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1. Introduction. 

The hyperfinite theory for stochastic integration goes back 

to R.M. Anderson [2], who constructed a Brownian motion as the 

standard part of a hyperfinite random walk, and defined the sto

chastic integral with respect to this random walk as a pathwise 

Stieltjes integral. The theory was further developed by H.J. Keisle~ 

[7], and extended to more general classes of martingales by Lindstrmr~ 

[9], and Hoover ruld Perkins (6], independently (confer also the 

work of K.Do Stroyan)$ A further extension to the infinite dimen

sional case was given in [10]. The papers by Keisler and Hoover

Perkins effectfully demonstrated the power of the nonstandard 

approach by proving new strong existence results for stochastic 

differential equations. 

A central issue in the first papers was to show that what 

could be obtained by the standard theory could also be obtained 

by the hyperfinite theory, eog~ it was shown in [9] that if 
0 + 
M 

is the "right standard part" of a hyperfinite SL2-martingale,and 

X 
0. + is a process standard integrable with respect to".. M , then 

there exists a hyperfinite process y- called a 2-lifting of X--

which is integrable \IJi th respect to M, and such that 0 cJYdM)+ = 

rxd 0 M+. Moreover, it was shown that all local L2-martingales 
J 

could in a natural way be represented as right standard parts of 
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hyperfinite martingales, and it was argued that these two results 

implied that the standard theory could be derived :from the non

standard theory. 

But not all hyperfinite integrable processes are liftings, 

and thus the answer above urges us to consider the opposite ques-

. tion; can the hyperfinite theory be "richer" than the standard one? 

Or - on the contrary - is it true, that given a hyperfinite sto

chastic integral Y = JxdM, we can obtain the standard part of Y 

as a stochastic integral of a process in a natural way connected 

to the standard part of M? These are the questions we shall 

consider in this paper. Unluckily, we do not have many positive 

results (- the paper is almost a collection of counter-examples -), 

but we shall try to argue that the one result we do have, has so 

nice consequences that the study should be continued. To see this, 

let us consider what consequences different answers to our question 

would have: If the nonstandard theory really is "richer11 , we have 

the possibility that it can be used to express new connections and 

to obtain new results. But we also have the possibility that since 

the class of integrals is larger, fewer results may hold for it, 

e.g. an inequality which is true for a class of standard integrals 

may fail for the corresponding nonstandard class. A problem of 

this kind was encountered by Keisler in the proof of his existence 

theorem for solutions of stochastic differential equations: He 

wanted to use a standard inequality of Krylov, concerning processes 

of the form 
t t 

x(t,w) = x + lf(s,w)ds + Jg(s,w)db(s,w), 0 ., 

0 0 

to show that a process X was a lifting. To complete this argument 
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he had to replace the term Jg(s,w)db(s,w) with a nonstandard 

term JG(s,w)dx(s,w), where x was a hyperfinite random wall{ 

having the Brownian motion b as standard part. Using the lif

ting theorems he could do this if G was a lifting, but in his 

problem G depended on X in such a way that it was a lifting 

only if X was a lifting! Keisler avoided this circularity 

using an approximation argument, but no doubt his proof had been 

much simpler if he had had a nonstandard Krylov inequality without 

a lifting condition. Applying the representation theorems of the 

first parts of this paper, we shall in sections 5 and 6 prove 

such an inequality and use it to simplify Keisler's proof. We 

hope this will convince the reader of the importance of a better 

knowledge and control of hyperfinite stochastic integrals. 

In the next section of this paper we give some examples of 

what we can and can not hope to obtain in representing nonstandard 

stochastic integrals by standard stochastic integrals. In the 

third and fourth section we prove our main result (Theorem 5), 

saying that for a class of martingales M we may obtain the stand

dard parts of nonstandard stochastic integrals Jxd11 as standard 

integrals of processes having the same finite dimensional distri

butions as oM+o This is the result we use to prove the Krylov

inequality and Keisler's theoremo In the final section we try to 

show by an example that the extra power of hyperfinite stochastic 

integration is significant, and that it should be possible to put 

it to good use .. 

We shall use _the terminology and notation of [7] and [9]. 

A suitable reference for nonstandard analysis in general is the 

book by Stroyan and Luxemburg (13], and for nonstandard probability 
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theory in particular the survey paper by Loeb [11].. For the stan

dard theory for stochastic integration, see Metivier [12]. We 

shall assume that our nonstandard models have the necessary 

sat-uration properties (see [13]). 

An earlier (UlLpublisheJ) version of sections 5 and 6 was 

referred to by Fenstad in [5j under the title 11Hyperfinite sto

chastic integration and stochastic differential equations 11 • 

2o Two examples .. 

