the Gaussian classifier performed very well.

Given how the Gaussian classifier is based on making strong assumptions on the data,

it is not surprising to see its unfavorable results on data, which obviously does not

follow that distribution.

When we combine the mean feature group with another feature group (Table

3-7), we see results similar to the only using the mean feature group. Combining mean

with another strong feature group tends to slightly improve performance, whereas

combining mean with a weak feature group tends to slightly reduce performance or

have no impact. Combining the mean and skewness feature groups has the overall best

performance, whereas combining the mean and the Euclidean skewness feature group

has the second best performance.

The k-NN classifier has the largest performance deterioration when we add a

weak feature group. This is not surprising, as the algorithm uses the nearest neighbors

to classify, and feature with bad discriminative power are given equal importance to

determine who the nearest neighbors are. Another explanation is that the classifier

performs more poorly for higher-dimensional data.

For edges (Table 3-8 and Table 3-9), we see the same trends as for segments,

but the overall classification errors are higher. The edge-specific Sobel mean feature

group has an average performance.

The spatial-based Sobel and GLCM feature groups does not achieve any

particularly good performance, but the resolution, and scale of the wound images have

a large variation. These feature groups have the potential to be much more reliable with

a fixed feature group and scale.

We conclude this section by discussing an alternate feature selection method.

Classifiers such as the RBF-SVMs, are time consuming to train. It already has two real-

66

valued hyperparameters to optimize, and is notoriously slow to train for large sample

training sets. To reduce the computational complexity, we can use filter methods to

first rank all features. Instead of optimizing the entire feature set using a wrapper

method, we only have to use a wrapper method to select the number of features to

include. Algorithm 3-3 shows the step of this algorithm. One special case where this

algorithm could be useful is for random forest classifiers. The hyperparameter of the

random forest classifier ranges from one to the number of features, therefore more

models are trained for larger feature sets. When more models are trained for data with

many features, it leads to a bias towards selecting many features. A feature-ranking

filter avoids this dilemma.

67

4 Object Recognition and Segmentation of

Wounds

Figure 4-1 Chapter 4 Flowchart

Object recognition and segmentation of wounds, is a complex task. The input is an

image, and the output is a description of the object outline, both of these are high

dimensional. There have been some success in learning object class labels directly from

raw image data using convolutional neural networks, but that problem has a single

discrete output value. For segmentation problems, the norm is to use segmentation

algorithms. However, most segmentation algorithms rely on strong assumptions, such

as segmenting the most salient structure, yet these assumptions are rarely definitive.

We attempt to solve object recognition and segmentation using a hypothesis

optimization framework. We constrain the optimization problem to search hypotheses

that are subsets of superpixels obtained from SLIC superpixel segmentation. We define

an objective function using textural and shape properties characteristic of wounds, and

genetic algorithm to search for the optimal hypothesis. Our results demonstrates that

a hypothesis optimization framework can solve object recognition and segmentation of

wounds. These results are important because, given the flexible nature of hypothesis

Chapter 4: Object Recognition and Segmentation of Wounds

General
Objective
Function

Segment Image
Into Superpixel

Image

Hypothesis Search

Training
Images

Label
Images

Segment Images
Into Superpixel

Images

Data Set
Folds

Create
Dataset

Models

Cross-Validation
Error Measure

Model Selection
Methods

Test
Image

Best
Hypothesis

Solution

Chapter 3: Model Selection Methods for Dependent Samples

68

optimization they demonstrate that hypothesis optimization is a strong candidate for

general-purpose machine-learnable object recognition and segmentation.

4.1 Introduction

Figure 4-2 Detailed Chapter 4 Flowchart

The flowcharts highlights the subject of this chapter. Our object recognition algorithm relies on

hypothesis optimization. To enable solving the segmentation problem as an optimization problem,

we restrict the hypothesis to be a subset of all superpixels in a test image. From the classified

segments, classified edges, superpixel spatial data, and general objective function we make a

specific objective function that is only dependent on the hypothesis. To obtain a hypothesis solution,

we use a genetic algorithm to optimize the specific objective function. We use the superpixel

segment classifications to provide a reasonable initial population.

In the previous chapter, we studied model selection methods for dependent samples.

In this chapter, we use those superpixel-segment and superpixel-edge models as a

component in the complete object recognition and segmentation algorithm. In the

previous chapter, we used Monte Carlo simulations to obtain strong comparative

results. In this chapter, we use a small set of test images. The exact details of our

proposed algorithm are simply initial proposals. In no way do we claim them to be

optimal. The important results, is that we can use hypothesis optimization to solve

object recognition and segmentation of wounds, and why this is so important.

Figure 4-2 shows a flowchart of our proposed algorithm. The algorithm takes an

input image, and outputs a predicted hypothesis solution of the outline of the wound.

The algorithm relies on classification models for classifying superpixel-segments and

superpixel-edges, and a general objective function separating wounds with a low value,

from non-wounds with a high value. The figure description explains the main

components of the algorithm. We covered the superpixel segmentation and

classification in the previous chapter; the superpixel objective function and genetic

algorithm optimization are covered in sections 4.2, and 4.3 respectively.

General
Objective
Function

Segment Image
Into Superpixel

Image

Models

Test
Image

Best
Hypothesis

Solution

Classify
Superpixel

Edges

Classify
Superpixel
Segments

Extract
Superpixel

Spatial Data

Create Hypothesis
Objective Function

Genetic Algorithm
Optimization

Create Initial
Population

69

In the chapter abstract, we mentioned how this hypothesis optimization

framework is learnable. It is theoretically possible to learn a function that maps the

raw high dimensional data of an image to an explicit outline of the wound object. There

are multiple ways to express the outline, but all of them are high-dimensional outputs.

This function would be as follows:

 𝑓: ℝ𝑁 → ℝ𝑀, 𝑁, 𝑀 > 1 (4.1)

Learning this function directly is not very feasible for either machines or humans.

There is one method, which shifts the complexity to the input side of the object

recognition and segmentation problem without making any assumptions. Instead of

learning a function, that explicitly expresses the object outline we can learn a function

that implicitly expresses the object outline by being the minimum of an objective

function. The input is now the image data, and the hypothesis. The output is a single-

dimensional hypothesis score value, see equation (4.2).

 Γ: ℝ𝑁+𝑀 → ℝ, 𝑁, 𝑀 > 1 (4.2)

This shift in complexity is what characterizes hypothesis optimization, and we believe

that hypothesis optimization is a feasible approach to solve the object segmentation

problem. We claim that it is easier to learn the objective function (Γ) in equation (4.2).

Having learned the objective function, we solve the object segmentation problem by

finding its global minimum as shown in equation (4.3). The input data is x, and h

denotes hypotheses.

 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠∗ = 𝑓(𝑥) = argmin
ℎ

Γ(𝑥, ℎ) (4.3)

Note that many segmentation algorithms do pose segmentation as an optimization

problem, like active contours for instance [1]. In addition, we can pose other

segmentation algorithms in terms of what objective function they optimize, and how

they attempt to optimize it.

4.2 Method: Hypothesis Objective Function

The objective function assign a high value to hypotheses that are not wounds, and a

low value to hypotheses that are wounds. That is the intention of the objective function,

but constructing such an objective function is not an easy task.

70

A strictly correct objective function must always return a better score for true

hypotheses than for false hypotheses. Let ℋ𝑇𝑟𝑢𝑒 be the set of all true hypotheses, which

also means that the complementary set ℋ̅𝑇𝑟𝑢𝑒 is the set of all false hypotheses. A strictly

correct objective function must satisfy the following criterion:

 Γ(ℎ𝑇𝑟𝑢𝑒) < Γ(ℎ𝐹𝑎𝑙𝑠𝑒), ∀
ℎ𝑇𝑟𝑢𝑒 ∈ ℋ𝑇𝑟𝑢𝑒

ℎ𝐹𝑎𝑙𝑠𝑒 ∈ ℋ̅𝑇𝑟𝑢𝑒
 (4.4)

Even humans ability to recognize wounds adhere to this criterion, and we do not expect

our objective function to be strictly correct. In fact, wound images are varied, and

complex; our objective function does perform, but not to the level required of an

autonomous robot operating system.

