ON SUBTRANSVERSALITY

by

P. Holm and S. Johannesen

The notion of subtransversality is due to Aldo Andreotti and was introduced in [1]. The definition is algebraic rather than geometric and goes well with certain standard operations in analytic geometry such as blowing up. However, it was felt that in the smooth case and in particular in the situation studied in [1] the notion of subtransversality or rather σ-subtransversality should have a simple geometric meaning. The present paper shows that this is the case (theorem 1.l and theorem 3.1). In particular it sharpens and elucidates theorem (19.3) in [1].

1. Preliminaries and statements. We recall a few concepts from
[1]. Let X and Y be smooth (i.e. $C^{\infty}-$) manifolds, dim $X>0$, and let A and B be closed submanifolds of X and Y. We denote by $C^{\infty}(X, A ; Y, B)$ the set of smooth maps $g: X \rightarrow Y$ such that $g(A) \subseteq B$. This is a closed subset of $C^{\infty}(X, Y)$ in the Whitney topology ($=$ the fine c^{∞}-topology).

Furthermore, denote by $C_{X}^{\infty}(X)$ the local ring of germs of smooth functions at $x \in X$. An ideal $I \subseteq C_{a}^{\infty}(X)$ is regular of codimension k if I has k generators $h_{1}, h_{2}, \ldots, h_{k}$ such that $d h_{1} \wedge \ldots \wedge d h_{k} \neq 0$. This requires I to be a proper ideal of $C_{a}^{\infty}(X)$. In addition we consider $I=C_{a}^{\infty}(X)$ to be a regular ideal of codimension k for any integer k. Then $V(I)=\{x \in(X, a) \mid h(x)=0$ $\forall h \in I\}$ is the germ of a smooth submanifold of X at a of codimension k (empty if $I=C_{a}^{\infty}(X)$). Clearly a mapping $g: X \rightarrow Y$ is transverse to B at $a \in X$ if and only if $C_{a}^{\infty}(X) \cdot g^{\star} I(B){ }_{g}(a)$ is a regular ideal of codimension k, where k is the codimension of B at $g(a)$ and $I(B)_{g(a)} \subseteq C_{g(a)}^{\infty}(Y)$ is the ideal of smooth germs at $g(a)$ vanishing on B.

Next, let $g \in C^{\infty}(X, A ; Y, B)$ and let $a \in A$; then
$C_{a}^{\infty}(X) \cdot g^{\star} I(B)_{g(a)} \subseteq I(A)_{a}$. Consider the conductor ideal $c_{g}\left(I(A)_{a} \cdot I(B)_{g(a)}\right) \subseteq C_{a}^{\infty}(X)$. By definition $h \in c_{g}\left(I(A)_{a}, I(B)_{g(a)}\right)$ if and only if $h \cdot I(A) a \subseteq C_{a}^{\infty}(X) \cdot g^{*} I(B)_{g(a)}$. We say that g is subtransverse to B at a if $C_{g}\left(I(A)_{a} I(B)_{g(a)}\right)$ is regular of codimension equal the codimension of B at $g(a)$, and strongly subtransverse to B at a if $C_{g}\left(I(A) A^{\prime} I(B)_{g(a)}\right)+I(A)$ is regular of codimension equal the sum of the codimensions of A and B at a and b.

Finally, let \tilde{X} be the blow-up of X along A and $\sigma: \tilde{X} \rightarrow X$ the collapse mapping. Then \tilde{X} is canonically a smooth manifold
with $\tilde{A}=\sigma^{-1}(A)$ a codimension one submanifold, [2]. §3. A mapping $g \in C^{\infty}(X, A ; Y, B)$ is (strongly) σ-subtransverse to B at a if goo is (strongly) subtransverse to B at any point of $\sigma^{-1}\{a\}$. We shall look at the case where g is a product mapping $f \times f: N \times N \rightarrow P \times P$ and A and B the diagonals Δ_{N} and Δ_{P} respectively. In this case the geometric content of the definitions is given by the following.

Theorem 1.1. Let $f: N \rightarrow P$ be a smooth mapping. Then the statements
(i) $f \times f$ is σ-subtransverse to Δ_{P} at all points of Δ_{N}
(ii) $f \times f$ is strictly σ-subtransverse to Δ_{P} at all points of Δ_{N}
(iii) Tf is transverse to O_{P} outside O_{N}

are equivalent.

Here $T f: T N \rightarrow T P$ is the tangent bundle mapping, and O_{N} and O_{P} are the zero-sections of TN and TP.

The theorem is essentially a corollary of theorems 2.2 and 3.1 of section 2 and 3. Theorem 3.1 gives yet another characterization of σ-subtransversality.
2. Double points and residual singularities. Let $W=W(N)$ be the blow-up of $N \times N$ along the diagonal Δ_{N}. Then W is obtained from $N \times N$ by suitably replacing Δ_{N} with PTN, the projectivized tangent bundle of N, see for instance $[2]$, §4. set $N \times N-\Delta_{N}=W_{1}$ and $P T N=W_{2}$ so that $W=W_{1} \cup W_{2}$.

We construct a smooth manifold $E=E(N, P)$ over W. First, set $E=E_{1} \cup E_{2} \quad$ where

$$
\begin{aligned}
& E_{1}=\left\{\left(x, x^{\prime}, y, y^{\prime}\right) \mid x, x^{\prime} \in N, y, y^{\prime} \in P, x \neq x^{\prime}\right\} \\
& E_{2}=\left\{(x, 1, y, \phi) \mid x \in N_{,} y \in P, 1 \in P T N_{x}, \phi \in \operatorname{Hom}\left(1, T Y_{Y}\right)\right\} .
\end{aligned}
$$

Then there is a natural projection π of E onto W defined by

$$
\begin{array}{ll}
\pi\left(x, x^{\prime}, y, y^{\prime}\right)=\left(x, x^{\prime}\right) & \left(\text { on } E_{1}\right) \\
\pi(x, 1, y, \phi)=(x, 1) & \left(\text { on } E_{2}\right)
\end{array}
$$

Secondly, for every smooth mapping $f: X \rightarrow Y$ there is an induced mapping $\hat{f}: W \rightarrow E$, which is a section of π_{0} defined by

$$
\begin{array}{ll}
\hat{f}\left(x, x^{\prime}\right)=\left(x, x^{\prime}, f(x), f\left(x^{\prime}\right)\right) & \text { (on } \left.W_{1}\right) \\
\hat{f}(x, 1)=(x, 1, f(x), T f \mid l) & \left(\text { on } W_{2}\right)
\end{array}
$$

When P is a point, then $E(N, P)=W(N)$ (as a set), and π is the identity mapping.

