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Mathematical intultion is founded upon two sources, the con-
tinuous and the discrete, and the tension between the two has al-
ways playéd a central rdle in mathematical thought. This 1is true
not only in the discussion of the foundation of mathematics, but
also in the use of mathematics in the mcdelliing of natural pueno-
Tena.

The discrete has its root in counting and labeling; one way
aq‘connecting it with the continuous 1s through the act of measure-
ment. Measurements create in the continuum points and intervals,
hence also parts of or fractions cof intervals. So much for our
immediate experience. 3ut do the points we create exnaust the

continuum? Is the geometric continuum a point set?

Points and iines

What does geometric intuition tell us? Let us take a brief
look at the usual axiomatization of the affire plane, Artin [4].
There are two vasic categories of cbjects, lines and points. There
is one basic relation, P ¢ 4, the point P lies on the line 2, and
a defined notion, Llim, the lines 1 and m are parallel, i.s.
either 2 =m or % and m have no point in common.

Basic geometric axioms tell us that two distinct points deter-
minig a unigue line; that through a given point there is a unique
line ocarallel to a given lin=2; and - to avoid trivialities - that
thars are at least three acn-collinear points.

A geometry is determined by its symmetries. A dilatation o

is a wmap from polints to points satisfying the followiang property:



Let two distinct points P2 and Q ve given, and let 2 De the

1

tine determined by P? and 2. If &

-

s the line parallel to 2
passing through o¢P, then 5Q £ 2
A trace of P with reespect o a nontrivial dilatation ¢ 1is

a line 1 such that both P and o¢P lie on 1. A translation =

is either the ideneity map or a dilatation without fixged points, in
which case the traces of <t 1is an equivalence class of parallel
lines.

We note that the dilatations D form a group and that the

translations T is an invariant subgroup. A tracepreserving homo-

morphism «:T = T 1s a homomorphism satisfying the property that

. o3 . . ., Qo
either t = al(t) is the identity or t and = have the same
equivalence class of parallel lines as their traces. Let x Dbe the

set of all trace-preserving ncmomorphisms of 7T. We can introduce

an addition and a multiplication in k by the equations

a +f a B

T =T 7%

2P = (‘L“B)'I

If our geometry has enough symmetries, i1.e. 1f it satisfies the
theorem of Desargue, then Xk 1s a field and we can introduce coor-
.dinates from % for points in the plane. This follows from the

fact that if <, and = are translations different frcm the

H

[19]

identity and have different diractions, then to any =t € T there

exist uique «,8 € k such that

Choose any pcint 0O as origin and any two translations R and

Ts with different traces. We think of the r}—trace and r2~trace

through O as the coordinate axis'. Thus given any point P, let

Top be the (unique) translation that moves 0O to P, we can write
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for unique «,3 € ¥k, and we assign the coordinates

So far bvasic geoametric intuition., Any point lies on a line,
cut a line is not given as a set of points. Aad if the geometry has

enough smmetries, we can introduce coordinates from a field. But

this does not yet determine how many points there are on a line.

j_t

There are further geowmetric properties that we may consider.
plane is ordered if the points on each line is linearly ovrdered

(hence gives us a notion of lies between among points on a line),

and 1if parallel projections either preserve or reverse the order-
ing. The plane 1is ordered iff the associated field Xk 1is (weakly)
ordered.

An ordering of the plane is called Archimedian if it has the

L

following property: Let =1, and =1, ©De (nonidentity) transla-
tions with ﬁhe same directions and P a point which does not lie
between T](P) and 12(9), then there exists an integer n > 0
such that 12(9) lies between P and r?(?). It follows that a
-necessary and sufficient condition for an ordered geometry to come
from a field %k which is iscmorphic to a subfield of the field of
real numbers is the Archimedian axiom.

Thus granted the Archimedian axiom we know what possibilities
there are for sets of points on the geométric line. Butt is the
Archimedian axiom a “"true" geometric fact? What 1s given in our
immediate experience is a limited part of the geometric line with
at most a finite number of points marked on it, representing e.g.
the rasults of some physical measurements. The rest is an exten-
sion, ideal or real.

