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1« Introduction.

The hyperfinite theory for stochastic integration goes back
to R.M. Anderson [2], who constructed a Brownian motion as the
standard part of a hyperfinite random walk, and defined the sto-
chastic integral with respect to this random walk as a pathwise
Stieltjes integral. The theory was further developed by H.J. Keisler
[7], and extended to more general classes of martingales by Lindstrem
[9], and Hoover and Perkins [6], independently (confer also the
work of K.D. Stroyan). A further extension to the infinite dimen-
sional case was given in [10]. The papers by Keisler and Hoover-
Perkins effectfully demonstrated the power of the nonstandard
approach by proving new strong existence results for stochastic
differential equations.

A central issue in the first papers was to show that what
could be obtained by the standard theory could also be obtained
by the hyperfinite theory, e.g. it was shown in [9] that if ‘Mt
is the "right standard part" of a hyperfinite SLz—martingale,and
X 1is a process standard integrable with respect to. °M+, then
there exists a hyperfinite process Y -~ called a 2-lifting of X =
which is integrable with respect to M, and such that °(}YdM)+ =
jXﬂ°M+. Moreover, it was shown that all local Lg-martingales

could in a natural way be represented as right standard parts of
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hyperfinite martingales, and it was argued that these two results
implied that the standard theory could be derived from the non-
standard theory.

But not all hyperfinite integrable processes are liftings,
and thus the answer above urges us to consider the opposite ques-
~tion; can the hyperfinite theory be "richer" than the standard one?
Or - on the contrary - is it true, that given a hyperfinite sto-
chastic integral Y = [XdM, we can obtain the standard part of Y
as a stochastic integral of a process in a natural way connected
to the standard part of M? These are the questions we shall
consider in this paper. Unluckily, we do not have many positive -
results (- the paper is almost a collection of counter-examples -),
but we shall try to argue that the one result we do have, has so
nice consequences that the study should be continued. To see this,
let us consider what consequences different answers to our question
would have: If the nonstandard theory really is "richer", we have
the possibility that it can be used to express new connections and
to obtain new results., But we also have the possibility that since
the class of integrals is larger, fewer results may hold for it,
€.g8. an inequality which is true for a class of standard integrals
may fail for the corresponding nonstandard class. A problem of
this kind was encountered by Keisler in the proof of his existence
theorem for solutions of stochastic differential equations: He

wanted to use a standard inequality of Krylov, concerning processes

of the form
t t :
x(t,w) = XO-+jf(s,w)ds+-jg(s,w)db(s,w),
o o

to show that a process X was a lifting. To complete this argument
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he had to replace the term fg(s,w)db(s,w) with a nonstandard
term jG(s,m)dx(s,w), where ¥ was a hyperfinite random walk
having the Brownian motion b as standard part. Using the lif-
ting theorems he could do this if G was a lifting, but in his
problem G depended on X in such a way that it was a lifting
only if X was a 1lifting. Keisler avoided this circularity
using an approximation argument, but no doubt his proof had been
much simpler if he had had a nonstandard Krylov inequality without
a lifting condition. Applying the representation theorems of the
first parts of this paper, we shall in sections 5 and 6 prove
such an inequality and use it to simplify Keisler's proof. We
hope this will convince the reader of the importance of a better
knowledge and control of hyperfinite stochéstic integrals. |

In the next section of this paper we give some examples of
what we can and can not hope to obtain in representing nonstandard
stochastic integrals by standard stochastic integrals. In the
third and fourth section we prove our main result (Theorem 5),
saying that for a class of martingales M we may obtain the stand-
dard parts of nonstandard stochastic integrals IXdM as standard
integrals of processes having the same finite dimensional distri-
butions as 'M'. This is the result we use to prove the Krylov-
inequality and Keisler's theorem. In the final section we try to
show by an example that the extra power of hyperfinite stochastic
integration is significant, and that it should be possible to put
it to good use.

We shall use the terminology and notation of [7] and [9].
A suitable reference for nonstandard analysis in general is the

book by Stroyan and Luxemburg [13], and for nonstandard probability
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theory in particular the survey paper by Loeb [11]., For the stan-
dard theory for stochastic integration, see Métivier [12]. We
shall assume that our nonstandard models have the necessary
saturation properties (see [13]).

An earlier (unpublished) version of sections 5 and © was
referred to by Fenstad in [5] under the title "Hyperfinite sto-

chastic integration and stochastic differential equations'.