We need a smooth structure on E. First notice that E_{1} and E_{2} are naturally smooth manifolds of dimensions $2 n+2 p$ and $(2 n-1)+2 p$ over the smooth manifolds W_{1} and W_{2}. In fact $E_{1}=\left(N \times N-\Delta_{N}\right) \times P \times P$. As for E_{2} let LTN be the tautological line bundle over PTN, and Hom (LTN,TP) the corresponding vector bundle over $P T N \times P$; then $E_{2}=\operatorname{Hom}(L T N, T P)$.

Lemma 2.1. $E=E(N, P)$ has a canonical smooth structure compatible with that of E_{1} and E_{2}, such that $\pi \in C^{\infty}(E, W)$ and $\hat{f} \in C^{\infty}(W, E)$ for any $f \in C^{\infty}(N, P)$.

In particular $E(N, P)=W(N)$ (as a manifold) when P is a point.

Proof. Consider the case $N=\underline{R}^{n}, P=R^{P}$. Define $A_{k} \subset E$, $1 \leqslant k \leqslant n$, by $A_{k}=A_{k]} \cup A_{k 2}$ where

$$
\begin{aligned}
& A_{k 1}=\left\{\left(x, x^{\prime}, y, y^{\prime}\right) \in E_{1} \mid x_{k} \neq x_{k}^{\prime}\right\} \\
& A_{k 2}=\left\{(x, 1, y, \phi) \in E_{2} \mid 1_{k} \neq 0\right\}
\end{aligned}
$$

and $\left(I_{1} \ldots l_{n}\right)$ are homogeneous coordinates for 1 . Evidently $E=A_{1} \cup \ldots \cup A_{n}$.

Next, define mappings $\alpha_{k}: A_{k} \rightarrow \underline{\underline{R}}^{n} \times \underline{\underline{R}}^{n} \times \underline{\underline{P}}^{n-1} \times \underline{\underline{R}}^{p} \times \underline{\underline{R}}^{p}(1 \leqslant k \leqslant n)$ by

$$
\begin{aligned}
& \alpha_{k}\left(x, x^{\prime}, y, y^{\prime}\right)=\left(x, x^{\prime}, \underline{R}\left(x^{\prime}-x\right), y,\left(y^{\prime}-y\right) /\left(x_{k}^{\prime}-x_{k}\right)\right) \quad\left(o n \quad A_{k l}\right) \\
& \alpha_{k}(x, 1, y, \phi)=\left(x, x, 1, y, \phi\left(l_{1} / l_{k}, \ldots, l_{n} / l_{k}\right)\right) \quad\left(o n A_{k 2}\right) .
\end{aligned}
$$

Clearly α_{k} is injective for all k. We topologize A_{k} so that α_{k} is a homeomorphism onto its image. Then $A_{k} \cap A_{1}$ is an open subset of A_{k} and A_{l} for each k and $l_{\text {, as is quickly }}$ checked, and the topology induced by A_{k} on $A_{k} \cap A_{1}$ coincides with the topology induced by A_{1} since the mappings $\alpha_{1} \circ \alpha_{k}^{-1}$ are continuous and therefore homeomorphisms. Consequently there is a unique topology on E such that each space A_{k} occurs as an open subspace of E. It is easy to see that E is a Hausdorff space.

We show that $\alpha_{k}\left(A_{k}\right)$ is a $(2 n+2 p)$-dimensional smooth submanifold of $\underline{\underline{R}}^{2 n} \times \underline{\underline{P}}^{n-1} \times \underline{\underline{R}}^{2 p}$. Set $U_{k}=\underline{\underline{R}}^{2 n} \times \underline{\underline{P}}_{k}^{n-1} \times \underline{\underline{R}}^{2 p}$ where $\underline{\underline{P}}_{k}^{n-1}$ is the affine open coordinate set $\left\{L \in \underline{\underline{p}}^{n-1} \mid L_{k} \neq 0\right\}$ in $\underline{\underline{p}}^{n-1}$. Then $\alpha_{k}\left(A_{k}\right) \subset U_{k}$ for $k=1, \ldots, n$; in fact $\left(X, X^{\prime}, L, Y, Y^{\prime}\right)$ is in $\alpha_{k}\left(A_{k}\right)$ if and only if $L_{k} \neq 0$ and $\left(X_{i}^{\prime}-X_{i}\right) L_{k}=L_{i}\left(X_{k}^{\prime}-X_{k}\right)$ for all i $\neq k$.

Define $\quad \theta_{k}: U_{k} \rightarrow \underline{\underline{R}}^{n-1}$ by $\theta_{k}\left(X, X^{\prime}, L, Y, Y^{\prime}\right)=$ $\frac{1}{L_{k}}\left(L_{k}\left(X_{j}^{\prime}-X_{1}\right)-L_{1}\left(X_{k}^{\prime}-X_{k}\right), L_{k}\left(X_{2}^{\prime}-X_{2}\right)-L_{2}\left(X_{k}^{\prime}-X_{k}\right), \ldots\right)$ where the $k-t h$ component $(\equiv 0)$ is omitted. Then θ_{k} is a submersion onto $\underline{\underline{R}}^{n-1}$. Since $\alpha_{k}\left(A_{k}\right)=\theta_{k}^{-1}\{0\}$, it follows that $\alpha_{k}\left(A_{k}\right)$ is a smooth submanifold of U_{k}, hence of $\underline{\underline{R}}^{2 n} \times \underline{\underline{p}}^{n-1} \times \underline{\underline{R}}^{2 p}$, of codimension $n-1$. By means of α_{k} we pull back the smooth structure on $\alpha_{k}\left(A_{k}\right)$ to A_{k}. We now need to show that A_{k} and A_{l} induce the same smooth structure on the open set $A_{k} \cap A_{l}$ for any two k and 1 .

