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Abstract 

Several different classes of hypercausal operators are useful in 

linear system theory. The relationships amongst these classes have 

not, in all instances, heen clarified. It is the purpose of this 

note to clarify these relationships and to provide, for each pair 

of classes of hypercausal operators, necessary and sufficient con-

ditions on the Hilbert resolut_ion space to guarantee equality of 

the classes. In addition, the effect of similarity transforms on 

each class is discussed. 
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In linear system theory the concept of physical realizability, 

or causality, of an operator corresponds to the mathematical con­

cept of a nest algebra. The reader is referred to [3] and to the 

bibliography cited therein for a detailed account of the rationale 

behind the identification of the causal operators as the operators 

in a nest algebra. Three separate hypercausality concepts are 

discussed in [ 3], each to express in some fashion the notion that 

the present output of a system does not depend upon the present 

input. The strongest, strict causality, coincides with the Jacob-

son radical of the nest algebra. The other two are, in order of 

strength, strong causality (introduced in [2]) and strong strict 

causality. In between these two lies Larson's ideal R.N. He shall 

define all four of these concepts belm-v, using a single coherent 

scheme, and give necessary and sufficient conditions on the nest 

for each pair of concepts to coincide. 

Throughout this paper, H will denote a separable Hilbert 

space. A nest (or resolution of the identity) is a subset of the 

set of orthogonal project.ions on H which contains 0 and I, is 

totally ordered under the usual ordering for projections, and is 

closed in ~che strong operator topology. The pair (H,N) is called 

a Hilber·t resolution s12ace and the causal operators are, by defini­

tion, just the operators in nest algebra, AlgN={TEB(H)jTP=PTP, for 

all PEN}. 

A projection E in B(N) is called an interval f:rom. N if 

E can be written as E=P-Q, where P,QE/IJ and Q<P. If E an 

interval then the projections P and Q are uniquely determined. 

They are called the upr.er and lower endpoints of E. There is a 

nat. ural partial order < < on the set of intervals from N: we say 

that E<<F if the upper endpoint of E is a subprojection of (or 

equal to) the lower endpoint. of F. 



- 2 -

A partition P={E.}. I 
1 1e 

is a family of pairwise orthogonal inter-

va ls from N such that L E.=Io 
i EI l 

(The sum converges in the strong 

operator topology over the net of finite subsets of the index set 

I . ) Since the Hilbert space is separable, the index set I is 

always finite or countably infinite. If E and F are two ortho-

gonal intervals from N, then either E<<F or F<<E; consequent-

ly, each partition P is totally ordered by <<. It is easy to 

construct an example of a partition with any given countable order 

type. If (P,«) is order isomorphic to a subset of the integers, 

with the usual ordering, then we say that P is an integer ordered 

partition. and P={E. }.El 
l ]_ 

are partitions, we say 

that P' is a refinement of P and write P<P' if each F. is a 

subprojection of some E .• 
l 

J 

This gives a partial order on the fami-

ly of all partitions. Each of the three families, the set of all 

partitions of N, the set of integer ordered partitions, and the 

set of finite partitions becomes a directed set under ordering by 

refinement. Each of these directed sets will serve as the index 

set for convergent nets used in the definition of distinct notions 

of hypercausality. 

For finite partitions, the more customary definition of parti-

tion can be obtained by replacing the intervals in the partition by 

the endpoints of the intervals. For integer ordered partitions, 

the endpoints of the intervals form a generalized partition, as 

defined in [3, Chapter 2, section c]. In each case the two ap~ 

preaches~ are equivalent; it is more convenient for us to define 

partitions in terms of intervals so that we can accomodate 

arbitrary partitions without change of nota·tion. 

is a partition of N and AEAlgN is a causal 

operator, let A_= l E,AE .• 
f1 iEr l l 

(When infinite, the sum converges in 

the strong operator topology over the net of finite partial sums.) 



