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Mathematical intuition is founded upon two sources, the con-

tinuous and th.e discrete, and the tension bet\veen the t•;.~o has al-

ways played a cer:tral role in mathem.::ttical thought. This is true 

not only in the discuss~on of the foundation· of mathematics, but 

also in the use of mathematics in the mcdelling of natural pheno-

:uena. 

The discrete has its .coot in counting and labeling_; one way 

.Yf connecting it with the continuous is through the act of rr.easure­
' 

i"fmt. tv1easurements create in the continuum points and intet·vals, 

hence also parts of or fractions of intervals. So much for our 

i:nmediate experience. 3ut do the points ';Je create exha~.:st the 

C()ntinuum? Is the geometric continuum a point set? 

Points ar.d lines 

\mat does geometric intuition tell us? Let us ta:<:e a brief 

look at the usual. axiomatization of the affir.e pla:1e, tl.rtin (4]. 

T~'1ere are two basic categories of objects, lines and paints. 'I"nere 

is one basic relation, P e 1, the point P lies on the line 1, and 

a defined notion, .0 m, the lines 1 and m are narallel, i.e. 

either 1 = m or J. and m have no point in common. 

Basic geometric axioms tell us that two distinct points deter-

mir.ig a unique line; that through a given point there is a unique 

line Qarallel to a given line; and - to avoid trivialities - that 

th ::re are at least t'h::::ee non-collinear points . 

. -\ geometry is dete.:cmined ):.y its symmet.cies. A. -:iilatation ::; 

.is a map fr:Jm points i:.o points satisfying the following property: 
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[;et t~4o d. is tinct points ? and C2 be given, anci let 1 be the 

~ine dAtermined by ? and Q. If is the line parallel to 

passing through aP, then ~a s 1 I • 

A trace of P with reespect to a nontrivial dilatation a is 

a line 1.. such thnt both ? and aP lie on 1... A translation ~ 

is either the ideneity map or a dilatation without fixed points, in 

which case the traces of 't' is an equivalence class of parallel 

lines. 

Fie note that the dilatations D form a group and that the 

translations T is an invariant subgroup. A tracepreserving homo-

rnor.nhism a :T ~ T is a homomorphism satisfying the property that 

either is the identity or and 
a 

't' have the same 

equivalence class of parallel lines as their traces. Let k be the 

set of all Lcace-preserving homomorphisms of '1:'. h'e can introduce 

an addition and a multiplication in 1<: by the equations 

If our geomet~y has enough symmetries, i.e. if it satisfies the 

theorem of Desargue, then k is a field and we can introduce coo1·-

. dinates from k for _points in the rlane. This follows from the 

fact that if -t 1 and are translations different from the 

identity and have different directions, then to any 't E T there 

exist uique a, p E 1<: such that 

f3 a: 
--.; 1; 

Choose any point 0 as origin and any t•.,yo trar,s lations ·c 
1 

and 

vii th different traces. "i'Je thini< of the -c 1-t:race and 

through 0 as the coordinate axis I • Thus given any point P, let 

'op ;:,e the (unique) trc.nslatiotl that moves 0 to P, we can '"rite 
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for unique a I ,3 E I< I and v1e assign the coo·cdi 11a tes 

(a, p ) to ? 

So far basic geometric intuition. ~ny point lies on a line, 

but a line is not given a:s a set of points. ,-\nd if the geometry has 

enough smmetries, we can introduce coordinates from a field. Bnt 

this does not yet determine how many points there are on a line. 

There are fut"ther geoinetcic properties that ·.ve may consider. ;., 

plane is ordered if the points on each line is linearly ordered 

(hence gives us a notion of lies between among points on a line), 

and if parallel projections either preserve or reverse the order-

ing. The plane is ordered iff the associated field !< is (·..veakly) 

ordered. 