2. Two examples.

It is not hard to find examples which show that if M 1is
an SL2—méri:ingale and X 1is integrable with respect to M, we
can not always find a Y integrable with respect to °M+, such
that ([xam)* = {va’M*. The example we shall give shows that it
is not true even when M is as nice and regular as a Brownian

motion:

Example 1: TLet mn€ *IN-IN; we shall use the hyperfinite time-

line T = f£:0<ksn). Iet 0 = {-1,1}T, and let P be the
uniform probability measure on Q; P{w} = :%,_
2

Let % :TxQ~*R be the Anderson process

t
x(t,m) = T @.Q{‘i);
~ s=oNT

-+

then B = ‘%" is a Brownian motion. Let X:TxQ~*R be defined

by 1
X(iﬁ,w)

17 if k 1is even,

O if k is odd.

i}

-k
X("ﬁ’ W )
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We shall show that there is no process Y such that ijB =
"([zax)*: By Theorem II-21 of [9], " ([xax)*ICe) = “L/xax]*(6) = 3¢
since fXﬂx is S-~continuous and hence well-behaved. Butb

t d
[[vap)(t) = [YPav, and thus ir [Yap - [¥ax, we must have Y° = %

o)
a.,e. Hence we may find a 2-1lifting Z of Y such that 22 = Ze

But now & ¢
E(([(x-2)ax)") = B(L[(x-2)ax]) 2 (1 - =%
O 0 ’\f?

On the other hand, by construction of Z we should have

°(§Xﬁx)+ = ijs = °(jde)+, and we have got a contradiction.

With this example in mind there seems to be no reason to look
for classes of martingales M such that given X, we can always
find a Y such that [¥a'M' = “([XaM)*. But often we are not
interested in the process itself, only in its distribution. Per-
haps we should weaken our statementvabove by replacing ‘MY with
a process N having the same finite dimensional distributions.
Hence we could ask if given X and M, we can find.a mertingale N
with the same finive dimensional distributions as ‘MY and a
process Y, such that JYdN = °(IX6M)+. Again it is not difficult
to find examples which show that this is not true. Our example
shows that it does not even hold for the '"nicest" kind of dis-

continuous martingaies, the well-behaved ones:

Example 2: We use the same time-line as in Example 1. A

martingale Z:TxQ-=*R is described informally as follows:

7(0) = 0. If 0St<—z, 82(t) is -n/* (1-n?) or o
n

according to the following rules: If AZ(s,w) =1-1" for
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some s<%t, then AZ(t,w) = 0. If not, then AZ(t) is ~n"9/4

with probability (1-—n-3/4) and (1-—n°5/4) with probability

3/4 1
n ° FOI‘ tz X AZ = Oo
N

Let now X:TxQ~-*R be defined by
X(Ew) = (-DF,

and let M = |XdZ. Then M is a well-behaved martingale and

7 = EX&M.

°

+ .
Now M is constant zero on a set of measure

3/4 .
(’l--n—5/4)n kﬁe"q, while 2% is different from zero on a set

o

. + .
of Loeb-measure one., Hence Z can not be a stochastic integral

. , . . . ot
of a process with the same distributions as M .

Things are even worse than this; we shall see in Example 8
that the statement is not true in general for S-continuous pro-
cesses., All the same, this is the concept we shall work.with in
the following two sections,

Example 2 has been constructed independently by Hoover and
Perkins [6] to show that the stochastic integral of a well-behaved

process is not necessarily well-behaved, which was also our ori-

ginal purpose.

3, The p-Brownian motions and their integrals.

Let p be a measure on [0,1] such that w([0,1]) <R, and
the cumulative distribution g: [O,ﬂ]-*IH_ is a continuous func-

tion. If <(Z,{¥.},v) is a stochastic basis, an n-dimensional
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p-Brownian motion with respect to this basis is an n-dimensional

martingale M such that
(g(t) - g(s))T = E(IMI(t) - (M](s)! ¥ )

for all s<t., Here I is the identity nxn-matrix and [M]ij =
[Mi,Mj], By a well-known characterization of Brownian motions it
follows that if p is the Lebesgue-measure, then M 1is a Brownian
motion. |

If M is a p-Brownian motion, we can define a new process
M: [O,g(’l)]xQ"’]R_+ by M(t,w) = M(g'q(t)gw). M is well-defined
since if g(tq) = g(tg), then M(t%): M(tz) a.e. Then M is a

martingale, and

(t-5)I = E(IM](6) - [Mj(s)| U F_)
g(I‘):t T

By the characterization above, M is Brownian motion. Since all
Brovnian motions have the same finite dimensional distributions,

we have proved:

Lemma %: TLet M and N be two u-Brownian motions; then

M and N have the same finite dimensional distributions.

