ON SUBTRANSVERSALTITY

by

P. Holm and S. Johannesen

The notion of subtransversality is due to Aldo Andreotti and
was introduced in [1]. The definition is algebraic rather than
geometric and goes well with certain standard operations in analy-
tic geometry such as blowing up. However, it was felt that in the
smooth case and in particular in the situation studied in [1] the
notion of subtransversality or rather o-subtransversality should
have a simple geometric meaning. The present paper shows that this
is the case (theorem 1.1 and theorem 3.1). In particular it shar-

pens and elucidates theorem (19,3) in [1].






1. Preliminaries and statements. We recall a few concepts from

[1]. Let X and Y be smooth (i.e. C'-) manifolds, dim X > O,
and let A and B be closed submanifolds of X and Y. We
denote by c”(X,A;Y,B) the set of smooth maps g:X » Y such that
g(A) < B. This is a closed subset of C®(X,Y) in the Whitney
topology (= the fine C’ ~topology).

Furthermore, denote by C:(X) the local ring of germs of

0 O w .
smooth functions at x € X. An ideal I ¢ ca(x) is regular of

codimension k if I has Xk generators h],h2

#+ 0. This requires I to be a proper ideal of C:(X).

,...,hk such that

dh]/\.../\dhk
In addition we consider I = C:(X) to be a regular ideal of codi-
mension k for any integer k. Then V(I) = {x € (X,a)|h(x) =0

Yh € I} is the germ of a smooth submanifold of X at a of codi-

mension k (empty if I = C:(X)). Clearly a mapping g:X » Y
is transverse to B at a € X if and only if C:(X)og*I(B)g(a)
is a regular ideal of codimension k, where Xk is the codimension
of B at g(a) and I(B)g(a) c Cg(a)(Y) is the ideal of smooth
germs at g(a) vanishing on B.

Next, let g € C (X,A;Y,B) and let a € A; then

® * . .

Ca(x)-g I(B)g(a) = I(A)a' Consider the conductor ideal
cg(I(A)a,I(B)g(a)) < Ca(x). By definition h € cg(I(A)a,I(B)

g(a))
. . ® * .
if and only if h-I(A), < Ca(x)-g I(B)g(a)° We say that g is

subtransverse to B at a if cg(I(A)a’I(B)g(a)) is regqular of

codimension equal the codimension of B at g(a), and strongly

subtransverse to B at a if cg(I(A)a,I(B) )) + I(A)a is

g(a
regular of codimension equal the sum of the codimensions of A
and B at a and b.

Finally, let X be the blow-up of X along A and o:X » X

the collapse mapping. Then X is canonically a smooth manifold



with A = ¢ '(A) a codimension one submanifold, [2], §3. A mapping

g € c(X,A;Y,B) is (strongly) o-subtransverse to B at a 1if

goo 1is (strongly) subtransverse to B at any point of c-]{a}.
We shall look at the case where g is a product mapping

fxf:NxN » PxP and A and B the diagonals A and A respec-

N p’
tively. In this case the geometric content of the definitions is

given by the following.

Theorem 1.1. Let £f:N » P Dbe a smooth mapping. Then the statements

(1) fxf is o-subtransverse to A, at all points of Ag
(ii) fxf 1is strictly o-subtransverse to AP at all points
of
i AN
. . (g
(iii) Tf is transverse to O, outside Oy

are equivalent.

Here Tf:TN > TP is the tangent bundle mapping, and ON and OP
are the zero-sections of TN and TP.

The theorem is essentially a corollary of theorems 2.2 and 3.1
of section 2 and 3. Theorem 3.1 gives yet another characterization

of o-subtransversality.

2. Double points and residual singularities. Let W = W(N) be

the blow-up of NxN along the diagonal AN. Then W 1is obtained

from NxN by suitably replacing AN with PTN, the projectivized

tangent bundle of N, see for instance [2], §4. set NXN-A = W,

and PTN = W2 so that W = w] U W2.

We construct a smooth manifold E = E(N,P) over W. First,

set E = E. UE where

1 2
E, = {(x,x',y,y") [x,x" €N, y,y' €P, x % x'}
E, = {(x,1,y,¢)|x eN, y €eP, 1 ¢ PT_N, ¢ € Hom(l,TyP)}.



