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Abstract 

The Green sea urchin (Strongylocentrotus droebachiensis) is an echinoderm found 

along coasts and in fjords in the Northern Hemisphere, and is an important algal 

grazer in kelp forests. The inner Oslofjord population has been studied by scientists 

over the past decades and has been regarded as healthy. However, in the 1990s an 

urchin front along the Norwegian coast was pushed back because, of what scientists 

discovered later, was an increase in water temperature along the Norwegian coast 

which was unfavourable for the urchin. In more the recent times there have been 

reports from local divers and fishermen of diminishing urchin numbers. In response to 

these reports, this study investigated the current condition of the Green sea urchin 

population in the inner Oslofjord through comparing present data with previous 

studies, in order to determine if a collapse in the urchin population is indeed 

occurring in the fjord. Furthermore, because the Green sea urchin is a cold water 

species, it is sensitive to temperature as well as salinity, the study wanted to 

determine to what extent temperature and salinity has affected the sea urchin 

population in the fjord. This study found that the Green sea urchin population is still 

healthy and abundant. However, the study revealed some indicators which may 

become a concern for urchin growth in the future. Abundance was found to vary 

significantly with depth, with the majority of urchins occurring at 15 m and 20 m below 

sea level. Average urchin diameter was significantly different from previous studies, 

where the average diameter was 2.5 cm smaller now than in 1992. Levels of 

recruitment in the fjord are still healthy, but significantly lower than in 1992. This 

study, when comparing to a previous study from the fjord, found that recruitment 

occurs regularly. Gonad Index did not vary significantly between 1992 and 2013. 

Average water temperature at 4 m and 5 m depths increased with 2 °C at Drøbak 

and 4 °C at Svartskog since 1999, while average salinity increased by 0.2 ppt. 

Correlations between temperature and urchin depth (R2 = 0.0871),  and salinity and 

urchin depth (R2=0.245) were found to be quite weak. Further research on 

temperature and salinity limits for S. droebachiensis will be an important tool to 

assess the vulnerability of the species’ populations in fjords to climate change. 
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Glossary 

 

NIVA – Norwegian Institute for Water Research. 

Sill – A submerged threshold separating the basins of two water bodies. 

Drop camera registration – The use of a submerged camera to film or take photos 

of the benthic community.  

Sample sites – Locations utilized by the present study to collect sea urchin data. 

The sample sites used in this study are Drøbak, Flaskebekk and Svartskog.  

Environmental monitoring station – Location at which environmental parameters 

are measured. The environmental monitoring stations used in this study are 

Drøbaksterskelen, Oksval and Svartskog. 

Urchin monitoring station – Location at which changes in urchin population was 

measured and monitored. The urchin monitoring stations used in this study are 

Oksval and Svartskog. 

Gonad Index (GI) – Calculation of gonad mass as a proportion of total mass. 

Shallowest urchin depth – The shallowest depth at which a sea urchin has been 

registered during a sampling session.  

Tolerance limit – The level of an environmental variable where, if exceeded, the sea 

urchin will move away to find a more suitable location, but the sea urchin will not 

necessarily perish if exposed to it. 

Lethal limit – The level of an environmental variable where, if exceeded, the sea 

urchin will most likely perish if exposed to it.  

Upper temperature threshold – The tolerance limit of the Green sea urchin with 

regards to water temperature. 

Lower salinity threshold – The tolerance limit of the Green sea urchin with regards 

to water salinity.    
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1.0 Introduction 

1.1 Problem statement 

The Green sea urchin is the Oslofjord’s most prominent grazer of macroalgae, and 

plays a vital role in ecosystem maintenance. Until recently, it has been believed to 

maintain a healthy population in the fjord. However, repeated reports by fishermen 

and observations by scientists conducting research in the area have drawn attention 

to the possibility that the urchin population may be declining in the southernmost and 

isolated fjords in Scandinavia, specifically Gullmars-, Oslo- and Lysefjord 

(observations by H Christie, KM Norderhaug and E Svensen). A decline in the Green 

sea urchin population would be an issue of concern as abundance of the Green sea 

urchin in an ecosystem is a key determinant of health and stability in many marine 

ecosystems (Leinaas & Christie, 1996). However, while the benthic community in the 

Oslofjord - of which the Green sea urchin is a part - has been monitored in recent 

years by NIVA, a study which focuses specifically on the health of the Green sea 

urchin population has not been conducted since 1992.  

 

1.2  Background 

1.2.1 State of the Green sea urchin in the Oslofjord 

The Green sea urchin (Strongylocentrotus droebachiensis) was initially found and 

described by Otto Friedrich Müller at Drøbak in 1776. The Green sea urchin (Figure 

1) is an echinoderm found from the low tide mark down to 1200 meters in the Artic 

and Northern Atlantic waters, stretching south to New Jersey, USA in the Northwest 

Atlantic and to Northern Denmark in the Northeast Atlantic (Hayward & Ryland 1990; 

Mortensen 1924). It is also found in the Northern Pacific. In the past decades the 

Norwegian Institute for Water Research (NIVA), and the University of Oslo (UiO) 

have been monitoring the general species assemblage, including the sea urchin 

population in the Oslofjord through both monitoring programmes (Källqvist et al., 

1982; Magnusson et al., 1984a, 1984b, 1992) and independent studies (Green, 

1983; Frid & Thomassen, 1995; Fredriksen, 1999).  
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Figure 1: Photos of the Green sea urchin: from the side (right) and from underneath (left). 

The condition of the Green sea urchin population, along with the rest of the benthic 

community in the inner Oslofjord was surveyed once by Green (1983) from 1977 to 

1979 at Flaskebekk, Nesodden. Green (1983) found a healthy population of the 

Green sea urchin was discovered. Between 1992 and 1994 two studies assessed the 

condition of the Green sea urchin population at Drøbak (Frid & Thomassen 1995; 

Fredriksen 1999). Fredriksen (1999) investigated the size-distribution, Gonad Index 

and vertical-distribution while Frid & Thomassen (1995) assessed the recruitment. 

These studies also confirmed the high abundance of the Green sea urchin at Drøbak. 

At the time Fredriksen (1999) and Frid & Thomassen (1995) found urchins at depths 

ranging from 5m to 20m below the surface. The population displayed a healthy 

growth rate, strong gonad production and recruitment.  

More recent scientific research on the Green sea urchin's abundance in the inner 

Oslofjord is lacking, as the latest study was conducted in the early 1990s. Over the 

last couple of years a decline in the sea urchin abundance has been reported, 

especially in the shallower depths. This would be an issue due to the important role 

that the Green sea urchin plays in ecosystem health and maintenance.  
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1.2.2 Role of Green sea urchin in ecosystem maintenance 

Destructive kelp grazing is a phenomenon that occurs mostly in the mid-latitudes (40-

60° N and S) (Steneck et al., 2002). Destructive kelp forest grazing is the 

consumption of kelp at a rate which exceeds the rate at which the kelp is able to 

replenish itself (Steneck et al., 2002). Urchin species within the Strongylocentrotus 

genus are usually the culprit of these types of extreme grazing events (Paine & 

Vadas, 1969; Harrold & Pierce, 1987; Steneck et al., 2002). 

The Green sea urchin is known as an important grazer of seaweeds. However, the 

sea urchins are not detrimental to kelp beds in low abundances, as they are unable 

to consume the kelp quickly. For grazing to become destructive, the urchin front must 

reach a biomass of at least 2 kg urchins/m2 according to Gagnon et al. (2004). The 

sea urchins will climb and weigh down of the kelp fronds so more individuals get 

access (Breen & Mann, 1976a, 1976b). To reach this biomass, the front tends to 

consist of large adults (Gagnon et al., 2004). Reported rates at which a front can 

remove a forest are up to 4 m/month (Scheibling et al., 1999). 

Destructive grazing changes the ecosystem dramatically and high biodiversity kelp 

and seaweed bed systems are transformed into unproductive barrens dominated by 

sea urchins, where only little more than calcareous algae are able to survive and 

grow (Lawrence, 1975; Mann, 1977; Chapman, 1981; Steneck, 1983, 1986; 

Scheibling & Hatcher, 2001). The urchin barrens are ecologically stable and may 

persist for decades (Himmelman et al., 1983) as sea urchins have a high phenotypic 

plasticity which enables them to survive with very little food (Russell, 1998).  

The largest grazing event occurring in the Northeast Atlantic was along the 

Norwegian coast, from 63-71° N (Norderhaug & Christie, 2009). The reason for the 

more northern expansion of destructive grazing along the East Atlantic is due to the 

distribution of kelp is further North along the coastlines (Steneck et al., 2002). This 

extreme grazing event along the Norwegian coast started in the 1970’s, and the 

dominant grazer was found to be the Green sea urchin (Sivertsen, 1982). 

Approximately 2000 km of Laminaria hyperborea and Saccharina latissima beds on 

the outer and inner coast were transformed into urchin barrens over the next two 

decades (Sivertsen, 1997). When the grazing event was at its greatest, the barren 
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Figure 2: Map over Norway. The enlarged image is of the Oslofjord. The black lines represent the southern 
border of the urchin barrens at different times. The 1980 border is when the sea urchin grazing was at its 
greatest, while the 2011 border is the most recent sighting of the southern border.  

2000 

2011 

2007 

1980 

1990 

grounds extended from Nordmøre (63°N) in to Russia (Figure 2) (Sivertsen, 1997; 

2006; Norderhaug & Christie, 2009). However, destructive grazing has happened in 

fjords as well. The kelp in Vestfjord, Northern Norway was grazed in the early 1980s 

and experienced minor grazing events of immature kelp in to the 1990s (Hagen, 

1995).  

Macroalgal beds and urchin barrens are two alternative stable systems which are 

very difficult to switch between due to feedback mechanisms which help to stabilize 

the system and make it resilient against disturbance. Examples of such feedback 

mechanisms increased predation of adults in kelp forests, and high settling mortality 

for kelp on barren grounds (Gagnon et al., 2004). The persistence of urchin barrens 

is mainly due to the continuous grazing of adult and juvenile kelp, the loss of urchin 

predators in the system, bulldozing of kelp recruits (Green, 1983) and the ability to 

survive without food for over four weeks without harm (Garnick, 1978). 
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These mechanisms inhibit the regrowth of kelp forests, even when the sea urchins 

are at low abundances (< 10 ind./m2)  (Leinaas & Christie, 1996). The kelp forest 

would be able to start recovering, in the timespan following the reduction of urchin 

abundance. However, this is a time-consuming process. Collapses in urchin 

abundance might be induced by parasites (Skadsheim et al., 1995; Sivertsen, 1996), 

disease (Scheibling et al., 1999), predation (Fagerli et al., 2014) or changing 

environmental parameters, like salinity or temperature (Rinde et al., 2014). Even 

when the conditions for regrowth of macroalgae are ideal, the average time it takes 

for a kelp forest of Laminaria hyperborea to grow and become dominant is 

approximately 3-4 years (Foreman, 1977; Christie et al., 1998). The biodiversity 

associated with kelp forests needs more than five years in order to fully recover after 

kelp regrowth has started (Christie et al., 1998). The movement of sea urchins in and 

around kelp forests can unsettle newly settled kelp or other organisms (Strain et al., 

2013) while the older individuals are grazed down before they can withstand the 

grazing pressure. The kelp forest’s role as a spawning ground, nursery, food source 

and refuge for organisms (Christie et al., 2003) will be disrupted, and further removal 

of kelp will push the system into an urchin barren state again (Sivertsen, 1997). 

