
ON SUBTRANSVERS~LITY 

by 

P. Ho~m and s. Johannesen 

The notion of subtransversality is due to Aldo Andreotti and 

was introduced in [ 1 ] • The definition is algebraic rather than 

geometric and goes well with certain standard operations in analy­

tic geometry such ~s blowing up. However, it was felt that in the 

smooth case and in particular in the situation studied in [1 ] the 

notion of subtransversa!ity or rather cr-subtransversality should 

have a simple geometric meaning. The present paper shows that this 

is the case (theorem 1.1 and theorem 3.1). In particular it shar­

pens and elucidates theorem ( 19.3) in [ 1 ] • 
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1. Preliminaries and statementg. We recall a few concepts from 

[1 ]. Let X and Y be smooth (i.e. Coo-) manifolds, dim X > 0, 

and let A and B be closed submanifolds of X and Y. We 

00 

denote by C (X,A;Y,B) the set of smooth maps g:X ~ Y such that 

g(A) S B. This is a closed subset of C00 (X,Y) in the Whitney 

topology (=the fine C00 -tOpology). 

ro 
Furthermore, denote by Cx(X) the local ring of germs of 

a> 

smooth functions at x E x. An ideal I c: C (X) 
- a 

is regular of 

codimension k if I has k generators h 1 ,h 2 , ••• ,hk such that 
ro 

dh1 A ••• Adhk * 0. This requires I to be a proper ideal of Ca(X). 
co 

In addition we consider I = Ca(X) to be a regular ideal of codi-

mension k for any integer k. Then V(I) = {x E (X,a) jh(x) = 0 

Vh E I} is the germ of a smooth submanifold of X at a of codi­

mension k (empty if I= c:(x)). Clearly a mapping g:X ~ Y 

is transverse to B at a E X if and only if a> * C (X)•g I(B) () a g a 

is a regular ideal of codimension k, where k is the codimension 

of B at g(a) and I(B)g(a) S c;(a)(Y) is the ideal of smooth 

germs at g(a) vanishing on B. 

co 
Next, let g E C (X,A~Y,B) and let a E A; then 

co * Ca(X) •g I(B)g(a) c: I(A)a. Consider the conductor ideal 
00 

c (I(A) ,I(B) ( ) ) c: C (X). By definition h E c (I(A) ,I(B) ( ) ) g a ga -a g a ga 
co * if and only if h•I(A)a c: C (X) •g I(B) ( ) . We say that g is - a g a 

subtransverse to B at a if c (I(A) ,I(B) ( )) is regular of g a g a 

codimension equal the codimension of B at g(a), and strongly 

is 

regular of codimension equal the sum of the codimensions of A 

and B at a and b. 

~ -Finally, let X be the blow-up of X along A and cr:X ~ X 

~ 

the collapse mapping. Then X is canonically a smooth manifold 
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with 
~ 

cr- 1 (A) codimension A = a one submanifold, [2], §3. A mapping 

g E c"'(X,A~Y,B} is ( stronslx) a- subtransverse to B at a if 

g ocr is (strongly) subtransverse to B at any point of (J 
-1 {a}. 

We shall look at the case where g is a product mapping 

fxf:NxN + pxp and A and B the diagonals ~N and ~p' respec­

tively. In this case the geometric content of the definitions is 

given by the following. 

Theorem 1.1. Let f:N + P be a smooth mapping. Then the statement~ 

(i} fxf is cr-subtransverse to ~p at all points o~ ~N 

(ii) fxf is strictly cr-subtransverse to ~P at all point~ 

.Qf. ~N 

(iii) Tf is transverse to Op outside ON 

are equivalent. 

Here Tf:TN + TP is the tangent bundle mapping, and ON and OP 

are the zero-sections of TN and TP. 

The theorem is essentially a corollary of theorems 2.2 and 3.1 

of section 2 and 3. Theorem 3.1 gives yet another characterization 

of cr-subtransversality. 