Then there is a natural projection m© of E onto W defined by

n(x,x',y,y") = (x,x') (on E])

n(x,1,y,0) = (x,1) (on E2)

Secondly, for every smooth mapping £f:X > Y there is an induced

mapping %:W + E, which is a section of =, defined by

%(x,X') = (x,x',£f(x),£(x"')) (on W])

B(x,1) = (x,1,£(x),T£|1) (on W,) |

When P is a point, then E(N,P) = W(N) (as a set), and = is
the identity mapping.

We need a smooth structure on E. First notice that E] and

E2 are naturally smooth manifolds of dimensions 2n+2p and

(2n-1)+2p over the smooth manifolds W] and Wz. In fact

E, = (NXN-AN)XPXP. As for E2 let LTN be the tautological line

bundle over PTN, and Hom (LTN,TP) the corresponding vector

bundle over PTNxP; then E2 = Hom (LTN,TP).

Lemma 2.1. E = E(N,P) has a canonical smooth structure compatible

with that of E, and Ey s such that = € C (E,W) .and ? € c”(W,E)

for any f ¢ c”(N,p).

In particular E(N,P) = W(N) (as a manifold) when P is a

point.

. n .
Proof. Consider the case N = R, P= gp. Define Ak c E,

1 <k < n, by Ak = Ak] u Ak2 where

|x, *+ x'}

{(x,x',y,¥y') €E K N

Ak]

Aya

1

{(x,1,y,0) ¢ E2|1k + 0}



and (l]'°"'ln) are homogeneous coordinates for 1. Evidently

E=AU..,.UA .
1 n

Next, define mappings ak:Ak >

n -1 P P (1

n n
x§ xg x__lg xg < k < n) by

lizo

o (X, x',y,yt) = (x,x' R(x"=x),y, (y'=y) /(3 -x ) (on A )

X k1

(xk(xlllYl ¢) = (xlxllIYI ¢(l]/lkl'°'lln/lk)) (on Akz)-
Clearly o is injective for all k. We topologize Ak so

that o is a homeomorphism onto its image. Then Ak n Al is an

open subset of Ak and Al for each k and 1, as is quickly

checked, and the topology induced by A, on A N Ay coincides
with the topology induced by A, since the mappings aloa;] are
continuous and therefore homeomorphisms. Consequently there is a
unique topology on E such that each space Ak occurs as an open
subspace of E. It is easy to see that E is a Hausdorff space.

We show that ak(Ak) is a (2n+2p)-dimensional smooth sub-

manifold of gznxgn-]Xsz. Set U, = gznxg;_]xgzp

-1 .
where gi is

n-1
the affine open coordinate set {L ¢ P |Lk + 0} in B . Then

ak(Ak) c Uk for kx=1,...,n; in fact (X,X',L,Y,Y') is in

ak(Ak) if and only if L, # 0 and (xi--Xi)Lk = Li(Xi—Xk) for all
i # k.

+Rn'] by Gk(X,X',L,Y,Y') =

Define ek:Uk R

1 '
e ' - . [ - - . -th
Lk(Lk(x] x]) L, (xk xk),Lk(x2 Xz) L2(Xk xk), ) where the k-t
component (= 0) is omitted. Then ek is a submersion onto

. -1 . ,
. Since o (A) = 6 {o}, it follows that o (A) is a smooth

hence of §2nx n-]x§2p, of codimension n-1.

n-1

I

submanifold of U

o

kl

By means of a,, we pull back the smooth structure on ak(Ak)

k

to Ak‘ We now need to show that Ak and Al induce the same

smooth structure on the open set Ak n Al for any two k and 1.



But this holds since the mappings @y 0ay are smooth and therefore

diffeomorphisms. Thus E = A]U...U An receives a smooth structure

in which Al""'An are open submanifolds.

For p =0, i.e. P = {o}, we clearly get E = W. (Alternati-

vely define the smooth structure on W(gn) as that of E(gn,o).)
Throughout the paper we use primed letters Aﬁ, ai, e+ 1in the

particular case E = W, i.e. primed letters refer to W. Then we

have a commutative diagram:

=

=2
N
=
=3
L

showing that = is smooth on Ak' a <k <n. Thus = is smooth

(on E).
Finally we need to check that £:w » E is smooth for smooth
f. Obviously it suffices to check this at a point (x,1l) € W2.