This has been forcefully expressed by Abraham Robinson [12]:

Whatever our outlook and in spite of Leibniz' position., it

appears to us today that the infinitely small and the infi-

initelv large numbers of a nonstandard model of Analysis are

neither more nor less real than, for example, the standard



irrational aumbers. This 1s obvious 1f we Iintroduce such
niunbers axiomatically:; wnile in the genetic aprrcach bHoth
standard irrational aumbers and nonstandard numbers are
introduced by certain infinitary processes. This remark is
equally true if we approach the protlem from the point of

view of the emplrical scientist. For all measurements are
"recorded in terms of integers and rational numbers, and if our
thaoretical framework goes beyond these, then there is no
compelling reason why we should stay within an Archimedian

nunber system.

For Robinson, who on several occasions expressed a strong
formalist conviction see [11] and [13], this is the end of the
story:

From a formalist point of view we may look at our theory
syntactically and consider that what we have done 1is to

Lntroduce new deductive structures ratner than new mathema-

tical entities.

Not everyone will agrese to this pcint of view. GB8del in some
remarks following a talk by Robinson at the Institute for Advanced
Study in March 1973 [10] seems to maintain that there is no onto-
logical difference Pbetwzen the integers, the rationals, the irra-
tionals, and the infinitesimals. By a series of "quite natural
steps" we may Decome familiar with and gain insight intc what al-
ready exists.

But what are the natural steps, how do we construct points on

a line?

How tc construct ooints on a line

Let us for a moment take seriously the intuition that the

geometric continuum, space, is not givan as a point set,



The standard approach. Through feasurements we Xnow now to mark

L

points in the continuum. And having chosen a unit we ars Zhesa able
to construct polats correspoanding to any rational fraction. 3uz, as
the ancient already observsd, there must be points not named by the
rationals, one example being the incommensurabllity of the diagonal
cf the square with its sides. This forces points on us labeled by
certain algebraic number fields. But this 1is not the end,.

A Cauchy sequence 1s a countable sequence of rationals num-

bers <rn>n€m' satisfying the condition that given any natural

number kK thers exists a number nO such that

lr ~r , for all n,m > n,.
n 0]

wl
Tnhe accepted standard point of view 1is that the gsometric line 1is
rich enough in points to ccontain limits for all Cauchy sequences of
rationals. The plane is the "maximal" ordersd dasarguean geometry
satisfying the Archimedian axiom.

Before closing the door, nowever, let us elaborate on one
polnt. Different Cauchy sequences ought to determine the same
point, e.g. <1,1,1,... > and <5,4,3,2,1,%1,1,... > should in the

limit determine the same point. We need an 2quality relation in the

set of Cauchy sequences; the standard one 1is

<y > = <3 > iff lim (r -s } = 0.
n n n n

N>

This does nct only identify sequences that differ in a finite ini-
tial paxt, but also identifies sequences such as <i> and <%7>,
which exhibit different convergence behavior. Classically, the set
of reals 1is the set of equivalence classes of Cauchy sequences with
respect to the equality relation introdnced akove. And che set of

r=2als, the arithmetic continuum, is identified with the geometric

continuum.



3ut if we look upon Cauchy sequances as a wethod of construc—
ting pecints, is the above equality relation the only perwmissible

one?

A remark on a constructivist point of view. The constructivist is

also permitted to coanstruct "rational points" on the line. To ob-
tain further points one introduces constructively given Cauchy
sequences <rn>. The constructivist also requires a constructive

version of the Cauchy criterion, viz. a constructive rate-of-conver-

gence function u: N » I such that

- 1
x > 3 il - <=1,
vk 0 vm,n » p(k) U -r k]

A constructive real is a pair (<rn>,u) and an equality is defined

in the set of constructive reals by

(<rq>,u) = (<sn>,v) iff {r =~s ) >0,

see Feferman [9].

But this equality rélation completely disregards the informa-
tion given by the rate-of-convergence function. Constructively
(<%>,p) and (<i?>'V) determines the same point on the line. even
if their rate-of-convergence is not at all the same.