These kelp-urchin interactions are important for the health of the system. Through 

grazing activity the sea urchins are able to maintain a level of disturbance which 

increases the species diversity in the system in accordance to the intermediate 

disturbance hypothesis as suggested by Connell (1978). However, if the sea urchin 

population gets too dense it becomes unfavourable for the system, as the sea 

urchins will directly reduce the biodiversity of the system by keeping the benthic 

substrate free from vegetation and other sessile organisms. Some of the more 

severe consequences from this is energy loss in the system, reduced shelter from 

predators, reduced spawning ground and transportation corridors, reduced 

production and diversity (Estes et al., 2004; Graham, 2004; Byrnes et al., 2006). Due 

to the critical role that the Green sea urchin plays in maintaining ecosystem health 

and biodiversity in the Oslofjord, it is important to investigate the claims that the 

Green sea urchin has disappeared from the Oslofjord, and then assess the current 

condition of the sea urchin population.  
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1.2.3 Morphology of the Oslofjord and the possible impacts on the Green sea 

urchin's future 

The Green sea urchin is believed to have grazed in many of Norway’s southern 

fjords, including the Oslofjord, regularly since the last ice age (Vasseur, 1952; Anon, 

2002). Being a cold-water species, Green sea urchin populations on Norway's coast 

have continued to retreat further north as water temperatures have risen. This gave 

the kelp a possibility to recover on the coast (Skadsheim et al., 1995). The sea 

urchins retreated up to Vega in 2007 (64.5°N) (Norderhaug & Christie, 2009) and in 

more recent times further regrowth of kelp has been reported almost as far north as 

Lofoten (Figure 2) (Rinde et al., 2014). Temperature increases unfavourable for the 

sea urchins’ larval development was indicated as a plausible cause for the retreat 

(Fagerli et al., 2013), and that it is temperature that is limiting southern expansion 

along the coast. 

Despite the Green sea urchin migrating North on the coast, Oslofjord has not 

experienced any change in its population. This is a main point of interest as the 

Oslofjord is located further south than current coastal populations of the Green sea 

urchin (Figure 2). Furthermore, while the coastal urchin population has been affected 

by ocean warming since around 1990 (Norderhaug & Christie, 2009), the Oslofjord 

populations appear unaffected. It is possible that the isolating effect of the fjord’s 

morphology is what has allowed the populations there to persist so far south 

(Fredriksen, 1999; Norderhaug & Christie, 2009).  

An important characteristic of the Oslofjord is that Norway’s two largest rivers – the 

Glomma and Drammenselva – flows out at mouth of the fjord. As a result of this, a 

hyposaline water body may sometimes be present in the outer parts of the fjord 

during the Spring and Summer (Walday et al., 2014). This water body may be 

preventing the sea urchin population from colonising the fjord’s outer coast (Figure 2) 

as juvenile sea urchins and recruits are most vulnerable to low salinities (Lange, 

1964). The inner Oslofjord is further isolated from the outer Oslofjord by the Drøbak 

sill, which separates the deep-water of the inner basins from the outer basins for long 

periods, especially during the stratification in the Spring (Staalstrøm et al., 2012). 

There is another sill at Oksval, separating the Vestfjord basin and Bunnefjord basin 

(Staalstrøm et al., 2012). The combination of a sill, seasonal stratification and water 
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circulation at Drøbak may create a low connectivity between the outer and inner fjord 

urchin populations. This low connectivity can be caused by hyposalinity in the surface 

water flowing out. However, as ocean water temperatures continue to rise as climate 

change progresses, the morphology of the Oslofjord will also restrict migration of the 

urchins into suitably cooler waters. High resolution analyses of sea surface 

temperatures have shown that coastal regions are heating up quicker than offshore 

regions (Lima & Wethey, 2012). Because the Green sea urchin is a cold-water 

species it will be strongly affected long-term by the temperature and salinity changes 

predicted by IPCC (2013). 

 

1.2.4 Environmental changes and possible impacts on the sea urchin 

Predictions for climate change in the North Atlantic suggest that the already affected 

shallow- and surface water temperatures will increase between 1 and 3 degrees 

Celsius by the year 2100 (IPCC, 2013). Salinity is predicted to decrease by 

approximately 1 ppt (parts per thousand) within the same timeframe (IPCC, 2013). 

Sea urchins have been found to be affected by various low salinities (Russell, 2013), 

and high temperatures have been found to affect urchins’ distribution (Fagerli et al., 

2013). Echinoderms live in osmotic equilibrium with the surrounding water (Krogh, 

1939), thus salinity plays a major role in limiting the urchin’s depth distribution, even 

more so than temperature does (Drouin et al., 1985; Roller & Stickle, 1985; 1994). If 

either salinity or temperature exceeds the tolerance limits of the Green sea urchin, it 

may force the urchins to migrate into colder, more saline waters or kill them (Lange, 

1964; Stephens, 1972). With the observations of fewer sea urchins in the Oslofjord, 

one of Norway’s southernmost fjords, and predicted increases in temperature in the 

fjord, it is timely to question if the urchin collapse occurring along the Norwegian 

coast also is occurring in the Oslofjord? 

There remains some dispute in the literature as to the exact environmental 

thresholds which the Green sea urchin can tolerate. The Green sea urchin’s upper 

temperature and lower salinity thresholds have been suggested to lie at 10 °C 

(Stephens, 1972; Foreman, 1977) and 21.5 ‰ (Lange, 1964), respectively. However, 

these suggested thresholds have later been disputed by Pearce et al. (2005) and 
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Figure 3: The globiferal pedicels of the Green sea urchin. 

Siikavuopio et al. (2008; 2012) with respect to the temperature; both of whom 

concluded that the 10 °C threshold is actually where the sea urchins experience 

optimal somatic growth. A study by Pearce et al. (2005) found that Green sea urchins 

were able to tolerate water temperatures up to 19 °C. However, this study used 

Green sea urchins from the Pacific. With regards to salinity, Stickle et al. (1990) 

claimed that the limit is at 13.0‰ while Himmelman et al. (1984) concluded that it is 

at 14.0‰. These tolerance differences might be due to local. The various studies 

have been conducted at Drøbak, southeast Alaska and Nova Scotia, respectively. 

Another possibility as that some sort of synergetic relationship between temperature 

and salinity is affecting the urchins. With this in mind, it is timely to question how the 

Green sea urchin population is being affected by the impending salinity and 

temperature changes.  

 

 1.2.5 Biology of the Green sea urchin  

Green sea urchins grow at a rate of approximately one centimetre per year when 

conditions are good, but the growth rate decreases when food is scarce or of poor 

quality, or when the urchin reaches approximately four cm in diameter (Larson et al., 

1980; Fagerli et al., unpubl. manuscript). Although the Green sea urchin’s growth rate 

generally flattens out at six cm, some individuals may reach a diameter of up to eight 

cm. The Green sea urchin has a 

flattened disc with 10 plates. Each 

plate has five or six pore pairs, while 

the globiferal pedicels are large and 

robust (Figure 3) (Mortensen, 1924). 

The Green sea urchin can vary in 

colouration from a green hue to a deep 

purple. The spikes on adults usually 

have white tips. The primary and 

secondary spikes are the same length.  
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The reproduction of the Green sea urchin is external and occurs around March-April 

(Emlet et al., 1987; Sivertsen, 2006; Fagerli et al., 2013). The species is dioecious 

and both eggs and sperm are released into the water column. After fertilization the 

egg floats in the upper water layer while it develops and hatches into a pelagic 

feeding larvae. This larval stage lasts between 5 to 21 weeks, depending on water 

temperature and egg size (Strathmann, 1978). Within a reproductive cohort the 

longest timespan between the first and the last larvae settling is normally five weeks. 

With such a long pelagic stage the dispersal potential is high (Underwood & 

Fairweather, 1989; Miller & Emlet, 1997). Settlement occurs mainly in the Summer 

months (Falk-Petersen & Lønning, 1983).  

The Green sea urchin is omnivorous (Russell, 1998; Scheibling & Hatcher, 2001). 

Though the main sources of food vary between life stages; detritus is more important 

for small juveniles, while adults primarily eat macroalgae when close to kelp beds 

(Himmelman & Steele, 1971; Scheibling & Anthony, 2001), or drift algae and newly-

settled organisms when on barren grounds (Chapman, 1981). 

For the first two years of its life, the urchin exhibits cryptic behaviour, hiding in cracks, 

crevices and between spines of adult sea urchins (Himmelman, 1986; Raymond & 

Scheibling, 1987; Scheibling & Hamm, 1991; Frid & Thomassen, 1995; Fredriksen, 

1999; Dumont et al., 2004). As juveniles the urchins are more vulnerable than adults 

to changes in temperature and salinity. After reaching two centimetres, the juvenile 

urchins abandon their cryptic lifestyle and move into open terrain (Himmelman, 1986; 

Raymond & Scheibling, 1987). These first years in the open are crucial as this is the 

life stage during which the urchins are most vulnerable to predation (Shears & 

Babcock, 2002; Fagerli et al., 2013). As the urchin grows, its rate of movement also 

increases, needing to spend less time in hiding (Dumont et al., 2006). When reaching 

four cm the individuals are too big for most predators (Clemente et al., 2013) and 

their growth rate decreases (Fagerli et al., unpubl. manuscript). In order to accurately 

assess the Green sea urchin population’s condition in the inner Oslofjord, this study 

aimed at investigating members at different life stages and roles, namely recruits and 

juvenile individuals, and adult, old individuals. 
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1.3 Objectives and hypotheses: 

Populations of the Green sea urchin (Strongylocentrotus droebachiensis) are 

declining along the Norwegian coast and it has been suggested that the some fjord 

populations also are in decline. This study's first objective was to investigate the 

health of the Green sea urchin population in the inner Oslofjord, and secondly, to 

assess if the possible changes in the population can be attributed to temperature 

increases or salinity decreases. This study tested two hypotheses: 

Hypothesis 1: There is a difference in the Green sea urchin population in the inner 

Oslofjord with regards to density, size-distribution, recruitment and/or gonad 

production from previous studies. 

Hypothesis 2: Changes in temperature and salinity correlate to the distribution of the 

Green sea urchin population in the inner Oslofjord. 