But this holds since the mappings $\alpha_{1}{ }^{o \alpha_{k}^{-1}}$ are smooth and therefore diffeomorphisms. Thus $E=A_{1} U \ldots U A_{n}$ receives a smooth structure in which A_{1}, \ldots, A_{n} are open submanifolds.

For $p=0$, i.e. $P=\{0\}$, we clearly get $E=W$. (Alternatively define the smooth structure on $W\left(\underline{\underline{R}}^{n}\right)$ as that of $E\left(\underline{\underline{R}}^{n}, 0\right)$.) Throughout the paper we use primed letters $A_{k^{\prime}}^{\prime} \alpha_{k^{\prime}}^{\prime}$.... in the particular case $E=W$, i.e. primed letters refer to W. Then we have a commutative diagram:

$$
\begin{aligned}
A_{k} & \xrightarrow{\alpha} \\
\pi \downarrow & \underline{\underline{R}}^{2 n} \times \underline{\underline{p}}^{n-1} \times \underline{\underline{R}}^{2 p} \\
& \downarrow \mathrm{pr} \\
A_{k}^{\prime} & \xrightarrow{\alpha} \\
\alpha_{k}^{\prime} & \underline{R}^{2 n} \times \underline{\underline{p}}^{n-1}
\end{aligned}
$$

showing that π is smooth on $A_{k^{\prime}} a \leqslant k \leqslant n$. Thus π is smooth (on E).

Finally we need to check that $\hat{f}: W \rightarrow E$ is smooth for smooth f. Obviously it suffices to check this at a point $(x, 1) \in W_{2}$. Let k be such that $(x, 1) \in A_{k}^{\prime}$. We have $\hat{f}\left(A_{k}^{\prime}\right) \subset A_{k}$ and therefore $a \operatorname{map} \tau_{k}: \alpha_{k}^{\prime}\left(A_{k}^{\prime}\right) \rightarrow \alpha_{k}\left(A_{k}\right)$ defined by the commutative diagram

$$
\begin{aligned}
& \begin{array}{lll}
\mathrm{A}_{\mathrm{k}} & \stackrel{\alpha_{\mathrm{k}}}{\longrightarrow} & \alpha_{\mathrm{k}}\left(\mathrm{~A}_{\mathrm{k}}\right) \\
\hat{\mathrm{f} \uparrow} \mathrm{f} & & \\
& & \uparrow \tau_{\mathrm{k}}
\end{array} \\
& A_{k}^{\prime} \xrightarrow{\alpha_{k}^{\prime}} \alpha_{k}^{\prime}\left(A_{k}^{\prime}\right)
\end{aligned}
$$

Extend τ_{k} to a mapping $T_{k}: U_{k}^{\prime} \rightarrow U_{k}$ in the following way: Write

$$
f\left(x^{\prime}\right)-f(x)=\sum_{j=1}^{n}\left(X_{j}^{\prime}-X_{j}\right) F_{j}\left(X_{,} x^{\prime}\right)
$$

with the $F_{j}\left(X, X^{\prime}\right)=\int_{0}^{1} \frac{\partial f}{\partial x_{j}}\left(X+t\left(X^{\prime}-X\right)\right) d t$, so that $F_{j}(X, X)=\frac{\partial f}{\partial x}(X)$. $1 \leqslant j \leqslant n$. Now set

$$
T_{k}\left(X, X^{\prime}, L\right)=\left(X, X^{\prime}, L, f(X), \frac{1}{L_{k}} \sum_{j=1}^{n} L_{j} F_{j}\left(X, X^{\prime}\right)\right) .
$$

Then T_{k} extends τ_{k} as claimed. Since T_{k} is smooth, so is τ_{k}. Consequently \hat{f} is smooth.

This concludes the proof in the affine case $N=R^{n}, P=R^{p}$. The extension to the flat case, where N and P are diffeomorphic to $\underline{\underline{R}}^{n}$ and $\underline{\underline{R}}^{\mathrm{p}}$, is by transport of structure; the result is easily seen to be independent of the choice of diffeomorphisms. The extension to the general case is then by patching over coordinate neighbourhoods in N and P, thereby constructing the germ of E along E_{2} compatible with E_{1}, and joining the result to E_{1}. The procedure is straightforward. We omit further details.

Remark 1. By construction E_{1} and E_{2} are built in as submanifolds of E. Since E_{1} is an open submanifold, E_{2} is a closed submanifold of E.
2. There is also a smooth projection $\pi_{2}: E \rightarrow P \times P$ defined by

$$
\begin{array}{ll}
\pi_{2}\left(x, x^{\prime}, y, y^{\prime}\right)=\left(y, y^{\prime}\right) & \left(o n \quad E_{1}\right) \\
\pi_{2}(x, 1, y, \phi)=(y, y) & \left(o n \quad E_{2}\right) .
\end{array}
$$

More symmetrically we have the smooth projections

$$
\mathrm{N} \times \mathrm{N} \stackrel{\pi_{1}}{\leftarrow} \mathrm{E} \xrightarrow{\pi_{2}} \mathrm{P} \mathrm{\times P}
$$

where $\pi_{1}=\sigma 0 \pi$. Thus the extension $\hat{\mathbf{f}}$ of f fits into the commutative diagram