It is not hard to find examples which show that if M is 

an SL2-martingale and X is integrable with respect to M, we 

can not always find a y integrable with respect to 0 + 
M ' such 

that The example we shall give shovJ"S that it 

is not true even when M is as nice and regular as a Brovmian 

motion: 

line 

~~__:],: Let 1') E *:N-JN; 

T = f ~ : 0 < k < 'Y1 1. Let 0 'Tj ~ - '1-

we shall use the hyperfinite time
T 

= [-1,1} , and let P be the 

uniform probability measure on 0~ P(w} = ..':L, 
2fl 

then 

by 

Let x : T x 0 ..... *JR. be the Anderson process 

s = 
0 + 
X 

t rs) 
X ( t , w ) = I: !!l-"'-:;-· ; 

S=O VT[ 

is a Brownian motion~ 

,,., 
xc.::~ Ul) = 1 if k is 

11' 

xck ) Tt'w = 0 i.f k is 

Let X~ T x 0 ..... *JR. be defined 

even, 

odd. 
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We shall shovl that there is no process Y such that J Yd~ = 

0 cJ )+ 0 r + 0 ; ]+ . Xdx : By Theorem II-21 of (9], [ CjXdx) ](t) = [jXdx (t) =it 

since Jxdx 

[ l Ydf3] ( t) = 
<) 

is 
t 

8--continuous and hence well-behaved .. But 

f Y2 cit, ... and thus if -· J Xdx , we must have 
0 

z2 = t .. a.e. Hence we may find a 2-lifting Z of Y such that 

But now 
t 

ECCJcx-z)a.x)2 ) = 
0 

t 
S J 1 2 E([ (X-.Z)dX ) > (1- --) t .. 
0 - V'Z 

~L the other hand, by construction of Z we should have 
or·+ r of' + 

(jXdx) = jYd~ = (JZdx) , and we have got a contradiction. 

With this example in mind there seems to be no reason to look 

for classes of martingales M such that given X, we can always 

find a Y such that jYdoM+ = o(JXdM)+. But often we are not 

interested in the process itself, only in its distribution .. Per

haps we should weaken our statement above by replacing oM+ with 

a process N ho.ving the same finite dimensional distributions. 

Hence we could ask if given X and M, we can find a martingale N 

with the same finite dimensional distributions as oM+ and a 

process Y, such that JYdN = o(JXdM)+. Again it is not difficult 

to find examples which show that this is not true. Our example 

shows that it does not even hold for the "nicest" kind of dis--

continuous martingales, the well-behaved ones: 

~xam~le 2: We use the same time-line as in Example 1. A 

martingale Z:TXO.-.*JR is described informally as follows: 

Z(O) = o .. If 
,., 

6Z(t) is -3/4 (1- 1{-3/4) 0 < t <~'"74 -~ ' or 0 
~ I ' 1{ 

= 1 - 1{-3/4 according to the following rules: If 6Z(s,w) for 
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some s < t, then t.Z(t) is -11 -3/4 

with probability 

t.Z ( t , w ) = 0 .. 

('1- il-3/4) 

If not, then 

and ( 1 - 11-3 I 4) with probability 

-3/4 1 11 .. For t 2: :T/4' t.Z = 0 .. 
-r, . 

Let now X : T x 0 -+ *JR. be defined by 

and let M = JxdZ. Then M is a well-behaved martingale and 
r Z = :XdM. 

J 

Now oM+ is constant zero on a set of measure 

0 + Z is different from zero on a set 

of Loeb-measure oneo Hence 
0 + 
Z can not be a stochastic integral 

of a_process with the same distributions as 
0 + 

1'1 0 

Things are even worse than this; we shall see in Example 8 

that the statement is not true in general for S-continuous pro-

cesses.. All the same, this is the concept we shall work with in 

the following two sections .. 

Example 2 has been constructed independently by Hoover and 

Perkins [6J to shovJ that the stochastic integral of a well-behaved 

process is not necessarily well-behaved, which was also our ori-

ginal purpose .. 

3 .. The !J.-Bro-v.mian motions and their integrals .. 

Let \l be a measure on [ 0,1] such that IJ.( [ 0,1]) < o::?, and 

the cumulative distribution g ~ [0, '1] _..JR.+ is a continuous func

tion. If (Z, [ ft}, \!) is a stochastic basis, an n-dimensional 
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~J.-f1rownian motion with respect to this basis is an n-dimensional 

martingale M such that 

(g(t)- g(s))I = E([MJ(t) .- [M](s)l :'fs) 

for all s < t. Here I is the identity nxn-matrix and [M] .. = 
~J 

[Mi,Mj]. By a well-known characterization of Brovmi~n motions it 

follows that if ~ is the Lebesgue-measure, then M is a Brownian 

motion. 