2. Double points and residual singularities. Let W = W(N) be 

the blow-up of NxN along the diagonal ~ . 
N 

Then W is obtained 

from NxN by suitably replacing ~N with PTN, the projectivized 

tangent bundle of N, see for instance [2], §4. Set NxN-~ = W 
N 1 

and 

set 

PTN = W 
2 

so that w = w u w • 
1 2 

We construct a smooth manifold E = E(N,P) over w. First, 

where 

E1 = {(x,x',y,y')lx,x' E N, y,y' E P, X :f X'} 

E2 = { ( x, 1, y, ¢) I x E N, y E P, 1 E PT N, <P E Hom ( 1, T P) } . 
X y 
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Then there is a natural projection n of E onto W defined by 

n(x,x' ,y,y') = (x,x') 

n(x,l,y,<!>) = (x,l) 

Secondly, for every smooth mapping f:X ~ Y there is an induced 

mapping ~:W + E, which is a section of n, defined by 

~(x,x') = (x,x',f(x),f(x')) 

~(x, 1) = (x, 1, f(x) ,Tf jl) 

(on 

(on 

w ) 
] 

When P is a point, then E(N,P) = W(N) (as a set), and n is 

the identity mapping. 

We need a smooth structure on E. First notice that E1 and 

E2 are naturally smooth manifolds of dimensions 2n+2p and 

(2n-1 )+2p over the smooth manifolds w1 and w2 • In fact 

E1 = (NxN-~N)xpxp. As for E2 let LTN be the tautological line 

bundle over PTN, and Hom (LTN,TP) the corresponding vector 

bundle over PTNxP; then E2 =Hom (LTN,TP}. 

Lemma 2.1. E = E(N,P) has a canonical smooth structure compatible 

with that of E1 ~ E2 , such that n E C~(E,W) ~ ~ E c"'(w,E) 
co 

for any f E C (N,P). 

In particular E(N,P) = W(N) (as a manifold) when P is a 

point. 

Proof. Consider the case N = ~n, P = ~P. Define Ak c E, 

1 ~ k ~ n, by Ak = ~l U Ak2 where 

Ak 1 = { ( x , x ' , y , y ' ) E E 1 I xk =F xk } 

~2 = { ( X , 1 , y' <!>) E E 2 Ilk =F 0 } 
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and (1 1 , •.• ,ln) are homogeneous coordinates for 1. Evidently 

E = A 1 U ••• U An. 

Next, define mappings 

Clearly ak is injective for all k. We topologize Ak so 

that ak is a homeomorphism onto its image. Then Ak n A1 is an 

open subset of Ak and A1 for each k and 1, as is quickly 

checked, and the topology induced by ~ on ~ n A1 coincides 

with the topology induced by A1 since the mappings are 

continuous and therefore homeomorphisms. Consequently there is a 

unique topology on E such that each space ~ occurs as an open 

subspace of E. It is easy to see that E is a Hausdorff space. 

We show that ak(~) is a 

2n n-1 2p 
manifold of ~ xg x~ • Set 

the affine open coordinate set 

ak(Ak) c Uk for k = 1, ••• ,n~ 

~(Ak) if and only if Lk * 0 

i * k. 

Define 

(2n+2p)~dimensional smooth sub-

2n n-1 2p n-1 
Uk = J:} xgk XJ:} Where gk is 

n-1 n-1 
{L E g ILk * o} in g Then 

in fact (X, X ' , L, Y, Y 1 ) is in 
I 

and (Xi-Xi)Lk = Li(Xk-Xk) for all 

t-(Lk(X)-X1 )-L1 (Xk-Xk),Lk(X2-X2 )-L2 (Xk-Xk)f ••• ) where the k-th 
k 

component (= 0) is omitted. Then ek is a submersion onto 

n-1 -1 
~ • Since ak(~) = ek {o}, it follows that ak(~) is a smooth 

submanifold of Uk, hence of 
2n n-1 2p 

~ xg x~ , of codimension n-1 • 

By means of ak we pull back the smooth structure on ak(Ak) 

to Ak. We now need to show that Ak and A1 induce the same 

smooth structure on the open set ~ n A1 for any two k and 1. 
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But this holds since the mappings are smooth and therefore 

diffeomorphisms. Thus E = A1 u ••. u An receives a smooth structure 

in which A 1 , ••• ,An are open submanifolds. 

For p = 0, i.e. P = {o}, we clearly get E = w. (Alternati-

vely define the smooth structure on W(~n) as that of 
n 

E(~ ,o).) 

Throughout the paper we use primed letters A~, a~, in the 

particular case E = W, i.e. primed letters refer to w. Then we 

have a commutative diagram: 

ak 
~2nxl;n-1x~2p Ak -

n-1- +pr 

a' 
k 

R2nxpn-1 Ak --+ ;:: = 

showing that n is smooth on Ak, a ~ k ~ n. Thus n is smooth 

(on E). 