Perhaps, rrom the point of view of recorded measurements this
is adequate. But if we want to preserve in the limit, the differ-
ence 1ln convergence bahavior, and if we also want to pay attention
to difference in asymptotic behavior, we shcoculd consider using a

less "crude" equality relation in the set of Cauchy sequences.

The nonstandard approach. Let us reopen the discussion of the

limit behavior of sequences a . Our interast lies in their

"eventual" behavior, i.e. two sequences a > and <bq> should bpe
identified, if a, = bn for all sufficiently large n, or, put in

a different way, we identify a_> and <bq> 1 there exists some



n sucn that a = ©
0] n n

tinguish hetween <%> a
Answer. |

At this polnt it 1is
A filter ¥ is a family
following conditions: if

A< B, then B ¢ ;T; the

perhaps,

In this way we would dis-

nseful to introduce

of subsets of

T
A,B € F
empty set

N

, then

which satisfies the

£ if

ANB

the

-

S

we have thsa Correct

notion of filter.

ae &

and

3 does not belong to & . The

last point is to avoid the trivial case that F# contains every

subset of

finite, it is easy to see that the family of co—finite sets

is a filter in W,

The condition introduced Aabove,

1s some 0y such that

a
a

1,

Q
a

phrased in the following wmannar:

€ jéf'

This 1s our initial attempt to make precise the notion of

"eventually the same behavior". Bu

that

for all

<a

b

-
-

i

5%

<a

o >
n

>

ko)
a3 on.,

= <b >
N

N. A set is co-finite if its complement in W 1is

L

iff [ne #T|ag =

leads us into trouble

C&f

cE

N

0

iff there

can now ove re-

!

with

the algebra. The "natural" way of introducing the algebraic opera-

tions in the set of sequences 1s as follows:

<a. > 4+ <p > = <¢

aD n n

<a, > ¢ <H > = <&
o a n

But consider the sequences

the above rules «1,0,1,0,..
but neither <1,0,1,0,...
zero-sequence <0,0,0,0,...

>

>

>

iff

iff

[ne wja +o

(n

€

[y

a
n

<1,0,1,0,...

1,

>

. >¢<0,1,0,1,...

nor

n

¢ 0
1

a

nd

<0,1,0,1,...

i

e} ¢ F

—
cb} € ~%cf

(e}
Hh

0,1,0,1, ...
<0,0,0,0,...

is equal t»

>

-
‘.

+
.

ae

>, We have introduced zero-divisors,

which ruin the standard rules of algebraic manipulations.

We want to preserve the property

a=0 or »n=20,.
aus e &

be the set

means that i1f

case let A

of

"
I

1

Translated into the

then 2ither

that if

language of filters this

A

~
<

b

aven nuabers and

=

or

2

+H = 0 then either

R e L. (In our

the ser of odd
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numbers, then AJS3= N ¢ thf.) Call a filter a prime filter 1f it

nas this property. (This terminology 1is taken from the chacactaris-

tic property of prime numbers: if p is a prime and divides a-b,
the p divedes a or p divides b.)

°rime filters - or ultrafilters - will do the job. Let 2{ be
a prime filter extending g;éf ; such filters exist. Let A and
<bn> be two sequences of real numbers, 1i.e. <an>’<bn> € ﬁN, wea

introduce an equality by

<a > = <0 > iff {ne W|a =b } ¢ U,

* . . , . n
and let R denote the set of equivalence classes with respect to

this equality, in standard notation,

R =i§N/QL.