If M is a 1-1-Brm.m.ian motion, we can define a new process 

i\1: [O,g(1)] xo--JR+ by M(t,w) = M(g-"\t),w). I'1 is -vrell-defined 

since if g(t1 ) = g(t2 ), then M(t~ = M(t2 ) a.e. Then H is a 

martingale, and 

(t-s)I = E( [M] ( t) - [Mj ( s) I u y ) 
g(r)=t r 

By the characterization above, M is Brownian motion. Since all 

Brm·mian motions have the same finite dimensional distributions, 

we have proved: 

Lemma 3: Let H and N be two ~J,-Brownian motions; then 

M and N have the same finite dimensional distributions. 

If N is a real-valued L2-martingale adapted to (Z,[T-t),~), 

the Doleap.s-measux,·~ of 

able sets defined by 

f A E '+: or s ~· s' s < t. 

[1\T] 

So if f is J)redictable 

is the measure on the predict·-
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t 

r r 
J f dv[Nl = E( 1A j fd[N]) 

J s 't J xA.s - s s 

Assume that M is another L2-martingale, and assume that the 

paths of [N] are absolutely continuous with respect to the corre-

spending paths of Then is absolutely continuous 

"t.<Jith respect to v[I-Ij: Since 

and 

vle have 

This implies that there is a predictable Radon-Nikodym deri

vative h such that 

for all predictable Ao Also notice that · f A E ~ 1 s "'s' 
s<t: 

t 

E(1A ([N](t)-[N](s))) = v[N/]s,t]xAs) = j hdv[Ml = E(1A jhd[M]) 
s ]s,t]xAs - s s 

and hence t 

E([N](t)- [N](s)l"fs) = E( J hd[M]Jfs) 
s 

A special case is when is the restriction to the pre-

dictable sets of a product measure ll x v on [0, 1] x Z, vJhere 

almost all the paths of [NJ are absolutely continuous with re-

spect to ll· In this case-the formula becomes 
t 

E([N](t)- [N](s)l j=s) = E( jh dl.l\ 'Fs) 
s 
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We now consider the case where N is an n-dimensional mar-

tingale, and we assume that there is a measure ~ such that for 

all i < n almost all paths of [N. J 
J_ 

are absolutely continuous 

with respect to ~· By what we have just seen, there exists a 

predictable n®n-process H such that 
t 

E([N](t)- [N](s)lfs) = E( J Hd~! J=s) .. 
s 

Let X be a predictable n®n-process such that H = XtX -

where tx denotes the transpose of X - , and let Y be a pre

dictable process such that YX == P (Ker X)l. and Y ~ (lmX)1 = 0 

(here J.-'{Ker X).L is the projection on the orthogonal complement of 

the kernel of X, a..nd (ImX)J. is the orthogonal complement to 

the image of X.) Then x .. y == PimX' and y is a kind of partial 

inverse of X .. If the measure ~ is finite, it follows from the 

definition of y that y is integrable with respect to N. 

We shall say that the probability space <z, r, v > is ~-large 

with respect to the basis [ :Ft}, if there exists a ~-Brovmian 

motion x o adapted to a basis £1-~) such that 'f 1 and :f1 ' are 

independent.. If this is the case, we may define the process 

X = s YdN + J PKer X dX o • 

If 1-Zt is the a -·algebra generated by ~ and ~~' 1rJe shall " t 

show that X is a ~-Brownian motion adapted to the family £1\}. 

Obviously X is a martingale w.r .. t .. (~}' and hence it suffices 

to calculate the quadratic variation: 
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t 
(< 

E( j l: Y.k"Y .1 d.[N1,..,N1 ] + 
k 1 L .. J "" 

s ' 
t 

+ J l: Y.k(PK X) "1 d[Nk,X~ J + 
s k' 1 l. er J l. 

t 
r 

+ ~ k~l(PKerX)ikyjl d[X~,Nl] + 

t r o o 

+ J l: (PKerX)ik (PKerX)jl d[xk,xl]\1-fs) = 
s k,l 

t 
= E c J" z: Y. ky .1 r: x, x1 d~JI "H ) , 1 1. J :m. Kill m s 

S K, 

t 

+ E(J l:(PKerX)ik (PKerX)jk du!'Ms) 
s k 

t t 

= ECJ (YX)t(YX)d~-tl"Ms)ij + E(J PKerX tpKerX d~-tl~s)ij• 
s s 

Since YX = P(KerX).L, this proves that E([x](t)- Cx](s)!'M8 ) = 

(g(t)- g(s))I, and hence X is a IJ.-Brownian motion. 

We may nov; define 

and we shall prove that Z = N-N0 • Since XY = PimX is a projec-
n n ~ 

tion, i~1[ZiJ .::_i~1 [Nij; and if Z /:. N-N0 , we must have inequality. 