 

1.4 Thesis plan 

Chapter 2 describes the study site, the methods used to collect data, the benefits and 

shortcomings of the methods, and how the data was analysed. The results of the 

research are presented in Chapter 3 before they are discussed in a broader sense in 

Chapter 4. Finally, the most important findings from this study are summarized in 

Chapter 5 and recommendations for further research on this topic are presented.  
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Figure 4: Overview map of the inner Oslofjord. Study sites 

used in this thesis are pinpointed. 

2.0  Material and methods 

2.1 Introduction 

The study was conducted in the inner Oslofjord (59.66 – 59.91°N, 10.46 – 10.78°E). 

Previous studies provide a historical record of the condition of the Green sea urchin 

population in the fjord. An introduction to the different sampling sites used is provided 

in Section 2.2, while an explanation of the design of the study and a brief discussion 

of methods used to collect data are found in Section 2.3. The method of sampling 

adult individuals, density counts and recruits are discussed in Sections 2.3.1, 2.3.2 

and 2.3.3, respectively. The environmental and monitoring data are explained in 

Section 2.3.4. Finally, Section 2.4 will go through the various statistical analyses and 

correlation tests utilised in this study. 

 

2.2 Sample sites 

The study used three different urchin 

sampling stations in the inner Oslofjord 

where data from previous studies were 

available (Figure 4). One urchin sampling 

station was located outside the University 

of Oslo’s research station in Drøbak 

(59.66°N, 10.63°E), while the two other 

stations were at the respective ferry 

wharfs at Flaskebekk, Nesoddtangen 

(59.86°N, 10.65°E) and Svartskog, 

Oppegård (59.78°N, 10.73°E). The 

availability of previous data on the Green 

sea urchin varied between stations. 

Drøbak had quantitative historical data. 

Flaskebekk had some historical 

quantitative data and semi-quantitative 

monitoring data. Svartskog only had semi-
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quantitative monitoring data. Despite the lack of complete historical records, it was 

still possible to compare the data from previous studies to the present study’s results 

for the analysis of recruitment, densities and distributions of the sea urchin 

populations.   

 

2.2.1  Drøbak 

The sampling station in Drøbak was located furthest out the fjord. It is located just 

outside a sill where the depth is only 19.5 m deep. During the year the freshwater 

input may cause a strong stratification in the upper ten metres, where the freshwater 

flows out of the fjord while saline deep-water go over the sill to replenish the surface-

water. The bottom is a mosaic of hard substrate, with patches of soft bottom in 

between. The tidal currents are strong in the area. Data collection took place in the 

same area as previous studies in order to compare pre-existing and newly collected 

data on recruitment (Frid & Thomassen, 1995), size-distribution, abundance and 

Gonad Index (Fredriksen, 1999) from 1992 to 1994.  

 

2.2.2  Flaskebekk 

This was the northernmost urchin sampling station in the study, with an ocean floor 

consisting of a mosaic of hard substrate with patchy sediment. The wharf was 

located at the western side of Nesoddtangen, towards Vestfjord. As the wharf still 

operational at the time of the data collection, there was some disturbance from boat 

traffic in the area. Vestfjord has a maximum depth of 100 m. Similar to Svartskog 

station, Flaskebekk station also lies on the inside of the Drøbak sill, resulting in a 

poor replenishment of the deeper bottom water. However, the water quality at the 

depths surveyed in this study was most likely not affected by this phenomenon. The 

floor in this location slopes gently downwards for the first eight metres and then 

becomes steeper and more irregular in profile. Here, Green (1983) assessed the 

benthic community structure and its development from 1977 to 1979. This study 

compared its data on size-distribution to Green’s findings (1983). 
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2.2.3  Svartskog 

This sampling station was located in the Bunnefjord, close to the wharf at 

Uranienborg, Roald Amundsen’s estate. The floor of this location is composed mainly 

of soft sediment in shallower depths and becomes progressively rockier and steeper 

once deeper than seven metres. Ice and ice melting may reduce access to the 

station during Winter and early Spring. Semi-quantitative transect data from 

Svartskog station spanning June 2005 to May 2011 was provided by NIVA.  

 

2.3  Study design 

This study sampled data in order to compare results between stations and also with 

data from previous studies. A crossed design was used where three urchin sampling 

stations and four depths per station (5, 10, 15 and 20 m) were investigated.  At each 

depth the density of sea urchins was examined before specimens were collected for 

further measurements of size and Gonad Index. All individuals were classified; any 

individuals of P. miliaris collected were discarded. Standardized collection units were 

also placed at different depths at each site to compare the number of recruits settled 

(see Section 2.3.3). The first data collection at Drøbak and Flaskebekk took place on 

March 26th 2013, while the collection at Svartskog was conducted on May 23rd 2013 

due to ice cover in March. The second round of data collection at all stations 

occurred on June 28th 2013 and the final round of data collection was done on 

October 3rd 2013. Sampling at these times throughout the year was necessary to 

investigate whether the Oslofjord population reproduces at the same time as 

previous studies as well as other populations. Settlement season has been shown in 

previous studies to be in the Summer months in the Oslofjord (Frid & Thomassen, 

1995) and other populations (Fagerli et al., 2013; Falk-Petersen & Lønning, 1983), 

but since the pelagic stage may last between 5 and 21 weeks (Strathmann, 1978) 

another set of scours were set out to register recruits settling later. Sampling at these 

dates also provided the opportunity to register changes in the depth distribution of the 

urchins.  
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2.3.1  Sampling of adult urchin specimens 

Adult urchin specimens were collected by a SCUBA diver. This is the only practical 

way to collect sea urchins representatively with regard to densities and size-

distribution. Each dive lasted approximately 60 minutes per station and 

approximately 15 minutes per depth. As far as possible were 100 urchins per depth 

at each sampling station collected in order to analyse the demographics between 

depths and stations. The individuals were collected in the same plots used for the 

density counts to get a representative sample of the populations. All sea urchins 

inside each frame including the last frame were collected. If the density at a certain 

depth was low, the diver would collect all individuals found at that depth within the 

available time. The individuals were placed into gathering nets labelled with the 

station and depth and kept separate. In some cases fewer than 100 urchins were 

collected at each depth due to limited specimen availability and time constraints.  

Once the collected specimens were brought onto land, extra care was taken to 

distinguish the Green sea urchin from a very similar looking echinoderm species, 

Psammechinus miliaris. The best way of distinguishing the two species from each 

other is by examining the ambulacral plates. However, due to the time-consuming 

nature of this approach, the decision was made to use the colouration of the body 

and tips of the spikes, and the shape of the sea urchin to distinguish between the 

species instead. This latter method is less time consuming but still yields fairly 

accurate results. P.miliaris has a green hue, often with purple tips on the spikes, 

while the Green sea urchin is green or purple with white tips on the spikes. P. miliaris 

is usually found higher in the water column than the Green sea urchin. 

 

2.3.2  Density count 

During every session of data collection density counts were conducted at each urchin 

sampling station. These were conducted at four different depths (5; 10; 15 and 20 m). 

A 0.25 m2 square frame was placed at random ten times at each depth. The number 

of sea urchins within the square frame was registered by the SCUBA diver and 

reported to the crew on land using a communication cable. The crew on land wrote 

down the number of urchins in each frame and calculated a mean density for the 
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respective depth. By using square frame plots instead of a drop-camera the study 

was able to acquire accurate density measurements instead of semi-quantitative 

registrations as one would get from using a drop-camera. However, due to the time 

constraint posed by SCUBA diving, the study was only able to assess one transect 

per sampling session. Although a drop-camera would have allowed for several 

transects and deeper depths to be sampled, the use of a diver allowed for both 

physical specimens and information on density to be collected simultaneously. As 

such, the use of diving with scuba gear was selected as the most appropriate method 

for achieving the objectives of this study. 

 

2.3.3  Sampling of newly settled juveniles 

Standardized collection units were placed at three depths (5; 10 and 15 m) at each 

station, in order to study the recruitment success. These units consisted of four pan 

scours attached to a two metre long chain (see Fagerli et al., 2013). The 

standardization of the units facilitated quantitative comparisons of settlement of 

recruits between stations and previous studies. The scours were attached to the 

chain with cable ties, approximately 0.5 m between them. During the following round 

of data collection the scours were carefully enclosed in ziplock-bags by the diver and 

released from the chain before they were sealed. New scours were then attached to 

the chain to measure settlement of recruits during the next season. Once on land the 

contents of the ziplock-bags were emptied into containers labelled with station, depth 

and scour number. The ziplock-bags themselves were also rinsed thoroughly to 

make sure that all recruits were transported to the container. All samples were fixated 

with 70% alcohol on location. Some chains were lost and it was believed that this 

was caused by fishing activity. Fishing gear was found at all sampling stations. 
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2.3.4 Environmental and monitoring data 

Salinity and temperature data was provided by the Academic Council of Water and 

Sewage Technical Cooperation in the Inner Oslofjord, while monitoring data with sea 

urchin registrations has been collected by NIVA. In order to test for the presence of 

relationships between environmental factors and sea urchin distributions, changes in 

temperature and salinity were compared to data on sea urchins over the last decade. 

Temperature and salinity data came from Drøbaksterskelen, Oksval and Svartskog 

environmental monitoring stations (Figure 5). The environmental measurements were 

taken throughout the year. The study made use of records spanning from 1999 up 

until 2009 at at Drøbaksterskelen, 2010 at Oksval and 2011 at Svartskog. While 

some environmental records earlier than 1999 did exist, they were not included in 

this study due to a number of 

inconsistencies which made accurate 

comparison impossible. These data varied 

in number of samplings per year, dates the 

sampling occurred and contained lapses of 

several years between each sampling.  

The monitoring data on urchins had been 

collected by NIVA during 2005-2008 and 

2011-2012. The transects were conducted 

close to the environmental monitoring 

stations Oksval and Svartskog. In some 

instances there was a temporal gap 

between the collection of environmental 

data and the urchin data. NIVA used a 2-tier 

system to record the presence of sea 

urchins; level 1 was that the urchin was 

present while level 2 meant that several 

urchins were found. Data from 2011 and 

2012 was only registered as Echinoderm, 

not as species, which creates some 

uncertainty as to which species were found 

Figure 5: Geographical location of the environmental 

monitoring stations. environmental monitoring 

stations are coloured red while the stations which this 

study collected urchins from are coloured blue. Sea 

urchin monitoring data from Svartskog and Oksval 

were taken from the same location as the 

environmental data. 
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during those years. While Frid & Thomassen (1995) and Fredriksen (1999) worked 

with absolute numbers of urchins, NIVA’s reports worked with a semi-quantitative 

system. Therefore, this study compiled all data into a 4 tier system: level 1 is a single 

individual (present), level 2 is 1 to 20 individuals (scattered), level 3 is 20 to 40 

individuals (common), and level 4 is over 40 individuals (dominating). Figure 5 shows 

the proximity of the environmental monitoring stations and the urchin sampling 

stations used by this study.  

