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Abstract 

The.general homogeneous solution of the differential equation 

associated with an arbitrary term of the Blasius series expansion 

of the st-ream function, is given. This result is used to establish 

the solution of higher order terms of the Blasius series, than 

earlier published. A numerical example is also given. 
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I. Intr•oduction and formulation of the .eroblem 

The two-dimensional flow induced in a viscous fluid (kinematic 

viscosity v ) around a circular cylinder (radius a) by the follow

ing slip velocity on the cylinder surface, 

( 1 ) 

is considered (r, e denote two-dimensional polar coordinates V0 

characteristic velocity). 

by, 

( 2) 

The velocity field (u,v) is related to the stream function ' 

( u,v> • c-1 .!.! a'> 
r ae 'ar 

Introducing the following dimensionless quantities, 

( 3) {

t = co/R r;a =.co lit~ 

. v0 a 
' =- c 0 ~(r;;e;R) R = 

lit 

into the vorticity equation, it is well known that the following 

asymptotic expansion of ~(z;,e;R) can be carried out, 

(4) 

This expansion leads to after partial ihtegration.and some mani

pulations are carried out, 

( 5) 

( 6) 
2 2. 

a~ 0 a· • 1 a• 0 a ~~ = -- ___. +-----
ae at 2 az; az;ae 

a•l a2~o a•l a2•~ 33•o . 
-- .....- +----- ..........,_...- r.--

ae ar; 2 ar; ar;ae ~ a~,;3 
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(higher order terms cf w ar·e net considered) with the boundary 

conditions, 

lji 0 (0,0) - 0 

(7) 
[a'o] 
"'"it r:;::O 

= e + I a e2N+1 
N=1 N 

[!i!] :: 0 
r; I;=• 

lji 1 CO,e) :: 0 

(8) 
(a~ 1 ] --ar- r:;::O 

= a 

[aljl 1 ] = r b e2N+1 
--a-r r;=• N:O N , 

where of course the flow outside the boundary layer must be calcu-

lated before {bNJ is known (.N = 0,1 ,2, ... ) . 

The problem stated by (5, 6, 7 &8) appears for example in connection 

with oscillatory boundary layers where the time averaged Reynolds 

stresses induce the slip velocity (1) on the cylinder (see Stuart 

1966). Riley (1965) studied the problem and solved the three first 

terms in the Blasius series expansions, 

( 9) 

We attempt a similar expansion of ~ 1 <~,6) 

These expansions give the following equations 

( 1 1 ) ~ 0 J' + ' 0 ) 0 l/J 0 ' ~· - ljJ 0 ' ~ 2 = 0 
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( 1 2) 

- ._L IJ!nr N = 0 Da o,o ' 
( 13) 

N 
I a. ~-k{-(2k+1).p k ;p~ N-k + 2(N+1)1/J~ k 1J1 0' ,N-k 

k= l K 0, ' ' 

[ 2 ( ) 1 ] " aN · '" 
- N-k + 1/1 o ,k 1/J 1 ,N-k} - ~ r; 1/J o ,N ' N = 1 ' 2 ' 3 ' ••• 

( 14) d3 -r,; d 2 -r,; d -c; 
LN - -:-:-3 + ( 1 - e ) ---r - 2 ( N + 1 ) e (f[ - ( 2 N + 1 ) e 

dr; dr; .. 

where the solution •o,o = 1 -e-r; (Riley 1965, eq. 27, but deviant 

notations) has been used to obtain (12), (13) and (14). The boundary 

conditions are, 

1Po,N(O) = 0 

( 1 5) [1/J~,N]r,;=o = 1 

[lfi;,N]r;=• = 0 

·+t,N(O) = 0 

(16) [• ~ N] :: 0 
' r,;=o 

. [·~ ,N]r;=• = 1 

Inspection of eC!uations ( 1 2) a11d ( 13) reveals that 1jl o ,N and 

.IJ! 1 ,N have identical general homogeneous solutions for N >1 



II. Solution 

An important step in achieving the general solution of an · 

arbitrary term of the Blasius series is to establish the general 

5. 

homogen~ous solution of the equation concerned. The general homo

geneous solution ~~~~(~) of ; 0 ,N(t) can be constructed by super-

position of terms m -m; a r; e m,n . Some details of the calculations 

determining {am,n} are given in appendix A. The results of these 

calculations are, 

; ~ ~ ~ ( t ) = AN e- t + BN [ 1 + ( 2 N + 1 ) t e -1; 