If N is a real-valued Lg-martingale adapted to (Z,{F%},v>,

the Doleans-measure of [N] is the measure Viy] on the predict-

able sets defined by
vin](€ss T xA.) = E(y (INj(6) - [N](s)))
S

e <t
for A€ Sy ST

So if f is predictable
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t
e dv[m = E(’lA de[N])
1s, t]xA ®s

Assume that M is another Lz-martingale, and assume that the
paths of [N] are ebsolutely continuous with respect to the corre-
sponding paths of [M] a.s. Then v[N] is absolutely continuous

with respect to Vi Since

Vi () - ] e £( [1,a0m])

and

i

we have

\)[M](A) = 0 => Jrqu[M] =0 a.e, =>'Jp/|Ad[N] =0 a.e. => \)[N](A> = 0.

This implies that there is a predictable Radon~-Nikodym deri-

vative h such that

vegy(A) = jh avry

for all predictable A. Also notice that if A€ ;T'S, s<%t s
t

M1 = E(1, jh arMj)

E(’IAS([N](t)-[N](s)))=v[Nj(]s,t]xAs)_] tJiA ] 2

and hence £

E(IN](t) - (W] ()| %) = E( j nalM]! %)
S

A special case is when V[Mj is the restriction to the pre-
dictable sets of a product measure uxv on [0,1]x7Z, where
almost all the paths of [N] are absolutely continuous with re-

spect to p. In this case- the formula becomes
t

E((0](+) - [N](s)! F,) = E( Jhau| F))
S
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We now consider the case where N is an n-dimensional mar-
tingale, and we assuine that there is a measure W such that for
all i<n almost all paths of [Ni] are absolutely continuous
with respect to .u. By what we have just seen, there exists a

predictable n®n-process H such that
' t

E(IN](6) - [N](s)1F,) = EC | Hau| F).

S

Let X be a predictable n@n-process such that H = XJCX -

where ©°X denotes the transpose of X -, and let Y be a pre-
dictable process such that YX = Prg.. X)'L and Y !‘(;ImX)l =0
(here P(Ker X)l is the projection on the orthogonal complement of
the kernel of X, and (ImX)"' is the orthogonal complement to
the image of X.) Then X-Y =Py y, and Y is a kind of partial
inverse of X. If the measure W 1is finite, it follows from the
definition of Y that Y is integrable with respect to N.

We shall say that the probability space <(Z,%,v)> is u-large
with respect to the basis {EFt}, if there exists a u-Brownian
motion ¥  adapted toc a basis {93{;} such that r}:q and ‘3:,]' are

independent. If this is the case, we may define the process

X = u‘:YdN”'JPKerX_ ax .

4

If ¥, is the o-algebra generated by ?t and ‘T &> we shall
show that X is a p-Brownian motion adapted to the family {W¥ ].
Obviously x is & martingale w.r.t. {}(t}, and hence it suffices

to calculate the quadratic variation:
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E(Ix](6) - IxJ(s) 1R ); 5 =

t
E(] = Y,Y. oalm,N ] +
~£k11k;|1 k?

t
+ .[ X, l 1k( erX)jl dl:Nk’xij +
s
¢
+ | Z (P ¥
gk 1 KerX)sy Yo dly,Np] +
tr
v’ o7l -
* kzl( erX)lk( IerX)jl d"’(k’xl]‘ys) =
s
t
= B(| k):lY 131 Z DXy W)
s
|
+ E<é 12{:( erX)lk (B erX);jk du'-.Ms)
t t
= B(] (@ (masiR); E(j KorX FPrerx 3! Mg)i 5
s

Since YX = P(KerX)J' , this proves that E([x](t) - [X](‘s)l}-\s) =
(g(t) ~g(s))I, and hence X is a y-Brownian motion.

We may now define

ax’ = | Xyan,

z = [xax - [xyavw+|xep ]

J

Ker X

and we shall prove that 2 = N—NO. Since XY = PImX is a projec-
n
1 < - 3 - < .
tion , izﬂtzi]—igﬂ[Ni]’ and if Z £ N NO y We must have inequality.