But we have 
t 

E([Z](t)- [ZJ(s);ys) = E(JXYd[N]t(XY)llfs) = 
t st 

= ECJ XY xtxtYtXd~-tl1ts) = E( J X p(KerX).l. t(X·P(KerX).L) d~-tl~s) 
s s 
"t 

= E( j Xt Xdll\"Md = E([NJ(t)- [N](s.)Jlts) 
s 
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0 

We have hence proved: 
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Theorem ~~: Let (Z ,'3= , v) be a probability space which is 

IJ.-large with respect to the basis (Z, CJ.: t}, \l), and let N be 

an L2-martingale adapted to this basiso Assume that the measure IJ. 

is finite, and that almost all paths of e·ach 

continuous with respect to Let X,Y and 

[N. J 
1. 
0 

X 

are absolutely 

be as defined 

above .. Then 

X = l Y dN + f PK X dX o 
J J er 

is a !J.-Brownian motion, and 

Hence N can be 1vritten as a stochastic integral of a ~.!-Brownian 

motiono 

The proof above is not new; the idea goes back to Doob [4]o 

But since we have not been able to find exactly the version we 

need in the literature, and a knowledge of the proof will be 

useful in the sequel, we have repeated it here .. 

Lf- .. The representation theoremo 

From now on 0 shall be a hyperfinite probability space of 
T the kind considered in Keisler [7]; ice. 0 is of the form 0 
0 

for some hyperfinite set 0 , and a hyperfinite time-line 
0 

T .. 

Let P be the uniform, internal probability measure on o, and 

let L(P) be its Loeb-measureo 
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If . w E 0 and t E T, 1 et 

Wlt = ( W ( s ) : s _:: t ) , 

and let <1t 'J:)e the internal algebra generated by the equivalence 

relation w =t w' <=> wIt = w 1 It. Let the stochastic basis 

(O,{~t},L(P)) be the one constructed from the internal basis 

(O,{~t},P) as in [6], [7], and [9]. Define 

(w\t) = (w 1 Eo: wit = W1 f't}. 

To be sure that our space (O,L(<11 ), L(P)) is 1-L-large, we 

shall change it a little! 

finite - set, and define 

Let o' be a hyperfinite - but not 
0 

0 1 = OT X O'T 
0 0 • 

I 

If wE 0 , denote its components by w1 ,w2 , and let TT: 0 1 _, 0 be 

( ) • ( I -1 ( r ) 1\ I -1 (f\ ) the projection n w = w1 o Def1ne 'at = n ~t , s t = n ~t , 

and (wit)' = n-1 (wlt). Having done this, we shall forget about 

the original space 0; we shall delete the prime and write 0 

I r rt: 
for 0 , and 'ot, ... t and (wft) will be the objects obtained 

by applying the definitions above to the new 0. (The trick of 

enlarging the probability space is probably unnecessary ru~yhow, 

since our space is so enormous; but we don't want to get too far 

afield by showing it.) 

By these definitions it is not hard to see that (O,L(~1 ),L(P)) 

is 1-L-large with respect to £r~Jo 
We shall assume that our time-line is of the form 
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for some infinite 1l = (y!). If H E *Jl'if-......:N H < y let ' - ' 

An internal transformation of 0 of ~ 1/H is an internal bi

jection h: o-o such that if tETH, h maps (wit) onto (hwlt) .. 

HaJ. Keisler has proved (Theorem 9o4 of [7]) that two conti

nuous 1 t-Markov processes x and y have the same finite dimen

sional distributions if and only if there is an internal transfer-

mation h of infinitesimal mesh such that 

y(•,w) = x(·,hw) a.e~ 

Let M : T x 0 ..... *JR be an S-continuous SL 2 -martingale, let 

U E SL2 (M), and assUllle that 1-1 is a finite measure on [0, 1 J such 

that almost all paths of each 

tinuous with respect to 1-1· 

0 ]+ 0 + ( M. = [ M. l 
~ - ~.J 

r . If Z = J U dM, ~ t 

are absolutely con

follows that almost 

all paths of all 0 l+ [Z. I = 
~-

0 +·· f Z. I '- J...l are absolutely continuous with 

respect to IJ.. 