 

2.4 Data analysis 

All collected physical specimens were analysed in the laboratory within two weeks 

after collection. Adult individuals were measured immediately or stored in a freezer, 

while the scours were stored in a dark and well-ventilated area.  

 

2.4.1  Analysis of adult sea urchins 

The diameter of the sea urchins was measured down to the nearest millimetre using 

a calliper. Size was used as a proxy for the age of the individual, as the 1 cm/year 

grow rate is a reliable indicator of urchin age (Robinson & MacIntyre, 1997; Vadas et 

al., 2002) until the individual reaches approximately four cm (Fagerli et al., unpubl. 

manuscript; Russell & Meredith, 2000). All individuals collected during the second 

and third sampling sessions and larger than 3.5 cm in diameter were weighed using 

an electronic scale and then opened to weigh the gonads. This was done to calculate 

Gonad Index for the individuals, in accordance with James & Siikavuopio’s (2012) 

guide to reproduction assessment. By also measuring the Gonad Index in the 

Autumn, one is able to assess at what stage in the reproductive cycle the population 

is (James & Siikavuopio, 2012). Gonad Index can be used as a proxy for fitness and 

the general condition and reproductive potential of the sea urchins. Higher index 

numbers indicate better conditions for the sea urchins. The formula to determine 

Gonad Index is:  

GI (%) =
Wet weight (g) of gonads

Total wet weight (g) of
sea urchin

 × 100 
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2.4.2  Analysis of settlement 

The containers with scours were rinsed thoroughly and emptied into a 250 µm sieve. 

Sea urchin recruits have a size of 500 µm and up, so the mesh is small enough to 

avoid loss of recruits. The scours were cut into pieces and rinsed under water to 

retrieve all organisms in the scour. The content was then transferred to a petri dish, 

and placed under a microscope to be counted.  

 

2.4.3  Statistical analyses 

Microsoft Excel 2010 and R x64 3.0.0 were used to statistically analyse the data. 

Because this study used a crossed design the data compiled had a nested structure. 

The study had three sampling sessions, each with three sampling stations where four 

depths were assessed. In order to be able to test the different variables (for example 

depth) the study needed a test which took into account any variation in the other 

variables (in this example sampling session and station) to avoid untrue 

significances. Thus, this study used nested ANOVA to take into account these 

possible variations. The present study tested for significant differences between 

sampling season, year, depth and stations, and for interactions between the 

respective variables (a more accurate description of the different ANOVA tests 

conducted can be found in the Appendix).  

This study wanted to determine if any size classes were particularly important for 

reproduction. To find this out, two correlation tests were conducted: one on the 

relationship between urchin diameter and Gonad Index, and one on the relationship 

between urchin diameter and gonad production. Trend line and R2 were calculated to 

assess the strength and direction of these relationships. Similar tests were performed 

on temperature and salinity. The shallowest depth where sea urchins were registered 

was plotted against the temperature and salinity at that depth to look into whether 

either variable had any effect. The trend lines and their corresponding R2 numbers 

indicated the strength and direction of these relationships. 
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3.0 Results 

3.1 Chapter introduction 

In this chapter, the raw data collected during this study is presented and compared 

with pre-existing data from external sources. Section 3.2 begins with a description of 

sea urchins collected, and their distribution between sampling sessions and sampling 

locations. Section 3.3 provides a comparison of this study’s findings on sea urchin 

characteristics with that found in previous studies. Section 3.4 then examines the 

possible effect of environmental factors on the health of the sea urchin population in 

the inner Oslofjord. 

 

3.2 Description of samples collected 

The number of urchins collected at different locations and during different seasons 

varied in accordance with natural occurrence. A total of 2,509 urchins were collected 

and measured in this study. Of this total, 637 individuals were collected in the Spring 

(27%), 665 in the Summer (25%) and 1,207 in the Autumn (48%). In regards to 

sampling locations, 846 individuals were collected at Drøbak (34%), 1,118 individuals 

at Flaskebekk (44%) and 545 individuals at Svartskog (22%). Table 1 shows the 

sample distribution of urchins collected across the different seasons and stations 

included in this study.  

Table 1: Summary of the number of sea urchins registered during the different sampling sessions at each station. 

Spring sampling occurred at March 26
th

 and May 23
rd

,
 
Summer sampling was done June 28

th 
and Autumn 

sampling was done October 3
rd

. 

 Drøbak Flaskebekk Svartskog Total 

Spring sampling 261 246 130 637 

Summer sampling 291 153 221 665 

Autumn sampling 294 719 194 1,207 

Total 846 1,118 545 2,509 
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3.3 Indicators of the condition of the Green sea urchin population 

3.3.1 Urchin abundance & depth distribution 

Urchin abundance and depth distribution were measured to assess the health and 

possible migration of the Green sea urchin populations in the Oslofjord. The 

abundance and depth distribution of the Green sea urchin was measured at three 

locations within the Oslofjord: Drøbak, Flaskebekk and Svartskog. For all of the 

locations, urchin abundance and depth distribution was found to vary between 

seasons. Urchin abundance and depth distribution also differed noticeably between 

this year and previous studies (Fredriksen, 1999).  

Drøbak 

At Drøbak in 2013 (Figure 6, top right), the majority of individuals were found to occur 

at 20 m during all three sampling dates. However, the range of their depth distribution 

did vary throughout the year. In March (Spring) and June (Summer) no urchins were 

registered shallower than 20 metres. In October (Autumn), the range expanded and 

urchins were registered at all four depths investigated by this study. This depth 

distribution of urchins also varies compared to the findings of Fredriksen (1999) who 

conducted a similar study in 1992 (see Figure 6, top left) and found the majority of 

urchins in Drøbak occurred at 15 m. Fredriksen (1999) also found more individuals 

occurring at the depths of 5 and 10 m than this study did in 2013.  

 Flaskebekk 

At Flaskebekk (Figure 6, bottom left) as well, the greatest densities were found at 20 

m, except in March (Spring) where it was greater at 15 m (34.4 urchins/ m2). 

However, urchins occurred as shallow as 5 m in Autumn, 10 m in the Summer and 

15 m in the Spring. In June (Summer) urchins were found at 10, 15 and 20 m, but the 

density was lower than 10 urchins/ m2. During the final sampling, in October 

(Autumn), the distribution gradually increased with depth, starting at 4.4 urchins/ m2 

at 5 m and ending up at 21.6 urchins/ m2 at 20 m.  
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Svartskog  

Svartskog (Figure 6, bottom right) had a low density, less than 10 urchins/ m2, at all 

depths and all periods. The highest abundance was found at 15 m in May (Spring), 8 

urchins/m2, and June (Summer), 7.2 urchins/m2. Urchin abundance in October 

(Autumn) was the lowest at Svartskog of all the different. 

   

Figure 6: Average density distribution with depth. Data from Drøbak in 1992 (top left), Drøbak in 2013 (top right), 

Flaskebekk 2013 (bottom left) and Svartskog 2013 (bottom right). The y-axis is the different depths where sea urchins were 

registered. X-axis shows the average number of sea urchins per square meter (urchin/m
2
) at the different depths. 
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Table 2: ANOVA test on the average urchin density. The independent variables are year, station, 

season, depth and the interactions between these variables, on the number of sea urchins registered. 

Response variable was average density. P-values < 0.05 are deemed significant. 

Comparison between stations 

The variation in abundance between stations in 2013 was found to be significant 

(P=0.0321) (Table 2). Urchin abundance (or density) did vary significantly with 

changing depth (P<<0.001) – sea urchins were more frequently registered at 15 and 

20 m rather than in shallower waters. 

When comparing the raw data collected in this study with the available records from 

Fredriksen (1999), this study found significant interactions between year and depth 

(P = 0.0002), and year and season (P=0.0012 ). Furthermore, interactions between 

station and depth, and season and depth were also significant (P=0.0181 and 

P=0.0129, respectively). This demonstrates that (1) the seasonal density was 

different between the years, and (2) density at certain depths differed with season as 

well. This supports hypothesis 1, that there is a difference in abundance in the Green 

sea urchin population between 1992 and 2013. 

 

 

 

 

 

 

 

3.3.2 Average size-distribution by depth 

The size of individual urchins was measured to assess the age distribution and 

reproductive potential of current urchin populations within the Oslofjord. The average 

diameter of the sea urchins seemed quite uniform between seasons in 2013. Depth-

wise, the largest, and hence most likely the oldest, sea urchins were most commonly 

found at deeper depths (20 m) than in shallower waters, except at Svartskog. This 

differs from Fredriksen (1999), who found the majority of large sea urchins at 10 and 

15 m in 1992. 

 DF Sum Sq Mean Sq F value Pr(>F)  

Year 1 470.40 470.40 8.2286 0.0081 ** 
Station 2 450.32 225.16 3.9386 0.0321 * 
Season 2 56.45 28.23 0.4938 0.6159  
Depth 3 2066.75 688.92 12.0510 3.93*10

-5 
*** 

Year:Depth 3 1687.26 562.42 9.8382 0.0002 *** 
Year:Season 2 1012.67 506.33 8,8571 0.0012 ** 
Station:Depth 6 1086.43 181.07 3.1674 0.0181 * 
Season:Depth 6 1168.58 194.76 3.4069 0.0129 * 
Residuals 26 1486.34 57.17    
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Drøbak 

At Drøbak in 2013 (Figure 7, top right), the largest urchins were found on average at 

20 m at all sampling dates. The average diameter at 20 m was 3.0 to 3.6 cm. Ten 

metres and 20 metres were the only depths where urchins were found at all sampling 

dates in 2013. The averages at ten metres were substantially lower than at 20 m, 

being 2.3 cm (Spring), 1.5 cm (Summer) and 1.8 cm (Autumn). While at Drøbak in 

1992 (Figure 7, top left) the average diameter at 10 and 20 m was over 4.0 cm at all 

depths.   

Flaskebekk 

The average diameter measured at Flaskebekk in 2013 (Figure 7, centre right) was 

smaller than Drøbak. Here, the highest average urchin diameters each season were 

found at 20 m in March (Spring) (2.4 cm), and at 15 m in June (Summer) (2.6 cm) 

and October (Autumn) (2.6 cm). In 1979 (Figure 7, centre left), the measurements 

showed a higher average diameter than in 2013, being between 3 and 4 cm at 10 

and 15 m (Green, 1983).  