Let k Dbe such that (x,l1) € A'. We have %(Aﬂ) c Ak and there-

P | ] . . .
fore a map rk.ak(Ak) > ak(Ak) defined by the commutative diagram

k
Ak - ak(Ak)
%% +rk
%%
Ak — ak(Ak)

Extend T to a mapping Tk‘”ﬁ > Uk in the following way: Write

n
£(X')=-£(X) = ]

; (x&—xj)Fj(x,x )

1



1
with the F.(X,x') = [ & (x+t(x'-X))dt, so that F.(x,X) = 2L(x),
J 0 6xj g J 0x
1 < j < n. Now set

n
T (XX, L) = (0X',LE0) 1= ] LU (X,X"),

Ly 321 33

Then Tk extends T, as claimed. Since Tk is smooth, so is

T. Consequently - £ is smooth.

X *
This concludes the proof in the affine case N = gn, P = R".
The extension to the flat case, where N and P are diffeomorphic
to gn and gp, is by transport of structure; the result is easily
seen to be independent of the choice of diffeomorphisms. The
extension to the general’case is then by patching over coordinate
neighbourhoods in N and P, thereby constructing the germ of E
compatible with E_, and joining the result to E_ . The

2 1 1
procedure is straightforward. We omit further details.

along E

Remark 1. By construction E] and E2 are built in as submani-

folds of E. Since E] is an open submanifold, E2 is a closed

submanifold of E.

2. There is also a smooth projection n2:E + Pxp defined by

nz(x,x',y,y') = (y,y") (on E])
nz(X.l,y.¢) = (y,y) (on E2)-

More symmetrically we have the smooth projections

T T

1 2
NxN «— E — PxP

where Ty = OoT. Thus the extension f of £ fits into the

commutative diagram



o¥ YT

fx£
NxN —— PXxP

We next define a special submanifold Z of E. Let

Z =72 UZ where

1 2!

y'}

N
I

{(XIX|IYIY|) € E] |y

N
I

{(x,1,y,0) € E2|¢ =0}.

Then 2 < E; we claim that Z is a closed submanifold of E.

First notice that 7Z N E, =2 is certainly a closed submanifold

1

of E]. Thus if a € E 1is in the closure of Z, then a € E(U,V)

for suitable coordinate patches Uc N, V< P. Thus a € Z if
Z nE(U,V) is closed in E(U,V). Moreover, Z is a submanifold of
E locally around a if 72 n E(U,V) is a submanifold of E(U,V).

Consequently we are reduced to substanciating our claim in the

affine case N = Bn, p = RP. Again, in the affine case it suffices

to show that Z n Ak is a closed submanifold of Ak for

2 -1 . .
k=1,...,n. Let p:R nxgn xgzp > Rp be the projection to the

last p coordinates. It is quickly checked that plak(Ak) has

constant rank p, i.e. that poa has constant rank p. But

k

Z NA= (poak)—]{o}, and so Z N A, is indeed a closed submani-

fold of Ak‘

Notice that Z is a closed submanifold of Z. This follows

2

by the construction of Z, or by the fact that Z, is a closed
submanifold of E2 and therefore of E.
We shall devote the rest of this section to characterizing the

smooth maps £f:N » P such that % is transverse to Z.



Proposition 2.2. Let £:N » P Dbe a smooth mapping and w a point

£ W. Then £ fz at w if and only if

———

(i) £xf M A

p at w, in case w = (a,a') ¢ W].
(ii) TFf 4 OP at 1, in case w = (a,l) € W2.

The second statement means that Tf:TN > TP is transverse to the
zero-section O, = TP at v € TN for some (hence any) non-zero

vector v in 1 < TaN.

Proof. The case w € W] is trivial. Assume w = (a,l) ¢ W2. By

restricting to suitable coordinate patches around a and f(a), it
suffices to consider the case N = gn, P = gp, a = o, f(a) = 0.

Then the tangent bundles TN and TP are trivial, and we can write
v = (x,v), Tf(v) = (£(x),Df(x)v). In fact we may assume the coordi-

natization at a and f(a) performed such that f has the form

f(x) = (x].-.-.xr; o({x))

n p-r

with ¢:R ~» R a smooth mapping such that ¢(o) = o, D¢(o0) = O.

(Thus r is the rank of f at the origin.)