We next define a special submanifold Z of E. Let $Z=Z_{1} U Z_{2}$, where

$$
\begin{aligned}
& z_{1}=\left\{\left(x, x^{0}, y, y^{0}\right) \in E_{1} \mid y=y^{\prime}\right\} \\
& z_{2}=\left\{(x, 1, y, \phi) \in E_{2} \mid \phi=0\right\}
\end{aligned}
$$

Then $Z \subset E ;$ we claim that Z is a closed submanifold of E. First notice that $Z \cap E_{1}=Z_{1}$ is certainly a closed submanifold of E_{1}. Thus if $a \in E$ is in the closure of Z, then $a \in E(U, V)$ for suitable coordinate patches $U \subset N, V \subset P$. Thus $a \in Z$ if $Z \cap E(U, V)$ is closed in $E(U, V)$. Moreover, Z is a submanifold of E locally around a if $Z \cap E(U, V)$ is a submanifold of $E(U, V)$. Consequently we are reduced to substanciating our claim in the affine case $N=\underline{R}^{n}, P=\underline{R}^{\mathrm{P}}$. Again, in the affine case it suffices to show that $Z \cap A_{k}$ is a closed submanifold of A_{k} for $k=1, \ldots, n$. Let $\rho: \underline{\underline{R}}^{2 n} \times \underline{\underline{P}}^{n-1} \times \underline{\underline{R}}^{2 p} \rightarrow \underline{\underline{R}}^{p}$ be the projection to the last p coordinates. It is quickly checked that $\rho \mid \alpha_{k}\left(A_{k}\right)$ has constant rank p, i.e. that $\rho o \alpha_{k}$ has constant rank p. But $Z \cap A_{k}=\left(\rho \circ \alpha_{k}\right)^{-1}\{0\}$, and so $Z \cap A_{k}$ is indeed a closed submanifold of A_{k}.

Notice that Z_{2} is a closed submanifold of Z. This follows by the construction of Z, or by the fact that Z_{2} is a closed submanifold of E_{2} and therefore of E.

We shall devote the rest of this section to characterizing the smooth maps $f: N \rightarrow P$ such that \hat{f} is transverse to Z.

Proposition 2.2. Let $f: N \rightarrow P$ be a smooth mapping and w a point of W. Then $\hat{f} \nmid z$ at w if and only if
(i) $f \times f \in \Delta_{P}$ at W_{0} in case $w=\left(a, a^{\prime}\right) \in W_{1}$.
(ii) Tf $\pitchfork O_{P}$ at 1 , in case $W=(a, 1) \in W_{2}$.

The second statement means that $T f: T N \rightarrow T P$ is transverse to the zero-section $O_{P} \subset T P$ at $\nu \in T N$ for some (hence any) non-zero vector v in $l \subset T_{a}{ }^{N}$.

Proof. The case $w \in W_{1}$ is trivial. Assume $w=(a, 1) \in W_{2}$. By restricting to suitable coordinate patches around a and $f(a)$, it suffices to consider the case $N=\underline{\underline{R}}^{n}, P=\underline{\underline{R}}^{\mathrm{P}}, \mathrm{a}=0, \mathrm{f}(\mathrm{a})=0$. Then the tangent bundles $T N$ and $T P$ are trivial, and we can write $v=(x, v), T f(v)=(f(x), D f(x) v)$. In fact we may assume the coordinatization at a and $f(a)$ performed such that f has the form

$$
f(x)=\left(x_{1}, \ldots x_{r} ; \phi(x)\right)
$$

with $\phi: \underline{\underline{R}}^{\mathrm{n}} \rightarrow \underline{\underline{R}}^{\mathrm{p}-\mathrm{r}}$ a smooth mapping such that $\phi(0)=0, D \phi(0)=0$. (Thus r is the rank of f at the origin.)

Now, let $v=\left(v^{\prime}, v^{\prime \prime}\right) \in \underline{\underline{R}}^{r} \times \underline{\underline{R}}^{n-r}$ be a non-zero vector and $l \in \underline{\underline{p}}^{\mathrm{n}-1}=P T^{\underline{R}} \underline{\underline{R}}^{\mathrm{n}}$ the line spanned by v. We have $\hat{f}(0,1)=(0,1, f(0), D f(0) \mid 1)$ with

$$
D f(0)=\left[\begin{array}{c|c}
I_{r} & 0 \\
\hline 0 & 0
\end{array}\right]
$$

Thus $D f(o) v=v^{\prime}$ and so
(i) $\hat{f}(0,1) \notin Z$ if and only if $v^{\prime} \neq 0$.

Suppose $v^{\prime}=0$. With notations as before choose k such that $(0,1) \in A_{k}^{\prime} ;$ then $\hat{f}(0,1) \in A_{k}$. Recall that $\rho \circ \alpha_{k}: A_{k} \rightarrow \underline{\underline{R}}^{p}$ is
a submersion and that $Z \cap A_{k}=\left(\rho \circ \alpha_{k}\right)^{-1}\{0\}$. Thus

$$
\begin{aligned}
& \hat{f} \mathrm{hz} \text { at }(0,1) \\
& \Leftrightarrow \rho \circ \alpha_{k} \circ \hat{f}: A_{k}^{\prime} \rightarrow \underline{R}^{p} \quad \text { is subversive at }(0,1) \\
& \Leftrightarrow \rho \circ \tau_{k}: \alpha_{k}^{\prime}\left(A_{k}^{\prime}\right) \rightarrow \underline{\underline{R}}^{p} \quad \text { is subversive at } \alpha_{k}^{\prime}(0,1) \\
& \Leftrightarrow \quad \rho \circ T_{k} \circ i_{k}^{\prime}: \alpha_{k}^{\prime}\left(A_{k}^{\prime}\right) \rightarrow \underline{\underline{R}}^{p} \text { is subversive at } \alpha_{k}^{\prime}(0,1)
\end{aligned}
$$