An ordering of the plane is called ~chimedian if it has the 

following property: Let and be (nonidentity) t~ansla-

tions ~.vi th the same directions and P a point which does not 1 ie 

bei:'.ve en o; 
1 

( P) 

such that -t 2 (P) 

and "'
2 

(P) , then there exists an integer n > 0 

lies between P and -t?(P). It follows that a 
I 

. necessary and sufficient condition for an ordered geometry to come 

from a field k which is isomorphic to a subfield of the field of 

real numbers is the Archimedian axiom. 

Thus granted the Archimedian axiom \ve know ·.vhat possibilities 

there are for. sets o~ points on the geometric line. Bui: is the 

Archimedian axiom a "true" geometric £aci:? -lhat is given in our 

immediate experience is a limited part of the geometric line with 

at most a finite number of points marked on it, representing e.g. 

the results of some physical measurements. ~~e rest is an exten-

sian, ideal or real. 

This has been forcefully expressed by Abraham Robinson [12]: 

N'hatever our outlook and in spite of Leibniz' positioP-. it 

appears to us today t.hat the infinitely sma.ll and the infi­

initel.y large numbers of a nonstandard model of iillalysi3 are 

neither more nor less real than, for example, the sta11dard 
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irrational numbers. This is obvious if \·/e introduce such 

n1Hnbers axiomatically; while in the genetic aprroach ':.;o·th 

standard irrational numbers and nonstandard numbers are 

introduced by certain in finitary p-rocesses. This -cemar'-\: is 

equally true if we approach the problem from t'1e point of 

vie\v of the empirical scientist. E'or- all measurements are 

-recorded in terms of integers and rational numbers, and if our 

th~oretical framework goes beyond these, then there is no 

compelling reason '-Yhy \ve should stay •vithin an Archimedian 

number system. 

For Robinson, \vho on several occasions expressed a strong 

formalist conviction see [11] and [13], this is cl1e end of the 

story: 

From a formalist point o£ view we may look at our theory 

syntactically and consider that what we have done is to 

introduce new deductive struct~res rathet· than new mathema­

tical entities. 

Not everyone will agree to this point of view. G5del in some 

remarks following a talk by Robinson at the Institute for Advanced 

Study in March 1973 [10] seems to maintain that there is no onto­

logical difference between the integers, the rationals, the irra­

t.i.onals, and the inf ini tes imals. By a series of "quite natural 

steps" we may ·.)ecome familiar \v·ith and gain insight into what al­

ready exists. 

B1lt what are the natural steps, how do we construct points on 

a line? 

How to construct ooints on a line 

Let us for a moment take seriously the intuition that the 

geometric continuum, space, is not given as a point set. 
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The standard approach. 

points in the continuum. Md 1-\a ving ~hos en a unit '-He ar2 ::hen "l.b le 

to construct points corresponding to any rational ')I_!'::. I as 

the ancient already observed, there must be points not named by the 

rationals, one example being the incommensurability of the dia<Jonal 

of the square with its sides. 7-'1is forces points on us labeled by 

certain algebraic number fields. But this is not the end. 

A Cauchy sequence is a countable sequence of rationals num-

bers <r > ~"T satisfying the condition that given any natural 
n nEu.'i 

number k. there exists a number n
0 

such that 

for all n,m) no. 

L'"'he accepted standard point of view is that the geometric line is 

rich enough in roints to contain linits for all Cauchy sequences of 

ra·tionals. Tne plane is the "maximal" orderad desarguean geometry 

satisfying the ?-rchimedian axiom. 