The objective function consist of simple shape and textural properties, typical of

wounds. The objective function uses a combined weighted sum and weighted product

model of these properties. The weakest aspect of our approach is that we rely on hand-

hand tuning these weights. In section 4.6.3, we discuss a method to optimize the

objective function automatically.

4.2.1 Shape Properties

We make use of five simple shape properties in the objective function. These prioritize

large non-jagged hypotheses, without hulls. They punish hypotheses with too many

disconnected components, and hypotheses that collide with the image edge. First, we

explain what we mean by components and hulls. Then, we define sub-properties we

make use of, and finally we define the shape properties.

A component refers the number of connected components. Superpixels in the

hypothesis that are connected comprise one component. We can consider superpixels

to be nodes in a graph, and let these nodes have undirected edges towards all its

neighbors. Then a connected component is simply a strongly connected component of

that graph. We exploit this by using Matlab graph functions. Further, a hull is an

interior part of one of the components of the hypothesis. These hulls are components

of the inverse hypothesis. The inverse hypothesis components may also contain

background components, containing superpixels on the image border. We can easily

separate the hull and background components, by testing if any of their superpixels are

on the image edge.

71

We derive the shape properties from even simpler properties. These sub-

properties are:

 𝐴ℎ𝑢𝑙𝑙, is the total area of all the hulls of the hypothesis.

 𝐴ℎ𝑦𝑝, is the area of the hypothesis.

 𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 , is the number of components of the hypothesis.

 𝑃ℎ𝑦𝑝, is the outer perimeter of the hypothesis. The outer perimeter excludes the

hull perimeter.

 𝑃ℎ𝑦𝑝−𝑏𝑜𝑟𝑑𝑒𝑟 , is the outer perimeter of the hypothesis that also lies on the image

border.

 𝐴𝑤𝑜𝑢𝑛𝑑 , is the total area of the wound-labeled superpixels. This is not a shape

property, but the derived property in equation (4.7), is.

The shape property 𝛾ℎ𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜 , is the ratio of hulls. When there are no hulls, its value is

zero. 𝛾𝑠𝑖𝑧𝑒, is optimal when the hypothesis is as large as possible, and ranges between

zero and one. 𝛾𝑗𝑎𝑔𝑔𝑒𝑑𝑛𝑒𝑠𝑠, is optimal when the perimeter is small compared to the filled

hypothesis size. This should prevent jaggedness. 𝛾𝑏𝑜𝑟𝑑𝑒𝑟 , is optimal when no

superpixels in the hypothesis lies on the image edge. 𝛾𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 , aims to prevent too

many components and starts to increase exponentially when the number of

components is surpasses five. These shape properties are defined as follows:

 𝛾ℎ𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜 =
𝐴ℎ𝑢𝑙𝑙

𝐴ℎ𝑦𝑝 + 𝐴ℎ𝑢𝑙𝑙
 (4.5)

 𝛾𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 1.2max (0,𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠−5) (4.6)

 𝛾𝑠𝑖𝑧𝑒 = 1 −
𝐴ℎ𝑦𝑝

𝐴ℎ𝑦𝑝 + 𝐴𝑤𝑜𝑢𝑛𝑑
 (4.7)

 𝛾𝑗𝑎𝑔𝑔𝑒𝑑𝑛𝑒𝑠𝑠 =
𝑃ℎ𝑦𝑝

2

𝐴ℎ𝑦𝑝 + 𝐴ℎ𝑢𝑙𝑙
 (4.8)

 𝛾𝑏𝑜𝑟𝑑𝑒𝑟 =
𝑃ℎ𝑦𝑝−𝑏𝑜𝑟𝑑𝑒𝑟

2

𝐴ℎ𝑦𝑝 + 𝐴ℎ𝑢𝑙𝑙
 (4.9)

72

4.2.2 Textural Properties

Our objective function uses two textural properties. The first property γ𝑤𝑜𝑢𝑛𝑑 , indicates

how well the hypothesis matches the predicted wound-labeled superpixels. The second

property 𝛾𝑤𝑜𝑢𝑛𝑑P𝑒𝑟𝑖𝑚R𝑎𝑡𝑖𝑜 , indicates how well the hypothesis matches the predicted

wound-labeled superpixel edges. Note that we use the term textural, because we obtain

the labels by classifying textural features of superpixels. The first property relies on two

sub-properties. These two sub-properties are:

 γ𝑤𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 , is the ratio of the hypothesis area predicted to be a wound.

 γ𝑤𝑟𝑒𝑐𝑎𝑙𝑙 , is the ratio of the wound-predicted area selected by the hypothesis.

Now, we can combine these two sub-properties as defined in equation (4.10).

 γ𝑤𝑜𝑢𝑛𝑑 = 1 − √γ𝑤𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 γ𝑤𝑟𝑒𝑐𝑎𝑙𝑙 (4.10)

It is not obvious why we define γ𝑤𝑜𝑢𝑛𝑑 as follows, but this definition has some attractive

traits. Obviously, the property should be at its maximum when the hypothesis

simultaneously covers all wound area, and only consists of wound area. Contrarily the

property should be at its minimum when the hypothesis covers none of the wound area,

and consists of no wound area. The property should have an intermediate value when

the sub-properties have intermediate values. In addition, the two sub properties are

also symmetrical. More formally, these traits are as follows:

 γ𝑤𝑜𝑢𝑛𝑑 ∈ [0,1]


γ𝑤𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 0

γ𝑤𝑟𝑒𝑐𝑎𝑙𝑙 = 0
⟺ γ𝑤𝑜𝑢𝑛𝑑 = 1


γ𝑤𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1

γ𝑤𝑟𝑒𝑐𝑎𝑙𝑙 = 1
⟺ γ𝑤𝑜𝑢𝑛𝑑 = 0


γ𝑤𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 0.5

γ𝑤𝑟𝑒𝑐𝑎𝑙𝑙 = 0.5
⇒ γ𝑤𝑜𝑢𝑛𝑑 = 0.5

 γ𝑤𝑜𝑢𝑛𝑑 = 𝑓(γ𝑤𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛,γ𝑤𝑟𝑒𝑐𝑎𝑙𝑙) ⇒ 𝑓(𝑎, 𝑏) = 𝑓(𝑏, 𝑎)

It is important that the γ𝑤𝑜𝑢𝑛𝑑 property require both of the sub-properties to have

decent values. If we had just added the two sub-properties together, then one of them

would take priority over the other property.

The second textural property is simply the ratio of the hypothesis perimeter that

classifies as wound edges. Note that every superpixel edge are classified for either of

the two directions, and that the second property, 𝛾𝑤𝑜𝑢𝑛𝑑P𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟R𝑎𝑡𝑖𝑜 , is the ratio of

wound edge along the hypothesis perimeter, when we use the correct direction.

73

4.2.3 Combining the Object Properties

In equation (4.12), we combine the shape properties in section 4.2.1 to the Γ𝑠ℎ𝑎𝑝𝑒

property using a weighed sum model. Similarly, we use a weighted sum model to

combine the textural properties in section 4.2.2 to the Γ𝑡𝑒𝑥𝑡𝑢𝑟𝑎𝑙 property, as seen in

equation (4.11). We create objective function by combining Γ𝑠ℎ𝑎𝑝𝑒 and Γ𝑡𝑒𝑥𝑡𝑢𝑟𝑎𝑙 using a

weighted product model that we define in equation (4.13).

 Γ = Γ𝑓𝑖𝑡
𝛽1 Γ𝑠ℎ𝑎𝑝𝑒

𝛽2 (4.11)

 Γ𝑡𝑒𝑥𝑡𝑢𝑟𝑎𝑙 = 𝛽3γ𝑤𝑜𝑢𝑛𝑑 + 𝛽4 (1 − 𝛾𝑤𝑜𝑢𝑛𝑑𝑃𝑒𝑟𝑖𝑚𝑅𝑎𝑡𝑖𝑜) (4.12)

 Γ𝑠ℎ𝑎𝑝𝑒 = 𝛽
5

𝛾ℎ𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜 + 𝛽
6

𝛾𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 + 𝛽
7

𝛾𝑠𝑖𝑧𝑒 + 𝛽
8

𝛾𝑗𝑎𝑔𝑔𝑒𝑑𝑛𝑒𝑠𝑠 + 𝛽
9

𝛾𝑏𝑜𝑟𝑑𝑒𝑟 (4.13)

We hand tuned the weights using example images. We used the image W2, from results

section 4.4. The few other images used to hand-tune the weights are not present in this

thesis, as we were unable to verify the source of the images, and we were therefore

unable to obtain permission to use them. The weights we used in the section 4.4 results

are listed in Table 4-1.

