
ISBN 82-553-0590-4 

October 22 

No 8 

1985 

QUASIREGULAR FUNCTIONS AND BRO~VNIAN MOTION 

by 

Bernt ¢ksendal 



QUASIREGULAR FUNCTIONS AND BRO\VNIAN MOTION 

BY 

Bernt ~ksendal 

§1. Introduction 

Let U be an open subset of R n , n > 2, and <f> : U .... R n be continuous. 

Then we say that <!> is quasiregular if <!> is absolutely continuous on almost 

every straight line segment in U with partial derivatives which are locally L n_ 

integrable wrt. Lebesque measure (i.e. <f> E ACL n) and there exists a constant 

< oo such that 

l<!>'(x)ln < K · J <j>(x) for all x E U , (1.1) 

where I<!>' (x) I denotes the norm of the linear map <f> '(x) given by the matrix 

aq,l aq,l 
--···--
axl axn [a~,] <!>'(x) = = (1.2) 
a<f>n a<!>n dXj ij 
--···--
axl axn 

and J <j>(x) = det( <f>' (x)) is the Jacobian of <1> at x. The smallest K such that 

(1.1) holds is called the outer dilation of <1> and denoted by K0( <f>) or just K0. If 

we put 

l(<l>'(x)) = inf{j<!>'(x)hj; lhl = 1} 

then there exists K such that 

(1.3) 

and the smallest K > 1 such that (1.3) holds is called the inner dilation of <!> 



and denoted by K1(<1>) or K1. We define K(<l>) = max(Ko(<I>),KJ(<I>)). Note 

that for k E R n we have 

so if J <f>(x) > 0 for some x then <l>'(x) is invertible and if we put 

k = (<l>'(x))- 1h we have <l>'(x)k = h and so 

or 

(1.4) 

We refer to Martio, Rickman & Vaisala [19] or Vaisala [24) for more infor­

mation about quasiregular functions. 

Tf n = 2 and we identify R 2 with the complex plane C then a C1
= 

function <1> : U ..... C is analytic if and only if 

l<l>'(x)l2 
= 1¢(x) for all x E U. (1.5) 

Thus in this case the quasiregular functions may be regarded as generalizations of 

the analytic functions. In view of the fact that the analytic functions are 

Brownian path preserving, i.e. they map Brownian motion into Brownian motion 

except for a change of time scale, (see [2] or [18]) it is natural to ask if there is 

also a connection between quasiregular functions and Brownian motion. The pur­

pose of this paper is to establish such a connection, valid for all dimensions 

n > 2. More precisely, we will prove in §2 that if <1> : U ..... R n is quasiregular 

then there exists a Markov process X1 in U such that <I> is X1 - B 1 path 

preserving, i.e. <1> maps X 1 into Brownian motion B1 in R n (Theorem 2.3). 
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can 

2 a weak growth condition has to be imposed on <f>. The process X1 

as the Markov process associated to a regular Dirichlet form e( ·, ·) 

described explicity. 

It is now well known that many important properties of analytic functions 

"'"'""'n"'ra by using that they are Brownian-path-preserving. Similarly, when 

"''"''"-'U in Theorem 2.3 between a quasiregular map <f> and the process X1 

is established, it gives a number of results about <f>. For example, we 

a new proof of the Picard theorem (n = 2), we establish a Rado type 

about removable singularities (n = 2) and we prove results about the 

of boundary values (n > 2). 

§2. The main result 

is open we let C0(U) denote the infinitely differentiable reai 

functions with compact support in U. Let e(u,v) : C()(U) X C()(U) -. R be a 

Dirichlet form on L2(U,dm), where m is a Radon measure on U. (See 

D[t'] denote the closure of C0(U) in the norm whose square is 

,u) + e(u,u), where 

(u,v) = .£ uv dm; u,v E L2(U,dm) . u 

L#'"·'"'"' a selfadjoint nonpositive operator A on D[A] C D[e] by 

e(u,v) = ( -Au,v), u E D[A], v E .D[e] . 

(2.1) 

(2.2) 

there exists a Hunt process (X1,!1, M ,Px) in U whose generator is A 

, 1beorem 6.2.1). The process X1 is unique up to equivalence, i.e. if X1,X'1 
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are two such processes then we can find a common properly exceptional set 

N C U such that the transition functions of X1 

coincide with those of X' 1 for all x E U \ N. (N is called a properly exceptional 

set for X1 if m(N) = 0 and 

px[3 t > 0; X1 E N] = 0 for all x E U \ N) . 