( 1 7) 

where 

and fo:r. n > 3 

2~+ 1 ( 2N+1) 2N( 2N-1)., • • • ( 2N-n+2) e-n t] 
n=2 (n!)2(n-1) 

+ CN[-(6N+4)+r;+ 2~+1 z;2e-t 

+ 2~+ 1 (K _(2N+1)2N(2N-1)••••(2N-n+2)r;)e-nz; 

n=2 n (n!)2(n-1) -

+ (2N+1) ( (2N) !) i (-1 )k-1 (k-2) ~ e-(2N+k)r;] 
k=2 «2N+k)!) 2 (2N+k-1) 

K n 

(2N+1)(4N+1) 
4 

= l?N-n+2)(n-2) K 
3 2 n-1 n -n 

+ ( 2 N + 1 )( 2 N) ( ~~ -1 ) o • .. ( 2 N-n + 3 ) [ 2 ( N-n; 21 
2 3 2 n-((n-1)!) (n -n ) 

_ ~(3n-2)(2N-n+2)] 

n2 (n-1) 

According to equation (12) and (13) 

( 1 8) IJI(H) 
~ 'N 

:: lji(H) 
1 ,N 



when N ~ 1 • For N ::;. 0 we find, 

(19) .p(H) = A0 e-~; + B0 [1+z;e-c l 
1 ~ 0 

The particular solutions can now be found by variation of the 

parameters, but also by inspection matching the residual terms 

to the inhomogenity terms of (12) •nd (13) by choosing special 

values of {a } • m,n· 

Applications 

The results obtained above are now used to establish the 
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fourth term .p 0 3 of the Blasius Geries (9) subject to conditions 
' 

(15). In this context we need to quote three first terms given by 

Riley (1965) equations (27)~ (28), (29) and (31), respectively> 

which in our notations can be written 

(21) ; 0 0 = 1-e-c , 

(22) 1 [ -t; -2C -3tl •o,l = 68 12+(7+36r;;)e -18e -e 

(23) 

where 

(24) 
1 . _, 

= ~ 8552 [1440+(7063+7200r;;)e 

-7200e- 2 t-1200e- 3 '-1200~ 3 r;;-100e- 4 t-3e- 5 r;;] 
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( 2 5 ) g 2 ( ~) = ·s-3lfi1s·2"8 0-[ ~ 9 21 G- ( 53 9 2 7 :t. 0 ·Hf 7 7 9 0 0 c.;+ 2 50 4 52 0 t,; 2 ) e- t 

+ (5486940+5009040t;)e- 2 r;- (140655-417420t;)e- 3 z; 

As usual, •o 3 is written as a sum of functions f 3 , g 3 and h 3 
' 

which are independent of {aN}, i.e., 

a 1 a 2 3a 3 
,, = f3(r;) +- g3(r;) +__J.. h3(r,;) 
"0,3 a 3 a 3 

(26) 

which give, 

L3f 3Ct) = 0 

Lag3(r,;) 
II 

+81/1~ 1 f~ " = •Slflo,If2 - 31jlo 1£2 

' ' 
L3h3(r;) " ' t 

II 

= - s.., 0 1 g2 +SljJO lg2 - 3 1jlo lg2 , ' ' (27) 
[f;(r;)]r;=t= 1 

' f3(0) = [ f ; ( l; ) J r; :oo = 0 

[g;<r;>Jr,;=o= g3(0) = [g3Ct>lr;;=• = 0 

[h;<c>lc=o= h3(0) = [h'(z;;)] = 
3 r;= ... 0 

The solutions ~re, 

(28) 1 -t = 392 7660 {151200 + (1957814+1058400t;;)e 

-1587600e- 2 1;- 441000e- 3 t;; -73SOOe- 4 1;- 6615e-sr; 

-6l; -'7r 
- 2 94 - 5e '"} , 

(29) g 3 (r;) = +~:~<t) + 210i 56 {7254 -t+3200r.; 2 e-r; + (112611+12960Dr,;)e-2 t 

+ (:- 7 4 2 6 + 2 5 2 0 0 t;; ) e- 3 r; + (- 4 613 21 5 + 2 4 0 0 r; ) e- 4 r; 