Here $i_{k}^{\prime}: \alpha_{K}^{\prime}\left(A_{k}^{\prime}\right) \rightarrow U_{k}^{\prime}$ is the inclusion mapping,

$$
\begin{aligned}
& \alpha_{k}^{\prime}\left(A_{k}^{\prime}\right) \xrightarrow{i_{k}^{\prime}} U_{k}^{\prime} \xrightarrow{T_{k}} U_{k} \xrightarrow{\rho} \underline{\underline{R}}^{p} \\
& \downarrow \theta_{k}^{\prime} \\
& \underline{\underline{R}}^{n-1}
\end{aligned}
$$

Consequently we want to determine the range of $D\left(\rho \circ T_{k} \circ i_{k}^{\prime}\right)\left(\alpha_{k}^{\prime}(0,1)\right)$. Since $i_{k}^{\prime}\left(\alpha_{k}^{\prime}\left(A_{k}^{\prime}\right)\right)=\theta_{k}^{\prime-1}\{0\}$, we have range $\operatorname{Di}_{k}^{\prime}\left(\alpha_{k}^{\prime}(0,1)\right)=\operatorname{ker} \operatorname{D} \theta_{k}^{\prime}\left(\alpha_{k}^{\prime}(0,1)\right)$, with $\alpha_{k}^{\prime}(0,1)=\left(0,0,\left(v_{1}, \ldots, v_{n}\right)\right)$. Now $D \theta_{k}^{\prime}\left(\alpha_{k}^{\prime}(0,1)\right)$ has the matrix block form $\left[\begin{array}{lll}M & -M & 0\end{array}\right]$ with

$$
M=\left[\begin{array}{rrr}
-I & V_{k}^{\prime} & 0 \\
0 & V_{k}^{\prime \prime} & -I
\end{array}\right]
$$

where as usual I means an identity matrix and O a zero matrix. $\mathrm{V}_{\mathrm{k}}^{\prime}$ and $\mathrm{V}_{\mathrm{k}}^{\prime \prime}$ are the column matrices

$$
\left[\begin{array}{l}
\mathrm{v}_{1 k} \\
\vdots \\
\mathrm{v}_{\mathrm{k}-1, k}
\end{array}\right] \text { and }\left[\begin{array}{l}
\mathrm{v}_{\mathrm{k}+1, k} \\
\vdots \\
\mathrm{v}_{\mathrm{n}, \mathrm{k}}
\end{array}\right]
$$

where $v_{i k}=v_{i} / v_{k}$. (Recall that $v_{k} \neq 0$ since $\left.(0,1)=\left(0,\left(v_{1}, \ldots, v_{n}\right)\right) \in A_{k}^{\prime} \cdot\right)$ In particular $v_{1 k}=\ldots=v_{r k}=0$ since $v^{\prime}=0$.

It now follows by straightforward computation that range $D\left(\rho o T_{k} \circ i_{k}^{\prime}\right)\left(\alpha_{k}^{\prime}(0,1)\right)$ is spanned by the r first standard basis vectors $e_{1} \ldots e_{r}$ in $\underline{\underline{R}}^{p}$ together with the n vectors (1*i$\left.\leqslant n\right)$

$$
\left(0, \ldots, 0, \sum_{j=r+1}^{n} V_{j k} \frac{\partial^{2} \phi_{1}}{\partial x_{i} \partial x_{j}}(0) \ldots \sum_{j=r+1}^{n} V_{j k} \frac{\partial^{2} \phi_{p-r}}{\partial x_{i} \partial x_{j}}(0)\right)
$$

Finally, upon multiplication with the non-zero constant v_{k} the coefficient $V_{j k}$ in the last n vectors is replaced by v_{j}. Thus (ii) $\hat{f}(0,1) \in Z$ and $\hat{f} \cap Z$ at $(0,1)$ if and only if the vectors

$$
\left(0, \ldots, 0, \sum_{j=r+1}^{n} v_{j} \frac{\partial^{2} \phi_{1}}{\partial x_{i} \partial x_{j}}(0), \ldots . \sum_{j=r+1}^{n} v_{j} \frac{\partial^{2} \phi_{p-r}}{\partial x_{i} \partial x_{j}}(0)\right)
$$

form a set of rank $p-r$ in $\underline{\underline{R}}^{p}$.
To complete the proof of proposition 2.2 we now appeal to the following elementary

Lemma 2.3. Let $\mathrm{f}: \underline{\underline{B}}^{\mathrm{n}} \rightarrow \underline{\underline{R}}^{\mathrm{p}}$ be a smooth mapping of the form $f(x)=\left(x_{1} \ldots x_{r^{\prime}} \phi(x)\right)$ with $\phi(0)=0$ and $D \phi(0)=0$ Let $v=\left(v^{\prime}, v^{\prime \prime}\right)$ be a non-zero vector of $T o^{R^{n}}=\underline{\underline{R}}^{r} \times \underline{\underline{R}}^{n-r}$.

Then $T f \pitchfork O_{\underline{\underline{R}}} p$ at $(0, v) \in T \underline{\underline{R}}^{n}$ if and only if either
(i) $v^{\prime} \neq 0$ (then $T f(0, v) \notin O_{\underline{\underline{R}}} p$)

으
(ii) $v^{\prime}=0$ (then $T f(0, v) \in O_{\underline{\underline{R}} p \text {) and the matrix }}$

$$
\left[\begin{array}{llll}
\sum_{j=r+1}^{n} v_{j} \frac{\partial^{2} \phi_{1}}{\partial x_{1} \partial x_{j}}(0) & \cdots & \sum_{j=r+1}^{n} v_{j} \frac{\partial^{2} \phi_{1}}{\partial x_{n} \partial x_{j}}(0) \\
\vdots \\
\sum_{j=r+1}^{n} v_{j} \frac{\partial^{2} \phi_{p-r}}{\partial x_{1} \partial x_{j}}(0) & \cdots & \sum_{j=r+1}^{n} v_{j} \frac{\partial^{2} \phi_{p-r}}{\partial x_{n} \partial x_{j}}(0)
\end{array}\right]
$$

has rank $p-r$.