Before closing the door, however, let 11s elaborate on one 

point. Qif:ferent Cauchy sequences ought to deter7lline the same 

point, e.g. <1,1,1, ... > and <51 41 31 2 1 1 1 l 1 1 1 • • • > should in the 

limit determine the same point. He need an equality relation in the 

set of Cauchy sequences; t:1e sta.ndard one is 

<t: > = <s > iff 
n n 

lim (r -s ) = 0. 
n ':1 n-+<e 

This does net only identify sequences that differ in a finite ini-

tial par;t, but also identifies sequences such as 
1 

<-> 
n 

and 

which exhibit different convergence behavior. Classically, 

1 
<2> I 

n 
the set 

of reals is the set of equi'lalence classes of cauchy sequences with 

t"espect to the equ3.lity relation introduced above. And ;::he set of 

reals, t~e arithmetic continuum, is identified with the geometric 

c0ntinuurn. 
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3ut if we look upon Cauchy se<rq::lnces as a method of construe-

ting points, is the above equA-lity r(~lati::>n t~'1e 8nly permissibl2 

one? 

A retnar~<: on a constr,Jctivist ooint of view. The constructivist is 

also permitted to construct "rational points" on the line. 1'o ob-

tain further points on~ introduces constructively given Cauchy 

sequences <r >. The constructivist also requires a con~tructive 
n 

version of the Cauchy criterion, viz. a constructive rate-of-conver-

gence function ~: IN -+- !N such that 

'ik > 0 lim, n > ~ ( k) !lr -r l<ll. 
- 1 n m k-

A constructive real is a pair (<r >,~) and an equality is defined -n -

in the set of constructive reals by 

(<r >,~) = (<s >,v) 
n n 

see Feferman [9]. 

iff ( r -s ) -+- 0 , 
n n 

But this equality relation completely disregards the in forma-

tion given by the rate-of-convergence function. Constructively 

1 
and ( <2>, v ) determines ti1e same point on the line. 

n 
even 

if their rate-of-convergence is not at all the same. 

Perhaps, £rom the point of view of recorded measurements this 

is adequate. But if we want to r?rese·cve in the li:ni t, the differ-

ence in conve.-cgence bahavior, and i.f v;e also ~...rant to pay attention 

to difference in asymptotic beha'lior, 'l'le should consider using a 

less "crude" equality relation in the set of Cauchy sequences. 

The nonstandard approach. Let us reopen the discuss ion of t!-le 

limit behavior of sequences <.:~, >. Our interest lies in their 
n 

"ever.tua 1" behavivr 1 i.e. two sequences <a > and <b > ahould be n n 
identifi9d, if a = b n n 

for all sufficien~ly large n, or, ,011t in 

a different 'day, ·we id-=ntify <a > and <'o :. 
n \T 

i£ there exists some 
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such that a == b for all n > n 0 . In this way •.ve :,vould dis-
n n 

tinguish bet•,veen 
1 < -- > and 'l '> ~ ,-, • .::>0, I?erhaps, l.ve have the C8Ccect 

(l n 

·'lnswec. 

~.t this point it is qseful to introduce the notion of filter. 

i\ filte::- :7' is a family of subsets of IN which satisfies the 

following conditions: A, B E 7 , then ,:;n B E 7 ; if 

Ac 3, then B E '7; the empty set ;;5 does not belong to :7' . The 

last point is to avoid the trivial case that :T contains every 

subset of lN. A set is co-finite if its complement in lN is 

finite, it is easy to see that the family of co-finite sets 'l' cf 

is a filter in N. 

The condition introduced above, that <a > == <b > 
b n iff there 

is some n0 
such that a .::: b for all n ;;. n", can now be re-

n n '--' 

phrased in the following manner: <a > = <b > 
b n 

iff 

E ~f' 
This is our initial at-tempt to make precise the notion of 

"eventually the same behavior". But it leads us into trouble •,.;ith 

the algebra. The "natural" way of introducing the -3-lgebraic opera-

tions in the set of sequences is as follows: 

<p.. > + <b > .::: <c > iff { nE IN I a +b = en} E :;:cf 0 n n n n 

<b iff { nE IN I a •b c } E c-<a. > • > .::: <c > = :Y cf 0 ~'1 n n n n 

) 1 by 

but neither <1,0, 1,0, ... > nor <0,1 ,0, 1,. > is equal t~ thP. 

zero-sequence <0,0,0,0,. >. ~ile have introduced zero-divisors, 

which ruin the standard rules of algebraic manipulations. 