Finally we need to check that ~:W ~ E is smooth for smooth 

f. Obviously it suffices to check this at a point (x,l) E "ttJ 2 • 

Let k be such that ( x, 1) E Ak. We have ~(Ak) c ~ and there­

fore a map ~k:ak(~) ~ ak(Ak) defined by the commutative diagram 

Extend 

ak 

Ak - ak (Ak) 
/\ 
ft t~k 

a' 
k 

A' - a' (A') 
k k k 

~k to a mapping Tk:U~ ~ uk in the following way: 

f(X')-f(X) = 
n 
I (X'.-X.)F.(X,X') 

j=1 J J J 

Write 
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with the 
1 

Fj(X,X') = J ~~j(X+t(X'-X)}dt, so that 

1 .;;; j .;;; n. No.v set 

n 
Tk(X,X',L) = (X,X',L,f(X),f:- I L.F.(X,X')). 

-K j=1 J J 

of = ox(X), 

Then Tk extends as claimed. Since Tk is smooth, so is 

Consequently ~ is smooth. 

This concludes the proof in the affine case N = ~n, P = ~P. 

The extension to the flat case, where N and P are diffeomorphic 

to ~n and ~P, is by transport of structure: the result is easily 

seen to be independent of the choice of diffeomorphisms. The 

extension to the general case is then by patching over coordinate 

neighbourhoods in N and P, thereby constructing the germ of E 

along E2 compatible with E1 , and joining the result to E1 • The 

procedure is straightforward. We omit further details. 

Remark 1 • By construction E1 and E2 are built in as submani­

folds of E. Since E1 is an open submanifold, E2 is a closed 

submanifold of E. 

2. There is also a smooth projection n2 :E ~ pxp defined by 

n2 (x,x' ,y,y') = (y,y') 

n2 (x,l,y,~) = (y,y} 

More symmetrically we have the smooth projections 

wnere n1 = aon. Thus the extension ~ of f fits into the 

commutative diagram 



Then 

First 

.,. 7 -

~ 
w - E 

cr+ h;2 

fxf 
NXN ---- pxp 

We next define a special submanifold Z of E. Let 

Z c E~ 

notice 

z1 ~ {(x,x' ,y,y') E E 1 jy = y'} 

z2 = {(x,l,y,q,) E E 2 i<P = o}. 

we claim that z is a closed submanifold 

that z n E1 = zl is certainly a closed 

of E. 

submanifold 

of El • Thus if a E E is in the closure of Z, then a E E(U,V) 

for suitable coordinate patches u c N, V c P. Thus a E z if 

z n E(U,V) is closed in E(U,V). Moreover, z is a submanifold of 

E locally around a if Z n E(U,V) is a submanifold of E(U,V). 

Consequently we are reduced to substanciating our claim in the 

affine case N = ~n, P = ~P. Again, in the affine case it suffices 

to show that z n ~ is a closed submanifold of ~ for 

k = 1 , ••• , n. Let 
2n n-1 2p p 

p:~ x~ x~ 7 ~ be the projection to the 

last p coordinates. It is quickly checked that pja:k(~) has 

constant rank p, i.e. that has constant rank p. But 

-1 z n Ak = (poa:k) {o}, and so z n Ak is indeed a closed submani-

fold of Ak. 

Notice that z2 is a closed submanifold of z. This follows 

by the construction of Z, or by the fact that z2 is a closed 

submanifold of E2 and therefore of E. 

We shall devote the rest of this section to characterizing the 

smooth maps f:N 7 P such that ~ is transverse to z. 
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Pro;eosition 2.2. Let f:N -+ p be a smooth ma;e:ein9: and w a point 

.£t hT. Then ~ ~ z at w if and only if -
(i) £ xf m liP .£!; w, in case w = (a,a') E W l. 

( ii) Tf rh oP .&.. 1, in case w = (a, 1) E w2. 

The second statement means that Tf:TN -+ TP is transverse to the 

~ero-section op c TP at v E TN for some (hence any) non-zero 

vector v in 1 c T N. 
a 

Proof. The case w E w1 is trivial. Assume w = (a,l) E w2 • By 

restricting to suitable coordinate patches around a and f(a), it 

suffices to consider the case N = ~n, P = ~P, a = o, f(a) = o. 