By Theorem L!-, there exists 

processes Y,Y' ,X,X' such that 

1-1-Brownian motions 

X = l Y do M+ + s PK X d X o 
0 er 

, r• o+ J o 
X = : Y d Z + PK X' dX 

J er 
and 

Oz-1- rxl I = J dx • 

o I 

X ,x,x and 

By Lemma 3 and the theorem by Keisler mentioned above, there is an 

internal transformation h of infinitesimal mesh such that 

Let K : T X 0 .... T X 0 be id x h, then 
I 

X = xoK, and we get 

0+ r. I it r· 0+ S' 0 Z = j X dX = J1. X dX oK = · X yoK d( M oK) + X P oK d(X oK). J Keri 
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Obviously oM+oK has the same finite dimensional distributions 

as oM+, and henc.e we see that if the last integral above is zero, 

we can write oz+ = 0 
( r u dM)+ as a struJ.dard stochastic integral 

J 

with respect to a process which has the same finite dimensional 

distributions as M~ 

One way of making the integral 
r 0 

j X'PKer XoK d(X oK) zero, 

is to let PKer X= 0.. Hence we say that a martingale 

N: [O, 1 J x D ... JEtl is g,Q_ndegenerate if there is a finite, continuous 

measure ~ on [0,1] such that almost all paths of each [N. J 
J_ 

are absolutely continuous with respect to ~' and the Radon-·. 

Nikodym derivative H defined in the last section has detH ~ 0 

almost everywhere. By the theory developed in the last section, 

this is equivalent to that N can be written as a stochastic inte-

gral of ~-Brovmiao. motion, where the integrand is nondegenerate o 

Thus vre have proved the following theorem: 

Theorem 5: Let H: T x 0 .... *JRn 
? 

be an S-continuous SL'--_ 

martingale adapted to (O,(~~},P) such that oM+ is nondegenerate, 

and let U E SL2 (M).. Then there are a martingale N: [0, 1] x 0 _, JR.n 

adapted to (O, n:t},L(P)) having the same finite dimensional 

distributions as 0 !·1+, and a process V E A2(N) such that 

Exa.."'TI.ple 1 shows that we can not in general have 0 + 
N = 1:1 • 

In the calculations leading up to Theorem 5, we have proved 

the formula 

if 0 1'1+ is nondegenerate o Applying K-1 on both sides, we get 
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and we have proved 

Theorem 6: Let r1 and U be as in Theorem 5e Then there 

is a process WE A 2 ( oM+) such that J W d oM+ has the same finite 

dimensional distributions as o ( l U dM)+ .. 
J 

The condition that M should be nondegenerate is not very 

satisfactory, but in dimension one we can at least make it look 

a little nicero In this case the only way it can degenerate is 

that the Radon-Nikoo.ym derivative becomes zero, and this can. not 

happen if l..l. is absolutely continuous with respect to almost all 

the paths, as well as the other way around.. Thus we have 

Corollary (.: Let M : T x 0- *JR be an S-continuous SL2-

martingale adapted to (0, { <;~} ,P), and suppose that almost all 

the paths of [M] are mutually absolutely continuous. Let 

U E SL2 (M).. Then there are a martingale N : [0, 1 J x 0 ... JR. adapted 

to (0, {ty't} ,L(P)) having the same finite dimensional distribu

tions as oN+, and a process V E A 2 (N) such that 

0 r . + S (j UdM) = V dN. 

Moreover, there is a wE A2 ( OM+) such that s w d 0 M+ and 0 cJ u dM)+ 

have the same finite dimensional distributions .. 

But what if the nondee;eneracy condition isn It sat:isfied? 

The formula 

provides an idea vJhat to look for: Either we must try to shov;r that 

Ker XoK cKer X', or vJe must find an example where this doesn't hold .. 

Keeping to the latter strategy, we produce 
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Example 8: Let T,o,x, and X be as in Example 1o Let A be 

the set 
1 
2 

A = [wE o: l: X(s,w)ax(s,w) >O}o 
0 

Obviously L(P) (A) = fo We now define a process ~ : T X 0 ..... *JR by: 

13(t,w) = x(t,w) for t,::t, 

and for t ~+, 

L\~(t,w) = L\X(t,w) if UJ f!. A 

L\S(t w) . , = 0 if wE Ao 

Let J X d~, z = 

and assume - for contradiction - that there are an internal trans-

formation K and a process Y such that 

oz+oK jrYdo + = ~ 0 

Since t -> oz+(t,w) is constant on [f,1] if and only if 

w E A ao s., and the same holds for 

L(P)(K-1(A)AA) = 0. 

0 + 
S , we must have 

By definition of A, the distribution of oz+(f) on A is 

the distribution of the absolute value of a gaussian variable 

with variance 1 
4 , and by what we have just.seen, this is also the 

distribution of oz+oK on A. 

Let us find this last distribution in another way: Define 

13'= !3-Z =J (1-X)d~, and let Y be a 2-lifting of Y: 

Since Z and 13' are independent, the quadratic variation of 
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the process on the right is 

t t t 

oCji2d[ZJ)+ + o(JY 2 d[~'])+ = 2~t o( Jy2(s)ds) 
0 0 0 

and since [oz+oK](t) = ft for t,::t, it follows that 

for 

Again since Z and ~~ are independent, ~~ is a martingale 

on A, and hence the expectation of oCJYdS)+(t) is zero .. 