Ne want to preserve the property that if a• b = 0 then either 

a= 0 or b.::: 0. Translated into the language of filters this 

means that if AU 3 E SC t':-.en either A E 7 or B E 7. (In our 

case l.et ?. be the set of even numbers and 8 the sec of odd 
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numbers, then )\U 8= iN E J.- . ) Ca.ll a filter a orime filter i:: it .... cf · 

has this property. ( Th. is terr,1i no los-y is tax en from the cha. C"l.Ctij c i~-

tic prouerty o.E prime numbers: if lS a prime and divides 

divedes a ()'C divi.des 'o. ) 

? rime filters - or ul trafi l ters - <,vill do the job. Let ZL be 

a prime filter extending 7 ; such filters exist. Ldt <"1. > eind cf n 

<b > be two sequences of real numbers, i.e. 
tl 

introduce an equality by 

li'T 
<a > , < b > E lR , <.ve 

n n 

<a > = <b > 
b n 

if£ { nE IN I a =b } E ~L , 
' n n 

and let * IR denote the set of esuivalence classes with respect to 

this equality, in standard notation, 

*\R = ~~N/ ·u 

In *R we introduce algebraic operations as above, and we order 

*~ by the relation 

a < b iff 

\vhere a = <a >I U and b = <b > ;U. The set IR of standard reals n n 
are imbedded into *~ by mapping r E ~ to the constant sequence 

;'\~ 1 a E *IR .--u• e_ement is called fi~ite if lal < n for some 

standard natural number a E ~; let ~f denote the finite elements 

in * IR. a E *lR 

n E !N; let tR. 
l 

that 

is called infinitesimal if 
1 

< -
n 

for all 

denote the set of infinitesimals. !t is easy to see 

IR 
IR :::: f/IR. I 

l. 

thus for every finite a E * IR there is a ( uniq·.1e) r E !R such 

that the difference (a-r) is infinitesimal. We also see that the 

sequences '1 <.,-) and determine two distinct infinitesDnals in 
n 
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* < l. > I •1 L 6 <-1 >/ ~ such \R, 6' 
:: I v and :: 

I that 
I n 2 (12 

0 < 62 < 6 < -
l n 

all n r lN. :::: 

It is now a basic assut:~ption of '"\Onstandat"d a.n.alysis that the 

cons t n1ction of. * IR is a method of cons truc·ting new points in the 

geometric continuum, i.e. *IR is an ot"dered field which can be 

used to "name" points on a line. *tR has strong closure properties 

and we may therefore "forget" the ambient geometric space and 

choose one version of *IR as the extended geometric line. 3ut this 

is not correct on our point of vi evo~. * [R is but one method of con-

structing points. ~nd we are at liberty to create different point 

sets on the line for different pruposes. Ne shall see how this 

leads to richer possibilities in modelling natural phenomena. 

But first two remarks. 

Remark 1. A similar point of vie•,v was expressed by Charles S. 

Peirce, see [3] for an exposition. Independently of Dedekind and 

Cantor he had around 1880 discussed the nature of the geometric 

continuum and the notion of infinity. He rejected Cantor's and 

Dedekind's identification of the Archimedian arithmetic continuum 

with the geometric continuum. He had independently of Cantor proved 

that the powerset of an infinite set had greater cardinality than 

the set itself, and he 'l·'1.d 1'>o1.·.-:1y as-'3'~rted that the forever in-

creasing multitudes of "points" thus produced could be fitted into 

the ordered geometric continuum by some process of "interpolation". 

Peirce never arrived at a precise mathematical theory, he argued 

for the infinitesimals on the grounds of logical possibility and 

physical necessity. 
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Remark 2. The "rraxis" of nonst.:tndnxd theory, as the following 

examples will sho<.v I is often rernarkably concrete I ev.~n "cons t:cuc­

tive" I with explicit calculations rerlacit1g .:=~.:i:3tr.'l.Ct c<,evelO[>ll1~1lt5. 