* . s : y
In R we 1ntroduce algebraic operations as above, and we order
* .
R by the relation

a<b iff (new| a <o} ¢ U,

where a = <an>/QL and b = <bn>/QL. The set R o0f standard reals

are imbedded into “R by mapping r € R to the constant sequence

S, 2,0, 0. 2, (
An element a € 'R is called firite if |a] < n for some
standard natural number a ¢ IN; let Rf denote the finite elements

in "R. a¢ "R is called infinitesimal if |a]| < % for all
n € N; let Ri denote the set of infinitesimals. It is easy to see
that

R = RE/R,

thus for every finite a ¢ "R there is a (unique) r ¢ R such

is infinitesimal. We also see that the

—~
L
~—

‘.N‘—" ﬂl'

that the difference

N4

1 . < . , . . C . .
sequences <—> ana < determine two distinct infinitesimals in



X " 1 - o 1 )
xR, 5, = <=>/7  and &_ = <*7>/2L , such that
; n 2 A
QO < 8 < < l
2 1 n '

all n ¢ .

It is now a basic assumptioan of nonstandard analysis that the
construction of R is a method of constructing new points in the
geometric continuum, i.e. "R is an ordered field which can be
used to "name" points on a line, "R has strong closure properties
and we may therefore "forget" the ambient geometric space and
choose one version of 'R as the extended geometric line. 3ut this
is not correct on our point of view. *R is out one method of con-
structing points. And we are at liberty to create different point
sets on the line for different prupcses. We shall see how this

leads to richer possibilities in modelling natural phenomena.

But first two remarks.

~

Remark 1. A similar point of view was exprassed by Charles 3.
Peirce, see [3] for an exposition. Independently of Dedekind and
Cantor he had around 1880 discussed the nature of the geometric
continuum and the notion of infinity. He rejected Cantor's and
Dedekind's identification of the Archimedian arithmetic continuum
with the geometric continuum. He had independently of Cantor proved
that the powerset of an infinite set had greater cardinality than
the set itself, and he had bdBollly assartad that the forever in-
creasing multitudes of "points" thus produced could be fitted into
the ordered geometric continuum by some process of "interpolation".
Peirce never arrived at a precise mathematical theory, he argued
for the infinitesimals on the grounds of logical possidility and

physical necessity.



Remark 2. The "praxis" of nonstandard theory, as the following

examples will show, 1s often remarkably concrete, =2van "coastruc-
tive", with explicit calculations replacing abstract devalopmantis.

There has been attempts within constructive mathematics to make

3,

gspace for infinitesimals on the line; see e.g. the brief note by

it 1"

R. Vesley [158]. Te clue here is to let "very small" wmean "aot

equal to O and not known to be separated from 0 ".

Modelling natural phenomena

Having a richar pointset on the geometric line gives us a
frame for a geometric analysis of physical phenomena on many scales
and of puysical phenomena that are too singular to fit in a direcec

way 1into the standard frame,

Canards. Our first example concerns a new type of limit cycles in

the van der Pol equation

cX+(x2-1)%x+x=a = 0.

We are interested in what happens when ¢ » ¢ and a + 1. The

usual Lienard substitution

F(x) = x%3 - x

transforms the equation to the system

o
1]

v
1

"

The standard approach is to use asymptotic expansions in powers of
¢ . Working on the extended line we choose ¢ +to be a positive in-
finitesimal and a = 1. It turns out that for certain values of a,

viz.



a = 1 ‘E/S—S'n/

for some n =~ 9, a new type of limit cycle, a canard. 1s obsarved.

Notice that st{a) = 1, so that the condition on a has no Lmiaedi-

H n

ate arithmetic expression in R. To "see" wnat is happening, we
magnify the immediate or infintesiaal neighbourhood of the slow
manifold u = F(x) Dy the substitution y = (u-F(x))/=z, i.a. we

transform to an iafinitesemal scale. This gives us a vector field

(%) » xRy

ey = a-x - (x2-1)y

It is easily seen that the standard part in the x,y-plane of the

slow manifold of the vector field (x) 1s the union of the line

x = 1 and y = =1/(x#1). The derivative of (») at (1,-%) 1is
éi-_—}_—a—.:—}s_ ‘2_] --_—_s - -
ax a( v (x '))tx=1 2(1-a)/=.
y==%

A geometric analysis tells us that the new type of limit cycle, the
"canard", should be parallel (modulo an infinitesimal) to

y = =1/(x+1) as we approach (1,-%), i.e.