Now, let wv = (v',v") € grxgn_r be a non-zero vector and
1 € gn—] = PTogn the line spanned by v. We have
A
f(o,1) = (o,1,£f(0),Df(0)|1) with
I (0]
Df(o0) = L
(0] (0]

Thus Df(o)v = v' and so
(i) $(o,1) ¢ z if and only if v' # o.

Suppose V' = o. With notations as before choose k such

that (o,l) ¢ Aﬁ; then f(o,l) € A Recall that poaszk > RP  is

ko




a submersion and that 2Z N Ay = (poak)_]{o}. Thus

2 hz at (o,1)
<=> poako?: Ai > gp is submersive at (o,1)
<=> poT: ai(Aﬁ) +> gp is submersive at ai(o,l)

<=> poTy oip: ap(Ay) = gp is submersive at a(o,1)

Here ii:ak(Ai) > Ui is the inclusion mapping,
i]'< Tk p
aé(Ai) — U, — U > gp
¥ Gi
gn-]

Consequently we want to determine the range of
D(poTy 0iy)(ay(o,1)). Since iy(ap(Ay)) = Gi_]{o}, we have range
le(ak(o,l)) = ker Dek(ak(o,l)), with ak(o,l) = (o,o,(v],...,vn)).

Now D@y (as(o,1)) has the matrix block form [M -M 0] with

- v 0
k

v -
o) X I

where as usual I means an identity matrix and O a zero matrix.

V! and V! are the column matrices

k k
V]k Vk+],k
. and .
Vk-],k Vn,k
L ek - —
where Vik = vi/vk. (Recall that Ve ¥+ 0 since

(o,1) = (o,(v],...,vn)) € Ak‘) In particular V]k = L., = Vrk =0

since v' = o.



It now follows by straightforward computation that range

D(poTkoii)(aﬁ(o,l)) is spanned by the r first standard basis vec-

tors SRR in gp together with the n vectors (1 < i < n)
n 62¢] n 32¢ .
(0,-0-,0, z V- e a— (O),o--, Z V- " (O))
j=r+1 jk axiaxj j=r+1 jk axiaxj

Finally, upon multiplication with the non-zero constant Vi the

coefficient ij in the last n vectors is replaced by v.. Thus

(ii) %(o,l) €z and £ nz at (o0,1) if and only if the vectors

n 62¢] n 32¢ r
(OI"'IOI z V., =—— (0):-°°r Z V. > (O))
j=r+] J axiaxj j=r+] J 6xiaxj

form a set of rank p-r in gp.

To complete the proof of proposition 2.2 we now appeal to the

following elementary

Lemma 2.3. Let f:gn > gp be a smooth mapping of the form

f(x) = (x],...,xr,¢(x)) with ¢(o) = o and D¢(o) = 0. Let

n—
v = (v',v") Dbe a non-zero vector of Togn = grxg vr

Then Tf ORp at (o,v) € T§n if and only if either
(i) v' #0 (then Tf(o,v) ¢ ORp)

or

(ii) v' = 0 (then Tf(o,v) ¢ ORp) and the matrix

n 62¢] n 62¢]

J Vi (0) «v. V] vi =i (0)
J=r+] j ax]axj 5=r+1 j axnaxj

n 226 n 220 __ .

) v, (0) ... J v.—EZX (0)
J=r+] j ax]axj J=r+1 j axnaxj

has rank p-r.



The proof of lemma 2.3 is left to the discretion of the

reader.

3. Subtransversality. The purpose of this section is to prove the

following result.

Theorem 3.1. Let £f:N » P be a smooth mapping. Then fxf is o-

subtransverse to A at all points of AN if and only if ? m 7

P
on W,, and strongly o-subtransverse if and only if t Zz, on
W2.

Proof. Let (a,l) ¢ w2 and b = f(a). Let r be the rank of f

at a. With respect to suitable coordinate systems at a and b
f has the form f£f(x) = (x],...,xr,¢(x)) with ¢(o0) = o,

D¢(o) = 0, a = o € R, f(a) = o € R™.

Let (1],...,ln) be homogenous coordinates for 1 and assume

1, #0, i.e. 1 ep .

' [ _ [ L
sk(X,X JL.Y,Y') = Xk Xy and let Syt

n-1 Define sk:§2nxpn—]x§2p

->§ by

2n _n-1
X

o
[iv]

> R be equal Sy

when p = 0.