But we have
t

B([2]() - (27(s) 3 = B( Xy amw]®xv) 1w -
S
t

r L R _ 5 T,
E(| XY X’XTY°XauM) = B( | X Pgerx)* X P(Kerx)x) dul¥)

I
— ot

0]

1

%
B( | XU Xaui¥) = B(IN)(E) - (w](s)!ay)
S
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and hence 2 = NnNoa

We have hence proved:

Theorem /k: Let <(Z,¥ ,v? be a probability space which is
u-large with respect to the basis (Z,{?t},v), and let N be
an Lg-martingale adapted to this basis. Assume that the measure u
is finite, and that almost all paths of each [Ni] are absolutely
continuous with respect to p. Let X;Y and ¥ be as defined

ebove., Then

o

c 20
X = JYdN+JPKeerX

is a p-Brownian motion, and
N =Jde+NO°

Hence N can be written as a stochastic integral of a p-Brownian

motion.

The proof above is not new; the idea goes back to Doob [4].
But since we have not been able to find exactly the version we
need in the literature, and a knowledge of the proof will be

useful in the sequel, we have repeated it here.

4, The representaticn theorem.

From now on Q shall be a hyperfinite probability space of
the kind considered in Keisler [7); i.e. Q is of the form Qg
for some hyperfinite set QO, and a hyperfinite time-line T,

Let P De the uniform, internal probability measure on Q, and

let L(P) Dbe its Loeb-measure.
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If weQ and L ET, let
wMt = (w(s) : s<t),

and let (Z £ he the internal algebra generated by the equivalence
relation w= w'<=> [t = w'[t. Let the stochastic basis

{Q, {‘}t},L(P)> be the one constructed from the internal basis
(Q,{G3,P> as in [6], [7], and [9]. Define

(M) ={w €a:wlt = o' tl.

To be sure that our space (Q,L(C‘,l), L(P)) is u-large, we
shall change it a little: Let oé be a hyperfinite - but not
finite - set, and define

' T T
Q = QOXQO .

If w EQ',, denote its components by Wa 0o, and let m:Q' 7 Q be

i

the projection m(w) = wq. Define C&i': = n"/‘(Cﬁ;), !\r{: = ﬂ—/l(?‘t),
and (wMt)' = n—/l(w‘{‘t). Having done this, we shall forget about
the original space Q3 we shall delete the prime and write Q
for @', and G, T, and (wlt) will be the objects obtained
by applying the definitions above to the new Q. (The trick of
enlarging the probability space is probably unnecessary anyhow,
since our space 1s so enormous; but we don't want to get too far

afield by showing it.)

By these definitions it is not hard to see that (Q,L(C‘,l),L(P»
. O |
is p=-large with respect to {'}t}c

We shall assume that our time~line is of the form

T - {f:rke W, 05k2n)
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for some infinite n = (y!). If HE*N~N,H<vy, let
en 12
TH = ’LO,'I:I',E, oon.o,/l}cTa

An internal transformation of Q of mesh 1/H is an internal bi-

jection h: Q-0 such that if t €Ty, h maps (wlt) onto (hw|t).
H.J. Keisler has proved (Theorem 9.4 of [7]) that two conti-

nuous ?rt-Markov processes x and y have the same finite dimen-

sional distributions if and only if there is an internal transfor-

mation h of infinitesimal mesh such that
y(e,w) = x(+,hw) a.e.

Let M:Tx0-*R be an S-continuous SL°-martingale, let
IIESLz(M), and assume that u is a finite measure on [0,1] such
that almost all paths of each °[Mi]+ = [°M;] are absolutely con-
tinuous with respect to u. If 2 = IIIdM, it follows that almost
all paths of all °[Zi]+ = [°Z;] are absolutely continuous with
respect to H.

By Theorem 4, there exists u-Brownian motions xo,x,x' and

processes Y,Y',X,X' such that

o

_ [va°mt
X = jYal +jPKeerX

r t °_ 4 o
x'= 1Y a'zts [P gax
and

°

+ l: ! 1
42 = JXZ ax .
By Lemma 3 and the theorem by Keisler mentioned above, there is an

internal transformation h of infinitesimal mesh such that
x'(eyw) = x(*,hw) a.e.