2(1-a)/e - 1/4 = O,

which gives the relationship

for some infinitesimal 7.

Remark, <Canards were discovered by a group of French mathematici-
ans, J.L. Callot, 7. Diener and M. Diener. For an exposition of
their work, see Benoit, Callot, 7. Diener, M. Disner [53], and also
Cartier [7].

Tne relationship tetween a and & also has a aumerical con-

tent and tells us how to arrange an approximative calculation of
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canards. It 1s, of course, a well-known fact in numerical analysis
that various approximations, step-lengths, often st De chosaen Lo
depend on eah oihws i spaiie specific ways Lln order to exbibin A
particular phenocimenon. It could ve that the noastaandacd theory is

the "right" way to discuss this,

Siagular perturbations. Let gy = -4 be the free Schridinger

L - : : a .
operator, where A 1s the Laplacian in R . It corresponds to a

quadratic form

Eo(f,g) = [(-af)gdx.

We want to perturd the operator on a "“small" set, i1.e. a set of

. d . . .
measure 0 in R~ . This means that we want the "free'" oarticle o

feel a force concentrated on a small set, e.g. a point lattice in
Rd as in solid state physics, or a "thin" submanifold of Rd, or a
Brownian path C_ = (o(w,t){t€[0,1]} as in polymer science or
quantum field theory.

Formally, this means to add to HO a singular perturbation of
the form |

d = H,+V,

0
where V in the Brownian path case would be

viz) = =[x (233 (x-blw, t))dt,

5 TUbeing the d-function in Rd.

In terms of quadratic forms this can be written as

E(f,g) = EqQlE.g) + fcm}\fgdp,

4 - 1

where p(A) = m{te(0,1]{bl(w,t)€A}, m the Lebesgue measure on the
real line.
This case is studied in detail in [1], see also the anounce-

ment [2], Our aporoach is to lift the problem to a hyperfinite



setting and use the theory of uyperfinite quadratic forms that we

T

davelon in [1]. The result is that H exiszs as a noazcivial,

=
/1
L

self-adjoint, lower bounded perturbation of =-A for d < 3.

must choose A to De aa infinitesimal, positive function for
3 =4,5; for d < 3 any pbounded real-valued function A will do.
The coanections wikh polymer wodels as well as with quantum fields

are discussed in [1].

The space—inhomogeneous RBoltzmann eguation. The Boltzmann equation

describes a gas of identical point molecules which are interacting
by a potential of finite range. The molecules move with unrestric-
ted speed in some region A of R3 . Assuming periodic boundary

conditions we have as chase space M = AxR3, where A = R3I/z3.

joNy

Letting F{x,v,t) enote the density of the amclecules the

3oltzmann equation is

dF(x, v, &)

>t + v-VXF(x,V,t) = (QF)(x,v,t),

where Q denotes the usual collision operator.

The first step of the analysis is to consier a "truncated"
version by replacing Q by some suitable "cut-off" Qn’ ne W. It is
then standard to prove that for suitable initial data Fo(x,v) =
F(x,v,0) there exists a unigque non-negative .- -solution of the

equation

t
Flxtev,v,t) = Folx,v) + i Q Flx+sv,v,s)ds.
0

8v transfer we obtain for n € "N~ an internal solution £ of
the extended equation. The main analytic part now comes in showing
that f has a standard part Uf. One can prove that with the
(internal) initial condition

£y (x,v) = min(*FO(x,v),n) + n—lexp(—vi),

* * . . . -
whers2 n ¢ »N-#1 and FO is the standacd =xtensioa of FO’ the



standard part 0Ff of the internal solution £ is nearstandard for
, = A x , R
Loeb—almost all {x,v) € "Axns{ R¥), whers ns{ R3}) 1is the set of
. ) Lk _ \ . .
nearstandard poilints ot R3 . Furthermoce, the sktandacd part °F

satisfies the corrsct integral equation; for details see the expo-

fy

sition in [17].
This result was proved by L. Arkeryd [3] and is the first

general result of its kind in the space-inhcmogeneous case. Notice

that OFf has everywhere standard values, but it lives on an en-
. X * * . . .
riched or denser phase-space Axns{ ®3). But this, we claim, is

nerfectly acceptabsle from a physical point of view.