Svartskog 

Svartskog (Figure 7, bottom) had similar variation in average diameter to Flaskebekk, 

being around 2.5 cm throughout all depths and sampling dates. The highest mean 

size was found in March (Spring) at 10 m (3.0 cm), while the lowest mean size was 

from October (Autumn) at 5 m (1.7 cm). Urchins were only found at 5 m in October 

(Autumn). 
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 Figure 7: Average urchin diameter. Drøbak in 1992 (top left) and 2013 (top right), Flaskebekk in 1979 (centre left) and 
2013 (centre right) and Svartskog in 2013 (bottom). Light grey colours signify spring season, medium-grey summer and 
dark grey autumn. The y-axis is the different depths where the diver stopped and collected sea urchins for 
measurements. X-axis shows the average diameter at the different depths. 
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Factors affecting size-distribution 

The ANOVA test conducted to analyse for any significant difference in average 

diameter (Table 3) found that there was a significant difference in average urchin 

diameter between stations (P= 0.003) and depth (P= 0.0042), affirming that larger 

individuals generally stood deeper than smaller individuals. Year had a very 

significant effect (P<<0.001).This means that over the years the average diameter 

has seemingly gotten smaller compared to previous studies. Season was shown to 

have a statistical significant effect (P=0.0178).  There were also significant effects of 

the interactions between year and depth, and station and depth (P= 0.0037 and = 

0.006), confirming the difference in average diameter found at Drøbak and 

Flaskebekk. This supports hypothesis 1, specifically that there is a difference in 

urchin diameter compared to previous studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 Df Sum Sq Mean Sq F Value Pr(>F)  

Year 2 33.662 16.8308 398.2236 6.17*10
-8 

*** 
Station 2 1.266 0.6328 14.9716 0.003 ** 
Depth 6 2.457 0.4095 9.6889 0.0042 ** 
Season 2 0.64 0.32 7.5719 0.0178 * 
Year:Depth 2 1.174 0.5870 13.8889 0.0037 ** 
Station:Depth 5 2.176 0.3627 8.581 0.006 ** 
Station:Season 4 0.565 0.1412 3.342 0.0785 . 
Depth:Season 6 0.575 0.1149 2.7196 0.1123  
Residuals 7 0.296 0.0423    

Table 3: ANOVA test on the average urchin diameter. The independent variables are year, station, depth, and 

season on the average diameter of the sea urchins. The interactions between year and depth, station and depth, 

station and season, and depth and season. Response variable was average urchin diameter. P-values < 0.05 are 

deemed significant. 
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3.3.3 Size-distribution by season 

Spring 

During the Spring sampling (Figure 8, top row) no urchins were found at 5 m at any 

stations. The majority of individuals were found at 20 and 15 m and tended to be 

larger than 2 cm. All stations had the highest frequency of individuals registered in 

the 2.1-2.5 and 2.6-3.0 cm size classes. At 20 m depth at Drøbak (Figure 8, top left) 

a fairly even distribution of large adult individuals was found (diameter > 4 cm). Two 

large adults were registered at Flaskebekk, while none were registered at Svartskog. 

Flaskebekk (Figure 8, top middle) presented a bimodal curve for the sea urchins 

found at 15 and 20 m, both with their peaks at 1.1-1.5 cm and 2.6-3.0 cm size 

classes. Svartskog had the fewest individuals registered in the whole study (Figure 8, 

top right). Only a total of 130 individuals were found. 

Summer 

The Summer sampling (Figure 8, centre row) presented a size-segregation by depth 

where the larger individuals were found deeper than the smaller ones. As in Spring, 

no sea urchins were registered at 5 m. The curve at 10 m peaked at the 1.1-1.5 cm 

size class with a single individual in the class 5.1-5.5. At 20 m the size frequency 

peaked around 3.1-3.5 cm. No sea urchins were found at 15 m at Drøbak. 

Flaskebekk exhibited a bimodal curve at 20 m, with peaks at 1.1-1.5 cm and 2.6-3.0 

cm, where the 1.1-1.5 cm class dominated while the other size classes were rather 

low in abundance (Figure 8, centre). However, at 15 m there was only one peak, at 

2.1-2.5 cm. Svartskog (Figure 8, centre right) had one dominant size class at 20 m, 

2.1-2.5 cm, where 61 out of the 153 individuals registered at this sampling date fell in 

to. Only a few individuals were registered at 10 m, while 15 m presented a bimodal 

distribution with peaks at 1.6-2.0 cm and 3.1-3.5 cm. 
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Autumn 

The Autumn sampling (Figure 8, bottom) was the only time where sea urchins were 

found at all depths. At Drøbak (Figure 8, bottom left) almost all individuals were 

located at 20 m depth (263 individuals out of 294), with only two individuals found at 

5 m and 15 m, and 27 individuals at 10 m. The most abundant at 20 m was 3.1-3.5 
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Figure 8: Size-distribution at Drøbak (left), Flaskebekk (middle) and Svartskog (right) for the different seasons sampled. The x-axis 

represents 0.5 cm size classes from 0.1 to 6.5 cm. Y-axis is the number of urchin individuals in each size class. 
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cm, just as in the Summer sampling. Flaskebekk (Figure 8, bottom middle) had the 

most individuals registered with a total of 719 individuals distributed between all 

depths and almost all size classes (0.1-0.5 cm and over 5.1-5.5 cm). At 15 and 20 m 

depth it was found bimodal distributions with peaks in the 1.1-1.5 cm and 3.1-3.5 cm 

size classes. Only 194 individuals were registered at Svartskog (Figure 8, bottom 

right). The peak at 5 m was in the 1.6-2.0 cm size class, with no individuals smaller 

or bigger than 1.1 cm and 3.0 cm. 15 m and 20 m peaked at 2.6-3.0 cm and 2.1-2.5 

cm, respectively. 

 

3.3.4 Recruitment 

Recruitment was measured in order to investigate if reproduction was still occurring 

and to what extent. Recruitment is occurring at the same time and rate as previous 

studies (Table 4). This study also found that the short time the scours were placed at 

Svartskog, from May 23rd to June 28th (Summer) did not affect the number of settlers 

per day found in the scours. The majority of settlement happened in late Spring, early 

Summer with still some late recruits in the Autumn. The study found that season and 

year were significant variables for recruitment success, which could validate 

hypothesis 1. 

Table 4: Calculations of number of settlers per day in the scours. The data from 1992 was collected by Frid & 

Thomassen (1995) and the data from 2013 was collected by the present study. 

Station Time period Season No. Settlers No. Days Settlers/day 

Drøbak 23.04.92 – 27.09.92 All year 306 157 1.95 
Drøbak 23.04.92 – 25.05.92 Spring 7 32 0.22 
Drøbak 25.05.92 – 09.07.92 Summer 2 45 0.04 
Drøbak 09.07.92 – 27.09.92 Autumn 275 80 3.44 
Drøbak 27.09.92 – 05.12.92 Autumn 4 67 0.06 

Drøbak 26.03.13 – 28.06.13 Summer 113 94 1.20 
Drøbak 28.06.13 – 03.10.13 Autumn 53 97 0.55 
Flaskebekk 26.03.13 – 28.06.13 Summer 264 94 2.81 
Flaskebekk 28.06.13 – 03.10.13 Autumn 54 97 0.56 
Svartskog 23.05.13 – 28.06.13 Summer 81 36 2.25 
Svartskog 28.06.13 – 03.10.13 Autumn 3 97 0.03 
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Drøbak 

The majority of settlement at Drøbak in 2013 occurred at 10 m both during Summer 

and Autumn (Figure 9, top right). There were no recruits registered at any other 

depth during the Summer sampling, and only very few recruits at 15 and 20 m during 

Autumn. Some of the chains with scours were lost. Scours missing is marked with 

asterisks in Figure 9.  

The scours in 1992 (Figure 9, top left) had a high number of settled recruits (over 15 

settlers/ scour) at all depths during Autumn. At the most it was an average of 26.8 

settlers/ scour (15 m), while the highest number of settlers over the whole duration of 

the study was 6.8, also at 15 m. The highest average number during Summer 

settlement occurred at 10 m, and was 1.3 settlers/ scour. It was found urchins at the 

other depths, though these were less than 1 per scour.  

Flaskebekk 

The scours that were collected at Flaskebekk (Figure 9, bottom left) had a higher 

number of recruits settling at 10 m, with an average of 50 recruits per scour during 

Summer, than at 5 m. Flaskebekk and Drøbak seemed to have approximately the 

same amount of recruits in the Autumn, though at Flaskebekk they were found only 

at 10 m.  

Svartskog 

Recruitment at Svartskog (Figure 9, bottom right) yielded an average of 20.3 recruits 

per scours at 15 m during Summer (no scours were found at any other depth during 

this season). In the Autumn sampling, some recruits were found at 5 m (but again, no 

scours were found at any depth besides this).  
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Figure 9: Average number of recruits per scour. Drøbak in 1992 (top left), Drøbak in 2013 (top right), Flaskebekk in 2013 (bottom 

left) and Svartskog in 2013 (bottom right). The x-axis represents the different depths where the scours were collected from. Y-

axis is average number of settled recruits per scour. The scours in the summer sampling were collected between March and 
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found in the summer while two asterics (**) signifies scours lost during autumn. If both sampling sessions are lacking, could not 
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Significant changes in recruitment 

ANOVA testing for any significant effect by year, season, depth or an interaction 

between year and depth or season on number of settlers per day (Table 5) showed 

that the season was significant (P= 0.0021) for number of settlers registered. Year 

was also found to be significant (P= 0.0007), meaning that there was a difference in 

the amount of recruits between 1992 and 2013, where there were more recruits in 

1992 (see Table 4). Lastly, the interaction between year and season was found to be 

significant (P=0.0006), which means that the different seasons matter differently 

between 1992 and 2013. In 1992, Autumn was when most of the settling occurred 

while this happened in the Summer in 2013. This significance may support the 

change in recruitment suggested by hypothesis 1.  

 

 Df Sum Sq Mean Sq F Value Pr(>F)  

Year 1 420.77 420.77 89.0882 0.0007 *** 
Season 1 234.26 234.26 49.5985 0.0021 ** 
Depth 3 39.80 14.27 2.8087 0.172  
Year:Season 2 451.43 451.43 95.5794 0.0006 *** 
Year:Depth 1 8.68 4.34 0.919 0.4695  
Season:Depth 2 10.31 5.16 1.0917 0.4195  
Residuals 4 18.89 4.72    

 

 

3.3.5 Gonad Index (GI) 

This study assessed the Gonad Index (GI) in sea urchins at the three sampling 

locations to determine the investment of resources in reproduction material, and to 

acquire an indicator for the general condition of the urchin population. GI in sea 

urchins sampled at Drøbak, Flaskebekk and Svartskog in 2013 (Figure 10, top right, 

bottom left and right) exhibited the same variation of GI, between 5 and 15 %, as the 

sampling done in 1992 (Figure 10, top left). This study found that GI was highest in 

June in 2013 at all three sampling locations. Drøbak’s urchins possessed the highest 

GI during both Summer and Autumn, while Flaskebekk’s and Svartskog’s displayed a 

lower, more similar GI in Summer and Autumn. There were some depths and 

Table 5: ANOVA test on the average number of settlers per day. The independent variables are year, season 

and depth. Interactions between year and depth, year and season, and season and depth were also analysed.  