The distribution of o ( f Y dZ )+(-~) on A is part of the 
J 

distribution of a gaussian random variable with variance ~g Thus 

oo x2 
E ( 1 o ( f Y dZ) + ( t) ) < f ~ e- 2 ° 1/8 

A J - ~ J2fT·1/8 
dx 1 

= 4-,{rr 
while 

dx 

Hence the expectation of the left hand side of (*) over A 

is 1 -, 
2·fET 

while the eA~ectation of the ri~~t hand side over A 

·v 

is _1_ , contradictiono 
4-:iri 

Thus the internal transformation K which 

we po'¥ltulated can not exist, and hence there is no Y' K' 
' 

such 

·IJhat 

But it is not immediately clear that this is a counterexample 

to Theorem 5 without; the nondegeneracy condition, since o !3 + is 

not a Markov-processo However, it is not difficult to use Keisler's 
t 

result to show that if two processes have the same finite dimensio-

nal distribution as 0 + 
~ , then one can be brought over into the 
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other by an internal transformation. Hence Theorem 5 is false 

vdthout the degeneracy condition. 

5. A nonstandard Krylov inequality .. 

Let us give an a""i)plication of the results of the last section .. 

In [8], N .. V. Krylov yroved the following inequality: 

Proposition 9~ For all positive reals M, and every positive 

integer n 1 there exists a real k 1.1ith the following property: 

Suppose 

f : [ 0 , 1 ] x 0 _. JRn , g : [ 0 , 1 ] x 0 _. JRn ® lRn 

are progressively measurable, bounded functions -r.vith 

!lf(t,w)\1, 1\g(t,w)ll, (det g(t,w))-2 _::M .. 

Let b be an n-dimensional BrQwnian motion on 0, and 

t t 

x(t,w) = x0 + J f(s,w)ds + J g(s,to)db(s,w) .. 
0 0 

Th f Ln+1 f l-. en or any - unc~1on h: [0, 1] x JRn _. lR with h(t ,x) 2:0: 

1 
r 

E(j h(s,x(s,w))ds) 2kllh11n+1 • 
0 

As we shall see in the next section, it would be very useful 

to have a nonstmLda~d version of this result.. Hence we may ask 

vv-hether the follo"~.IJing holds: 

Theorem 10: For all positive reals M, and every positive 

integer n, there exists a real k vvith the following property: 
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Suppose 

are S-bounded, nonanticipating processes with 

1\F(t,w)ll, 1\G(t,w)\1, (detG(t,w))-2 :5. J.VI. 

Let x be an n-dimensional Anderson process, and let 

t t 

X(t ,w) = x0 + J F(s,w)ds + J G(s,w)dx(s,w). 
0 0 

Then for any positive Ln+1 f t' - unc 1on 

1 

E(S h(s, 0 X(s,w)+)ds).::_k!lhlln+1 • 

0 

The idea of the proof is obvious; we write ox+ on the form 

of the process X in Proposition 9 and apply that propositiono 

It is easy to see that there is a progressively measurable f 

such that Jf(s,w)ds = o(J F(s,w)ds)+ft By Theorem 5, there is an 

n-dimensional BroWllirul motion b, and a process g such that 

s g db = o CJ G dx)+ (we are confusing the predictable and the pro

gressively measurable sets, but there is no danger in this since 

we obtain the latter by adding all product measurable null-sets 

to the formero) Hence we can write 

To apply Proposition 9, we just have to check that we have the 

right bounds on f and ga The only one that takes a little work 

is the bormd on J det g 1-1 o We first show that it can be replaced 

by a notion which is easier to handle: 
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Lemma 11: Let A: En ..... JR.n be a positive, symmetric linear 

map, and let 

\\All = sup ( 1\Asll : II s\l = 1} 

1 (A) = inf ( < s ,As), II s!l = 1 J 

M(A) = sup (m : m is a component in a matrix 

representation of A with respect to an ortho

normal basis}o 

Then l"'(A) =\\All, l(A)_::det(A)/1\Ailn-1 and detA_2:l(A)n. 

Proof: l"'(A) and !lAl\ are both equal to the largest eigen

value of A, and 1 (A) is equal to the smallest.. Since det A 

is the product of all eigenvalues l(A)·\\Alln-1 >detA, and 

detA_:: l(A)n .. 

The lemma shmvs that as long as we lmow that g is bo1,lllded, 

-1 vm may replace the condition that det g is bounded by the con-

dition that l(g)-1 is boundedo This is useful since 1 satis

fies the follov1ing superaddi ti vi ty properly: 

Lemma 12: If A and B are two nonnegative definite nxn

matrices, then 1 (A+B) _::: 1 (A) + 1 (B) .. 