Table 4-1 Objective Function Weights

The table lists the objective function weights used for the results in section 4.4.

Weights Weight Values

𝛽1 1.0

𝛽2 4.0

𝛽3 1.0

𝛽4 1.0

𝛽5 1.0

𝛽6 0.01

𝛽7 0.7

𝛽8 0.01

𝛽9 0.1

Note that the objective function is undefined for empty hypotheses, and therefore, we

simply return a penalty value of 10.

Unfortunately, we made a small error when computing the results in section 4.4.

In the MATLAB code, our Γ𝑡𝑒𝑥𝑡𝑢𝑟𝑎𝑙 property had two other terms, which were both set

to 0.5, when they should have been set to zero. We show this Γ𝑡𝑒𝑥𝑡𝑢𝑟𝑎𝑙 version in

equation (4.14). We do not show comparisons here, but the two Γ𝑡𝑒𝑥𝑡𝑢𝑟𝑎𝑙 versions are

74

still similar. The biggest difference between them is that the added terms renders the

segment classifications more important than the edge classifications.

Γ𝑡𝑒𝑥𝑡𝑢𝑟𝑎𝑙 = 𝛽3γ𝑤𝑜𝑢𝑛𝑑 + 𝛽4 (1 − 𝛾𝑤𝑜𝑢𝑛𝑑𝑃𝑒𝑟𝑖𝑚𝑅𝑎𝑡𝑖𝑜)

+ 0.5(1 − γ𝑤𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 0.5(1 − γ𝑤𝑟𝑒𝑐𝑎𝑙𝑙)
(4.14)

4.3 Method: Genetic Algorithm Optimization

4.3.1 Overview

The wound-hypothesis optimization problem requires an optimization algorithm

capable optimizing high-dimensional binary search problems with arbitrary objective

functions. There are competing algorithms, such as particle swarm optimization, but

Matlab has a reasonable documented genetic algorithm out of the box. We found no

strong indications of genetic algorithms yielding inferior solutions when compared to

other algorithms. Therefore, we decided to use genetic algorithms.

Besides using a custom initial population, we stick to the default settings. The

population size is 200, which is default for high-dimensional binary search problems.

We produce new members using a scattered crossover function, which means that we

randomly select a gene value from either of the parents. For mutation, we use uniform

mutation at a mutation rate of 0.01. This means that after crossover, any gene has a 1%

chance of having its binary value flipped.

Although more sensible genetic algorithm options exists, we refrained from

such algorithm option optimization. Our dataset is limited, and any further

optimization would only add to the bias problem. In section 4.5.3, we discuss how these

options affected the results, and propose improvements to the optimization algorithm.

4.3.2 Initial Population

A good strategy to reduce generations required to find a good solution, is employ a

specialized initialization procedure. Our initialization procedure uses information

from the superpixel segment classifications. We can think of the superpixels classified

as wound, as an initial wound hypothesis. We create the initial population by repeating

75

20 base members. These 20 base members are themselves split into four groups,

consisting of five members each. The four groups are as follows:

1. We pick the five largest components.

2. At random, we pick half of all components, for each of the five members in this

group.

3. At random, we pick half of all wound-labeled superpixels, for each of the five

members in this group.

4. We exclude on the components for each of the five members, starting with the

largest.

Note that by components, we refer to sets of wound-predicted superpixels that are

connected. The results shown in Figure 4-4 are examples of wound-predicted

superpixels. Also, note that if there are less than five components, then group one and

four will randomly replicate its own current members to attain five members.

4.4 Results

We base the results section on five example images that shows the entire wound and

have minimal obstruction. The first image is the example image of a pig, which we used

in section 1.2. The other four are the least obstructed wounds in our image dataset. For

every image, we show the results using both a small and a large superpixel region size.

The actual region size depends on the image, as resolutions between them vary. We

place results using large superpixels in the left column, and results using small

superpixels in the right column. For convenience, we name the images, W1, W2, W3,

W4, and W5.

4.4.1 Superpixel Segmentation and Classification

This section contains the superpixel segmentation, and superpixel segment and edge

classification results. Here, we build on the results shown in the previous chapter. We

train superpixel segment, and superpixel edge classifiers using linear support-vector

machines with feature and hyperparameter selection.

76

Figure 4-3 shows the segmentation results. We selected the superpixel sizes

manually, and to minimize bias we chose them before viewing their classification

results (W2 is an exception). We ended up with the following region sizes:

W1: 40, and 20

W2: 25, and 15

W3: 60, and 30

W4: 40, and 20

W5: 40, and 20

We selected these region sizes based on two primary principles. Firstly, the number of

superpixels for the wound should not be too few. Otherwise, a single correctly classified

superpixel may outcompete the true hypothesis, as single superpixels has naturally

good shape properties. The second principle is to avoid a very small region size. If the

number of pixels within a superpixel falls below a certain measure, then its derived

features become unreliable, and the classification error rises. Initially we used 10 and

20 region size for W2, but the region size of 10, resulted in much poorer classification

performance. The SLIC regularization parameter is 40 times the region size, which we

have already discussed in section 3.2.1.

Figure 4-4 shows classification of the superpixel segments. The error rate for

linear-SVMs were at about 15% with classes balanced according to Table 3-1. The error

rates here should be about the same, but one thing to note is that the error rate varies

greatly for each image. The most distinguishing pattern of the wound-labelled

superpixels, displayed in white, is that they have a high recall rate of the true wound

superpixels. However, their precision is low. About half of the wound-predicted

superpixels in W2, W3, and W4 are misclassifications, which is caused by a background

to wound ratio that is much higher in the Figure 4-4 images, compared to the balanced

datasets used in the previous chapter.

Figure 4-5 show the superpixel edge classifications. The wound edge to non-

wound edge ratio is much higher than for the balanced datasets that we used to train

the classification models. The results shows many edges misclassified as wound-edges,

something we did expect. The disappointing result is that misclassifications correlate

strongly with the superpixel segment misclassifications. For instance, the W3

superpixel-segment and superpixel-edge classifications both indicates a structure to

the top left of the wound, to be a better wound hypothesis candidate.

77

Figure 4-3 Superpixel Segmentation

Superpixel segmentation of five wound images using both a large and small region size.

W1

Small Region SizeLarge Region Size

W2

W3

W4

W5

78

Figure 4-4 Superpixel Segment Classification

The figure shows a superpixel segment classification of five wound images. White superpixels were

classified as wound superpixels, and black superpixels were classified as non-wound superpixels.

W1

Small Region SizeLarge Region Size

W2

W3

W4

W5

79

Figure 4-5 Superpixel Edge Classification

The figure shows a superpixel edge classification of five wound images. Superpixel edges classified

as wound edges are indicated by drawing the superpixel edge perimeter in white. The thick white

lines indicates that both superpixel edge directions were classified as a wound edge. This figure

may be inaccurate in paper version, and sadly, the direction of the wound edge is not displayed.

W1

Small Region SizeLarge Region Size

W2

W3

W4

W5

80

4.4.2 Genetic Algorithm Optimization

Figure 4-6 displays the true hypotheses, which we use as a reference, to compare them

with the predicted hypotheses in Figure 4-7. The predicted hypotheses are the best

results obtained from genetic algorithm optimization using the configuration

described section 4.3.

Figure 4-8 shows the genetic algorithm optimization progress per iteration. Of

particular importance are objective function scores for the predicted hypothesis, and

the true hypothesis. The predicted hypotheses can be incorrect due to failing to

converge to the optimal value, or because the objective function itself, is incorrect.

When the true hypothesis (black curve), is below the predicted hypothesis (orange

curve), then the predicted hypothesis converged to a bad solution. In the reverse

scenario, the objective function yields a better value to the incorrect predicted

hypotheses, than the true hypotheses.

The predicted hypotheses for W3, and for W5 using a large region size, have a

worse objective function value, than the true hypotheses. Here, the genetic algorithm

fails. Even a perfect objective function will not help, if the optimization algorithm fails

to find the optimal hypothesis. W1 is a case for the reverse scenario. The predicted

hypothesis of W1 has a much better hypothesis value, than the true hypothesis. W1 is a

partially obstructed image, and the true hypothesis contains multiple components,

which is the cause for the poor objective function values.