Quantum fields. Constructing medels for quantum fields 1s no small

task. A favored approach is to start with free lattice fields. Let

3 > 0 Dbe a fixed positive real number and define the lattice Lé
d
b Let b, e the

standard discretization of the Laplacian and introduce the

with spacing & to be the set L, = {nd|n€ 2

covariance matrix

-d -1
= - +‘2 ;
Cn,n' & Bgrm )n,n'
where m 1is a positive real number,  the "mass", Let A < R be a
bounded region and let Aé = AN LG. We let aA5 denote the bound-
ary of Ag,. Ay is a finite se:r, let & = [Aéi be the number of
points 1in AS' Our measure space will be the finite product
A
QA = R equipped with the gaussian measure
6
dg (@ = 20 (dee(c®) o= T (T g dg
0,4 L n,n' *ndtn's !
g nd,
n ééAd

where g & Qﬁ , dg = qumS and CA is the restriction of the
5

ccovriance matrix to A@'

indexed by A5 as

We may now introduce the random field @6

the map &.: A, x] > R given by
- 5 ¢} ;\.6



_6(3)(q) = 5 né € Ag.
It is called the free latiice field of mass @ 1in Aé; Eor an
axposition see 3imon [15].
Jdne may ncw show that as 5 » D  the fields @5 "converges"
to a gaussian random field. "Convergence" is here somewhat proble-

matic, changing § not only gives uas a new random variable, it
also gives us a new measure space. And what 1s more awkward, in the
limit the lattice disappearsi

In the hyperfinite picture there is an easy way to overcome
these difficulties. In addition to the standard finite approxima-
tions "from the inside", we can also approxiwmate "from the outside"
Let 8 > 0 Dbe infinitesimal and let A6 be a hyperfinite lattice

in R with spacing &, By transfer we have a hyverfinite lattice

field which we can easily show to be a model of the free Euclidean

field of guantum field theory. What 1s noteworthy here 1is that the

hyperfinite field is pointwise defined. We still have infinities,

but they can be controlled through a consistent algebra, hence lead
to unambiguous and meaningful results; see [1].

The free field is of rather limited physical interest, the
goal is to construct fields which model various forms of particle
interaction. One way of doing this is to construct suitable "local
additive functionals" of the free field. Let & > O be a standard
real and consider the lattice A6 obtained from a bounded domain
A< R . Let g be a positive function with support in 4 and let

u be any continuous real function. We will study interactions of

the form ]
v = x, 16%(ns)u, (3, (n))
g 6 o = 6 6 ! .
where ké 1s a real constant, the “coupling constant'”. We may

introduce the perturbed measure

N du =
g,Aé



on the space I, . but keep the field 2

/ — tra - A
W (n)(q) q.s- We would

8

hopa zhat ander saitable conditicns dpg A l=2ads to a nongaussian
!
o

4

measure f(either in the limit or in the hyperfinite picture), hence

h

to a model of an interactin ield.

3
I

presents a xiand of "space cut-off".

g
. . 5
The function g 1a ”g

it could e.g. be the characteristic Cunction of some domain Aé in
A. In order to obtain a nontrivial field we now let § tend to
zero while at the same time letting A6+Rd. To remove the "space
cut~off" we let g converge to the constant function 1 or Rd.
This 1is the standard program. In the hyperfinite version it
means that we want to choose & > 0O 1infinitesimal, A6 a hyper-
finite lattice and g an internal function such that g{ad) = 1

for all nearstandard nd ¢ Aé. We would then like to sextract from

the internal construct P a non-gaussian measure satisfyiag
s L
2T

the field-theoretic axioms; see [1].