The proof is obvious. 

Let us now study the properties of the integrand g in the 

expression J g db = o ( J G dX) +.. To find g, we first find a pro

cess H such that 

t 
(*) E(["(JGdx)+](t)- (CJGdx)+](s)l 'fs) = E(JHd1-.dls) 

s 

Since each path of [ o ( J G dx)+J = o [J G dX ]+ is absolutely con-
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tinuous, we may take H to be the derivati-ve 

0 f' + ~ 
H(s,w) = ( [j Gdx] ) (s,w), 

since this process obviously satisfies (*), and is progressively 

measurableo Since H = g tg, it is enough to show that 1\Hl\ 
and l(H)-1 are uniformly boundedo Using the independence of 

6Xk and 6X1 when k ~ 1, we get: 

([JGdx](t)-[J~dX](s))ij = 

t n n 
= r~s (k~"l Gik(r )6Xk(r)) (1: 1 G jl (r )6x1 (r)) 

t 
= L: L: G., (r)G.1 (r)6Xk(r)6x1 (r) 

k 1 l...{ J r=s , 

t 
~ L: :L: G.k(r)G.k(r)6t 

r=S k L~ J 

t 
" t = Cj G Gdt)ij. 
s 

By assumption and Lemma 11, l(G(r)tG(r))-1 is uniformly 

f t 1 bounded, and by Lemma 12 so is 1( G(r) G(r)dr/(t-s))- ... But 
s 

by definition, this must also hold for H and g, and by apply-
-1 ing Lemma 11 again, v.re see that det g is uniformly boundedo 

This proves Theorem 10. · 

The proof above shows how we can use the representation 

theorems of the last section to extend standard results to non-

standard situations. Notice that we need not extend the measure-

space in this case, since the processes are nondegenerate. Also 

notice that we have proved the nonstandard result without getting 
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involved in the standard proof; the advantage of this should be 

clear to anyone vrho has tried to understand the proof of Krylov' s 

inequality. 

6o·Keisler's existence theoremo 

In [7], H.J. Keisler proved a strong existence result for 

solution of stochastic differential equations using Krylov's 

inequality. As he only had the standard version of Proposition 9 

at his disposal, Keisler had to rely on a long and rather compli-

cated approximation argument to obtain his result. We shall nmv 

see how the nonstandard version of Theorem 10 can be used to 

simplify his proof. 

We first revie-v; some notions from Keisler's paper: 

an H-element is a subset of *JRd of the form 

If HE *JN 

is a point in *JRd such that each Y· l 
where y = (y1 , ••• ,yd) 

1 is a multiple of H• Each H-element in *JRd has 3d -'1 neigh-

bours. The union of a hyperfinite set of H-elements is called 

an H-~o If H E JN, A is an S-bounded H-set in [ 0,1] x Jifl, 

and w is in the set of measure one where the process X of 

Theorem 10 is S-continuous, then if 
0 0 + 0 

X( t,w) EA( t,w),X(t,w) 

is in A(t,w) or one of its neighbouring sets. Applying 

Theorem 10 to the characteristic function of A, we get 

Pr [ ( t , w ) E T X 0 : X ( t , w ) E A ( t ) } _::: 3k o \l (A ) 1 /n + 1 + ~ , 

where Pr is the int·ernal product measure on T x 0, and !.l is 

the Lebesgue-measure on :mn+1 
0 

' 
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For each r E JN, define : 

-. \) 

~M = {HE *JN : For all F and G nonanticipating processes 
r 

\IFJI, 11Gll, (det G )-2 ~M, we have for all H-sets .A bounded 

by r, that if 

t t 
X(t,w) = x + l: F(s,w)6t + ~ G(s,w)6x(s,w) 

0 0 0 

then 

Pr[(t,w): X(t,w) E.A(t,w)} 23k\.L(.A)1/n+1 +~). 

By the internal definition principle there must for each 

r E 1if be an infinite HE }~r' and by saturation we may find an 

infinite H which is in all of thema 

\ve may nmv prove Keisler's theorem: 

b I 1-2 are ounded, measurable functions, and that idet g: is ULJ.iformly 

bounded. Let b be the standard part of an Anderson process with 

values in *JRn.. Then the equation 

t t 

x(t,w) = x + f f(s,x(s,w))ds + J g(s,x(s,w))db(s) 
0 J 

0 0 

has a continuous solutiono 

Proof: Let 1'1 be a bound on l!f!l, !lgll and I det gl-2 , and 

let HE *JN-Jl.'il" be the hyperfini te number constructed above. Let 

F : T x *JR.n .... *JR11 , G : T x *JRn .... *IR.n ® *JR? be H-liftings of f and g 