81

Figure 4-6 True Hypotheses

The figure shows the true hypotheses for five wound images. The true hypotheses were derived

from hand-labelled images, and the label of the superpixel is the majority class among the pixels

within a superpixel. The true hypotheses are indicated by the white superpixels.

W1

Small Region SizeLarge Region Size

W2

W3

W4

W5

82

Figure 4-7 Predicted Hypotheses

The figure shows the predicted hypotheses for five wound images. The hypotheses were computed

using 1000 iterations of genetic algorithm optimization, on the the objective function defined in

section 4.2.

W1

Small Region SizeLarge Region Size

W2

W3

W4

W5

83

Figure 4-8 Hypothesis Optimization

The figure shows genetic algorithm statistics per iteration for the five wound images. The straight

black line shows the true hypothesis value. The orange curve shows the best currently found

hypothesis for every iteration of the genetic algorithm. The turquoise curve shows the mean

objective function values per iteration. The mean value is sometimes out of bounds of the [0,1]

graph range.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Small Region SizeLarge Region Size

W3

W4

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W5

W2

W1

84

4.5 Discussion

This chapter lacks quantitative results. We provided quantitative results for the

classification performance in the previous chapter. However, quantitatively evaluating

the correctness of object hypotheses is more complicated. There are proposed

segmentation correctness measures, but the small dataset would render any estimate

unreliable. Therefore, our results are limited to a set of examples, and that limits our

ability to make conclusive statements. Because of the unreliable results, we warn the

reader, that our statements should be interpreted as indications.

4.5.1 Results Evaluation

In this section, we analyze the results of the five wound images from section 4.4. We

describe how well superpixel segmentation adheres to edges. We describe the

superpixel-segment and superpixel-edge classification results. Further, we compare

the predicted hypotheses to the true hypotheses, and finally we compare their objective

function values. If the objective function value for the true hypothesis is below the

predicted hypothesis, then that means that the optimization algorithm failed as it

found a suboptimal value. Contrarily, if the objective function value for the true

hypothesis is above the predicted hypothesis, then that means that the objective

function is incorrect, as the optimization algorithm found a better yet false hypothesis.

We devote a paragraph to each image covering the evaluations we just listed.

The W1 image shows open abdominal surgery on a pig. The superpixel images

reliably capture the wound edge, but they do not properly capture some of the small

medical instruments obscuring the wound. The superpixel-segment classifications are

very accurate, and it does classify most wound-edges as such. However, it also classifies

most superpixel edges within the wound as a wound edge, and that is not an intended

behavior. We labeled the true hypothesis to be the wound, excluding any obstructing

medical instruments. The predicted hypotheses adhere well to the edges, but they

struggle with obstructed parts. Some obstructed parts belong to the hypothesis,

whereas others do not. As we have not addressed obstructed wounds, we did expect

this type of behavior. Some of the hulls in the hypotheses may be due to un-optimized

hypotheses. In particular, W1 with a small region size has many superpixels and 1000

iterations may not have been enough. In addition, illogical hulls are characteristic of

85

not having performed enough iterations. The true hypothesis has a bad objective

function score, but this is probably because the true hypothesis has a split from a

medical instrument, and therefore counts as multiple components, which increases the

objective function value.

The W2 image shows a simple unobstructed incision. Superpixel segmentation

adheres well to edges. Segment and edge classification have some errors. In particular,

the edges only partially classify wound edges as such, and they classify other superpixel

edges as wound-edges. The predicted hypotheses are decent, but they lack some wound

superpixels on the left side, which were probably a result of the incorrect edge

classifications. The objective function value is slightly higher than the predicted value,

and so the fault does not lie with the optimization algorithm.

The W3 image shows a simple unobstructed incision. The image contains white

mostly white objects, but also a bloodied cloth piece resembling the textural properties

of a wound. Superpixel edge segmentations have a high error rate, only recalling about

half the wound object and classifying superpixels of the bloodied piece of cloth as

wound-superpixels. The edge classifications appear to be useless. For both superpixel

sizes, the algorithm predicts the bloodied piece of cloth as the wound object. What is

interesting is that the predicted hypotheses have a higher (worse) value than the true

hypothesis. Therefore, the objective function may be correct for this instance, but the

genetic algorithm converges to a sup-optimal local minima.

The W4 image shows a wound with some obstruction. Superpixels adhere well

to edges, and it recalls most wound-superpixels, but it also labels many other

superpixels as wound-superpixels. Similarly, it classifiers most wound edges correctly,

but also classifies many non-wound edges as such. The resulting hypotheses covers the

wound, but also include many additional superpixels in the wound hypothesis. Here

the predicted objective function value is lower than the objective function value for the

true hypothesis, and therefore the objective function must be incorrect for this

instance.

The W5 image shows an unobstructed wound with an irregular wound edge. The

superpixel segmentation adheres well to the wound edges. The superpixel

classifications recalls most of the wound, and has a good precision. The superpixel-

segment classifications recalls most of the wound edge, but also falsely classifies many

internal edges in the wound as wound-edges. The predicted hypothesis with a large

region size is a smoothed version of the true hypothesis, and it does have a lower

86

objective function value due to the smooth properties. The predicted hypothesis with a

small region size fails completely. It predicts a single superpixel to be the most optimal

hypothesis, and here the optimization algorithm that fails because the predicted

hypothesis is far from optimal. We have seen similar results in preliminary tests, and

we suspect that the mutation and crossover function causes the optimization to

stagnate if the hypotheses in the population at any point reaches a stage where the

hypotheses are close to null.

4.5.2 Comments on the Hypothesis Objective Function

The performance of the objective function, it is not affected by the number of pixels,

but rather by the number of superpixels. To calculate the hypothesis area for instance,

we only need a vector containing the area values for each superpixel, and sum the value

of the superpixels flagged in the hypothesis. To find the components of the hypothesis,

we can use an array to express superpixels pairs by flagging neighboring superpixels.

This array is a graph of the edges, and we just need to find the connected components

of this graph. Note that the performance decreases with larger hypothesis sizes. This is

because there are more calculations concerning superpixel values in the hypothesis,

than outside the hypothesis.

With a quadratic function, we could in theory, always find the global optimum,

but it is not possible to compute the number of components, and the hulls, using a

quadratic function. Therefore, we have to resort to optimization algorithms that do not

guarantee the global minimum. In general, it may be impossible to construct a valid

quadratic objective function. Being restricted to quadratic functions, may hinder the

discovery of crucial object properties.

4.5.3 Comments on the Genetic Algorithm

We treat the genetic algorithm in Matlab like a black box. Therefore, we mostly stick to

the default settings, which depends on the data type and dimensionality of candidate

solutions. Presumably, the Matlab staff found these settings to be suitable for a wide

variety of optimization problems independent from ours. They may have relied on

results from earlier research, or hand tuned the settings using multiple optimization

problems. We might achieve better results by tuning the settings to our optimization

87

problem, instead of handling the algorithm as a black box. However, we already have

to decide the superpixel region size, the objective function, and the classification

algorithms. We want to evaluate the objective function, and therefore we seek to isolate

it from improving the optimization algorithm. For instance, a wound hypothesis is

typically a blob of multiple neighboring superpixels. Therefore, it seems logical to

modify mutation and crossover, such that they are more likely to produce candidate

solutions with blobs. Assume this strategy proves successful. We certainly optimized

the genetic algorithm for the training set. However, we may have fallen into the trap of

optimizing the data, rather than the general problem. To properly compare the default

and custom optimization algorithms, we would need a large independent test set. Our

dataset does not satisfy those requirements.

To find additional wound objects, we can rerun the genetic algorithm

optimization while also omitting superpixels belonging to the previously discovered

hypotheses. We must also verify if a proposed hypothesis is satisfactory. We could

determine an objective function threshold-value, but a binary classifier acting as a

hypothesis-verifier may prove more successful.

4.5.4 Comments on Hypothesis Optimization

Our most important result is not the effectiveness of the proposed algorithm. We know

it to be flawed. However, the object segmentation approach we use shows great

opportunity. Here we summarize some of the strengths and weaknesses this method

has. Some of the strengths are:

 In the general form, hypothesis optimization does not put any limitations on

what object segmentation tasks it can solve. It simply shifts the output

complexity of the object segmentation function to the input side, see equation

(4.2).