Let K:TxQ~TxQ be idxh, then ¥ = x°K, and we get

7zt - (X ax' = Ix'axex = [x'vx d(°M+°K)+JX'PKer§K ay  K).
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Obviously 'M'°X has the same finite dimensional distributions
as °M+, and hence we see that if the last integral above 1s 2zero,
we can write 2% = °(§IIdM)+ as a standard stochastic integral
with respect to a process which has the same finite dimensional
distributions as M.

One way of making the integral JFX‘PKer x°K a(x °K) zero,
is to let PKer)C= 0. Hence we say that a martingale

N [O,ﬂ])(Q-*Ifl is nondegenerate if there is a fiﬁite, continuous

measure u on [0,1] such that almost all paths of each [Ni]

are absolutely continuous with respect to u, and the Radon- .
Nikodym derivative H defined in the last section has detH # O
almost everywhere. By the theory developed in the last section,
this is equivalent to that N can be written as a stochastic inte-
gral of uw-Brownian motion, where the integrand is nondegenerate.

Thus we have proved the following theorem:

Theorem 5: Let M:TxQ-~*R® be an S-continuous SLgn
martingale adapted to (Q,{%é},P} such that "M* is nondegenerate,
and let U%ESLQ(M), Then there are a martingale N:[O,’I]xﬂ—*]RI1
adapted to (Q,{Tt},L(P)) having the same finite dimeasional

distributions as °M*, and a process V%EAz(N) such that
“(Juam* = [v an.

Example 1 shows that we can not in general have N = "1t

In the calculations leading up to Theorem 5, we have proved

the formula

]

7t - Jf X YK a( M oK)

-]

if MY is nondegenerate. Applying K"/l on both sides, we get

=1 o Txex Ty atut,

o

AR
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and we have proved

Thecrem 6: Let M and U be as in Theorem 5. Then there
is a process W€A2(°M+) such that de°M+ has the same finite

dimensional distributions as  ( JrUdM)+.

The condition that M should be nondegenerate is not very
satisfactory, but in dimension one we can at least make it look
a little nicer. In this case the only way it can degenerate is
that the Radon-Nikodym derivative becomes zero, and this can not
happen if p 1is absolutely continuous with respect to almost all

the paths, as well as the other way around. Thus we have

Corollary 7: Let M:TxQ~"*R be an S-continuous SLE-

martingale adapted to (Q,{Cx%},P), and suppose that almost all
the paths of [M]| are mutually absolutely continuous. Let
UESL2(M), Then there are \a’martingale N:[0,1]xQ~R adapted
to <,{¥.},L(P)> having the same finite dimensional distribu-

tions as 'M*, and a process V€A2(N) such that

“(fvan* - [var,

r-

Moreover, there is a W€A2(°M+) such that JWd°M+ and o(jﬁUdM)"'
have the same finite dimensional distributions.
But what if the nondegeneracy condition isn't satisfied?

The formula

°+—f 'vo °.’-m [ x! ° oo
Z _JXYKd(M K)+JXPKerXKd(x K)

provides an idea what to look for: Either we must try to show that
KerX°K cKer X', or we must find an example where this doesn't hold.

Keeping to the latter strategy, we produce
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Example 8: Let T,Q,x, and X be as in Example 1., Let A be
the set

1

z
A={wea:3 X(s,w)ax(s,w)>0}.
0
Obviously L(P)(A) = 4. We now define a process B:TXQ-*R by:

g(t,w) = x(t,w) for t=<43,

and for t2>7%,

AB(L,w) = Ax(t,w) if wgA

Ag(H,0) = O if we€A.,

bet z = [xas,

and assume - for contradiction - that there are an internal trans-

formation K and a process Y such that

2tk = [Ya's*,

Since t —> "Z7(t,w) dis constant on ([%4,1] if and only if
w€e€A a.s., and the same holds for °B+, we must have
L(P)(E~(A)ab) = O.

By definition of A, the distribution of ‘Z¥(4+) on A is
the distribution of the absolute value of a gaussian variable
with variance ;—, and by what we have just seen, this is also the
distribution of °‘Z*eK on A.

Let us find this last distribution in another way: Define

B'= B-Z =] (1-X)dp, and let Y be a 2-lifting of ¥:
(*)  °z%ex = J'?Y@f@*: °(J.rYd(Z+B'))+ = °(JrYdZ)++°(J§dB')+.

Since Z and B' are independent, the quadratic variation of
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the process on the right is

. t F
"((ParzDt s (T2 ate DY = 2037 [P(s)as)
o o]

0

and since ['Z7eK](t) = #t for t<4%, it follows that

Y(t,0)) =v—?§ for t<4%.