Then sioiioai:Aﬁ > R is a submersion, and

[ [PNCH vyl . . .
W, N AL = (spoiyoar) " {0}. Therefore I(W,) (o 1) is the principal

2

ideal generated by the germ of sioikoai at (o,1).

Now let ¢:§pxgp > gp be the difference mapping ¢(Y,Y') =

n-1__2p

Y'-Y, and as before let ngznx xR > gp be the projection to

i)

the least p coordinates. Recall the commutative diagram

ov YT

fxf
NxXxN —— PxP



The ideal I(ARP)(O is generated by the germs of (¢.,c0.,0 at

IO) 1 P

(0,0). The pullback by the mapping (£fxf)os is therefore gene-

rated by the germs of ¢jon20% at (o,1), i =1,...,p.

2 2p

Let r,:R nxgn_]X§

2 .
+ R P be the mapping rk(X,X',L,Y,Y') =

. . . _ .
(Y,Y+(Xk Xk)Y ), 1 <k < n. Since nZIAk r,0i, oay, we have

¢onzo%|A£ = (skp)oikoako% = (skp)oTkoigoai= (sioiﬁoaﬁ)(poTkoikoai)

with T, as before. The conductor Cf(I(WZ)(O,l)' I(Agp)(o,o))

is therefore the ideal generated by the germs of ijTjOiﬁoai at
(O,l), j=],o.-,p.

k=§2nx£n-]x§2p R §p+l

vk(X,X',L,Y,Y') = (xf(-xk,Y'). Then

Finally, let v be the mapping

c_(1(w,) I(A_p) J+I (W), is the ideal generated by
£ 2 B 2 (O

(0,1)' (0,0} . 1)

the germs of vkjoTk01koak at {(o,l), 3 =1,...,p+1.

For the first part of the theorem: Suppose lk + 0 for some

k <r. On Uk we have

1 n 1 dF
T (X,X',L T L.
oy (T, (X,X", 1)) !

Ly 5=1

~

(X+t(X'-X))dt = 1.

@

%
J

Thus cf(I(Wz) I(A }  contains the unit element in

(0,1)’ gp)(o,O)

Cw(o l)(w), and so by our convention is regular of codimension p
s
at (o,1). But we have also %(o,l) ¢ Z (p. 8 statement (i)).

Suppose on the other hand l] = .. = lr = 0. Then

cf(I(wz)(o,l)' I(ABP)(O’O)) is regular of codimension p if and

only if pOTkOiﬁ is a submersion at ai(o,l). But this is equiva-

lent to £ hz at (o,1) (p. 2).

For the second part of the theorem: Suppose again lk ¥ 0

for scme Xk < r. Then cf(I(Wz) )+I(W2)

(o,l)’I(AP)(o,O) (0,1)

C?o l)(w) and so is regular of codimension p+1, and o Z, at

(0,1) since %(o,l) é 22‘



[#¥)

Suppose on the other hand l] = .. = lr = 0. Then

cf(I(Wz)(o,l)' I(Agp)(o,o))+l(w2}(o,l) is regular of cod1m¢n51on

pt+l if and only if vkoTkoiﬁ is a submersion at aé(o,l). But

N
the last condition is equivalent to £ N Z at (o,1); this

2

follows by an argument analogous to that for the case £ hz on

p. 9.

It follows that £x£f 1is strongly o-subtransverse to AP at

on W

all points of Ay if and only if tnaz 5 This completes

2
the proof of theorem 3.1.
We close section 3 by giving the one piece of information

which together with theorem 3.1 vyields theorem 1.1.

Lemma 3.2. Let f£:N > P be a smooth mapping. Then % & Z on W

2
. . n .
if and only if £ f Z, on W,. Moreover 2 i z, on W, if and

only if v% i Z, (on W).

Proof. The last claim is cbhvious since %(W]) N Z2 = g.

A .
Let (a,l) € W, and assume that f{a,l) € Z Again, by

2 2°

. . . . } n
suitable coordinatizations we may assume N = R, a=o0, P=R",
f(a) = o.
We know that £ m Z at (o,1) if and only if

poT oii:a'(Ai) > gp is a submersion at ai(o,l). Since

k
P = Pryovy where przzgxgp > gP is the projection, this is equi-

valent to v oT,0iy Dbeing transverse to K = Rx{o} = gxgp at

ai(o,l).