For each causal operator JA we the obtain three distinct nets 

of operators, depending on whet.her we take as the index se·t the 

finite partitions, the integer ordered partitions, or the arbitrary 

partitions. A class of hypercausal operators is ob-tained by con~ 

s idering all causal operators A such that Ap +0 1r1i t11. respect to 

one of these index sets with convergence in one of the five natural 

toplogies on AlgN. Fortunately ( a·t least from the point of view 

of reducing the ·tedium), the a priori possibili-ty that: there are 15 

distinct notion of hypercausality does not, in fact occur. In~-

deed, there are at most five (and at least four) separate notions~ 

In what follm,;s, lim will denote convergence with respect to 

the norm 'copology and the word 

lim will indicate whether the index set is t.he directed set of 

finite partitions, integer ordered partitions or arbitrary parti-

·tions. Conver9ence in the strong operc:ttor topolog-y vlill be denoted 

by s-lim and in the weak operator: topology (which vJe shall have 

little cause to discuss) by w-lim. The remaining two topologies, 

the ultrastrong and the ultraweak, ld notr1ing new' indeed, the 

strong and ultrastrong (respectively, weak and ultraweak) topolo-

gies agree on bounded sets and each of the nets Ap is bounded, 

The following proposition further limits t~e number of hypercaus-

ality concepts: 

Prol2_S?siton 1. Let AEAlgN, Then the following are equivalent: 

( i) (fin)-s-lim A =0 
p p 

(ii) (int)-s-lim Ap=O 
p 

(iii} (arb)~s-lim Ap=O. 
p 
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Proof. Let D denote either the directed set of integer ordered 

partitions or the directed set of arbitrary partitions. We shall 

show (i)=>(ii) and (i)=>(iii) simultaneously~ the two arguments are 

identical and each implication is obtained by giving V the appro-

priate interpretation. Assume that (i) holds and let E>O and 

x EH be given. He must prove that there exists a part.i tion P in D 

such that if Q is a partition in D which refines P then 

IIAQ X II 2 < E. 

Let 
-1 

o=E(l+IIAII 2 ) • Let P={El,, .. ,En} be a finite partition 

such that for any finite refinement Q' of P, vve have II AQ, x II 2 <E. 

Now suppose that 0= { F } 
~ j j EJ is a partition in V which refines 

P. \--Je will show that IIAQxii 2 <E. Since ~ F .=I, there is a finite 

subset ]0 c J such that 

a subprojection of some E. 
1 

II ( I 
j¢Jo 

H1 

jEJ J 

) 2 For each jEJO' F. is F. XII <6. 
J J 

P, hence there exists a finite 

partition G= {G , , •• , G } such that { F . I j E J 0 } c G and G refines 
1 n J -

n 
P • Therefore, ~ IIF.AF.xll 2< Y, IIG,AG xll 2=iiAGxll 2 <o. Consequent-

jEJ J J i=l 1 i 
0 

ly, we have 

IIA 0 xn 2 = ~ IIF.AF.xn 2 = I IIF.AF.xll 2 + 
~ jEJ J J jEJ0 J J 

f IIF.AF.xll 2 
j~J J J 

< 6 + I IIAII 2 11F.xll 2 = o + 
j~Jo J 

<o+IIAII 2o=E. 

0 

IIAII 2 11 I F.xn 2 
j~Jo J 

This completes the proof that (i)=>(ii) and (i)=>(iii). 

The converses, (ii)=>(i) and (iii)=>(i) will also be proven 

simultaneously. So assume either (ii) or (iii), i.e. assume 

s-lim Ap=O, where PEV. He must prove that 
p 

(fin)~s~lim Ap=O. Let 
p 

oO and xEH be given. vve must find a finit_e partition P such 

that IIAP,xii2<E: for any finite partition P' which refines P. 



Let 

refinement n ' in 

I 0 c I such that 

be a partition 

D, 11An,xll 2 <o, 

II ( ~ E . ) x II 2 = 
i4I 0 l 

There 

I liE 
iir 0 

D such that for any 

exists a finite subset 

II 2 o. Le·t P be the 

finite partition obtained by arranging in order the right and left 

endpoints of the intervals Ei, iEI 0 and taking successive differ~ 

ences. p is, in fact, the smallest finite partition such that 

{ E i I i EI 0 } c p • 

refines P. 