respectively (i.e. liftings constant on H-elements)o 

Consider the process 

t t 
X(t,w) r r 

= x 0 + ci F(s,X(s))ds + j · G(s,X(s,w))dx(s,w), 
0 0 



- 24 -

and let x be a progressively measurable, continuous process 

having X as a uniform lifting. To prove that x is a solu

tion of our stochastic differential equation, it is enough to 

show that F(s,X(s,w)) and G(s,X(s,w)) are liftings of 

f(s,x(s,w)) and g(s,x(s,w)) respectively, since then 

o JF(s,X(s,w))ds = jf(s,x(s,w))ds and o JG(s,X(s,w))dx = jg(s,x(s,w))dbo 

0 

But F and fast differs only on a null-set in the Loeb-algebra 

generated by the H-sets, and the same holds for oG and gost. 

But the probability that X shall be in such a set is zero 

according to the definition of H. This proves the ctheorem. 

Since the processes in the last two sections all are non-

degenerate and have quadratic variations absolutely continuous 

with respect to the Lebesg~e-measure, we need only a very simple 

version of the theory of sections 3 and 4. Hence rather short, 

direct proofs of ICrylov's inequality and Keisler's theorem are 

possible (see the forthcoming book by Albeverio, Fenstad, and 

H0egh-Krohn [1]). 

7. The power of nonstandard stochastic integration. 

We have so far mainly been concerned with reducing l~er

finite stochastic integrals to standard stochastic integrals, 

but our examples have shown that this is not always possible, 

and when it is possible, only in a rather indirect way. In this 

section we shall try to show by an example why we believe that 

the extra power of the nonstandard theory will be of importa~ce 

in the mathematical modeling of statistical phenomena. 
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We shall look at models for Brownian motion. A well-knoivn 

way of modelingthesephenomena, is to start with a sequence of 

independent random variables, and then use Donsker's theorem 

(see Billingsley [31, or- for a nice nonstandard proof

Anderson [2]) to obtain a Brownian motion process. Thus let 

s1,s2,•o•o• be a sequence of independent random variables on a 

probability space (O,P) taking each of the values ± 1 i-Jith 

probability 

by 

..1. 
2. Define the stochastic process Xn : [ 0 , 1 ] X !J _.. JR. 

Then Xn converges in distribution in C((0,1j) to a Brmmian 

motion X· 

In considering ·the physical aspects of this model, it does not 

seem improbable that we should come across processes of the form 

x ;; J x dx n n n 
where 

if tE[_j_ ,j+1 ) 
n' n for some even j E :N' 

and 

if tE[_j_ j+1 ) 
n' n for some .odd j E :N. 

It is natural to represent these processes in the limit model as 

t~limit in distribt~cion of the We denote this limit process 
..... 

by Xo 

Pro...12_osition 111-: Let Y be integrable with respect to x, 

then 1 

ECCxC1)- JYdx)2)~~ .. 
0 



...,. 26 -

Proof: By definition of the stochastic integral, there is 
'""' for each given e > 0 a process Y of the form 

such that 

Since X n and 

,.... n 
Y - E a ·1 J -. 1 i F x(s. ,t~ 

l= s.. ~ .I.. 

~ 

'1 1 

ll J Y dx - J Y dxll 2 < 8 • 

0 0 

converges in distribution to 

spectively, there must be an n such that 

for n >n0 o 

X and X re-

But taking this n large enough, we can get JS.,_ to change 

value as often as we wish without Y changing. Since the least 

value of x2 + (1-x)2 is -t for x = -t, we have for large enough n 

Putting these results together, we have 
'1 

- r- 2 cj1 2 E((x(1)- j Ydx) )~ .4 - 28 + 28) , 

0 

an.d since 8 > 0 is arbitrary, the proposition follows. 

rV 

This result tells us that it is impossible to obtain x as 

a stochastic integral or as a limit of stochastic integrals of Xo 

What we ~ do, is to leave the limit-model, go back to the approxi

mations, and there 1'\TI'ite Xn as JxndXn· That this simple proce

cedure can not be reflected within the model, seems to point at a 

weakness of the limit constructiono 



- 27 -

The nonstandard model of this phenomenon would clearly be the 

one given in Example ~; the x of that example corresponding to 
r the x above, and ; X dX corresponding to x. The result of the 
J 

example is of course just another version of Proposition 1L~; we 

can not obtain o r + 
(\X dx.) as a standard stochastic integral of x. 

;) 

But by definition, J X dX is a nonstandard stochastic integral 

of X· Thus the nonstandard model faithfully represents more 

properties of the approximations than does the standard model, 

and this reflects the eA~ra power of the hyperfinite stochastic 

integral. Let us end by hoping for a more effective example than 

the one above; an example where the importance of the processes Xn 

are not only postulated but shown, and where the extra expressive 

power is put to good useo 
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