We will use the term quasi-everywhere for "except of a properly exceptional set". 

We refer to Fukushima [10] for more information about Dirichlet forms and 

associated Hunt processes. 

First we establish two useful auxiliary results: 

LEMMA 2.1 (The Dynkin formula). Let t'(u,v) be a reguiar Dirichietform 

on L 2(U,dm) with associated Hunt process (X1,fl,Px) whose generator is 

A : D[A] .... L 2(U,dm). Choose g E C0(U) n D[A] and let T be a stopping time for 

X 1• Then there exists a properly exceptional set N for X 1 such that 

(2.3) 

for all t > 0 and all x E U \ N . 

Proof. Define the transition function of X1 by 

p 1(x,j) = Ex[f(X1)]; x E U, t > 0, f E Co(U) (2.4) 

and the resolvent of X1 by 

R~.(x,b) = fooo e-'1\t p 1(x,j) dt ; X. > 0 . (2.5) 
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Then Pk ,f) and R>..(· ,j) are quasicontinuous versions of the semigroup {T1} 

and resolvent {G>..} associated with A. 

By TI1eorem 5.1 p. 132 in Dynkin [8] we have for any 

h E L 2(U,dm), X. > 0 

Ex[e->..(tM)R>..h(X11\T)] = (R>..h)(x) -Ex [fo'J\T e->..sh(Xs) ds] . (2.6) 

In particular, if we choose h = X.g - Ag we have R>..h = g as elements of 

L 2(U ,dm) and so by quasicontinuity 

R>..h = g quasi-everywhere in U. 

Hence there exists a properly exceptional set N such that if x E U \ N we have 

(2.7) 

and 

(2.8) 

Substituting (2.7) and (2.8) in (2.6) and letting X.-. 0 we obtain (2.3). 

In the following dx,dy etc. will denote Lebesque measure in Rn and, 

unless otherwise stated, a.e. will mean with respect to Lebesque measure. If M 

is a matrix then MT denotes the transposed of M. The notation W C C U will 

mean that W is an open subset of U, the closure W is compact and W C U. 

The boundary of u is denoted by au. 

LEMMA 2.2. Let <J> : U .... R n be a (non-constant) quasiregular function. 

Suppose that 

for a.a. y E U there exists r > 0 such that j
1 

I Jf(x) 1 dx < oo • (2.9) 
x-y <r 
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= n X n matrix 

1 
= 2 fu (vu)T a(vv) dx, u,v E C0(U) . (2.11) 

J <!> > 0 a.e. in U (see [18], a in 

must establish that the symmetric bilinear 

~ given by (2.11) is regular, clos-

2 (2.12) 

(2.13) 

and Markovian, by a general 

It remains to prove that e is closable. let 

C0(U) such that 

must 



First note that, by (2.12) and (1.4), for v E C0(U), 

or, 

(2.15) 

where 

C'o(u,v) = fu (vu)7 vu · Jo dx, with Jo(x) = J~-2/n (x) . (2.16) 

Therefore c is closable if and only if c0 is closable. Since 

fa lv(uk - ut) 12 J o dx ... 0 as k,l .... oo 

there exist f1, ... Jn E L 2(J 0dx) such that 

auk 
- _. +1, in L 2(J0-dx) . ax· Ji 

I 

-+ 

Put f = (fh ... Jn) and let H = H(y ,r) be a cube in U of the form 

H = {(x1, ... ,xn); lxi - Yil < r; 1 < i < n}, r > 0. Then 

- -+ 

lfH f dxl2 = ~~(j- \JUk)dx + fH \JUk dxl2 

-
< 21~ (f- vuk) dxi

2 + 2IJH \JUk dxi
2 

. 

Since uk ... 0 in L2(dm) we see that, by taking a subsequence 

for a.a. r > 0. The first term in (2.18) is estimated by 
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We conclude that f = 0 a.e. outside the set of points 

y s. t. J: dx!J 0 = oo for all r > 0. So from assumption (2.9) we conclude 
H(y,r) 

that f = 0 a.e. And then from (2.18) 

which shows that c0, and hence c, is closable. 