There has been .=tttempts i.vithin constructive mathematics to make 

space for infinitesim."l.ls on the line; see e.g. the brief note hy 

R. Vesley [ 1 G]. 'T:<e clue here is to let "very small" mean "not 

equal to 0 and not known to be separated from 0 " 

L'1odellinq natural phenomena 

Having a richer pointset on the geometric line gives us a 

frame for a geometric analysis of physical phenomena on many scales 

and of physical phenomena that are too sin~1lar to fit in a direc~ 

way into the standard frame. 

Canards. Our first example concerns a ne<.v type of limit cycles in 

the van der Pol equation 

~x+(x2 -1 )x+x-a = o. 

We are interested in what happens when e ~ 0 and a ~ 1 . The 

usual Lienard substitution 

u = F(x) + e..X: 

transforms the equation to the system 

ex = u-F(x) 

u = a-x. 

The standard approach is to use asymptotic expansions in powers of 

e . \'larking on the extended line we choose e to be a positive in­

finitesimal "ind a "' 1. It turns out that for certain values of a, 

viz. 
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a= - s/8- s·~, 

for sooe ~ ~ 0, a new type of liQit cycle, a canard. is nbsarved. 

~,Tot:.i..ce t 1Ht st(a) = 1, so that the condition <)O a ''""s n.o ;_tnin,~di-

ate ari thr.~etic express ion in IR. To "see" \vhat is happening, \ve 

magnify the irmnediar.e <)r i.nr:-;_,i:.esi..,1<ll neighbourhood of the slo''' 

manif:Jl:l u = F(x) by the substitution y = (u-F(x))/s, i.e. eve 

transform to an infini.tesemal scale. This gives us a vector field 

• 
X = y 

sy =a-x- (x2-l)y 

It is easily seen that the standard part in the x, y-plane of the 

slow manifold of the ·.;ector field (*) is the union of the line 

X = 1 and y = -1/(x+l). ·r;:l.e derivative of(*) at (1,-~) is 

~ = l.(~ 
dx e: y 

... 
=2(1-a)/s. 

_;;_ geometric analysis tells us that the new type of limit eye le, the 

"canard", should be parallel (modulo an infinitesimal) to 

y = -l I ( x+l ) as we approach (l ,-~), i.e. 

2(1-a)/e:- 1/4,.. 0, 

which gives the relationship 

a = 1 - e: /8 - s • -n , 

cor some infinitesimal n. 

Remark. Canards were discovered by a group of French rnathematici-

ans, J.L. Callot, F. Diener and M. Diener. For an exposition of 

their work, see Benoit, Callot, F. Diener, M. Diener [5], and also 

Cartier ~7] 

T'ne relationship between a and also has a n~erical con-

ten~ and tells us how to· arrange an approximative ca.lculation of 
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can.:l.rds. It is, of course, a well-'t<:ttown i:<1.ct in 11:unerical analysis 

that various approximations, step-lengths, ofte!'l nust be c~1.osen r:.o 

i.n order to 

particular phenornenon. It coulcl be that the n.onstand<'l.ccl theory is 

the "right" way to discnss this. 

S i ny- ula..-c perturbations. Let H = -1::. 0 be the f.ree Schr0dinger 

operator, where 1::. is the Laplacian in Rd. It corresponds to a 

quadratic form 

EO ( f, g) = f ( -1::. f) gd. X • 

He want to perturb the operator on a "small" set, i.e. a set of 

measure 0 in !Rd. T'nis means that we want the "free" _r.-,rticl~ i:o 

feel a force concentrated on a small set, e.g. a point lattice in 

as in solid state physics, or a "thin" subnanifold of or a 

Brownian path C = (b(w,t)itE[O,l]} w . as in polymer science or 

quantum field theory. 