Then the tangent bundles TN and TP are trivial, and we can write 

v = (x,v), Tf( v) = (f(x) ,Df(x)v). In fact we may assume the coordi-

nati~ation at a and f(a) performed such that f has the form 

with n p-r 
¢:~ -+ ~ a smooth mapping such that ¢(o) = o, D¢(o) = o. 

(Thus r is the rank of f at the origin.) 

Now, let v = (v',v") E ~rx~n-r be a non ..... zero vector and 

n-1 n 
1 E ~ = PT0~ the line spanned by v. We have 
1\ 
f ( o, 1) = ( o, 1, f ( o) , D f ( o) jl) with 

Df(o)- [~] 
Thus Df(o)v = v' and so 

(i) ~(o,l) $ z if and only if v' * o. 

Suppose v' = o. vHth notations as before choose k such 

that (o,l) E Ak~ then ~(o,l) E Ak. Recall that poak:Ak -+ ~p is 
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a submersion and that Z n Ak = (poa:k)- 1 {o}. Thus 

Here 

~ ~ z at ( o, 1) 

<=> poa:ko~: Ak ~ ~p is submersive 

<=> p 0 "k: a'(Ak) k 
~ ~p is submersive 

<=> poTkoik: a:'(A') 
k k 

~ f::p is submersive 

i' ·a' (A') ~ U' is the inclusion mapping, k. K k k 

+ 8' 
k 

~ 
n-1 

Consequently we want to determine the range of 

at (o,l} 

at a;k(o,l) 

at a:k_(o,l) 

Since i'(a:'(A')) = e·- 1 {o} we have range k k k k I 

Dik(a:k(o,l)} = ker D8k(a:k(o,l)), with o:k(o,l) = (o,o,(v1 , ••• ,vn)). 

Now D8k(a:k(o,l)) has the matrix block form [M -M o] with 

M = c: :: -~ 
where as usual I means an identity matrix and 0 a zero matrix. 

Vk and Vk are the column matrices 

and 

v 
n,k 

where Vik = vi/vk. (Recall that vk t 0 since 

(o,l) = (o, (v 1 , ••• ,vn)) E Ak.") In particular Vlk = 

since v' = o. 

= V rk = 0 
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It now follows by straightforward computation that range 

D ( p oTk oik) ( ~ ( o, 1) ) is spanned by the r first standard basis vee-

tors e1 Q ••• , er in 'f:p together with the n vectors ( 1 ~ i ~ n) 

n o 2 ~ n o 2 ~ 
\' 1 \' p- r 

(Ou•••,O, L V.k (0), ••• , LV.,, (0)) 
j=r+l J oxi oxj j=r+l Jr.. oxi oxj 

Finally, upon multiplication with the non-zero constant vk the 

coefficient vjk in the last n vectors is replaced by v .• Thus 
J 

(ii) ~(o,l) E Z and ~ n z at ( 01 1) if and only if the vectors 

n o 2 ~ n o 2 ~ 
\' 1 \' p- r (0, •.• ,0, L v. 0 (0), ••• , L v. 0 0 (0)) 

j=r+l J xi oxj j=r+1 J xi xj 

form a set of rank p-r in ~P. 

To complete the proof of proposition 2.2 we now appeal to the 

following elementary 

Lemma 2.3. Let f:~n -* ~p be a smooth mapping of the form 

f(x) = (x 1 , ••• ,xr'~(x)) with - ¢(o) = o and D ¢ ( o) = 0 • - Let -
(v' ,v") be of T Rn = r n-r 

v = a non-zero vector ~ X~ • o= 

Then Tf ~ O~p at (o,v) E Tit if and only if either -
( i) v' =I= 0 (then - Tf(o,v) f Ol}p) 

.2.!: 

(ii) v' = 0 (then Tf(o,v} E O~p) and the matrix 

n o2¢ n o2¢ 

I v. ] 
( 0) I v . 1 ( 0) 

ox1 oxj 
. - .. ox ox. j=r+1 J j=r+1 J n J 

has rank p-r. 



The proof of lemma 2.3 is left to the discretion of the 

reader. 

3. Subtransversality. The purpose of this section is to prove the 

following result. 