Remark. Condition (2.9) is satisfied if, for example, <P E C1(U) or, more 

generally, if J c!> is locally bounded away from 0 a.e. in U. It is natural to ask 

if (2. 9) holds for all quasiregular functions <P. The following argument shows 

that Jfn-l need not be locally in L1 everywhere: 

Let B c!> denote the branch set of <P, Le. the set of points where <f> is not a 

local homeomorphism. Then B c!> is a closed set of Lebesque measure 0 ([19], 

Theorem 8.3). Choose z E U \ B c!> and let r be so small that <f> is a 

homeomorphism on H(z,r). Then, with tV= cj>-1, H = H(z,r) 

f dx = f J(2Jn)-1 dx = f J(2Jn)-2 . J dx = r J(2Jn)-2(tV(y)) dy 
JH lo JH <jl JH <jl c!> Jc!>(H) <jl 

(2.19) 

Gehring [11] has given an example of a quasiconformal function tV such that 

J ljJ {/:. Lfoc everywhere if 

1 p = -.....,--.--
K{~)n-1) - 1 

Thus for any n > 2 there exists a K and a z such that (2.19) diverges if 

K(t!J) > K. Hence the integral in (2.9) need not converge everywhere. 
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Moreover, (2.9) is actually also a necessary condition that the form (2.11) is 

closable. This follows by the argument used by Hamza [12] to characterize the 

closable 1-dimensional forms. 

Before we formulate the main result we describe a weak extension of the 

concept of a Markovian path preserving function, which was introduced in [5] (see 

also [22]). 

Let (X1 fl,PJ), (Y,,O,PY) be Hunt processes associated to regular Dirichlet 
' 

forms e(· ,-), c(·,-) on L 2(U,dm1) and L 2(V,dm2), respectively, where 

U C n and V C Rm are open sets. The time changes ~~ = ~/w) we will 

consider are of the following form: 

Let c(x) > 0 be a Borel measurable function on U and put 

(2.21) 

We will say that ~~ is a time change (for X1) with time change rate c. 

For each w E n the function t - 13 tC w) is non-decreasing. Let 01.1 = ~ ;- 1 

its right-continuous inverse: 

01. 1 = inf{s; ~s > t} (01.1 = oo if ~s < t for all s) (2.22) 

We say that a continuous function <P : U _, V is (quasi) X1 - Yt path-

preserving if there exists a time change 13 1 for X 1 as above such that if we 

for any choice of function 'tV s.t. <f>(t!J(y)) = y, y E <j>(U), any 

W c U with 

T = Tw = inf{t > 0; xt t1. W} (the first exit time from w for X,) ' (2.23) 

(2.24) 
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with probability law pY given by (E/ is expectation wrt. pY etc.) 

(2.25) 

where x = ttJ(y) if y E <I>(U), then (Z1,ft<l>(x)) coincide in law with (Y1,fi<J>(x)), 

for all x E U \ N, where N is a properly exceptional set for X1• 

If X 1, Y1 are Browian motions, then (by Feller continuity) this definition is 

equivalent to the definition of a Brownian pathpreserving function, introduced in 

[2]. 

We are now ready for the main result: 

1lffiOREM 2.3. Let <!>: U C Rn ..... Rn be a quasiregular function satisfying 

(2 .9). Let X1 be the Hunt process associated to the Dirichlet form e given by 

(2.11) and let (B 1,fl,PY) ben-dimensional Brownian motion. Then <!> is X 1 - B1 

path preserving, without time change. In other words, if we define as in (2 .5 ), 

t<T 

t 2::: T 
(2.26) 

where w E n, w E n and T = Tw, w cc u, with probability law p<l>(x) given 

by (2.24), then (Z1,ft<l>(x)) is n-dimensional Brownian motion, for quasi-all x. 

Remark. From the expression for e we know that X1 has continuous paths 

and no killing oc.curs inside U. See [10], Theorem 4.5.3. 

Proof of Theorem 2.3. Choose W C C U. For each y E <I>(W) there exists a 
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neighbourhood Vy of y such that each component w1 of cf> -l(Vy) which inter­

sects W is a normal domain ([19]). Fix such a w1 and let f E C0(Vy). Then 

we claim that 

(f o <f>) · xw, E D[A] and A[(f o <!>)xw.] = (A[f] o <!>) · xw., (2.28) 
) ) 

where Afj] = 112 .1. is the selfadjoint nonpositive operator corresponding to the 

classical Dirichlet form 

A 1 
e(u,v) = 2 f (Vu)TVvdx . 