The proof of lemma 2.3 is left to the discretion of the reader.
3. Subtransversality. The purpose of this section is to prove the following result.

Theorem 3.1. Let $f: N \rightarrow P$ be a smooth mapping. Then $f \times f$ is $\sigma-$ subtransverse to Δ_{P} at all points of A_{N} if and only if $\hat{f} h \mathrm{Z}$ on W_{2}, and strongly σ-subtransverse if and only if $\hat{f} \nmid z_{2}$ on W_{2} 。

Proof. Let $(a, l) \in W_{2}$ and $b=f(a)$. Let r be the rank of f at a. With respect to suitable coordinate systems at a and b f has the form $f(x)=\left(x_{1} \ldots \ldots x_{r^{\prime}} \phi(x)\right)$ with $\phi(0)=0$, $D \phi(0)=0, a=0 \in \underline{\underline{R}}^{n}, f(a)=0 \in \underline{\underline{R}}^{\mathrm{P}}$.

Let $\left(1_{1}, \ldots .1_{n}\right)$ be homogenous coordinates for 1 and assume $1_{k} \neq 0$, i.e. $l \in \underline{\underline{P}}_{k}^{n-1}$. Define $s_{k}: \underline{\underline{R}}^{2 n} \times \underline{\underline{P}}^{n-1} \times \underline{\underline{R}}^{2 p} \rightarrow \underline{\underline{R}}$ by $s_{k}\left(X, X^{\prime}, L, Y, Y^{\prime}\right)=X_{k}^{\prime}-X_{k}$ and let $s_{k}^{\prime}: \stackrel{R}{R}^{2 n} \times \underline{\underline{p}}^{n-1} \rightarrow \underline{\underline{R}}^{n}$ be equal s_{k} when $p=0$.

Then $s_{k}^{\prime} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}: A_{k}^{\prime} \rightarrow \underline{R}$ is a submersion, and $W_{2} \cap A_{k}^{\prime}=\left(s_{k}^{\prime} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}\right)^{-1}\{0\}$. Therefore $I\left(W_{2}\right)(0,1)$ is the principal ideal generated by the germ of $s_{k}^{\prime} \circ i_{k}^{\prime} o \alpha_{k}^{\prime}$ at (0,1).
 $Y^{\prime}-Y$, and as before let $\rho: \underline{\underline{R}}^{2 n} \times \underline{\underline{P}}^{n-1} \times \underline{\underline{R}}^{2 p} \rightarrow \underline{\underline{R}}^{p}$ be the projection to the least p coordinates. Recall the commutative diagram

$$
\begin{array}{ccc}
\mathrm{W} & \xrightarrow{\hat{\mathrm{f}}} & \mathrm{E} \\
\sigma \downarrow & & \downarrow \pi_{2} \\
& & \\
\mathrm{~N} \times \mathrm{N} & \xrightarrow{\mathrm{f} \times \mathrm{f}} & \mathrm{P} \times \mathrm{P}
\end{array}
$$

The ideal $I\left(\Delta_{\underline{\underline{R}}^{p}}\right)(0,0)$ is generated by the germs of $\psi_{1} \ldots \psi_{p}$ at $(0,0)$. The pullback by the mapping ($f \times f$) 0σ is therefore generated by the germs of $\psi_{j} \circ \pi_{2}$ 舍 at $(0,1), j=1 \ldots, p$.

Let $r_{k}: \underline{\underline{R}}^{2 n} \times \underline{\underline{P}}^{n-1} \times \underline{\underline{R}}^{2 p} \rightarrow \underline{\underline{R}}^{2 p}$ be the mapping $r_{k}\left(X, X^{\prime}, L, Y, Y^{\prime}\right)=$ $\left(Y, Y+\left(X_{k}^{\prime}-X_{k}\right) Y^{\prime}\right), l \leqslant k \leqslant n$. Since $\pi_{2} \mid A_{k}=r_{k} \circ i_{k} \circ \alpha_{k^{\prime}}$ we have $\psi \circ \pi_{2} \circ \hat{f} \mid A_{k}^{\prime}=\left(s_{k} \rho\right) \circ i_{k} \circ \alpha_{k} \circ \hat{f}=\left(s_{k} \rho\right) \circ T_{k} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}=\left(s_{k}^{\prime} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}\right)\left(\rho \circ T_{k} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}\right)$ with T_{k} as before. The conductor $c_{f}\left(I\left(W_{2}\right)(0,1), I\left(\Delta_{\underline{R}} p\right)(0,0)\right.$) is therefore the ideal generated by the germs of $\rho_{j} \circ T_{j} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}$ at (0,1), j = 1,p.

Finally, let $v_{k}: \underline{\underline{R}}^{2 n} \times \underline{\underline{P}}^{n-1} \times \underline{\underline{R}}^{2 p} \rightarrow \underline{\underline{R}}^{p+1}$ be the mapping $v_{k}\left(X, X^{\prime}, L, Y, Y^{\prime}\right)=\left(X_{k}^{\prime}-X_{K^{\prime}} Y^{\prime}\right)$. Then $c_{f}\left(I\left(W_{2}\right)(0,1)^{\prime} I\left(\Delta_{\underline{R^{p}}} p\right)(0,0)\right)+I\left(W_{2}\right)(0,1)$ is the ideal generated by the germs of $v_{k j} o T_{k} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}$ at $(0,1), j=1, \ldots p+1$.

For the first part of the theorem: Suppose $l_{k} \neq 0$ for some $k \leqslant r$. on U_{k} we have

$$
\rho_{k}\left(T_{k}\left(X, X^{\prime}, L\right)\right)=\frac{1}{L_{k}} \sum_{j=1}^{n} L_{j} \int_{0}^{1} \frac{\partial f_{k}}{\partial X_{j}}\left(X+t\left(X^{\prime}-X\right)\right) d t=1 .
$$

Thus $c_{f}\left(I\left(W_{2}\right)(0,1)^{\prime} I\left(\Delta_{\underline{\underline{R}}^{p}}{ }^{p}(0,0)\right)\right.$ contains the unit element in $C^{\infty}(0,1)^{(W)}$, and so by our convention is regular of codimension p at $(0,1)$. But we have also $\hat{f}(0,1) \neq Z$ (p. 8 statement (i)).