Response variable was average number of settlers per day. P values < 0.05 are deemed significant. 
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Figure 10: Average Gonad index. Drøbak in 1992 (top left), Drøbak in 2013 (top right), Flaskebekk in 

2013 (bottom left) and Svartskog in 2013 (bottom right). The x-axis represents the depth where the sea 

urchins were collected from, and the y-axis is the gonad index (% of total urchin weight that is gonads) . 

Summer sampling occurred June 28
th
, and autumn sampling was October 3

rd
. 

*= Only one registered individual. Standard deviation = 0. 
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sampling locations that there were not found any sea urchins with a diameter larger 

than 3.5 cm. These are stated in the Appendix (Table 10). The lack of significant 

difference in GI disproves hypothesis 1.   
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No significant effects on Gonad Index 

The ANOVA test assessed if month, year, station, depth, or an interaction between 

month and depth, year and depth or station and depth played any role in the GI 

found. All variables and interactions had no significant effect (Table 6). This means 

that, the Green sea urchins were able to allocate approximately as much resources 

to gonad production now as in Fredriken’s (1999) study; therefore the general 

condition of the urchin population seems to be good. The lack of significance of any 

variable on GI rejects hypothesis 1. 

 

 

 

 

 

The correlation analysis conducted by the study on the relationship between urchin 

size (diameter) and GI (see Appendix, Figure 13) showed a weak positive correlation 

(R2=0.0563).  There was a high variation in GI within all sizes, ranging from 0 to 35 

%. All sea urchins with 0 % were between 3.5 and 5.0 cm in diameter, while the 

lowest GI for larger individuals than 5.0 cm was 3.4 %. The R2 for this correlation was 

merely 0.0563, where 0 is no correlation and 1 is perfect correlation. The equation for 

the trend line explains that for every centimetre the individual increased the GI would 

increase by 2.4 percentage points, meaning that the larger, older individuals 

generally contribute more to the reproduction than young adults or old juveniles. On 

the other hand, the relationship between urchin diameter and gonad production (see 

Appendix, Figure 14) showed a strong correlation (R2=0.5213). This means that 

larger individuals produce larger gonads.  

 

 Df Sum Sq Mean Sq F Value Pr(>F)  

Year 1 15.746 15.746 4.9987 0.2678  
Station 2 128.745 64.373 20.4354 0.1545  
Season 2 24.464 12.232 3.8831 0.3377  
Depth 2 6.987 3.494 1.1091 0.5574  
Year:Season 1 10.754 1.0754 3.414 0.3158  
Year:Depth 2 51.424 25.712 8.1624 0.2403  
Station:Season 1 6.76 6.76 2.146 0.3813  
Station:Depth 2 15.852 7.926 2.5162 0.4072  
Season:Depth 3 10.24 3.414 1.0836 0.5924  
Residuals 1 3.15 3.15    

Table 6: ANOVA test on Gonad Index (GI). The independent varaibles are year, season, station and depth. 

Interactions between year and season, year and depth, station and season, station and depth and season and 

depth were examined.  

 Response variable was GI. P values < 0.05 are deemed significant. 
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 3.4 The effect of environmental change on the depth distribution of the 

Green sea urchin population 

Data on the Green sea urchin’s depth distribution collected by this study, and from 

other sources (Fredriksen (1999) and NIVA) was compared with records on 

temperature and salinity in the Oslofjord in order to assess if the changes in depth 

distribution was correlated with changes in the environmental variables. The Green 

sea urchin was found continuously throughout the water column from 5 m and down 

to 78 m. The shallowest recorded depths for the Green sea urchin at the different 

sampling locations were 5 m at Drøbak, 2 m at Oksval and sea-level (0 m) at 

Svartskog. Table 7 gives a short overview of the findings in the urchin depth 

distribution. The complete Figure on urchin depth distribution can be found in the 

Appendix (Figure 15).  

Table 7: Brief description of the depth distribution of the Green sea urchin.  

* = There are no data on depth distribution below 20 m, as this study and Fredriksen (1999) used SCUBA 
equipment to determine urchin abundance and depth distribution.  

 Drøbak Oksval Svartskog 

Study period 1992 – 1994; 2013 2006 – 2013 2006 – 2013 

Shallowest depth 5 m (1992; 2013)  2 m (2008; 2012) 0 m (2006; 2007) 

Greatest depth 20 m (1992; 2013) * 48 m (2008)  78 m (2007) 

Highest level Level 4 (1994; 2013)  level 3 (2013) Level 2 (2008; 2013) 

Commonest level Level 2 Level 1 Level 1 

 

3.4.1 Variation in water temperature and its impact on the Green sea urchin 

This study collected and compared the urchin data with the corresponding 

temperature measurements in order to assess the effect of temperature on the 

shallowest depth urchins were registered. A weak negative correlation between 

shallowest urchin depth and temperature was found, but still might validate 

hypothesis 2.  

The temperature data provided by the Academic Council of Water and Sewage 

Technical Cooperation in the Inner Oslofjord showed an overall trend in the study 

period of increasing water temperature, though at varying rates (see Appendix, 
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Figure 16). The seasonal variation was greatest at surface level and was gradually 

reduced with depth. The Summer peak in water temperature at 4 or 5 m depth was 

over 15 °C at all environmental monitoring stations. Table 8 presents the average 

temperature at 4 or 5 m at the beginning of the study period (1999), the end of the 

study period (2009 – 2012) and the difference in average temperature.   

Table 8: Comparison of the changes in average water temperature at 5 m over the study period (1999 to 
1009/2011).  

 Study period Start of study 
period 

End of study 
period 

Change over 
study period 

Drøbaksterskelen 1999 – 2009 8.2 °C 10.2 °C + 2 °C 

Oksval 1999 – 2010 9 °C 13.1 °C + 4.1 °C 

Svartskog 1999 – 2012 9 °C 9 °C    0 °C 

 

A weak negative correlation (R2=0.0871) was found between water temperature and 

the shallowest urchin depth (Figure 11). The regression line of temperature showed 

that for every meter down in the water column urchins are found, temperature 

decreased with 0.21 °C. Though there is a fairly weak correlation between 

temperature and urchin depth, this correlation supports hypothesis 2, specifically that 

temperature exerts an effect on the depth distribution of sea urchins. 
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3.4.2 The effect of changes in salinity on the Green sea urchin 

This study investigated the relationship between salinity and the shallowest depth the 

Green sea urchin was registered at in order to determine the effect salinity exerts on 

the sea urchin’s depth distribution. The study found a positive correlation between 

salinity and the shallowest urchin depth, which makes hypothesis 2 likely to be true.  

The salinity data presented an overall trend that salinity has been slightly decreasing 

since 1999 (see Appendix, Figure 17). Salinity showed layering of the water column,  

with a layer of fresher water at water level and then increasing average salinity 

deeper in the water column. The surface waters exhibited more fluctuations in salinity 

than on deeper water. The salinity average in the inner Oslofjord still remained 

around 25 parts per thousand (ppt) over the duration of the study, though some 

changes were found over the study period (Table 9).  

Table 9: Comparison of the changes in average salinity at 5 m depth over the study period (1999 to 2009/2011). 

 Study period Start of study 
period 

End of study 
period 

Change over 
study period 

Drøbaksterskelen 1999 – 2009 25.0 ppt 24.8 ppt -  0.2 ppt 

Oksval 1999 – 2010 25.0 ppt 24.8 ppt  -  0.2 ppt 

Svartskog 1999 – 2012 24.9 ppt 25.1 ppt + 0.2 ppt 

 

Salinity had a positive correlation with the depth sea urchins were first registered at 

(Figure 12). The R2 was higher for salinity (R2=0.245) than temperature though this is 

still a weak correlation. This correlation supports hypothesis 2, that salinity may affect 

the depth distribution of the Green sea urchin. 
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Figure 12: Correlation test of the effect of salinity on the shallowest urchin depth. The x-axis presents 
the shallowest depths sea urchins were registered at, while the y-axis represents the salinity at the 
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3.5 Chapter summary 

By comparing the raw data collected by this study in 2013 and pre-existing data on 

sea urchins, a number of significant differences in urchin abundance, urchin diameter 

and recruitment over time have been identified. The urchins were found to occur 

deeper in the water column throughout Spring and Summer now than in Fredriksen’s 

study (1999). A significant reduction in size has also been found at Drøbak and 

Flaskebekk. Drøbak exhibited an average urchin diameter reduction of 2.5 cm since 

1992, while at Flaskebekk the average diameter decreased by approximately 1.0 cm 

since 1979. Recruitment is still occurring in the inner Oslofjord, but at a slightly 

reduced level than before. This study also identified a significant difference in the 

season in which the majority of recruits settled, settling in the Summer in 2013 rather 

than Autumn as in 1992. Regarding GI, this study did not find any significant 

difference between 2013 and 1992. While temperature generally increased in the 

fjord, and salinity decreased, the study found that neither environmental factor 

exhibited a strong effect on the shallowest urchin depth. Salinity had a slightly 

stronger effect on urchin depth (R2 = 0.245), and temperature had a relatively weak 

relationship (R2 = 0.0871). Both of the correlations validates hypothesis 2’s claim that 

temperature and salinity correlates with the depth distribution of the Green sea 

urchin. 
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4.0  Discussion 

4.1 The condition of the inner Oslofjord population 

This study found that the sea urchin population in the Inner Oslofjord appears to 

remain in a healthy state, as indicated by the abundance, size-distribution, 

recruitment and Gonad Index measured in this study. However, there have been 

some significant changes within these parameters which may indicate a more 

uncertain future for the Green sea urchin population in the inner Oslofjord. These 

observed differences were: (1) Abundance was different in regards to depth and 

seasonal distribution (see Table 2), (2) the average size of sea urchins was smaller 

(see Table 3 and Figure 7) and (3) recruitment was lower compared to a previous 

study (Figure 9).  

The number of years in which this study could compare the present condition of the 

sea urchins to was quite low, making it more difficult to make any substantial claims 

about trends in the urchin demographic and density over the past 20 years, 

especially when the data from 1979, 1992 and 2013 sometimes focus on different 

aspects of the urchin population. 

 

4.1.1 Observed changes in depth distribution 

The survey conducted for this study found few urchins occurring in shallower depths 

(5m and 10m below surface level) compared to available data from previous studies 

from the same location (Green 1983; Fredriksen, 1999). Fredriksen (1999) frequently 

found sea urchins at 5 and 10 m in 1992, whereas the present study only found a 

few, less than ten urchins per square metre if any were found at all.  