To prove (2.28) we first note that for each x E w1\B <l> there exists a neighbour­

hood Dx of x such that <f> !Dx is a homeomorphism. Let {DJ = {Dx} be a 

countable family of such neighbourhoods covering W1\B <J>· Then by partition of 

unity on W1\B <l> any h E C(j(U) can be written 

1bus there exists g1 E C0(<f>(DiJ) such that hi = gi o <f> on 

Di. Hence 

= ~ ~ fD; ((Vf) 
7 

• Vgi) o <!> · J<fJ dx = ~ ~ j~(D;) (Vf)T · Vgi dy 
I l 



where ( , ) denotes inner product in L2(U,dm), with dm = J<fJdx as before. 

Since this holds for all h we have proved (2.28). 

The proof that (2.28) implies that <!> is X1 - B 1 pathpreserving is a slight 

variation of the argument given in [22]. For completeness we give the details. 

Let T = Tw. Choose g E C0(R n). On W we may write g = 'Lfi, where 

fi E C0(Vy) as above. Then by Dynkin's formula (Lemma 2.1) we can find a 

properly exceptional set N 1 such that if x E WW1, y = <!>(x) we have for all i 

and all t 2:: 0 

= ~ Ex[(fi o <I>) · xwj(XtM)] 
j 

(2.29) 

(by (2.28)) 

Adding over all i we see that this holds with fi replaced by f. Similarly, 

Dynkin's formula applied to B 1 gives 
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Since 

= Ex[f(XT) · X{I>T j] + Ex [i~(X,) [ J,I-T (Af)(B ,) dr] X {I>T) I 
= Ex[f(XT)X{I>Tj] + Ex [i~(X,) [J,' (Af)(B,_T) .tr]X{I>T)l· 

EY[f(Z1t\T)] = EY[f(Z,) ' X{ts-r}] + Ex[f(<!>(X-r)) · X{t>-r}] 

we get by adding (2.29) and (2.30) 

iY[f(Z1)] = f(<!>(x)) + fa' £Y[(Afl(Zs)l ds . 

Similarly, Dynkin's formula applied to B 1 gives 

EY[f(B1)] = j(y) + fa' _EY[(A})(Bs)] ds . 

So by uniqueness we conclude (see Lemma 2.5 in [22]) that 

_EY[f(Z1)] = _EY[f(B1)] for all t;::: 0 . 

(2.31) 

(2.32) 

As in (5] we now proceed by induction to show that if fb···Jk E C0(Rn) there 

exists a properly exceptional set Nk C G such that 

£Y[f1(Z11) • · • fk(Z,k)] = EY[f1(B,) · · · fk(B 1k)] (2.33) 

for all ti > 0, x E U \ Nk. 

By choosing {fk}k=l to be a dense sequence in C0(Rn) and putting 

N = Uk=1 Nk we obtain Theorem 2.3. 

Just as in Theorem 2 in [5] we may now obtain the following extension of 

Theorem 2.3 (notation as in TI1eorem 2.3): 
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THEOREM 2.4. Let <!> be as in Theorem 2.3. Then 

<!>*(w) = lim <!>(X1) exists a.s. on {T < oo} (2.34) 
f-+T 

wrt. PX, for quasi-all x E U. 

Moreover, if we define (Z1,PY) as in (2.24), (2.25) but with Tw replaced 

by Tu and <!>(X,.) replaced by <!>* then Z1 is identical in law to n-dimensional 

Brownian motion B 1• 

Remark. Theorem 2.4 may be regarded as a result about the existence of 

boundary values of <J>. From (2.24) we see that if t < ,. = Tu then Z1 E <!>(U). 

Therefore 

'T < T <I>(U) ' (2.35) 

where ,. <f>(U) = '~"i(u) is the first exit time from <!> (U) for B 1• In particular, if 

<!> is bounded then ,. < oo a.s. and therefore 

<i>*(w) = lim <!>(X1) exists a.s. (2.36) 
t-+1' 

Remark. Since we know that no killing of X1 occurs inside U we know that if 

T < oo then X1 must approach aU as t _, T. Therefore Theorem 2.4 is a 

genuine boundary value result, valid for all quasiregular functions satisfying 

(2.9). Note however, that it does not immediately give the existence of asymp­

totic values, since we do not know in general if lim1 ... ,. X1 exists. But in the case 

when n = 2 we have additional information. See §3 below. 