Suppose on the other hand $1_{1}=\ldots=l_{r}=0$. Then $c_{f}\left(I\left(W_{2}\right)(0,1)^{\prime} I\left(\Delta_{\underline{\underline{R}}}{ }^{p}\right)(0,0)\right)$ is regular of codimension p if and only if $\operatorname{poT}_{k} \circ i_{k}^{\prime}$ is a submersion at $\alpha_{k}^{\prime}(0,1)$. But this is equivalent to $\hat{\mathrm{f}} \mathrm{h} \mathrm{Z}$ at (0,1) (p. 9).

For the second part of the theorem: Suppose again $l_{k} \neq 0$
for some $k \leqslant r$. Then $c_{f}\left(I\left(W_{2}\right)(0,1) \cdot I\left(\Delta_{P}\right)(0,0)\right)+I\left(W_{2}\right)(0,1)=$ $C^{\infty}(0,1)(W)$ and so is regular of codimension $p+1$, and $\hat{f} \nmid Z_{2}$ at $(0,1)$ since $\hat{f}(0,1) \notin Z_{2}$ 。

Suppose on the other hand $I_{1}=\ldots=1_{r}=0$. Then $c_{f}\left(I\left(W_{2}\right)(0,1)^{\prime I} I \Delta_{R^{p}}^{p}(0,0)\right)+I\left(W_{2}\right)(0,1)$ is regular of codimension $\mathrm{p}+1$ if and only if $\nu_{k} \circ T_{k} \circ i_{k}^{\prime}$ is a submersion at $\alpha_{k}^{\prime}(0,1)$. But the last condition is equivalent to $\hat{f} \cap Z_{2}$ at (0,1) : this follows by an argument analogous to that for the case $f \mathrm{~m} \mathrm{z}$ on p. 9.

It follows that $f x f$ is strongly o-subtransverse to Δ_{p} at all points of Δ_{N} if and only if $\hat{N} \cap z_{2}$ on W_{2}. This completes the proof of theorem 3.1.

We close section 3 by giving the one piece of information which together with theorem 3.1 yields theorem 1.1.

Lemma 3.2. Let $f: N \rightarrow P$ be a smooth mapping. Then $\hat{\underline{I}} \mathrm{~m} \mathrm{Z}$ on W_{2} if and only if $\hat{f} \|_{2} Z_{2}$ on W_{2} Moreover $\hat{E} \|_{2} z_{2}$ on W_{2} if and

Proof. The last claim is obvious since $\hat{E}\left(W_{1}\right) \cap z_{2}=\varnothing$.
Let $(a, 1) \in W_{2}$ and assume that $\hat{I}(a, 1) \in Z_{2}$. Again. by suitable coordinatizations we may assume $N=R^{n}, a=0, P=R^{p}$, $f(a)=0$ 。

We know that $\hat{1}$ h z at $(0,1)$ if and only if
$\rho^{\circ} \mathrm{T}_{\mathrm{k}}$ oi $_{k}^{\prime}: \alpha^{\prime}\left(A_{k}^{j}\right) \rightarrow \underline{R}^{\mathrm{P}}$ is a submersion at $\alpha_{k}^{j}(0,1)$. since $\rho=\mathrm{pr}_{2}$ ov k where $\mathrm{pr}_{2}: \underline{R} \times \underline{R}^{\mathrm{P}} \rightarrow \mathbb{R}^{\mathrm{P}}$ is the projection this is equivalent to $v_{k} \circ \mathrm{~T}_{\mathrm{k}} \circ i_{k}^{\prime}$ being transverse to $\mathbb{K}=\underline{R} \times\{0\} \subset \underline{R}^{\mathrm{R}} \times \underline{\underline{R}}^{\mathrm{P}}$ at $\alpha_{k}^{\prime}(0,1)$ 。

We show that $T_{0} K \subset$ range $D\left(v_{k} O T_{k} o i_{k}^{j}\right)\left(\alpha_{k}^{0}(0,1)\right)$. Thus if $\hat{f} \cap \mathrm{Z}$ at $(0,1)$, then $\nu_{k} \circ T_{k} \circ i_{k}^{\prime}$ is a submersion at $\alpha_{k}^{\prime}(0,1)$ and so $\hat{f} \frac{1}{\|} Z_{2}$ at $(0,1)$.

As usual let $\left(I_{1} \ldots . I_{n}\right)$ be homogenous coordinates for 1 and set $I_{j k}=I_{j} / I_{k}$ when $I_{k} \neq 0, j=1 \ldots n$. Define the smooth
 then $c(0)=\alpha_{k}^{i}(0,1)$. Since

$$
v_{k} O T_{k}\left(X, X^{\prime}, L\right)=\left(X_{k}^{\prime}-X_{k} \sum_{j=1}^{n} L_{j k} \int_{0}^{l} \frac{\partial f}{\partial X_{j}}\left(X+s\left(X^{\prime}-X\right)\right) d s\right)
$$

on U_{k}^{\prime}, we find

$$
v_{k} \circ T_{k} \circ i_{k}^{\prime} \circ c(t)=\left(2 t, \sum_{j=1}^{n} l_{j k} \int_{0}^{1} \frac{\partial f}{\partial x_{j}}\left(t(2 s-1)\left(1_{1 k} \ldots \ldots l_{n k}\right)\right) d s\right) .
$$

From this we get

$$
\frac{d}{d t}\left(v_{k} \circ T_{k} \circ i_{k}^{\prime} \circ c\right)(0)=(2,0, \ldots, 0) \in T_{o} K
$$

which confirms that $T_{o} K$ sits in the range of $D\left(v_{k} \circ T_{k} \circ i_{k}^{\prime}\right)\left(\alpha_{k}^{\prime}(0,1)\right)$. Thus 全 $\pitchfork z_{2}$ on W_{2} if $\hat{f} h z$ on W_{2}. The converse is of course trivial.
4. Complements. The following is an easy consequence of theorems 1.1. 2.2 and 3.2.