Formally, this means to add to H ··o a singular perturbation of 

the form 

where V in the Brownian path case would be 

V (X) = -[;,_ (x)6(x-b(w,t))dt, 
w 

6 being the 6- function in IR d. 

In terms of quadratic forms this can be vlri tten as 

E(f,g) = E
0

(f,g) + fc l\fgdp, 
w 

~vhere p(A) = m{tECO,l]jb(w,t)EA}, m the Lebesgue measure on the 

real line. 

'l:"his case is studied in detail i.:t [1 ], see also the .:1r10unce-

:<1ent Our approach is to lift the problem to a hyperfinite 
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setting 21nd use the theory of hyrerfinite qu.:tdca.tic :':or~s that '<le 

. .- , -
lf1 L I J . that 

self-adjoint, lo,ver bounded perturbation of -!:::. for d < S . S·ie 

must choos<'l A to be .:to infinitesimal, positive fllnction for 

.:1 = 4,5; for d < 3 any bounded real-valued f'_mction A ~rrill do. 

The connection!3 'vith polym8r models as '"ell .:1.s i...ti.th '1Uantum fields 

are discussed in [1 ]. 

The space- inhomogeneous Sol tzmann equation. ~1e Boltzmann equation 

describes a gas of identical point molecules which are interacting 

by a potential of finite range. T"'ne molecules move t,..rith unrestric­

ted speed in some region A of iR 3 • Assuming periodic boundary 

conditions we have as phase space M: Ax~3, where A= IR3/z 3 . 

Letting F(x,v,t) denote the density of the molecules the 

Boltzmann equation is 

oF(x,v,t:.) + V•'i/ F(x,v,t) = (QF)(x,v,t), 
0 t X 

'vhere Q denotes the usual col lis ion operator. 

The first step of the analysis is to consier a "truncated" 

version by replacing Q by some suitable "cut-off" Q 1 nE IN. 
n 

It is 

then standard to prove that for suitable initial data F 0 (x,v) = 
F(:;;:, v, 0) t~ere exists a unique non-negative r_;"' -solution of the 

equation 

F ( x+ tv , v , t) 

By transfer we obtain for 

t 

+ f 
0 

* n E IN-N 

Q F(x+sv,v,s)ds. 
n 

an internal solution f of 

the extended equation. '!'he main analytic [)art now comas in showing 

that f has a standard part a-f. One can prove that with the 

(internal) initial condition 

£
0 

( x, v) = mj. n ( * E' 
0 

(xI v) , n) 
-1 _.. n exp ( -vL) 1 

* n E !N'""it'! and is the standard extension of F 0 1 the 
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standard part O F of the internal solution E is nearstandard far 

is the 3et of 

nearstanda-rd point.s t)C *!R.3 . ?tl'Cthermoce, the s!:anda.cd [lAf.'t ~f 

sati.seies the correct integral e<}uation; for details see the ex no-
~ 

sit ion in [ 1 ] • 

Th.is result '.vas proved by L. Arkeryd [3] and is the first 

general result of its kind in the space-inhomogeneous case. \lot ice 

that 0 £ has everywhere standard values, but it lives on 'in en-

riched or dens.er phase-space 
* . Axns(~rK3). But this, we claim, is 

9erfectly acceptabsle from a physical [JOint of view. 

Quantum fields. Constructing models for quantum fields is no small 

task. A favored approach is to start with free lattice fields. Let 

6 > 0 be a fixed positive real numbet" and c1efine the lattice L
0 

<.vi th spacing 6 to be the set L
0 

= {no i nE zd}. Let 6.
0 

be the 

standard discretization of the Laplacian and introduce the 

covariance matrix 

-d 2 -1 = 6 ( - 6. ~ +m ) , 
w n, n 

where m is a positive real number,· the "mass". Let A c IRd be a 

bounded region and let A
0 

= An La. We let oA
0 

denote the bound-

ary of A
0 

. A
0 

is a finite se:, let t = I A
0 

I be the number of 

points in 

where q E 

A~ . Our measure soace will be the finite product 
0 

equipped with the gaussian measure 

)' 
u 

n6, 
n'6EAO' 

QA I dq = Ildq 
·~o no and is the restriction of the 

ccovriance matrix to A .. 
0 

~'fe may nCM introduce the ·random field ~6 indexed by A
0 

ti1e given by 

as 
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4? 6 ( n ) ( q ) = q no no E A
0 

. 