An immediate consequence of Theorem 2.4 is the following: 

COROLLARY 2.5. Let <J>, X 1 be as in Theorem 2.3. Let F C R.n be a 
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polar set for Brownian motion (i.e. px[3t > 0; B1 E F] = 0 for all x ERn). 

_ Then <!> -l(F) is a properlt exceptional set for x,.j This raises the question ho~--;;­
describe the properly exceptional sets for X1• They coincide with the sets H such 

that Cap( H) = 0, where Cap is the capacity associated to the Dirichlet form [ 

([ 10], Theorem 4.3 .1). Again we refer to §3 for the special case n = 2. 

A biproduct of Theorem 2.3 of independent interest is the following: 

1HEOREM 2.6. Let <j>: U C R n ..... V = <j>(U) be a homemorphism and 
A 

assume that <!> E ACLn and J <!> > 0 a.e. in U. Let [, e be regular Dirichlet 

forms on L 2(U,J<J>dx) and L 2(V,dy) such that C0(U) C D[c], C0(V) C D[t],with 

associated Hunt processes (X1,il,Px) and (Y,,fl,PY) whose generators are A, A 

respectively. Then the following are equivalent: 
A 

(i) c(f o <!>, g o <f>) = c(f,g) for all f,g E C 0(V) 

(ii) f E Co(V) n D[A] ='?fo <!> E D[A] and A[fo <!>] = A[f] o <!> 

(iii) <f> is X1 - Y1 pathpreserving, without time change. 

Proof. (i) ='? (ii): Let f E Co(v) n D[A']. Then 

c(f o <f>, g o <!>) = t(f,g) = c -AJ,g) = f (-A!) · g dy 
v 

= fu (-(A!) o <P)(g o <f>)J<~> dx =(-(A!) o <J>,g o <!>) 

for all g E C o(V). This proves that f o <!> E D[A] and A [f o <f>] = A[f] o <!>. 

(ii) ='? (i) is proved by reversing the above argument. 

(ii) ='? (iii): This proof is similar to the proof of Theorem 2.3, after (2.28) is 

established. 
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(iii) :::::::} (ii): Assume (iii) holds, Let J E C0(V) n D[A]. 

Then if y = <!>(x) 

Ex[(f 0 <f>)(X1)] - f(<!>(x)) 
= 

t 

__. A[f](y) m L 2(V,dy) as t _. 0 . 

Therefore 

as t --. 0, which proves (ii). 

§3. The case when n = 2 

If n = 2 we have much additional information. The reasons for this arc: 

a) Condition (2.9) is trivially satisfied for all quasiregular <f>. 

b) Recall that the Dirichlet form e associated to a quasiregular <!> satisfyhtg 

(2.9) (and with corresponding Hunt process (x,,n,Px)) is given by 

1 
e(u,v) = z fu (Vu)T ·a· Vv · dt on L2(U,Jtf>dx), (3.1) 

Now deflne 

t(u,v) = ; J
0 

(Vu)T aVv · dx on L2(U,dx) (3.2) 

and let (X1,il,Px) be the associated Hunt process. Then X1 can be obtained 

from X1 by the following time change: 
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Put 

and let ot1 = inf{s; ~s > t}. By the connection between c and t it follows that 

(3.3) 

(see [10], (5.5.17) p. 169). Thus from Theorem 2.3 we conclude that <!> is 

X1 - B1 pathpreserving, with time change rate J <P· The advantage with this for-
-

mulation is that when n = 2 we c..an say more about the process Xt: 

-
The generator A of X1 is given by 

(in the sense of distributions) 

where a= (aij) = J<P(<f>')-1((4>')-l)r, and this operator is uniformly elliptic in 

U C R 2, because by (1.4) 

Therefore, if B 1 denotes Brownian motion in 2 we see that the following 

holds: 

For all subsets H of U we have 

where Cx(W) = inf{t(fJ);j E C0(G);f > 1 on W} is the capacity of W 

w.r.t. X1 if W C U is open and 
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Cx(H) = inf{Cx(W); W open, W ~ H} 

for general H (and similarly for Cs) [10]. 