Again since Z and B' are independent, B8' is a martingale
on A, and hence the expectation of Q(Jw§d£)+(%) is zero.
The distribution of *([Yaz)*(3) on A is part of the

distribution of a gaussian random variable with variance %3 Thus

x2

0
B ((raz)ta)) <[ —2 g 27178 g - 1
0 N/?ii-l}é F
while 5
oC - X
E(1, 2VK(3)) = [ S 28 4 o0
c J2nﬁ7ﬁ 2:/2n

Hence the expectation of the left hand side of (*) over A

is , Wwhile the expectation of the right hand side over A

2/

is S , contradiction., Thus the internal transformation K which
H4en

we postulated can not exist, and hence there is no Y', K' such

that

©

z* = [y a’steK',

But it is not immediately clear that this is a counterexample
to Theorem 5 without the nondegeneracy condition, since °B+ is
not a lMarkov-process. However, it is not diff%cult to use Keisler's
result to show that if two processes have the same finite dimensio-

nal distribution as °B+, then one can be brought over into the
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other by an internal transformation. Hence Theorem 5 is false

without the degeneracy condition.

5. A nonstandard Krylov inequality.

Let us give an application of the results of the last section.

In [8], N.V. Krylov nroved the following inequality:

Proposition 9: For all positive reals M, and every positive

integer n, there exists a real k with the following property:

Suppose
£:[00,7] xR, g:[0,1]x0~R*e@R"

are progressively measurable, bounded functions with
lect,wll, llatt,wll, (aet glt,w)) = <m.

Let b be an n-dimensional Brownian motion on Q, and

t t
x(t,w) = Xo*'J f(s,w)ds-+j g(s,w)db(s,w).
0 o

Then for any I°"'-function h:(0,1]x B*~R with h(t,x)>0:

e

|
I:(Jr n(s,x(s,w))ds) <kl
0

n+1°

As we shall see in the next section, it would be very useful
to have a nonstandard version of this result. Hence we may ask

whether the following holds:

Theorem 10: For all positive reals M, and every positive

integer n, there exists a real k with the following property:
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Suppose
F:Txa~*R% G:Txa-*R@*R"

are ©S-bounded, nonanticipating processes with
1BCE, )|, [l6Ct,w)]l, (detG(t,w)) 2 < M.

Let x be an n-dimensional Anderson process, and let

t T
X(t,w) = XO-PJ F(s,w)ds-bj G(s,w)dax(s,w).
0 0

Then for any positive Ln+q—function h: [0,1]><151*1R:
/I

([ h(s, X(s,0)")ds) <k|ln|
o)

n+1°

The idea of the proof is obvious; we write °X" on the form
of the process X in Proposition 9 and apply that proposition.
It'is easy to see that there is a progressively measurable
such that Jf(s,w)ds = °(f F(s,w)ds)+o By Theorem 5, there is an
n-dimensional Brownian motion b, and a process g such that
jggdb = o(f(}dx)+ (we are confusing the predictable and the pro-
gressively measurable sets, but there is no danger in this since
we obtain the latter by adding all product measurable null-sets

to the former.) Hence we can write

o

+ r
X = xo+des+jgdb,

To apply Proposition 9, we Jjust have to check that we have the
right bounds on f and g. The only one that takes a little work
is the bound on |detg["1. We first show that it can be replaced

by a notion which is easier to handle:
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Lemma 11: TLet A :R"-TR" be a positive, symmetric linear

map, and let

Al = sup {llAg] : |lg]| =13
1(4) = inf{(§,A8),[l&ll =1}
M(A) = sup{m: m is a component in a matrix

representation of A with respect to an ortho-

normal basis}.

Then M(A) = [|A]], 1(A)>det(A)/||aA™" and det A>1(A).

Proof: M(4A) and ||A]] are both equal to the largest eigen-
value of A, and 1(A) 1is equal to the smallest. Since det A
is the product of all eigenvalues l(A)-]]A\]n‘q?_det A, and
det A > 1(A)",

The lemma shows that as long as we know that g is bounded,
we may replace the condition that det g‘ll is bounded by the con-
dition that 1(g)~"' is bounded. This is useful since 1 satis-

fies the following superadditivity properly:

Lemma 12: If A and B are two nonnegative definite mnxn-

matrices, then 1(A+B)>1(A)+1(B).