Theorem 3.1 • Let f :N -7 P be a smooth mapping. Then f xf is a­

subtransverse to ~p at all points of ~ if and only if ~ m z 

on w2 , and strongly a-subtransverse if and only if ~ ~ z2 £[L 

Proof. Let (a,l) E w2 and b = f(a). Let r be the rank of f 

at a. With respect to suitable coordinate systems at a and b 

f has the form f(x) = (x 1 , ••• ,xr' ~(x)) with ~(o) = o, 

D~(o) = 0, a= o E ~n, f(a} = o E ~P. 

Let (1 1 , ••• ,ln) 

n-1 
lk :J: 0, i.e. 1 E ~k . 

sk(X,X',L,Y,Y') = Xk-Xk 

when p = 0. 

Then 

be homogenous coordinates for 

Define 
2n n-1 2p 

s :E XE XE + B_ 
k - - -

1 and assume 

by 

and let , R2n Pn-1 
sk == x= + ~ be equal 

is a submersion, and 

Therefore I(W2 ) (o,l) is the principal 

ideal generated by the germ of s' oi'oo:' at 
k k k 

(o,l). 

Now let ~=~Px~P + ~p be the difference mapping ~(Y,Y') = 

Y'-Y, and as before let 
2n n-1 2p p 

p:~ xg x~ + ~ be the projection to 

the least p coordinates. Recall the commutative diagram 

w E 

fxf 
NxN - pxp 



The ideal I (to p) 
~ (o,o) 

is generated by the germs of 

( o, o) • The pullback by the mapping ( fxf) ocr is therefore gene-

!), 
rated by the germs of <)!. orr"' or 

J .c. 
at ( o, l ) , j = 1 , ••• , p. 

at 

2n n-1 2p 2p 
Let rk:~ xg x~ + ~ be t.he mapping rk(X,X' ,L, Y, Y') = 

s 

p ) oT o -: ' o a ' "" ' k -'-k k 

oikoak' we have 

(s"oi..'oa:')(poT oi'oa') k K k k k k 

with Tk as before. The conductor (I ( 'Vv2 ) ( o 1) ' I ( 6RP) ( o o) } , = , 

is therefore the ideal generated at 

(o,l). j = 1, ••• ,p. 

Finally, let be the mapping 

vk(X,X' ,L,Y,Y') = (Xk-Xk,Y'). 'I'her1 

cf(I(W2 )(o,l)' I(ll~p}(o,o))+I( )(o,l) is the ideal generated by 

the germs of vkj oTk oik oak at 0 lL j :::: 1, ••• ,p+1. 

For the first part of the theorem~ Suppose lk * 0 for some 

k ~ r. On Uk we have 

n ! of 
= 1 

L L f k (X+t(X'-X) )dt 1 = . 
~~ j=1 J 0 oxj 

Thus ns the unit element in 

00 

C (o,l)(W), and so by our conventior. regular of codimension p 

at (o,l). But we have also ~(o, l) ¢ Z (p. 8 statement (i)). 

Suppose on the other hand 1 = 
1 

= 1 = 0. 
~r 

Then 

:r:egular of codimension p if and 

only if poTkoik is a submersion at ak(o,l). But this is equiva­

lent to ~ m z at (o, 1) (p. 9) ,, 

For the second part of the theoremg Suppose again lk :j: 0 

for scrr.a k ~ r. Then cf(I(W)(o,l) I(toP)(o,o))+I(W2 )(o,l) = 

czo,l)(W) and so is regular of codimension p+1 I and ~ ~ z2 at 

(o, 1) since ~(o, 1) ~ z2 , 



Suppose on t.he other hand 

I(l'l p)( ))+I( 
~ o,o 

p+l if and only if 0 

the last condition 

follows by an 

p. 9. 

It follows that fxf 1s 

all points of if ' an ret 

the proof of theorem 3, 

Lemma 3.2. Let 

!£ and only if ~ ~ 
/\ 1 

only i{ f 111 z 2 

Proof. The last claim 

Let (a, l) E 

sui table coordinatizat,ions vle 

f(a) = o. 

We know that ~ m Z at 

p = pr 2 ovk where pr2::g 

valent to be 

We show that T K c ran,Je 
0 

~ n z at (o,l), then 0 

/\ L (o,l). so f Ill z2 at 

As usual let f l \ -1 (J fJ< •t! fl § 

and set ljk = lj/lk when 

l. 