Proposition 4.1. The smooth mappings $f: N \rightarrow P$ such that \hat{f} $\mathrm{H}_{2} Z_{2}$ form a dense open subset of $C^{\infty}(N, P)$.

For the condition $\hat{S} W Z_{2}$ is equivalent to $T f \cap O_{P}$ outside O_{N}. and the latter condition is satisfied for an open dense set of mappings f by a standard transversality argument.

The construction E is tailored to the study of the generic double points of f, as indicated by proposition 2.2. Let $D_{f} \subseteq N$ be the locus of genuine double points of f and $S_{f} \subseteq N$ the singular locus of f. Thus $x \in D_{f}$ if $f(x)=f\left(x^{\prime}\right)$ for some point $x^{\prime} \neq x$, and $x \in S_{f}$ if $\operatorname{ker} \operatorname{Tf}_{x} \neq\{0\}$.
$\hat{\mathrm{f}} \pitchfork \mathrm{z}_{2}$, then $\overline{\mathrm{D}}_{\mathrm{f}}=\mathrm{D}_{\mathrm{f}} \cup \mathrm{S}_{\mathrm{f}}$.
Proof. Let $\sigma_{1}: W \rightarrow N$ be the smooth mapping pr ${ }_{1}$ oo, where $p r_{1}: N \times N \rightarrow N$ is the projection to the first factor. Then
$\sigma_{1}(x, \xi)=x$ for arbitrary $(x, \xi) \in W_{1} \cup W_{2}$, and so
$D_{f}=\sigma_{1}\left(\hat{f}^{-1}\left(z_{1}\right)\right), S_{f}=\sigma_{1}\left(\hat{X}^{-1}\left(z_{2}\right)\right)$. Consequently

$$
D_{f} \cup S_{f}=\sigma_{1}\left(\hat{f}^{-1}(z)\right) .
$$

Since f is proper, $\sigma_{1} \mid \hat{f}^{-1}(Z)$ is also proper. Hence $D_{f} U S_{f}$ is a closed subset of N; in particular $\bar{D}_{f} \subseteq D_{f} \cup S_{f}$. It remains to show that $S_{f} \subseteq \bar{D}_{f}$. Let $a \in S_{f}$, so that $(a, 1) \in \hat{f}^{-1}\left(z_{2}\right)$ for a suitable $1 \subseteq T_{1} N$. Again, by means of coordinate systems at a and $f(a)$ we are reduced to the affine case $a=0 \in R^{n}, f(a)=0 \in \underline{\underline{R}}^{p}$. Choose $k \leqslant n$ such that $(0,1) \in A_{k}^{\prime}$. since $\hat{f} \cap Z_{2}, \nu_{k} \circ \alpha_{k} \circ \hat{f}: A_{k}^{\prime} \rightarrow \underline{\underline{R}}^{p+1}$ is a submersion at $(0,1)$, and we may choose a local coordinate system around (0,1) in W in which $v_{k} \circ \alpha_{k} \circ \hat{I}$ is presented as the standard projection $v_{k} \circ \alpha_{k} \circ \hat{f}\left(w_{1} \ldots, w_{2 n}\right)=\left(w_{1} \ldots, w_{p+1}\right)$. In this coordinate system, which flattens $W\left(\underline{\underline{R}}^{n}\right)$ into $\underline{\underline{R}}^{2 n}$ around $(0,1)$, we have $\hat{\mathrm{f}}^{-1}\left(\mathrm{z}_{2}\right)=\left\{\mathrm{w} \in \mathrm{R}^{2 \mathrm{n}} \mid \mathrm{w}_{1}=\ldots=\mathrm{w}_{\mathrm{p}+1}=0\right\}$ and $\hat{f}^{-1}\left(z_{1}\right)=\left\{w \in \underline{\underline{R}}^{2 n} \mid w_{2}=\ldots=w_{p+1}=0\right.$ and $\left.w_{1} \neq 0\right\}$. Obviously then the origin $0 \in \hat{F}^{-1}\left(z_{2}\right)$ belongs to the closure of $\hat{\mathrm{f}}^{-1}\left(\mathrm{z}_{1}\right)$. Backtracking this means that ($a, 1$) belongs to the closure of $\hat{\mathrm{P}}^{-1}\left(\mathrm{Z}_{1}\right)$. By continuity this implies that $a=\sigma_{1}(a, 1)$ belongs to the closure of $\sigma_{1}\left(\hat{f}^{-1}\left(z_{1}\right)\right)$, i.e. to \bar{D}_{f}. Thus $S_{f} \subseteq \bar{D}_{f}$.

This gives at neat proof that $\bar{D}_{f}=D_{f} U S_{f}$ is a generic property for proper mappings, satisfied by those mappings $f \in C_{p r}^{\infty}(N, P)$ such that $T f \cap O_{P}$ outside O_{N}. One can also prove a general transversality result.

Proposition 4.3. Let M be a smooth submanifold of E. The smooth mappings $f: N \rightarrow P$ such that $\hat{f} \pitchfork M$ form a dense subset of $C^{\infty}(N, P)$. If M or N is compact, this subset is open.

In general the openess property fails unless there is a compactness condition. E.g. proposition 4.1 holds because of the special character of the submanifold Z_{2}.

We omit the proof of proposition 4.3.

References

[1] A. Andreotti, P. Holm: Quasianalaytic and parametric spaces. In Real and complex singularities, Oslo 1976. Sijthoof \& Nordhoff Intern. Publ.
[2] I. Mather: Notes on topological stability. Harvard University 1970.