The depth distribution at Drøbak between 1990s and 2013 (see Appendix, Figure 15, 

top left and right) showed that the urchins are occurred deeper in the Spring and 

Summer of 2013 than the Spring and Summer in 1992. This might be connected to 

the gradual sea temperature warming that is shown in Figure 16 (Appendix), but as 

historical environmental data is limited and there was only data points from two years 

available for comparison, a correlation between water temperature increase and 

depth distribution could not be conducted.  
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During the Spring of 2013, the Oslofjord experienced a severe flood. An event like 

this could reduce the salinity in the upper water layers, forcing them below the 

halocline. The Norwegian Directorate for Civil Protection (2014) estimate that 

moderately large floods, such as the flood in 2013, occur on approximately every 20 

years. However, the pattern found in the depth distribution did not seem to vary too 

much from the depth distribution from NIVA’s monitoring data, leading this study to 

believe the Spring flood in 2013 did not affect the data collected more than what 

previous floods may have affected prior samplings. 

Compared to Fredriksen (1999), there were differences in depth distribution (Table 

2). This suggests that there might be a non-lethal factor pushing the population in to 

deeper water. Neither this study or Fredriksen (1999) registered sea urchins below 

20 meters, but as shown by the depth distribution at Oksval and Svartskog, Green 

sea urchins are most definitely found deeper than 20 m (see Appendix, Figure 15, 

bottom left and right). NIVA utilized a drop-camera at Oksval and Svartskog when 

monitoring these environmental stations, enabling them to survey deeper in the water 

column. This study and Fredriksen’s study (1999) used SCUBA equipment, 

restricting the survey to the upper 20 m.  

It was believed that only Psammechinus miliaris inhabited and dominated the upper 5 

metres, while the Green sea urchin dominated from 5 to 10 metres and down, but  

the drop-camera registrations done by NIVA showed that the Green sea urchin can 

be found at shallow depths as well. The depth distribution (see Appendix, Figure 15) 

suggests that the sea urchins migrate upwards during Autumn and Winter while 

going deeper during Spring and Summer. On the other hand, though the data 

provided by NIVA had identified the sea urchins as the Green sea urchin in the 

majority of the data set utilized, drop-camera cannot be used to accurately identify 

species; hence this study cannot be entirely sure if the species registered is correct. 

However, studies from the 1980s (Källqvist et al., 1982; Magnusson et al., 1984a; 

1984b) had a depth distribution which is similar with NIVA reported in the 2000s, 

which indicates that the Green sea urchin is able to migrate up in the water column 

and graze at a larger area, thus possibly reducing the negative effects of being 

standing earlier in the year.  
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4.1.2 Observed changes in seasonal abundance 

The seasonal abundance has also changed over the years to fewer individuals in the 

Spring and Summer seasons compared to Fredriksen (1999) (Figure 6). Ojeda & 

Dearborn (1989) did present some seasonal vertical distribution, with urchins 

standing deeper in Spring and Summer before moving up to 5 m in late Autumn or 

Winter. This fits quite well with what this study found.  

If the change in seasonal abundance is correct, where sea urchins occur deeper and 

migrate to shallower depths during Autumn, it means that the sea urchin population 

to a lesser extent can utilize a large and important food source during Spring and 

Summer. The macroalgae in the inner Oslofjord inhabit the upper ten metres (Berge 

et al., 2012; 2013), which may be out of reach for the sea urchins during periods in 

Spring and Summer. In addition, macroalgae tend to have have the preferred ratio of 

carbon and nitrogen during Spring and Summer (Sjøtun et al., 1996) while during 

Autumn and Winter, when sea urchins occur higher up in the water column, the C:N 

ratio is too high or too low (Norderhaug et al., 2003; 2006) thus making it less 

suitable for consumption. On the other hand, even if macroalgae is one of the most 

important food sources for the Green sea urchin (Himmelman & Steele, 1971; 

Scheibling & Anthony, 2001), this species is omnivorous (Russell, 1998; Scheibling & 

Hatcher, 2001) and hence not entirely dependent on macroalgae to survive. The high 

Gonad Index found in this study (Figure 10) suggests that at the current date the 

Green sea urchins are not particularly harmed by the lack of access to macroalgae. 

 

4.1.3 Observed changes in size-distribution 

The study revealed that the average size of the Green sea urchin in the Oslofjord has 

decreased in comparison to data from previous studies (Figure 7). The average size 

found by this study was almost 2.5 cm smaller now at Drøbak and 1.0 cm smaller at 

Flaskebekk compared to Fredriksen in 1992 (1999) and Green in 1979 (1983). 

Possible explanations for these observed changes are: (1) High predation pressure 

on urchins which have not yet reached the size refuge, (2) Shifting of population into 

water deeper than what was explored by this study, (3) the mature urchin size has 

shrunk. 
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Possible impact of predation pressure on change in size-distribution 

Higher predation pressure is a possible explanation for the observed change in size-

distribution, particularly the distributions found at Svartskog and Flaskebekk, leading 

to fewer individuals reaching the size refuge of approximately four centimetres. If the 

predation is a major concern one would expect to find a bimodal distribution of urchin 

sizes, with one peak for juvenile individuals (< 2 cm), which live cryptically and 

sheltered,  and one for adult and old sea urchins (> 4 cm), which have achieved a 

size refuge (Clemente et al., 2013; Fagerli et al., 2013). The size-distribution found in 

the Oslofjord (Figure 8) showed that the majority of sea urchins were within the size 

range which they are most vulnerable to predation. A pattern like this suggests that 

the predation pressure cannot be that great, as these sea urchins should have been 

heavily preyed upon and thus been few.  

Possibility that the urchin population has shifted to deeper depths 

The combined findings that average size was lower in 2013 compared to Fredriksen 

(1999) and Green (1983) (Figure 7), and that there was still a strong presence of old 

juveniles (Figure 8), support the possibility that older individuals are now standing 

deeper than 20 meters. This explanation appears particularly appropriate for Drøbak 

station, of the 84 sea urchins larger than 5.0 cm, 80 were found at Drøbak. This 

pattern supports the common assumption that the Drøbak population generally has 

larger individuals than the rest of the Oslofjord. Size-distribution between depths was 

found to be quite indiscriminate, but larger urchins tended to stand at 20 m while 

juveniles were found at all depths (Figure 8). This indiscrimination fits well with what 

was found in the transition zone between kelp bed and urchin barren (Gagnon et al., 

2004), and at urchin barrens (Himmelman, 1986). However, this study did not find 

any sea urchins at five metres depth until Autumn. This may be caused by the 10 °C 

critical temperature limit for larval and juvenile development suggested by Stephens 

(1972). During spring and summer, the water temperature regularly exceeds 10 °C 

before dropping below this temperature during late Summer. On the other hand, this 

temperature limit has been questioned by several studies (Strathmann, 1978; 

McEdwards, 1985; Hart & Scheibling, 1988; Siikavuopio et al., 2008; 2012), claiming 

that the tolerance limit is closer to 14°C. Water temperatures regularly exceed 14 °C 

in the Summer as well, perhaps this limit will fit better with the urchin depth 
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distribution. Furthermore, it is possible that higher temperatures bring other stressors 

on the Green sea urchin, like more pathogens or increased predation by for instance 

Carcinus maenas or Cancer pagurus (Fagerli et al., 2014), both of which are inhabit 

the Oslofjord.  

The reason why sea urchins from Flaskebekk or Svartskog are smaller than Drøbak 

is uncertain. Nonetheless, a reduction in larger individuals might weaken the older 

individuals’ ability to function as a reproductive buffer. Figure 13 (see Appendix) 

showed how larger individuals had a generally higher Gonad Index, and after 

reaching a size larger than five centimetres always produced gonads. Without this 

group of old individuals guaranteeing some reproduction, the regularity of 

reproduction might decrease, reducing the overall abundance over time. However, as 

this research is only comparing the demographics of two years, one must be cautious 

of drawing a causational relationship. Even though statistical differences in urchin 

size were found, the comparison between 1992 and 2013 may only function as an 

indicator of possible change over time, not definitive proof.   

Gonad Index 

Gonad Index (GI) from 2013 was not significantly different from GI from 1992 (Table 

6), and seem to maintain at a high level throughout the water column. This is not in 

line with Keats et al. (1984), who found that the reproductive output varied by depth, 

or the food availability at the different depths. This indicates that the Green sea 

urchins in the inner Oslofjord have similar food availability throughout the upper 20 

metres of the water column. GI can be used as a proxy to determine whether a 

population is in good condition and, hence, have the opportunity to allocate energy to 

producing gonads. A low GI can indicate poor food quality or food supply in the area 

(Vadas, 1977; Himmelman, 1984; Raymond & Scheibling, 1987), or physiological 

stress, like for instance problems with the osmotic equilibrium (Krogh, 1939). The 10 

% threshold is commonly utilized to determine if the population is healthy and it uses 

the GI from Autumn, when it is at its highest. The present study found that GI was 

around 10%, and did not differ significantly between 1992 and 2013, thus this study 

deem it safe to conclude that the gonad production is as healthy in 2013 as it was in 

1992.  
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The standard deviations for GI were also quite high, showing a large variation in 

gonad production between the individuals at the different depths. Considering the 

Green sea urchin’ external fertilisation, one or a few individuals with a large amount 

of reproductive material may compensate for the lack of gonads in others. When 

looking at the effect of urchin diameter on GI (see Appendix, Figure 13) this study 

found a weak correlation (R2=0.0563). Ebert (1985) showed that a sea urchin’s 

fitness increases exponentially with test diameter, making larger individuals provide 

more reproductive material to the pool than smaller ones. This study did find a strong 

correlation between test diameters and gonad production (R2=0.5127) (see 

Appendix, Figure 14), supporting Ebert’s finding (1985). However, this is to be 

expected, as large individuals will have a greater capacity to allocate resources to 

reproduction than small individuals. The large variation in gonad production between 

individuals of the same size probably reflects the patchiness of the food at the 

station, giving a reproductive advantage to some few in the right area over the others 

(Russell, 1998). 

Recruitment 

Recruitment was found to still be at a healthy level in 2013, though compared to 

1992, the present study experienced a slightly lower rate of recruitment (Figure 9 and 

Table 5). Settlement was also found to occur in the Summer, which concurs with the 

literature on settling and duration as pelagic larvae (Strathmann, 1978; Falk-Petersen 

& Lønning, 1983; Underwood & Fairweather, 1989; Miller & Emlet, 1997; Fagerli et 

al., 2013). The number of settlers in the scours at Svartskog supports this (Table 4). 

Furthermore, recruitment was nearly the double in the Summer than compared to 

Autumn (Figure 9, top right, bottom left and right). Interestingly, both the Gonad Index 

and recruitment found by the present study were sometimes higher than found by 

Fagerli et al. (2013) along the coast from 2008 to 2010. In fact, the Gonad Index 

found by this study corresponds well with what Meidel & scheibling (1998) found in 

kelp beds and grazing fronts in Nova Scotia, Canada, where the Green sea urchin 

was thriving. 