- l = o. 
r 

regular of codimension 

sa submersion at a~(o,l). But 

/\ 
f n ad: ( o, 1) ; this 

the case f ~ z on 

o-subtransverse to l'lp at 

1 E 

This completes 

on 

II Z, = ¢. 
~ 

on 

:if and 

' by 

n p 
aasume N = ~ a = o, P = ~ , 

if' 

''"·. ~· !'\ =~ 

Since 

this equi-

~x{o} c ~ at 

at. 

Thus if 

r.·' ~ l' "'k u, I and 

coordinates for 1 

:f: j ·~ 1 , , , • en, Define the smooth 
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then c(O) = a~(o,l). Since 

~ 11 of = ( xk• - xk , t.. L . k -:. - ( x + s ( x ' - x ) ) d s ) 
'" j=1 J 0 uX j 

on Uk_, we find 

n 1 of 
= ( 2 t, I 1 J. k f ox . ( t ( 2 s-1 ) ( 1 1 k 6 ••• , lnk) ) ds) . 

j=1 0 J 

From this we get 

which confirms that T K sits in the range of 
0 

Thus 

The converse is of course trivial. 

4. Complements. The following is an easy consequence of theorems 

1 • 1 , 2 • 2 and 3 • 2 • 

Proposition 4.1. The smooth mapEin~ f:N + P such that ~ ~ z2 
co 

form a dense open subset o£ C (N,P). 

For the condition ~ rh z2 is equivalent to Tf n OP outside ON, 

and the latter condition is sa·tisfied for an open dense set of 

mappings f by a standard transversality argument. 

The construction E is tailored to the study of the generic 

double points of f, as indica·ted by proposition 2.2. Let D£ c N 

be the locus of genuine double points of f and the 

s1.ngu ar ocus o . --· 1 l f f 'l~hus x E Df 1.'£ f(x) = f(x') for some 

point x' t x, and x E sf if ker Tf t {o}. 
X 

Propositi~ 4.2. If f:N + P is a proper smooth mapping such that 
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Proof. Let cr1 :W + N be the smooth mapping pr1 ocr, where 

pr 1 :NxN + N is the projection to the first factor. Then 

cr 1 (x,~) = x for arbitrary (x,~) E w1 U w2 , and so 

Df = cr1 (~- 1 (z 1 )),Sf = cr1 (~- 1 (z2 )}. Consequently 

r..-1 
D f U Sf = cr1 ( :t ( Z ) ) • 

Since f is proper, is also proper. Hence Df U Sf 

-is a closed subset of N; in particular Df s Df U sf. 

-
It remains to show that Sf S Df. Let a E Sf, so that 

(a,l) E ~-l (Z2 ) for a suitable 1 ~ T1 N. Again, by means of coor­

dinate systems at a and f(a) we are reduced to the affine case 

a = o ERn, f(a) = o E ~P. Choose k < n such that (o,l) E Ak_· 

Since ~ ~ I p+] 
t n z 2 , vk 0 ~ 0 :t : Ak + ~ is a submersion at ( o, 1 ) , and we 

may choose a local coordinate system around (o,l) in W in which 

t:. 
vko~of is presented as the standard projection 

vk o~ o~(w1 , ••• •"'2 n) = (w1 , ••• ,wp+l). In this coordinate system, 

n 2n 
which flattens W(~ ) into ~ around (o,l), we have 

~- J ( z2) = {w E R2n lw] = = wp+l = o} and 

i-1 ( z1 ) {w 2n = E fl lw2 = = wp+1 = 0 and Obviously 

then the origin 0 E ~-1 ( z2) belongs to the closure of ~-l (z 1 ). 

Backtracking this means that (a,l) belongs to the closure of 

By continuity this implies that a= cr1 (a,l) belongs to 

the closure of i.e. to Thus 

-This gives at neat proof that Df = Df U Sf is a generic 

property for proper mappings, satisfied by those mappings 

f E c;r(N,P) such that Tf n op outside oN. 

One can also prove a general transversality result. 
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Pro12osition 4.3. Let M be a smooth submanifold of E. ~ 

smooth InaJ2J2ings f:N + p such that ~ m M form a dense subset o& 

Cro(N,P). If M or N is compact, this subset is open. 

In general the openess property fails unlE;!ss there is a 

compactness condition. E.g. proposition 4.1 holds because of the 

special character of the submanifold z2 • 

We omit the proof of proposition 4.3. 
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