The proof is obvious.
Let us now study the properties of the integrand g in the
expression jgdb = c’(Jerx)J’° To find g, we first find a pro-

cess H such that
t

) B ea0™ ) -1 (Jea) 1) T = B(JHau]F))
S

Since each path of [°(}de)+] = °[5de]+ is absolutely con-
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tinuous, we may take H to be the derivative
H(s,w) = ([jeax]™) '(s,w),

since this procesé obviously satisfies (*), and is progressively
measurable. Since H = gtg, it is enough to show that ||H|
and 1(H)—/l are uniformly bounded. Using the independence of

A% and AX; when k £ 1, we get:

([feax i) - feax)(s); =

t ( n
2 (%G,
res k=1 K

@0, @) T Gy (e ()

5
LT G, (2)Gi (p)ax, (r)ax, (r)
r=s k,1 %~ d1 k .

By assumption and Lemma 11, l(G(r)tG(r))_q is uniformly

bounded, and by Lemma 12 so is l(r:G(r)tG(r)dr/(t—s))-q. But
g .
by definition, this must also hold for H and g, and by apply-

ing Lemma 11 again, we see that detg'q is uniformly bounded.

This proves Theorem 0.

The proof above shows how we can use the representation
theorems of the last section to extend standard results to non-
standard situations. Notice that we need not extend the measure-
space in this case, since the processes are nondegenerate. Also

notice that we have proved the nonstandard result without getting
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involved in the standard proof; the advantage of this should be
clear to anyone who has tried to understand the proof of Krylov's

inequality.

6., Keisler's existence theoren.

In [7j, H.J. Keisler proved a strong existence result for
solution of stochastic differential equations using Krylov's
inequality. As he only had the standard version of Proposition 9
at his disposal, Keisler had to rely on a long and rathér compli-
cated approximation argument to obtain his result. We shall now
see how the nonstandard version of Theorem 10 can be used to
simplify his proof. '

We first review some notions from Keisler's paper: If HE YN,

da

an H-element is a subset of *R~ of the form

{z € *JRd: ykf_zk<yk+%, k =1,000,4}

where y = (y/l,...,yd) is a point in *]Rd such that each T3

d has Bd-’l neigh-

is a multiple of %. Each H-element in *R
bours. The union of a hyperfinite set of H-elements is called
an H-set. If HE€XN, A is an S-bounded H-set in [0,1] xR",
and ® is in the set of measure one where the process X of
Theorem 10 is S-continuous, then if “X( t,e)* e A("t,w),X(%,w)
is in A(t,w) or one of its neighbouring sets. Applying

Theorem 10 to the characteristic function of A, we get

Pri{(t,w) €Tx0: X(t,w) eA(t)}_f}k.*u(A)’l/nM N %’

where Pr is the internal product measure on TXxQ, and p is

the Lebesgue-measure on IRnM,
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For each r €N, define:

—f\f’\‘\'-r = {He€*W: Por all F and G nonanticipating processes
W=, lGll, (det G)—gf_l"l, we have for all H-sets A bounded
by =r, that if
| . .
X(t,0) = x, +Z F(s,w)dt + T G(s,w0)rx(s,w)
o o)
then
Pri{(t,w) : X(t,0) €A(t,w)} _<_5k*u(A)’l/n+’l +%}.

By the internal definition principle there must for each |
r€IXN be an infinite HE€ }:-J(r, and by saturation we may find an
infinite H which is in all of then.

We may now prove Keisler's theorem:

Theorem 13: Suppose f:[0,1]xR*-R", g:[0,1] xR~ R*®R"
2

are bounded, measurable functions, and that ;detgi” is uniformly
bounded. Let b be the standard part of an Anderson process with

values in *R%. Then the equation

t t
x(t,w) = X+ JF f(s,x(s,w))ds+_\n g(s,x(s,w))ab(s)

(o} e}

has a continuous solution.

Proof: Let M be a bound on l|f]|, |lgll and |det gl"e, and
let H€ *W-IN be the hyperfinite number constructed abové. Let
F:Tx*R%-"RY G:Tx*B*~*R*® *R® be H-liftings of f and g
respectively (i.e. liftings constant on H-elements).