In particular, 

X1 and B1 have the same properly exceptional sets . (3.4) 

Moreover, by uniform ellipticity (only the right hand side inequality is needed 

here) we know (see [13] Theorem A or Comparison Theorem in the survey article 

[7]) the following: 

-
H <!> is (non-constant) quasiregular on the whole of R 2 then X1 is 

recurrent, i.e. for all non-empty open sets W C R 2 we have 

px[3t > O;X1 E W] = 1 (3.5) 

-.., 
for quasi-all x E R "'. 

We first illustrate Theorem 2.4 by using it to give a proof of the following 

well known result: 

COROLLARY 3.1. (The Picard theoremfor quasiregular functions.) Let <!> 

be a non-constant quasiregular function on R 2. Then R 2 \ <!> (R 2) contains at most 

one point. 

Proof. The proof follows the proof of Davis [ 6] of the Picard theorem for 

analytic functions using Brownian motion. We only have to check that his proof 

extends to our case: 

First note that in this case T = TD = oo. So by Theorem 2.4 we have that 

<!>*(w) = lim <!>(X1) exists a.s. on {13oo < oo}. 
(--+00 



-
Since X1 is recurrent and <f> is nonQconstant we know that a.s. this limit does 

not exist. Therefore 

l3oo = oo a.s. px , for quasi-all x . 

So by Theorem 2.3 and the definition (2.24) we know that 

is 2-dimensional Brownian motion. In particular, since <f>(Xa) of course never 

hits 2 \ <f>(R 2) the same must be true a.s. for Z1• 

Suppose R 2 \ <f>(R 2) contains at least two point Yh y2• Then we know that 

Z1 - and hence <f>(XOI.) Q gets more and more tangled up in its winding about 

these two points (Ito & McKean [14]). So by the recurrence of X1 and the fact 

that in R 2 every closed curve is homotopic to 0, we get a contradiction just as 

in [6]. 

We proceed to prove some apparently new results about quasiregular func­

tions. First we recall some useful properties of the process X1 on U C R 2: 

As explained in [13] one may combine local existence results by Kanda [15] 

and Kunita [16] with the globalization method of Courrege and Priouret [ 4] to 

construct a minimal diffusion process whose generator coincide with the uniformly 

elliptic generator A in (3.1) of X,. (That the process is minimal means that its 

transition semigroup i, satisfies i, f < T1 f for all f and all semigroups T1 

with generator A.) From now on we will assume that X1 is chosen to be this 

minimal diffusion (as before killed when it leaves U). Then we know: 

If U is bounded then '~u < oo a.s. px for all x E U . (3.6) 
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Suppose U C R. 2 has non-polar complement, i.e. C8 (R 2\U) > 0. The Green 

function G(x,y) of X1 defined by 

satisfies the following property: 

For all x E U there exists a neighbourhood W of x and constants cb c 2 

such that 

1 1 
c 1 log rx _ Yl < G(x,y) < c2 log rx _ Yl (3.8) 

for ally E W. (See Aronson [1], Theorem 1) (The communication property) For 

all non-empty W C U and x E U 

(3.9) 

-
X1 is a Feller process, i.e. (3.10) 

is continuous for all f E C0(U). This allows us to replace "quasi-all x" by "all 

x" in Theorem 2.3. 

From (2.35) and (3.3) we see that 

ll < B 
1-'T - T <j>(U) 

and since by (3.10) 

COROLLARY 3.2. Suppose R. 2\U is non-polar and <!>: U .... R. 2 is 
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quasiregular such that 

for all z E <!>(U). (This occurs for example if <!> is bounded.) Then 

fu J<f>(y)G(x,y) dy < oo for all x E U. 

Combining this with the local estimate ( 3.8) for the Green function, we obtain: 

COROLLARY 3.3. Suppose <J>: U C R 2 ... R 2 is quasiregular. Then 

We may of course extend the operator A to a uniformly elliptic operator on 

R 2 by putting au = 'Bu outside U. This gives a corresponding extension of X1 

to the whole of R 2. ·rhus we see that 

- -
X.r = lim X1 exists a.s. 

1-+Tu 

We define the X-harmonic measure x.x = X.f of X (wrt. U) by 

(3.11) 

By Moser's Harnack inequality [20] we see that for every compact M C U there 

exists c < oo s. t. 

(3.12) 

for all y EM. 

LEMMA 3.4. If g and U are bounded then 
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is a continuous function of x. 

Proof. First assume that g is continuous and U is a Lipschitz domain. 