+ (- 3 0; 09 9 + 9 0 r; ) e - 5 r; - 2 25 08 d e 6 l; + 5 36 ~ e 7 r; } 
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(30) h3(t)- tli~~!<~;> +911415976 {-476~634 +(-8181t2+751356r;3)e ... r; 

where, 

with 

and, 

with 

- < 1916~ 177 + 9430020~;+4508136T;: 2 )e- 2 t 

+ (2398j321 + 833i49t ... 563517 ,2)e-Jt 

+ < 169 ~ 601 + 191772r;)e- .. r; 

( 14325 + 4401 ) -st 
- 400 -y-t e 

+ 10074 -6t 2301 -7t} 
-40 e -1T2e 

A3 At -o.7o4077ooa, B3 ,.., -o.ssao1191 x 10- 7 , c 3 = o; 

-7 A3 ,.. 0.0880122017, B 3 .-. 0.334608072 )( 10 , C3 : 0. 

(tji(H) is given by equation 17.) 
0, 3 

The first term of the second order approximation tli 1 is 

treated in the same way, i.e., 

( 31) 

giving, 

(32) 

L~p 0 (r;) = 0 

LoQ.o<d = r;e-·t 

Po<o> = [p~Cr;>lr;=o = o 

[p~(r;))r;=o= 1 

qo(O) ; [q~(r;)]t=o = 0 

[q'(r;)]t=oo= 0 
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The solutions are, 

with 

Ao = s _1 r<- 1 >1<-1 1 
2 21<;=2 k! ( k-1) 2 

Bo :: 3 +.!. t( -1) k-1 Jk-2ll 
2 2k=2 (k!)2 

co = 1 
' 

and, 

(3~} 

with 

Ao = 3 +l ~(-1)k(k-2)!(k+1) 
k= 2 ( k ! ) 2 ( k -1 ) 

The slip velocity induced by the time averaged Reynolds str~sses 

in the Stokes layer at a long circular sylinder placed orLhogonal 

to a oscillatory flow field, generates a steady slip boundary layer 

outside the St6kes layer where (see Riley 1975 equation (9), note 
deviant notations), 

[ aljloJ = jsin2a 
az; r;=o 
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which give, 

An approximate expression of the dimensionless momentumflux in 

the slip boundary layer is, 

which give, 

M(.!-) ~ 0.975 
L 

This is unexpected close to a result given by Riley (1975, pp807) 

based on numerical integration which gave 

M<1> ,... 0.991 

In figure 2 the dimensionless tangential velocity, 

for 

N a . 
V 2 1 ~o,N 6 2N+1 = c 0 l: aN 

N=o ar.; 

N - 2 (Riley 1965) and 1 -

This figure indicate a three term Blasius series to give the tang-

ential velocity with resonable accuracy for 

while a four term series seems to be applicable for 



The general residual term of a test solution is, 

(A 1 ) Rm, n ( r; ; N ) = ~{ am , n r; me-n t } 

= am,n{[m(m-1)(m-2)r;m- 3 +m(m-1)(1-3n)tm- 2 

+mn(3n-2)tm-l + (n2-nl)tmle-nt 

+ [-m(m-1 >t111- 2 + 2m(n-1-2N)tm-l 

+ (-n+1+2N)(n-1)tm]e-(n+1 )t} 

= a { P ( r; ; N) e-n r; + Q ( t iN) e- ( n + 1 ) r; } 
m,n m,n m,n 

with the following properties, 

(A2) R0 , 1 (r;;N) = 0 

(A3) Ro,2N+1(~;N) = -2ao,2N+1N(2N+1)2e-(2N+1)t 

11. 

(A~) R1 , 2N+1(t;N) = a 1 , 2N+ 1 [C2N+1)(6N+1) -2N(2N+1) 2tle-( 2N+ 1 )r; 

Equation (A2) indicates that -r; e is a homogeneous solution for 

every N. The construction of·the other homogeneous solutions 

consists of choosing numerical values of a m,n such that 

for every n . The simplest expressions are obtained when the 

properties (A3) and (A4) are utilized. 
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Figure 1. The polar coo~dinate system (r,a) .referred to 

in the paper. 
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Figure 2. Dimensionless tansential velocity distribution at 
various angular positions. Full and dashed curves based on 
three and four terms of the Blasins series~ respectively. 
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