We show that TOK c range D(vkoTk01k)(ak(0,l)). Thus if

f nez at (o,l), then Vi oTy oy is a submersion at ak(o,l) and

A

so £ i z, at (o,1).
As usual let (l],...,ln) be homogenous coordinates for 1

and set ljk = lj/lk when lk +0, 3=1,...,n., Define the smooth



s {= > y ! = s 000y ’ g oo H
curve c €, € +ak(Ak) by c(t) ( tl]k tl tl 'tlnk'l)

nk 1k

then c(0) = ai(o,l). Since
n 1
v, of, (X,X',L) = (X=X_, J L. [ 25 (x+s(x'-x))ds)
ket e kX “k‘.L "k ! Bx.
j=1 0 "3
on Uﬁ, we find
& DY
vkoTkolkoc(t) = (2t,j=§]1jk ofﬁ; (t(25—1)(l]k,...,lnk))ds).

From this we get

d C —
T (vkoTk01koc)(O) = (2,0,...,0) € TOK

which confirms that TOK sits in the range of

D( v of, 0i/) (! (0,1)). Thus %rhzz on W. if 2 hz on W

2 2°

The converse is of course trivial.

4, Complements. The following is an easy consequence of theorems

1.1, 2.2 and 3.2.

Proposition 4.1. The smooth mappings £:N » P such that £ b Z

2

form a dense open subset of ¢ (N,P).

For the condition () 22 is equivalent to T£f n OP outside ON'

and the latter condition is satisfied for an open dense set of
mappings f by a standard transversality argument.
The construction E is tailored to the study of the generic

double points of £, as indicated by proposition 2.2. Let Df N

be the locus of genuine double points of £ and Sf < N the

singular locus of f. Thus x € D if f(x) = £(x') for some

f

point x' #% x, and x € Se if ker fo + {o}.

Proposition 4.2. If f:N > P 1is a proper smooth mapping such that




% m Zz, then D. = D_. US

f £ £°

Proof. Let 6]:W > N be the smooth mapping pr_ oo, where

1
pr]:NXN + N 1is the projection to the first factor. Then

c](x,g) = x for arbitrary (x,E) € W, UW., and so

1 2
D. = o (%—](Z )),S. = o (%-](Z y) Consequentl
£- 9 1779 T 9 277 quently
D

Us, = c](%'](z)).

£ £

Since f 1is proper, ollg_](z) is also proper. Hence De U Sg
is a closed subset of N; in particular Bf S Dg U Sg.

It remains to show that S c D so that

£ £° £’
-1 . .
(a,1) € £ (Z2) for a suitable 1 c TyN. Again, by means of coor-

Let a € S

dinate systems at a and f(a) we are reduced to the affine case

a=o0 € Rn, f(a) = o ¢ gp. Choose k < n such that (o,1) € Aﬁ.

Since £ nz v, oa, of:A’ > Rp+] is a submersion at (o,1l), and we
2¢ VkO%OtiBg > B 1)

may choose a local coordinate system around (o,1) in W in which

vkoako@ is presented as the standard projection

vkoako?(w],...,WZn) = (w],...,wp+]). In this coordinate system,

which flattens W(gn) into §2n around (o,1), we have

-1 _ 2n _ _
£ (z,) = w € R Iw] = e =W S 0} and
A_](z]) = {w € ,_anlw2 = eee =Wy S 0 and w, % 0}. oObviously

then the origin o € ﬁ-](zz) belongs to the closure of %_](Z]).

Backtracking this means that (a,l) Dbelongs to the closure of
?'](z]). By continuity this implies that a = c](a,l) belongs to

-1 . - -
the closure of o](? (Z])), i.e. to Df. Thus Sf < Deg.
This gives at neat proof that Bf = Df U Sf is a generic

property for proper mappings, satisfied by those mappings

f € Cpr(N’P) such that Tf n OP outside ON'

One can also prove a general transversality result.



Proposition 4.3. Let M be a smooth submanifold of E. The

smooth mappings £:N » P such that £ hM form a dense subset of

c’(N,P). If M or N is compact, this subset is open.

In general the openess property fails unless there is a
compactness condition. E.g. proposition 4.1 holds because of the
special character of the submanifold Z2.
We omit the proof of proposition 4.3.
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