Then there exists u E C(U) such that 

-
Au= 0 in U 

u = g on au 

(see [17]). 

By Dynkin's formula we have 

which proves the Lemma in this case. 

If g is just assmned to be bounded choose W C C U and continuous func-

tions gn such that 

boundedly, pointwise a.e. wrt. X.X, for x E W. Then by (3.12) 

- -
Ex[gn(X,.)] -+ Ex[g(X,.)] 

uniformly in W. So Ex[g(X,.)] is continuous for all bounded g. 

If U is not a Lipschitz domain choose a Lipschitz domain V C C U. Then 

by the strong Markov property (M,.v is the a-algebra generated by 

So g = gr[g(X,.v)l and by the above g is continuous in V. That completes the 
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proof. 

COROLLARY 3.5. (A Rado theorem for quasiregular functions.) Let 

U C R 2 be open and F a relatively closed subset of U. Suppose <!> is a 

bounded quasiregular function on U\F such that 

cap(Cl(<j>,F)) = 0 , (3.13) 

where cap denotes logarithmic capacity and Cl( <!>, F) is the cluster set of <!> at F. 

Then <!> extends to a quasiregular function on U. 

Proof. We adopt the proof in [21]. Condition (3.13) says that Cl(<J>,F) is 

a.s. never hit by 2-dimensional Brownian motion. Therefore 

px[x.rll\F E F] = 0 for all x E U \ F , 

I.e. F has X -harmonic measure 0 wrL U\F. Define as in Theorem 2.4 

<!>*(w) = lim <!>(~) = lim<!>(~) 
1-<'~"w t-+Tu 

By Dynkin's formula we have 

<!>(x) = Ex[<!>*] for x E U\F . 

Define 

~(x) = Ex[<!>*] for x E U. 

Then by the strong Markov property we have, for x E W C C U, 

So by Lemma 3.4 ~ is continuous in U. Therefore ~ is quasiregular in U, 

since F has zero area. 
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Finally we consider the question of boundary values for quasiregular func-

tions: 

COROLLARY 3.6. Let <f> : U C R 2 ... R 2 be quasiregular. Assume that 

cap(R 2 \ <f>(U)) > 0 . 

Then 

lim <f>(X1) exists a.s. px for all x E U . (3.14) 
(-+T 

a) In particular, if U is bounded then <P has asymptotic values a.e. on 

au wrt. Xrharmonic measure Ax· 

b) H in addition U is a Lipschitz domain then <P has asymptotic values on 

a dense set of points in aU. 

c) H U is a C1-domain and the matrix [aij] in (3.1) extend continuously to 

U such that its normal modulus of continuity TJ(t) satisfies the Dini-type condi-

tion 

,..,.2(+'\ 
.f_ ~ dt < 00 
0 t 

then <1> has asymptotic values a.e. on au wrt. arc length. 

Remark. H v(y) is the outer normal direction to y E au then 11 is 

defined by 

TJ(t) = sup{laij(y - rv(y)) - aij(y)i; y E au, 1 :s;; i,j < 2, r > 0}. 

(3.15) 

Proof. The statement (3.14) is just (2.36). Using known properties of X­
harmonic measure Ax (see Lemma 2.1 in [3]) we obtain b), and c) follows from 
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the condition in [9] that X.x is absolutely continuous wrt. arc length on au. 

Some open problems 

This paper raises some interesting questions about the behaviour of the 

processes X1 in U C R n for n > 3. For example: 

1) H xt __,. au as t -I> T a.s. PX, when will the limit 

exist a.s. px? 

2) H the limit XT in 2) exists a.s. px we can define the X-harmonic measure 

X.:k on au as in (3.11). What are the metric properties of X.f? For exam­

ple, under reasonable conditions on au can one relate X.f to Hausdorff 

measures? 

3) What are the properly exceptional sets of X1? Can they be described by 

metric conditions? 

4) If we define J <l>(x) pointwise as in [11] by 

J (x) = lim su Vol(<f>(D(x,r))) 
<I> r~o p Vol(D(x,r)) 

where D(x,r) = {y ERn; IY -xI < r}, is the set 

N = {x; J<l>(x) = 0} 

a properly exceptional set for X1? 

5) Can one prove ann-dimensional version of Corollary 3.3, for example by 

replacing log l!jx - yj by lx - yj2-n? 
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