It is called the free lrttt i..ce fi..eld of mass :-:~ in A0 ; for- a.r1 

2~position see Simon [15]. 

"convecgr-.:s" 

to a gaussian :C<=trdom field. "Convergence" is here somewhat proble-

!natic, changing 6 not only gives :1s a new random variable, it 

also gives tlS li ne\/ measure ::;pace. And what is mo:ce "wkward, in the 

limit the lattice disappearsl 

In the hyperfinite picture there is an easy way to overcome 

these difficulties. In addition to the standard finite approxima-

tions "from the inside", 'de can also approx:iH1ate "from the outside" 

Let 6 > 0 be infinitesimal and let A
0 

be a hyperfinite lattice 

* in IR with spacing 6. By transfer we have a hynerfinite lattice 

field which we can easily show to be a model of the free Euclidean 

fiald of quantum field theory. vVhat is noteworthy here is that the 

hy~1erfinite field is pointwise de£ ined. We still 'nave infinities, 

but they can be controlled through a consistent algebra, hence lead 

to unambiguous and meaningful results; see [1 ]. 

The free field :!.s of rather linited physical interest, the 

goal is to construct fields which model various forms of particle 

interaction. One way of doing this is to construct suitable "local 

additive f!lnctionals" of the free field. Let 6 > 0 be a standard 

real and consider the lattice 
d 

A c R . Let g be a positive 

A. obtained from a bounded domain 
0 

function with support in A and let 

u
0 

be any ,-:ontinuous real function. We will study interactions of 

the form 

is a real constant, the "coupling constant". He may 

introduce the perturbed measure 

= 

r •r6 • d 
exp~-u ) ;J.O A 

g I 6 
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on the space - '~ .. but keep the €ield i',(n)(q) = q c ',ie ·,vould 
0 nu " 6 

:l,)~~~ ::~li'tt 11nde-.:· s.Jir>::thL:: collc1itions cliJ. A 
1
] 1 Ll. (j 

laads to ~ nongaussian 

~ne-::tsure (either in the limit or i_n the hyperfinite picture), hence 

to a model of an interacti11g field. 

T'ne function g represents a 'cind of "s.r.,ce cut-off", 

it could e.g. be the characteristic function of some domain A
0 

in 

A. In order to obtain a nontrivial field '.ve now let 6 tend to 

zero while at the same time letting 
d 

A
0

tlR • To remove the "space 

cu·t- off" '.J/e let g converge to the constant function or 

This is the standard program. In the hyperfinite version it 

means ·that we want to choose 6 > 0 infinitesimal, A
0 

a hyper­

finite lattice and g an internal function such that g(no) = 1 

for all nearstandard no E A
0

• We would then like to extract from 

the internal construct iJ. g,Ao 
a non-gaussian measure satisfying 

the field-theoretic axioms; see [ 1 ] • 

We cannot carry through this in detail in this exposition, the 

reader is referred to [1] for a full discussion. We indicate a few 

steps to exhibit some of the parts that come into _rlay. Let us for 

simplicity choose an exponential interaction 1J. 0 (y) = exp(ay). Let 

us make the following calculation to see what we have to do in 

order to control the possi"!.)le infinities. He assume that o > 0 is 

standard, that A
0 

port in A: 

( +) 

where 

is a finite lattice and that g > 0 has sup-

I' 
f.. 