 Hypothesis optimization evaluates hypotheses of the object, and we can

seamlessly combine global and local object properties in the objective function.

 Arguably, discovering the objective function of an object category is simpler

than discovering a segmentation algorithm for that object category. Therefore,

if it is feasible to discover a correct segmentation algorithm, then it should also

be feasible to discover a correct objective function. However, if it is feasible to

88

discover an objective function, then it may still not be feasible to discover a

correct segmentation algorithm.

Lacking a clear comparative algorithm makes defining weaknesses an obscure

prospect. However, we list some of the important obstacles faced when implementing

a hypothesis-based algorithm that:

 Discovering the correct objective function, does not imply that we can find the

optimal hypotheses within satisfactory computational constraints.

 The hypothesis search space of all pixels is large. Hypothesis optimization

requires some method to reduce the search space complexity. We solve this by

constraining the hypothesis to subsets of SLIC superpixels SLIC superpixels

would not be suitable for objects with thin structures, so they would require

some other algorithm to reduce the search space complexity.

 Hypothesis optimization requires an optimization algorithm, and optimizing

non-convex objective functions is an NP-hard problem. Presumably, any correct

objective function is non-convex for most object categories, and therefore these

segmentation problems themselves are NP-hard.

4.5.5 Preventing Bias

It is important to ensure that the results we obtain are valid, and therefore we must be

aware decisions that can produce biased results. In particular, we must be aware of

optimistic bias. A separate independent test set would be the most suitable means to

obtain unbiased results. In chapter 3, we relied on outer cross-validation loops, with

completely separate wound sources per fold. This is valid, but hyperparameter and

feature selection, are not the only decisions we had to make. Here we list decisions that

could have introduced bias:

 The wound images in this thesis were retrieved by attempting to find suitable

images from the internet. With an autonomous surgical system, we have some

control over picture quality and environment, but we have to analyze images

continuously, rather than a select few, chosen for publication. Additionally, we

looked for unobstructed open wounds, and an autonomous surgical system will

have to deal with nearly closed wounds, and obstructed wounds.

89

 We chose to use the SLIC algorithm. It performs well with dense objects, but

SLIC superpixels does not align well with very thin objects, and wounds or

incisions are typically thin objects when they are nearly closed.

 We chose the SLIC regularization parameter based on the wound images in this

thesis. It is possible that this regularization rule gave unusually good results for

our wound images.

 We chose to use linear-SVMs in the section 4.4 results. We chose this based on

the results in the model-selection method results in the previous chapter.

However, we used two test images from here as part of those error results.

 We only used one of the test images (W2) to design the objective function and

select its weights, but we did know what our test images looked like, and

presumably, they indirectly influenced our perception of what a wound object

is.

It is important to note that this is still in an experimental stage. The algorithm

proposed in this thesis is in no way finalized, and there are no direct comparisons with

other algorithms. Therefore, bias that could yield slightly optimistic results are

tolerable. Still, one should minimize bias when possible. Here we summarize some of

the methods we used to reduce bias:

 We used outer cross validation loops to obtain unbiased error measures of

classifiers with feature and hyperparameter selection. We did choose a good

candidate among multiple classifiers (linear-SVMs), but this should only

introduce a small, expected bias.

 In the classifications for the chapter 4 results, we trained multiple models. For

every image (source) used in the model selection method, we trained models

that excluded those sources throughout the entire model selection method

process. At no point were the classification results for an image trained using

the data from that image. Note that by training we also consider data used to

select hyperparameters and features as training data.

 We decided region sizes before viewing their classification results.

 We used both a small and large region size per image to limit the possibility of

results with an overly optimistic bias. For instance, we could obtain near-perfect

results for W2 and W3 if we were to fine-tune the region size.

90

 We chose the final genetic algorithm configuration and the objective function

before computing the test results. An exception is the already discussed W2

image, which we used in developing the objective function, genetic algorithm

configuration.

4.6 Future Work

This section extends the discussion, proposing how to improve the algorithm, extend

the algorithm, or include it as one part of a more complete vision system. We have not

clarified how the proposed algorithm is useful by itself, and currently and the algorithm

does not perform to the level required in an autonomous surgical system. However,

our method treats object recognition and segmentation as an optimization problem

nearly void of assumptions. Consequently, this approach has high potential, and we

outline some proposals on how to improve upon object recognition and segmentation.

4.6.1 Better Object Properties

The shape and textural properties described in section 4.2.1 and 4.2.2 are merely initial

proposals. Surely, more fitting object properties must exist. An interesting direction is

object properties making use of similarity measures. One type is similarity measures

between superpixels either within a hypothesis, on the hypothesis edge, or outside the

edge. Another type of similarity measure is comparing the hypothesis to a database of

wound objects. There are many possible similarity measures. We propose a histogram-

based similarity measure, uniquely defined as follows:

 The similarity measure computes is a measure of difference between two

segments.

 For each color channel, we compute a similarity measure between the

histograms of the two segments. The total similarity measure is the mean of the

three individual histogram similarity measures.

 Consider every pixel value in a histogram to be individual objects. The

dissimilarity between two histograms is the minimum energy required to move

objects within the first histogram such that they resemble the other histogram.

91

Moving an object one, unit pixel-value, requires one, unit energy. Moving an

object two, unit pixel-values, requires two, unit pixel-values, and so on.

We can compute the histogram similarity measure directly, so we do not rely on

optimization. For superpixel-based similarity measures, you only have to compute the

similarity measures once, as they are not dependent on the object hypothesis.

4.6.2 Post Processing the Hypothesis Boundary

Restricting hypotheses to superpixels reduce the optimization complexity, but the

superpixels may not have correct boundaries. However, we can refine the predicted

hypothesis by optimizing the object boundary using finer superpixels, or even directly

optimizing on pixels. To make this possible we constrain the search to only optimize

the hypothesis on the current object boundary.

4.6.3 Learning the Hypothesis Objective Function

So far, we have manually tune the objective function weights. We used textural and

shape properties in a combined weighted sum and product model. Here we present a

proposal to learn the objective function automatically.

A hypothesis is a candidate solution of the optimization problem. A true

hypothesis is the optimal solution, and a false hypothesis is a non-optimal candidate

solution. The grouping of superpixels that corresponds to the actual wound object is

the true hypothesis (𝐻∗). Any other grouping of superpixels are false hypotheses (𝐻′).

We denote true and false hypotheses of image 𝑖 as 𝐻𝑖
∗ and 𝐻𝑖

′, and we let 𝑁 be the

number of images. Further we let ℋ𝑖 be the set of all hypotheses in image 𝑖. To find the

optimal hypothesis, we make use of an objective function and a genetic algorithm to

search through hypotheses of an image, and find the optimal solution according to the

objective function. We let 𝑓(𝐻) be the objective function, taking a hypothesis as an

input. Obviously, this function must be minimal for the optimal solution:

 𝐻𝑖
∗ = arg min

𝐻
𝑓(𝐻 ∈ ℋ𝑖) (4.15)

We pick intuitive shape and textural properties, and combine these in a combined

weighted sum and weighted product model. The problem is that we must learn these

weights from a small set of images. We may also want to test other property

combinations that do not fit within a weighted sum of weighted product model.

92

Let 𝑓(𝐻, 𝑊) be the objective function, where the second argument, 𝑊, is the

weights. Further, we create a dataset of false hypotheses, where 𝐻𝑖𝑗
′ denotes false

hypothesis 𝑗 of image 𝑖. For simplicity, select an equal amount of false hypotheses from

every image (𝑀). We make pairwise binary comparisons between true and false

hypotheses using a classification function with zero for successful comparison and one

for an unsuccessful comparison, as shown in (4.16). The optimization problem itself is

defined in equation (4.17). We can solve the optimization problem using a search

algorithm (such as a genetic algorithm) to find satisfactory solutions.