This study concludes that the inner Oslofjord population is able to sustain the 

population as there is still a strong recruitment in the fjord (Figure 9). In addition, the 

recruitment data (Figure 9) and size-distribution (by using size as a proxy for age) 
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(Figure 8) suggest that recruitment occurs regularly rather than sporadically by a few 

strong year classes. This finding aligns with Leinaas & Christie (1996), who argue 

that an urchin barren population would need regular recruitment to sustain itself, 

while Sivertsen (2006), argues that a few strong year classes at uneven intervals is 

enough to sustain the population. It is important to note that using size as proxy for 

age, though often accurate, may create a bias if there are any factors inhibiting the 

normal growth rate of 1 cm/year (Larson et al., 1980; Fagerli et al., unpubl. 

manuscript). If the recruitment is not regular, a population can be sustained by 

receiving recruits from other populations, as the pelagic larvae stage has a high 

dispersal potential. However, this relates more to coastal populations, where the 

recruits are more likely to be able to travel far and colonize. There are no known 

coastal populations just outside of the Oslofjord, but there are local sea urchin 

populations along the Swedish and Danish coast which theoretically could replenish 

the Oslofjord population with recruits using the currents to the fjord. At the present 

date, there are no available data to support or reject this hypothesis. However, 

because of the isolating effect a fjord can exhibit (Fredriksen, 1999), there are two 

challenges that has to be cleared in order for the inner Oslofjord population to receive 

recruits from other populations. The first is the morphology of the fjord. The Oslofjord 

has a major freshwater outlet at the opening (Walday et al., 2013), which may also 

work as barrier for the Oslofjord populations to flow out and colonize the coast 

(Figure 1). Second challenge is the Drøbak sill, where the water flow is controlled 

mainly by the tides (Staalstrøm et al., 2012). If the current flow is unfavourable for 

urchin recruits it may restrict recruitment of the inner Oslofjord from other populations 

when the tide is not right. Because this study only compares two years it is not 

possible to make any definitive conclusions. Himmelman (1986) discovered that 

recruitment changes constantly between depths, locations and even years. Thus, 

what seemed like a decline in the recruitment success might only be a result of 

stochastic temporal variation. 
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4.2 Implications of temperature and salinity changes in the fjord 

This study showed that the average salinity has decreased at Drøbaksterskelen and 

Svartskog from 1999 to 2009/2011 (see Appendix, Figure 17). A reduction in salinity, 

particularly if reduced below the tolerance limit of the Green sea urchin would render 

a portion of the water column uninhabitable for the species. This may have positive 

effect for various types of algae, particularly brown algae, as they would be released 

from the grazing pressure exerted by the sea urchin (Himmelman & Steele, 1971; 

Scheibling & Anthony, 2001) as well as the bulldozing effect of the urchin movement 

on the substrate, dislodging newly settled kelp (Green, 1983). This could in turn lead 

to increased growth of seaweeds in the upper water layers in the fjord, increasing the 

fjord’s biodiversity. 

Contrary to the reduction at Drøbak and Svartskog, the salinity at Oksval increased 

by 0.2 ppt from 1999 to 2010 (see Appendix, Figure 17). It is very unlikely that this 

pattern was caused climate change. Even though Oksval is the northernmost 

environmental station, the latitudal difference between the two stations is so small. 

Oksval is less than 10 km further north than Svartskog, making the likelihood that a 

large scale phenomenon like ocean warming, and the subsequent reduction of 

salinity in the upper water masses, affecting Svartskog, but not Oksval very unlikely. 

A possible explanation for this pattern is upwelling caused by the sill at Oksval 

(Staalstrøm et al., 2012). However, this explanation does not take into account that 

the upwelling has to occur regularly and with the same strength, as the effect is 

visible and consistent throughout the year. The most plausible explanation is that the 

standard deviation is so much greater than the increase by the trend line, thus 

creating a false trend (Staalstrøm, pers. corr.). This means that local variation may 

create short term patterns which may mask the large scale trends of climate change.  

While the salinity decreased at Drøbaksterskelen and Svartskog, the temperature 

increased, as somewhat predicted by the IPCC’s assessment on climate change for 

the northern Atlantic (2013), but more precisely by Lima & Wethey (2012). Oksval did 

not present any temperature change since 1999. The same Summer-Winter cycles 

were found with temperature as with salinity. Therefore is this discrepancy likely 

attributed the standard deviation being too great. 
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Some of the possible confounding factors to this study that has been discussed have 

been pollution and wave action. Pollution has previously been an issue in Oslofjord. 

However, the condition in the inner Oslofjord in 2012 was deemed to be good (Berge 

et al., 2013). There are some parts of the fjord that are still struggling with pollutants 

like mercury, TBT, PCB and PAH (Thaulow & Faafeng, 2014), but the locations this 

study used had low levels of these pollutants. Thus the present study does not 

believe that pollution have been a confounding factor. Wave action has been found to 

have an effect on sea urchin distribution (Ojeda & Dearborn, 1989; Rinde et al., 

2014), but because the wave action in the inner Oslofjord is controlled by tidal 

movement (Staalstrøm et al., 2012), this study does not deem it as a major factor in 

the urchin distribution in the fjord. 

Assessing the correlation between urchin depth and the two environmental variables, 

the present study found that salinity was more of a determining factor than 

temperature (see Figures 11 & 12). These findings support previous studies which 

have stated that salinity is a more determining factor than temperature (Drouin et al., 

1985; Roller & Stickle, 1985; 1994), but is opposite of what is found with Norwegian 

coastal populations (Fagerli et al., 2013). This is most likely because salinity is 

normally higher and varies less along the coast However, the correlation found in this 

study was a weak correlation (R2 = 0.245). It might be possible that the correlation 

would be stronger if the salinity was closer to the tolerance limit of the species than 

the salinity measurements were in this study, or if the urchin registration and 

environmental measuring were done at the same location. As a result, this research 

suggests investigating the salinity threshold of the Green sea urchin in order to find a 

more definitive lethal or reproductive limit, as the present literature is conflicted on 

this matter. If achieved, this will improve the ability to accurately predict 

environmental effects on the Green sea urchin in the future.  



52 

 

 

  



53 

 

5.0 Conclusions 

This study found that the Green sea urchin is still present in the inner Oslofjord, 

contrary to received reports stating that it has declined dramatically. The population 

seems healthy, with several year classes present and an ongoing recruitment 

occurring. But there were some indicators that might be worrisome in the future: 

The Green sea urchin’s overall abundance differed from the abundance in the 

previous study (from 1992 to 1994). The seasonal abundance differed as well, where 

there are fewer individuals found in the upper 15 metres of the water column in 

Spring and Summer. Average urchin diameter was also different, with an average 

diameter 2.5 cm smaller at Drøbak since the last study conducted there (1992-1994), 

and a 1.0 cm reduction in average diameter at Flaskebekk since a study in 1979. 

Recruitment, though still occurring at a high level, seemed to have dropped slightly 

since 1992. Gonad Index, however, remained similar.  

Between 1999 and 2011, the average water temperature at 4 to 5 metres depth 

appeared to have increased by 2-4 °C at Drøbak and Svartskog, but remained 

constant at Oksval. In the same timespan salinity dropped 0.2 ppt, from 25.0 to 24.8 

ppt, at Drøbak and Svartskog, but increased by 0.2 ppt, from 24.9 to 25.1 ppt, at 

Oksval. However, due to the natural variation which occurs in the upper water layers 

these changes might not have been significant in this study. 

Weak correlations between salinity and the shallowest urchin depth, and temperature 

and the shallowest urchin depth were found. Salinity had a stronger impact on urchin 

depth distribution than temperature (R2=0.245 compared to R2=0.871). 

Further monitoring of the Green sea urchin population in the inner Oslofjord is 

suggested to maintain the population, and to earlier detect any further reductions in 

the sea urchin population in order to avoid a collapse. Further research on the effect 

of temperature and salinity, both independently and synergistically, on juvenile and 

adult individuals is suggested as a way to efficiently monitor the condition of the 

urchins.  
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7.0  Appendix 

Nested ANOVA tests were conducted in order to look at changes in size and 

abundance. For the abundance test, the average number of urchins classified as 

dependent variable and year, season, depth and station as independent variables. All 

interactions between the independent variables were also analysed. For the ANOVA 

done to investigate changes in urchin size used average diameter as dependent 

variable and year, station and depth as independent variables. Interactions between 

year:station and station:depth were analysed as well.  

Nested ANOVA tests were also used to investigate the recruitment and Gonad Index. 

For recruitment, number of settlers per day was set as dependent variable while 

year, season, depth and number of days were the independent variables. The 

interactions between year:depth and year:season were analysed. For Gonad Index, 

Gonad Index was dependent variable and year, month, season and depth were 

independent variables. Interactions between year:depth, month:depth and 

season:depth were investigated as well. 

 

Table 10: Depths and locations where Gonad Index was not assessed. No sea urchins larger than 3.5 cm were 
found at these depths and seasons. 

 Drøbak Flaskebekk Svartskog 

Summer sampling 15 m 5m; 10 m; 15 m 20 m 

Autumn sampling 10 m; 15 m 5 m 10 m; 15 m 
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Figure 13: Correlation test of the effect of urchin diameter on GI. The x-axis represents the test diameter of 
registered sea urchins, while the y-axis represents the GI to the sea urchin. 
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Figure 14: Correlation test of the effect of urchin diameter on gonad production. The x-axis represents the 
test diameter of registered sea urchins, while the y-axis represents the gonad production to the sea urchin. 
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Figure 15: Urchin depth distribution. Drøbak in 1992 (top left), Drøbak in  2013 (top right), Oksval (bottom left) and Svartskog 

(bottom right) . Y-axis describes all the depths examined by the different studies. The black line shows the deepest divers in this 

study went down. X-axis is the different dates when data was collected. No data certain years mean that monitoring was not 

conducted, not that urchins were absent. Data from 2011 and 2012 are only registered as echinoderms, not species, Blue 

circles represent data from NIVA’s monitoring program, red circles represent data from Fredriksen’s thesis and the green circles 

represent the data collected by this study. Data acquired by this study from Oksval is collected at Flaskebekk.  

 

 



70 

 

 

 

Figure 16: Temporal changes in average water temperature in the Oslofjord. Drøbaksterskelen (above), Oksval (bottom left) and 

Svartskog (bottom right). Data highlighted is collected at five m depth at Drøbaksterskelen and four m at Oksval and Svartskog. Data are 

collected by NIVA’s surveillance program of the Inner Oslofjord. The x-axis is the years where temperature was measured. Y-axis is the 

temperature, measured in Celsius, in the different years of the study period. The black line is the overall trend at four or five m depth in 

the surveillance period.  
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Figure 17: Temporal changes in average salinity in the Oslofjord. Drøbaksterskelen (above), Oksval (bottom left) and Svartskog (bottom 

right). Data highlighted is collected at five m depth at Drøbaksterskelen and four m at Oksval and Svartskog. Data are collected by NIVA’s 

surveillance program of the Inner Oslofjord. The x-axis is the years where salinity were measured. Y-axis is the salinity, measured in parts 

per thousand, in the different years up of the study period. The black line is the overall trend at four or five meters depth in the 

surveillance period. 
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