Consider the process

o v &
P

X(t,0) = x_+ | F(s,X(s))ds + | G(s,X(s,w))ax(s,u),
) (o]
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and let x be a progressively measurable, continuous process
having X as a uniform lifting. To prove that x 1is a solu-
tion of our stochastic differential equation, it is enough to
show that F(s,X(s,w)) and G(s,X(s,w)) are liftings of

f(s,x(s,w)) and g(s,x(s,w)) respectively, since then

°IF(s,X(s,w))ds==jf(s,x(s,w))ds and °JG(S,X(s,w))dx==Jg(s,x(s,w))db°

But F and feost differs only on a null-set in the Loeb-algebra
generated by the Il-sets, and the same holds for °G and gest.
But the probability that X shall be in such a set is zero

according to the definition of H. This proves the theorem.

Since the processes in the last two sections all are non-
degenerate and have quadratic variations absolutely continuous
with respect to the Lebesgue-measure, we need only a very simple
version of the theory of sections 3 and 4. Hence rather shprt,
direct proofs of Krylov's inequality and Keisler's theorem are
possible (see the forthcoming book by Albeverio, Fenstad, and

Hoegh~-Krohn [1]).

Id

7. The power of nonstandard stochastic integration.

We have so far mainly been concerned with reducing hyper-
finite stochastic integrals to standard stochastic integrals,
but our examples have shown that this is not always possible,
and when it is possible, only in a rather indirect way. In this
section we shall try to show by an example why we believe that
the extra power of the nonstandard theory will be of importance

in the mathematical modeling of statistical phenomena.
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We shall look at models for Brownian motion. A well-known
way of modeling these phénomena, is to start with a sequence of
independent random variables, and then use Donsker's theorem
(see Billingsley [31, or - for a nice nonstandard proof -
Anderson [2]) to obtain a Brownian motion process. Thus let
€118oyece.. Dbe a sequence of independent random variables on a
probability space (Q,P) taking each of the values 1 with

probability Z. Define the stochastic process xn‘:.[o,’l] x0" R

by

(nt] & (w)
Kp(Bow) = B s (- 8] £y (@)

k=" fn
Then ¥, converges in distribution in C([{0,1]) to a Brownian
motion ¥X.

In considering the physical aspects of this model, it does not

seem improbable that we should come across processes of the form

~ r
Xn = J % Xy
where
Xn(t,w) =1 if te[ﬂ-, J;‘?—) for some even €W,
and

X (t,0) =0 if teld, &Ly ror some oad jem.

It is natural to represent these processes in the limit model as
the limit in distribubtion of the Qn. We denote this limit process

by Xe

Proposition 14: TLet Y Dbe integrable with respect to ¥,

then 1
E((X() - [Ya)®) 27
(o}
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Proof: By definition of the stochastic integral, there is

for each given e¢>0 & process Y of the form
~ I
Y=2%

a. 1
joq 1 Fsi?“Si’ti]

such that 1 1
[

ITvax- [Yaxl,<e.
o] (o]

Since Xp and Zn converges in distribution to x and ; re~
spectively, there must be an n such that

i, - Faxgll, - IX- [Taxl,' <e
for n>no.

But taking this n large enough, we can get Xﬁ to Change

value as often as we wish without Y changing. ©Since the least

value of x24-(ﬂ-x)2 is 4% for x = %, we have for large enough I :

~ o 2 ' 5 2 r FN2 a2 ]
iy = [T a3 = 1] - Daxgl52 11 [, - DHZas)F - e 27 - 2e.
Putting these results together, we have

E((X(1) - [Ta)?) 2 (/2 - 2e+ 2¢)2,

O —n

and since €>0 is arbitrary, the proposition follows.

This result tells us that it is impossible to obtain z as
a stochastic integral or as a limit of stochastic integrals of ¥x.
What we can do, 1s to leave the limit-model, go back to the approxi-
mations, and there write ;n as Ethxn. That this simple proce-

cedure can not be reflected within the model, seems to point at a

weakness of the limit construction.
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The nonstandard model of this phenomenon would clearly be the
one given in Example 13 the ¥ of that example corresponding to
the ¥ above, and Eiidx corresponding to ;. The result of the
example is of course Jjust another version of Proposition 143; we
can not obtain °(E}Cdx)+ as a standard stochastic integral of ¥.

But by definition, j)(dx is a nonstandard stochastic integral

of x. Thus the nonstandard model faithfully represents more
properties of the approximations than does the standard model,

and this reflects The extra power of the hyperfinite stochastic
integral. Let us end by hoping for a more effective example than
the one above; an example where the importance of the processes §£

are not only poétulated but shown, and where the extra expressive

power is put to good use.
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