 𝑔(𝐻𝑖
∗, 𝐻𝑗𝑘

′ , 𝑊) = {
0, 𝑓(𝐻𝑖

∗ , 𝑊) < 𝑓(𝐻𝑗𝑘
′ , 𝑊)

1, 𝑓(𝐻𝑖
∗ , 𝑊) ≥ 𝑓(𝐻𝑗𝑘

′ , 𝑊)
 (4.16)

 𝑊∗ = arg min
𝑊

∑ ∑ ∑ 𝑔(𝐻𝑖
∗, 𝐻𝑗𝑘

′ , 𝑊)

𝑀

𝑘=1

𝑁

𝑗=1

𝑁

𝑖=1

 (4.17)

Note that there are also alternative comparison functions, such as the one defined in

equation (4.18).

 𝑔(𝐻𝑖
∗, 𝐻𝑗𝑘

′ , 𝑊) = 𝑓(𝐻𝑗𝑘
′ , 𝑊) − 𝑓(𝐻𝑖

∗, 𝑊) (4.18)

An unresolved challenge is how to select the false hypotheses. A possible method

would be to pick an initial set, and then as the search algorithm learns new weight, we

test what solutions the genetic algorithm finds. When these hypotheses are false, we

use them in our set of false hypotheses. We could implement a ranking between false

hypotheses, assuming that later generation (false) hypotheses are better than early

generation (false) hypotheses. The logic is that the weights are supposed to improve,

thereby finding continually better hypotheses.

To recap, training an objective function contains the following steps:

1. Create an initial set of false hypotheses (the true hypotheses are fixed).

2. Create a sequence of weights and false hypotheses. The steps per iteration are:

a. Optimize the objective function weights based on the current set of

hypotheses. We defined this optimization problem in equation (4.17).

b. Compute optimal hypotheses according to the new objective function

weights.

c. Verify if the current optimal hypotheses are true or false hypotheses.

d. Create a new set of false hypotheses, using the previous false hypotheses,

and the new optimal yet false hypotheses.

93

3. Stop upon reaching some criteria. If training were successful, then the objective

should have global minimums for true hypotheses.

4.6.4 Hypothesis Optimization using a Comparison Function

We have so far shown that we can solve object segmentation as a hypothesis

optimization problem. The method takes a hypothesis as an input, and outputs a

hypothesis score. The goal is that the true hypothesis should have the globally minimal

hypothesis score. Still, object segmentation, is a complex problem. We could consider

the possibility of using a comparison function instead, as it may be more feasible to

create a comparison function than an objective function.

With a comparison function, we take two hypotheses as an input, but we only

need to output a single binary value. A comparison function does have issues, especially

if it does not consistently rank hypotheses. A comparison function would also require

a modified optimization algorithm.

4.6.5 Probabilistic Classification of Local Structures

In this section, we propose a probabilistic approach to handle prediction of local

structures such as superpixel-segments and superpixel-edges. Classifying local

structures is of limited value when there is a class overlap. The object recognition

algorithm uses these classifications to infer the segmentation of the object, but that

does not help, when the classifications contradict the truth.

It is important that the predictor can discriminate between wound-related and

other structures co-occurring in wound images. At the same time, it must also be able

to predict that something is non wound-related structures, when the data is extremely

sparse.

We propose to combine outlier detection, and regular probabilistic classifiers.

For every class we train a conservative outlier detection model. We also train a

probabilistic classifier. Predicting a sample contains the following logical steps:

1. We check if the sample is an outlier of any of the classes.

2. We compute the class probabilities of the sample using the probabilistic

classifier.

94

3. We combine the results in step 1, and 2. We set the outlier classes to zero

probability, and we scale up the probabilities of the other classes such that they

sum to one.

4.6.6 Context Based Multi-object Recognition

Object segmentation of a single object, is by itself of limited value. An autonomous

surgical robot system will require image analysis algorithms capable of recognizing and

segmenting multiple objects simultaneously. Here we propose how to use our object-

specific algorithm as a component of a multi-object recognition and segmentation

algorithm.

The multi-object algorithm contains sub-algorithms, including object-specific

segmentation algorithms for every object category, and an object detection algorithm.

The proposal is a high-level example of a multi-object recognition algorithm, but other

variations could also work. The proposal is as follows:

1. An efficient object detection algorithm detects objects of every category within

the image, and estimates their location. False hypotheses are tolerated as the

intention is to provide initial hypotheses.

2. Perform object segmentation to obtain object outlines for every initial

hypothesis. Filter away unfavorable hypotheses.

3. Initiate high-level object reasoning algorithm, starting a sequence of image

hypotheses. Stops when results are deemed satisfactory.

a. Detect possible conflicts between object hypotheses. Object overlap can

indicate a conflict.

b. Determine if current hypotheses infers the expectation of other specific

objects, possibly in certain locations. One utilization is when objects are

expected to co-occur.

c. Using knowledge obtained in steps 3a, and 3b, initiate new object

hypothesis searches. The new searches accept weaker conditions, but

may also contain regional constraints, and other constraints.

d. Pick a subset of the object hypotheses found so far, to form the currently

best image hypothesis.

95

4. Output the final image hypothesis, containing possibly multiple object outlines

and multiple object categories.

The object-specific algorithm essentially hypothesizes that the object has a high

chance of existing in the image, and then evaluates how well the observed data matches

that hypothesis. For instance, this justifies why we can assume wound segments to

have a 50% probability, whereas in a real surgical setting, this probability may be much

lower.

Note that the individual object segmentation and verification algorithms could

result in duplicate object categories for the exact same object outline. This is

acceptable, as the multi-object recognition algorithm can resolve such conflicts. In fact,

this can be an advantage. It may be impossible to determine an object category without

considering the context, and then the best an object segmentation algorithm can hope

to accomplish, is to determine whether the object category could have produce the

observed visual properties. For instance, one object can act as both a chair and a table.

We can solve this problem type if both the chair and table object segmentation

algorithms recognize the object, because the high-level algorithm may be able to

resolve the conflict.

4.6.7 Tracking

An autonomous robot operating system will not just need to recognize objects. It will

also need to track these objects with a short response time. The objective with object

recognition is to recognize an object instance of a general class; with tracking, the

objective is to re-recognize the same object in other instance of time.

Our object recognition algorithm is currently not fast enough for tracking

purposes. An unrelated tracking algorithm however, does not share the objective

function of the recognition algorithm. It might be best to first pursue a robust object

recognition algorithm, and then convert it to a tracking algorithm. A logical step is to

modify the objective function by adding an object similarity measure, and the

likelihood that the object can be observed in the hypothesized location. These

modifications will strengthen the current optimal hypothesis, something which we ca

not guarantee with an unrelated tracking algorithm. Inconsistent objective functions

between recognition and algorithms, does not only mean that false hypotheses might

96

be more optimal. The algorithms may also disagree on exactly where the object

boundaries are

Tracking can make greater assumptions about the object, which we can exploit

to improve both predictive and computational performance:

 We can limit hypothesis search to a small area around where we expect the

wound to be.

 We can reduce image resolution to whatever is required for the specific task.

 We can increase superpixel size, as long as it captures the structures of the

wound outline.

 We can make assumptions on where the object may be located from one image

to the next.

 If wounds overlap between consecutive images, we can use a search algorithm

that takes advantage of this assumption.

A more general method to improve performance is to use an efficient parallel search

algorithm, and throw powerful hardware at it.

97

5 Conclusions

5.1 Model Selection Methods for Dependent Samples

In chapter 3 we studied model selection methods for dependent samples. The results

are mostly typical of model selection methods with independent samples, but there are

also some anticipated exceptions. Simultaneously we use this theory to train

classification models required for chapter 4.

Our datasets consists of superpixel segments, and superpixel edges within a

small set of images. The samples within these images are dependent, which we argued

for in section 3.2.2. You will get biased error results when dealing with dependent

samples. Potentially this could also negatively affect classifier performance through

poor hyperparameter, feature, or classifier choices. We did not observe that in our

results, but it is a theoretical possibility. Luckily, these dependent samples are known

groups, and by placing these groups within their own folds (Referred to as the Split-

by-Source method), we obtain unbiased error results. One other anticipated exception,

is that a large sample size does not mean the same as a large sample size when you have

independent samples. Combined, the number of sources and the number of samples

per source influence the generalizability of the data. Few sources with many samples

per source will behave as if the number of samples were less. We can clearly observe

this phenomenon in the error estimates. Although the total number of samples are

high, our error estimates have an uncertainty as if the number of samples were

significantly lower.