We cannot carry through this in detail in this exposition, the
reader is referred to [1] for a full discussion. We indicate a few
steps to exhibit some of the parts that come into play. Let us for
simplicity choose an exponential interaction ué(y) = explay). Let
us make the following calculation to see what we have to do in

order to control the possible infinities. We assume that § > 0 1is

standard, that Aé is a finite lattice and that g > 0 has sup-
port in A:
A
512 5.2 ¢ .2d 22C
(+) [(u?)2du = A3 (A)7 ] 8°7g(nd)g(n's)e e,
g O,A(5 5 L
n‘ééAé
where
2 2 - -
A = exp(3—(2x) d.f e, (k) "2axg,
[e4 2 T o)
o)
4 2 -d d
where Tg = fen/5,n/8] and  uy(k)s = 8§ (2d-2 § cos(kié)]+m2
=1



Let d = 2, choose & > 0 1infinitesimal and Aé hyperfinite,
but keep a ane-off g of compact supporf. If a? < odm we zasily
se2 that the sum on the right hand side of (+) is finites, Dbut the
intaegral in AS diverges. However, ona infiaity can be balanced
against another. The coupling constant 1s so far left unspecified,

SO let us choose

1

A= e (ad)TT,
o 4

5

where A > O 1is a finite real number idenpendent of § and «a.
With this choice the right haad side of (+) is nearstandard, and it

is not difficult to see that the standard part is

2 \
ac: =y
M4 9(x)gly)e %) geay,

R
;=1
where G(x,y) 1is the kernel of the operatcr (-aA+m?) .

Remark. For the informed reader we note that the interaction U

d

is more commcnly written

ad . (a)
Ug = A\ Zédq(né):e 6 T
ad, (a) 5 -1 2®g(nj
where e ;= (Aa) = is the so~called Wick renormali-
aéé(n)

zation of e .

Thus one important stage in the program is completed. It re-
mains to remove the space cut-off g. Let conce more & > 0 be a

standard real, A@ a finite lattice, and let g have support in

A . The Schwinger functions associated with the measure “g A are
8
given by ;
8
S “e ) = 2. (ny ). B, .
°g(n15’ o 8) = [ & (ny) Qo(nk)dug,A5

Let g,3' Dboth have support in A, assume that the support of g

is conzained in the support of g', and that g = g' on the sup-

por~ of g. Then c¢ne may show that




) ) §)
0< s, < 8 < S p
g g 0
) . ] e . s o o
whers 3 is the Schwinger function of the free field.

0
In the final stage of the nrogram we pass to the hyperfinite

plcture and remove the finite space cut-off by choosiag an internal
function I such that gw(né) =1 for all finite nd. Then we

may prove that L(ug N ), the Loeb-measure associated with by 4
] 1
w T4 w 5

is a non-gaussian probability measure. And using the inequalities

established above, we may verify that this measure for 4 = 2

gives us a model for a quantum field with non-trivial interaction.

Remark. The book [1] contains further examples, e.g. a nonstandard

¥
construction of gauge fields in dimension 2; and a discussion of

versicn of the model due to 3rydges, Frdlich, Sokxal [6]; a

polymer measure and quantum fields.

On nonstandard nraxis

It has often been nheld that nonstandard analysis is highly
nonconstructive, thus somewhat suspect, depending as it does upon
the ultrapower construction to produce a model. On the other hnhand,
as we already remarked above, nonstandard praxis is remarkably con-
structive; having the extended number system we can proceed with
explicit calculations. A case in point is the Cauchy-Peano exis-
tence theorem for ordinary differential equations. In the standard
approach one uses in the final step the Ascolli lemma which asserts
that every bounded equicontinuous sequence of functions on an
interval I Tnas a uniformly bounded subsequence. This part of the
argument 1s lacking in the nonstandard proof, which makes it more
direct. And indeed it is in the following precise sense. It is
possible to recast the nonstandard proof to give a proof of the
Cauchy-Peano existence theorem where the only non-recursive element
is the Weak Kdaig's Lemma which asserts that every infinite binary
tree, i1.e. infinite tree of sequences of O0's and 1's, nas an
infinite path. And this is a principle which is provably weaker,

1.e. more conmstructive, than the Asccli lemma [4].
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