n6, 
n' oEA 0 

6 a2 -d r -2 , 
A = exp( 2 (2-n:) . ; ~0 (k) dkJ, 

a T. 
0 

where T ... 1..:. /'ld . 6 = i. -')1; I '-.) I n: ' 0 - and LL (k) 2 
. 0 

d 
= 5-d[2d-2 I cos(k,o) ]+m2. 

i=1 J.. 
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Let d = 2, choose 5 > 0 infi~itesimal and A
0 

hyperEini~a, 

:)ut keep a :::~tt-ofE g oE compact sctpport.. If a 2 < 4-rt '•ie 2-:t3i:.y 

see tl1at t~1e sum on the rijht hand side of (+) is finite, but ':.h'~ 

ctiver9es. C1o1..,reverl one infinity ca.'l be bal;:...nceC. 

against another. 'T.'he CO'.l[Jlin<J constant is so f.ar. left llr1Silecified, 

so let us choose 

where ~ > 0 is a finite real number idenpendent of 6 and a. 

Hith this choice the right hand side of (+) is nearstandard, and it 

is not difficult to see that the standard part is 

a2G(x:-v) 
~ 2 Jd g(x)g(y)e ~ dxdy 1 

iR 

where G(x,y) is the kernel of the operator 2 -1 
( -.6. +m ) . 

Remark. For the informed reade.::- we note that the il1teraction 

is more commonly written 

6 d aQ? 6 ( n) 
u g = ~ ~ 6 g ( no ) : e 

where 
6 -1 atP 5 ( n) 

= (A ) e is the so-called Hick renormali-
a 

zation of 

Thus one important stage in the program is completed. It re­

mains to remove the space cut- of£ g. Let once more 6 > 0 be a 

standard real, A0 a finite lattice, and let g have support in 

A. The Schwinger functions associated with the measure u are 
'g I A" 

0 

given by 

Let g 1 ·j' both have support in A I assume that the support of g 

is contained in the support of g' I anC. that g = g' on the sup-

por~ of g. Then one may show that 
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1.s ti1e Sch-.vinger function of the free field. 

In the fin.al stAge oe the pt"O'-}"Ca•u vfe pass to the hyperfinit.e 

picture and remove the firlite space cut-off by choosing an internal 

function such that s (no) = l 
w 

fot" all finite no . T'n.en we 

may prove that L (:.I. \ ) I the Loeb-measure associated '.Vi th ~g 
w . gw' 1 6 

is a non-gaussian probability measure. And using the ine(rualities 

established above, >ve may verify that this measure for d = 2 

gives us a model for a quantum field with non-trivial interaction. 

Remark. The book [1] contains further examples, e.g. a nonstandard 

version of the q,~ model due to Brydges, Frolich, Sakal [6]; a 

construction of gauge fields in dimension 2; and a discussion of 

polymer measure and quantum fields. 

On nonstandard nraxis 

It has often been held that nonstandard analysis is highly 

nonconstructive, thus somewhat suspect, depending as it does upon 

the ul trarower construction to produce a model. On the other hand, 

as we already remarked above, nonstandard praxis is remarkably con-

structive; having the extended number system ·.ve can proceed with 

explicit calculations. A case in point is the Cauchy-Peano exis­

tence theorem for ordinary differential equations. In the standard 

approach one uses in the final step the Ascoli lerruna which ·3.sserts 

that every bounded equicontinuous sequence of functions on an 

interval I has a uniformly bounded subsequence. This part of the 

argument is lacking in the nonstandard proof, which makes it more 

direct. And indeed it is in the following precise sense. It is 

possible to recast the nonstandard proof to give a proof of the 

Cauchy-Peano existence theorem where the only non-recu.t"sive element 

is the Weak Konig's Lemma •.vhic:, asserts that every infinite binary 

tree, i.e. infinite tree of sequences of 0 's and 1 's, has an 

infinite path. A.nd this is a principle which is provably weaker, 

i.e. more constructive, than the fl.scoli lemma [4-]. 
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