We evaluate combined feature and hyperparameter selection for superpixel

segments and superpixel edges using the wound image dataset. No classification

algorithm achieves very low results. We chose linear-SVMs because it had the lowest

error results for both superpixel segment classification (0.144), and superpixel edge

classification (0.202). The exact error estimates are unreliable, and another test may

have put another classifier ahead. Having optimized classifier choice on these error

measures, we can expect them to be optimistically biased. Therefore, we will not list

some final error measure for our classifiers. We have no final unbiased error measures,

and that would not by itself a very important result, because it is completely dependent

on the specific dataset we used.

98

The limited wound dataset puts some limitation of how strongly we can

interpret those results, but in agreement with the Monte Carlo results, they do indicate

that the model-selection methods reliably selects rational hyperparameter values and

feature subsets. We argue that these model selection methods should be a core part of

any complete classification algorithm. When we use automated hyperparameter and

feature selection procedures (model selection methods), we train classifiers in a

controlled environment. This reduces risk of biased results. If a human were to select

these, that human should strictly have no idea of what the test data are. This is simply

not feasible when we use cross-validation.

5.2 Object Recognition and Segmentation of Wounds

We solve object recognition and segmentation using a hypothesis optimization

framework. The object recognition and segmentation task consists of mapping a high-

dimensional image to a high-dimensional segmentation description. Without

restricting ourselves to any assumptions, we can reduce the complexity of the

segmentation problem, by instead making a function that implicitly expresses the

object outline as the minimum of the objective function. This reduces the output

complexity to a single real number. In practice, implicitly expressing the object outline

through an objective function comes at the cost of relying on an optimization

algorithm. For that, we can exploit the already existing literature, and we end up using

a genetic algorithm.

In this conclusion, the most obvious question is, were our algorithm successful?

That is a question lacking a simple answer. One consideration is that the dataset limits

our results to a set of examples. Another consideration is that we have no comparative

references. Finally, the wound object-segmentation task is an ill-posed problem. We

have not addressed partially obstructed wound objects, yet some of our data contains

partially obstructed wounds. What we can conclude is that the algorithm does not

always give the correct answer. Both the optimization algorithm and the objective

function can be the cause of incorrect hypothesis predictions.

Current segmentation algorithms are limited in what we can achieve with them.

We require robust algorithms that we can use for object segmentation applications.

The results of the proposed algorithm are not the most interesting aspects of this thesis.

The most interesting aspect of this thesis is the utilization of hypothesis optimization

99

to solve object segmentation, given the opportunities this approach might have. We

use rudimentary properties for the objective function. We hand tune objective function

weights instead of automatically learning them. We use a genetic algorithm with

default crossover and mutation settings. In the future works, section 4.6, we have

proposed multiple improvements to our base algorithm. We can use better object

properties. We can learn the objective function weights. Replacing classification with

probabilistic classification may have some advantages. We also propose how to use our

object segmentation algorithm as a component in a high-level multi-object

segmentation algorithm. Finally, we also discuss how to combine object segmentation

and tracking.

Because of the flexible nature of hypothesis optimization and our results, it

places hypothesis optimization as a strong candidate for general-purpose machine-

learnable object segmentation. Our algorithm acts as an initial proposal,

demonstrating the advantages of hypothesis optimization.

100

List of Abbreviations

CI Confidence Interval

CV Cross-validation

GMM Gaussian Mixture Model

k-NN K-Nearest Neighbors

Linear-SVMs Support Vector Machines with no Kernel

MCS Monte Carlo Simulation

MLP Multilayer Perceptron Network

NN Neural Network

RBF Radial Basis Function

RBF-SVMs Support Vector Machines with a Radial Basis Function Kernel

RF Random Forest

SD Standard Deviation

SEM Standard Error of the Mean

SLIC Simple Linear Iterative Clustering

SVMs Support Vector Machines

W-REC Wound Object Recognition Algorithm

Eq. Equation

Sel. Selection

Perim. Perimeter

101

References

[1] T.F. Chan and L.A. Vese, "Active contours without edges," Image Processing, IEEE

Transactions on, vol. 10, no. 2, pp. 266-277, Feb 2001.

[2] LuminitaA. Vese and TonyF. Chan, "A Multiphase Level Set Framework for Image

Segmentation Using the Mumford and Shah Model," International Journal of

Computer Vision, vol. 50, no. 3, pp. 271-293, 2002. [Online].

http://dx.doi.org/10.1023/A%3A1020874308076

[3] Di-Yuan Tzeng and Roy S. Berns, "A review of principal component analysis and its

applications to color technology," Color Research & Application, vol. 30, no. 2, pp. 84-

98, 2005. [Online]. http://dx.doi.org/10.1002/col.20086

[4] Christopher M Bishop and others, "Neural networks for pattern recognition," 1995.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, , David E. Rumelhart, James L.

McClelland, and CORPORATE PDP Research Group, Eds. Cambridge, MA, USA: MIT

Press, 1986, ch. Learning Internal Representations by Error Propagation, pp. 318-362.

[Online]. http://dl.acm.org/citation.cfm?id=104279.104293

[6] Jeff Bilmes, "A Gentle Tutorial of the EM Algorithm and its Application to Parameter

Estimation for Gaussian Mixture and Hidden Markov Models," Tech. rep. 1998.

[7] Richard Szeliski, Computer Vision: Algorithms and Applications, 1st ed. New York,

NY, USA: Springer-Verlag New York, Inc., 2010.

[8] Alexander Andreopoulos and John K. Tsotsos, "50 Years of object recognition:

Directions forward ," Computer Vision and Image Understanding , vol. 117, no. 8, pp.

827-891, 2013. [Online].

http://www.sciencedirect.com/science/article/pii/S107731421300091X

[9] Alex Levinshtein, Cristian Sminchisescu, and Sven Dickinson, "Optimal Contour

Closure by Superpixel Grouping," in Proceedings of the 11th European Conference on

Computer Vision: Part II, Berlin, Heidelberg, 2010, pp. 480-493. [Online].

http://dl.acm.org/citation.cfm?id=1888028.1888066

[10] Andrea Vedaldi and Brian Fulkerson, "Vlfeat An Open and Portable Library of

Computer Vision Algorithms," in Proceedings of the International Conference on

Multimedia, New York, NY, USA, 2010, pp. 1469-1472. [Online].

httpdoi.acm.org10.11451873951.1874249

[11] Trauma.org. (2015, January) Terms of Use. [Online].

http://www.trauma.org/index.php/main/general/21

[12] Victor Joel Garza Silva. (2011, September) Hepatic injury caused by a firearm. Image.

[Online]. http://www.trauma.org/index.php/main/image/1305/C13

http://dx.doi.org/10.1023/A%3A1020874308076
http://dx.doi.org/10.1002/col.20086
http://dl.acm.org/citation.cfm?id=104279.104293
http://www.sciencedirect.com/science/article/pii/S107731421300091X
http://dl.acm.org/citation.cfm?id=1888028.1888066
httpdoi.acm.org10.11451873951.1874249
http://www.trauma.org/index.php/main/general/21
http://www.trauma.org/index.php/main/image/1305/C13

102

[13] Gabriel Mejia Consuelos. (2010, March) Intraperitoneal view of a stab wound injury.

Image. [Online]. http://www.trauma.org/index.php/main/image/1004/C13

[14] Carlos Zavaleta. (2008, October) Liver and Kidney 06. Image. [Online].

http://www.trauma.org/index.php/main/image/762/C13

[15] Herb Phelan and Brian Eastridge. (2007, July) Gunshot wound to carotid artery -

operative - 03. Image. [Online]. http://www.trauma.org/index.php/main/image/588/C1

[16] Carlos Zavaleta. (2008, June) Gunshot wound to the kidney. Image. [Online].

http://www.trauma.org/index.php/main/image/682/C13

[17] Fernando Joglar. (2008, January) Right sided diaphragmatic hernia secondary to blunt

abdominal trauma. Image. [Online]. http://www.trauma.org/index.php/main/image/637/C13

[18] Nícolas Leal, Maurício Mentz, and Jorge Mentz. (2007, April) Penetrating Neck Injury

with Oesophageal Laceration 04. Image. [Online].

http://www.trauma.org/index.php/main/image/531/C13

[19] Vicente Scopel and Jorge Carlotto. (2009, August) Open pneumothorax. Image.

[Online]. http://www.trauma.org/index.php/main/image/902/C11

[20] Trauma.org. (2011, January) Open pneumothorax. Image. [Online].

http://www.trauma.org/index.php/main/image/1196/C11

[21] Antonio Muria. (2010, April) A stab injury to the neck 02. Image. [Online].

http://www.trauma.org/index.php/main/image/1018/

[22] Antonio Muria. (2010, April) A stab injury to the neck 03. Image. [Online].

http://www.trauma.org/index.php/main/image/1019/

[23] Peter Kim. (2009, July) Live Demo - Vertical Mattress Suturing. Video. [Online].

https://www.youtube.com/watch?v=XPILD2O9ZUY

[24] Peter Kim. (2012, June) Deep suture for Deep wound closure. Video. [Online].

https://www.youtube.com/watch?v=TqzSHxJuLiY

[25] G. Paschos, "Perceptually uniform color spaces for color texture analysis: an empirical

evaluation," Image Processing, IEEE Transactions on, vol. 10, no. 6, pp. 932-937, Jun

2001.

[26] A. Drimbarean and P.F. Whelan, "Experiments in colour texture analysis ," Pattern

Recognition Letters , vol. 22, no. 10, pp. 1161-1167, 2001. [Online].

http://www.sciencedirect.com/science/article/pii/S0167865501000587

[27] Jay L Devore and Kenneth N Berk, Modern mathematical statistics with applications.:

Cengage Learning, 2007.

http://www.trauma.org/index.php/main/image/1004/C13
http://www.trauma.org/index.php/main/image/762/C13
http://www.trauma.org/index.php/main/image/588/C1
http://www.trauma.org/index.php/main/image/682/C13
http://www.trauma.org/index.php/main/image/637/C13
http://www.trauma.org/index.php/main/image/531/C13
http://www.trauma.org/index.php/main/image/902/C11
http://www.trauma.org/index.php/main/image/1196/C11
http://www.trauma.org/index.php/main/image/1018/
http://www.trauma.org/index.php/main/image/1019/
https://www.youtube.com/watch?v=XPILD2O9ZUY
https://www.youtube.com/watch?v=TqzSHxJuLiY
http://www.sciencedirect.com/science/article/pii/S0167865501000587

103

[28] D.R. Martin, C.C. Fowlkes, and J. Malik, "Learning to detect natural image boundaries

using local brightness, color, and texture cues," Pattern Analysis and Machine

Intelligence, IEEE Transactions on, vol. 26, no. 5, pp. 530-549, May 2004.

[29] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, "Contour Detection and Hierarchical

Image Segmentation," Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 33, no. 5, pp. 898-916, May 2011.

[30] Contour Detection and Image Segmentation. [Online].

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html

[31] A.P. Moore, S. Prince, J. Warrell, U. Mohammed, and G. Jones, "Superpixel lattices," in

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on ,

2008, pp. 1-8.

[32] A. Levinshtein et al., "TurboPixels: Fast Superpixels Using Geometric Flows," Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 31, no. 12, pp. 2290-

2297, 2009.

[33] R. Achanta et al., "SLIC Superpixels Compared to State-of-the-Art Superpixel

Methods," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 34,

no. 11, pp. 2274-2282, Nov 2012.

[34] J. MacQueen, Some methods for classification and analysis of multivariate

observations, 1967.

[35] Carl Yuheng Ren and Ian Reid, "gSLIC: a real-time implementation of SLIC superpixel

segmentation," University of Oxford, Department of Engineering, Technical Report,

2011.

[36] Claude Elwood Shannon, "A mathematical theory of communication," ACM

SIGMOBILE Mobile Computing and Communications Review, vol. 5, no. 1, pp. 3-55,

2001.

[37] Raman Maini and Himanshu Aggarwal, "Study and comparison of various image edge

detection techniques," International Journal of Image Processing (IJIP), vol. 3, no. 1,

pp. 1-11, 2009.

[38] R.M. Haralick, K. Shanmugam, and Its'Hak Dinstein, "Textural Features for Image

Classification," Systems, Man and Cybernetics, IEEE Transactions on, vol. SMC-3, no.

6, pp. 610-621, Nov 1973.

[39] T. Denoeux, "A k-nearest neighbor classification rule based on Dempster-Shafer

theory," Systems, Man and Cybernetics, IEEE Transactions on, vol. 25, no. 5, pp. 804-

813, May 1995.

[40] Leo Breiman, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.

[Online]. http://dx.doi.org/10.1023/A%3A1010933404324

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
http://dx.doi.org/10.1023/A%3A1010933404324

104

[41] Corinna Cortes and Vladimir Vapnik, "Support-vector networks," Machine Learning,

vol. 20, no. 3, pp. 273-297, 1995. [Online]. http://dx.doi.org/10.1007/BF00994018

[42] Vladimir Vapnik, "Pattern recognition using generalized portrait method," Automation

and remote control, vol. 24, pp. 774-780, 1963.

[43] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola, "Kernel methods in

machine learning," The annals of statistics, pp. 1171-1220, 2008.

[44] Isabelle Guyon, Amir Saffari, Gideon Dror, and Gavin Cawley, "Model Selection:

Beyond the Bayesian/Frequentist Divide," J. Mach. Learn. Res., vol. 11, pp. 61-87,

#mar# 2010. [Online]. http://dl.acm.org/citation.cfm?id=1756006.1756009

[45] Ron Kohavi, "A Study of Cross-validation and Bootstrap for Accuracy Estimation and

Model Selection," in Proceedings of the 14th International Joint Conference on

Artificial Intelligence - Volume 2, San Francisco, CA, USA, 1995, pp. 1137-1143.

[Online]. http://dl.acm.org/citation.cfm?id=1643031.1643047

[46] Gavin C. Cawley and Nicola L.C. Talbot, "On Over-fitting in Model Selection and

Subsequent Selection Bias in Performance Evaluation," J. Mach. Learn. Res., vol. 11,

pp. 2079-2107, #aug# 2010. [Online]. http://dl.acm.org/citation.cfm?id=1756006.1859921

[47] Isabelle Guyon and André Elisseeff, "An Introduction to Variable and Feature

Selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, #mar# 2003. [Online].

http://dl.acm.org/citation.cfm?id=944919.944968

[48] Ron Kohavi and George H. John, "Wrappers for feature subset selection," Artificial

Intelligence, vol. 97, no. 1–2, pp. 273–324, 1997, Relevance. [Online].

http://www.sciencedirect.com/science/article/pii/S000437029700043X

[49] A.W. Whitney, "A Direct Method of Nonparametric Measurement Selection,"

Computers, IEEE Transactions on, vol. C-20, no. 9, pp. 1100-1103, Sept 1971.

[50] P. Pudil, J. Novovicová, and J. Kittler, "Floating search methods in feature selection,"

Pattern Recognition Letters, vol. 15, no. 11, pp. 1119-1125, 1994. [Online].

http://www.sciencedirect.com/science/article/pii/0167865594901279

[51] Melanie Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT

Press, 1998.

[52] Sylvain Arlot, Alain Celisse, and others, "A survey of cross-validation procedures for

model selection," Statistics surveys, vol. 4, pp. 40-79, 2010.

[53] Michael Kass, Andrew Witkin, and Demetri Terzopoulos, "Snakes: Active contour

models," International Journal of Computer Vision, vol. 1, no. 4, pp. 321-331, 1988.

[Online]. http://dx.doi.org/10.1007/BF00133570

http://dx.doi.org/10.1007/BF00994018
http://dl.acm.org/citation.cfm?id=1756006.1756009
http://dl.acm.org/citation.cfm?id=1643031.1643047
http://dl.acm.org/citation.cfm?id=1756006.1859921
http://dl.acm.org/citation.cfm?id=944919.944968
http://www.sciencedirect.com/science/article/pii/S000437029700043X
http://www.sciencedirect.com/science/article/pii/0167865594901279
http://dx.doi.org/10.1007/BF00133570

105

[54] Juha Reunanen, "Overfitting in Making Comparisons Between Variable Selection

Methods," J. Mach. Learn. Res., vol. 3, pp. 1371-1382, #mar# 2003. [Online].

http://dl.acm.org/citation.cfm?id=944919.944978

http://dl.acm.org/citation.cfm?id=944919.944978

	ifi_masterforside_eng_robinWasjo_uneditable
	blankPage
	robinwa_duo4
	blankPage