Let P'={G , ... ,.G} 
1 n 

be any finite part.i tion which 

He shall prove ~cha·t II !A p I X II 2 < E 0 

Now, eve~J projection G. 
J 

is either a subprojection of some 

E. 
l 

Then 

vlith 

]0 = 

. E 7 
l -o 

{ j I G . 
J 

or is orthogonal to each 

< E . , for some i E I 0 } and 
l 

J 1 = {jiG.E. 
J l 

0, for all 

]0 n J = ¢ and J u J = { 1 ') 

1 0 -, $ .,;__, ~ 

E. vvi th 
l. 

l E. } 
u ] 

i~ I 0 -

. 'n} . Let Q• 

titian in D vvhich is a common refinement of Q and 

Let 

be a par-

P• and has 

the property that { G .1 j EJ 0 } c Q' • (Such refinements exist since 
J -

every G. 
J 

with . EJ 
J 0 is a subprojection of some 

Since Q" refines Q, we have 

we obtain I IIG .1\G .xll 2<o. Therefore, 
jEJO J J 

n 
IIAP I X 11 2 = I II G . AG ' X II 2 

j=l J J 

I II G 'AG . X II 2 + 
jEJO J J 

~ II G . AG . x II 2 
jEJ J J 

l 

< 0 + IIAII 2 I IIG. x 11 2 

j E J l J 

= 0 + IIA II 2 11 ( I G,) X 11 2 
. EJ J 
J l 

0 + II fl.~- II 2 I! ( I E,) X 11 2 

iEI l 

0 

< 0 + II All 2 o = E • 

'This ends the proof of the proposition, 

But 

E, 
l 

in p 0 ) 

so 
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Remark. Essentially the same argument as the one given above, with 

a few fairly routine modifications, 

three conditions (fin)-w-lim Ap=O, 
p 

proves the equivalence of the 

(int)-w-lim Ap=O, and 
p 

(arb)-w-lim Ap=O, 
p 

for AEAlg N. It is also immediate that, for 

AEAlgN, s-lim Ap=O 
p 

perhaps not likely 

implies w-lim Ap=O. 
p 

It is not known if, and 

that, the converse holds. The three possible 

limits in the uniform topology are, in general, distinct. They 

are, however, easier to work with than the strong or weak topology 

limits. The reason is that if P is any parti-tion which refines Q, 

then IIAP II.;; IIAQ II. Thus, for each of 

lim Ap=O, it is sufficient to find, 
p 

partition P such that 

the three nets, to prove 

for ~::>0 given, an appropriate 

Definition. Let N be a nest. Define the following families of 

causal operators: 

RN = {A EAlgN I (fin) -lim Ap = o}, 
p 

Rint = {AEAlgN I (int)-lim Ap = o}, N p 
ro 

{AEAlgN I (arb)-lim 0 } , RN ::::: Ap == 
p 

SN = {A EAlgN I (fin) -s-lim A = 0 } . 
p p 

In view of the remark above, RN consists of exactly those 

causal operators which satisfy Ringrose's criterion for membership 

in the radical of AlgN 

radical of AlgN. 

[5], thus RN is precisely the Jacobson 

is exactly the set of strongly strictlr 

causal operators, as defined in [3, Chapter 2, section B). As 

shown in [3 ], R~nt is a uniformly closed two-sided ideal in AlgN. 

R;, another uniformly closed two~sided ideal, was introduced by 

Larson in [4] and plays an important role in the study of similari-



ties of nest_ al is t.he un i forro closed left ideal of 

stron~ly causal operators, as defined in f2l or [3]. With the aid 

of Proposition l, the relation between the strongly strictly causal 

operators and the strongly causal s now becomes clear: 

R ini: c S, Indeed, in view o:E tl1e r:::mark above the fol rela~ 

tions are evident.~ 

Proposit s 2, 3 and 5 below will provide appropr necessar"":l 

and sufficient conditions on the nest N to ensure that. each con~ 

tainment is, in fact, an equal 

Each of the four ideals above can be vie¥Jed as the operators 

which have, in an appropri::1te sense, zero die. 'The dia~ 

.9_0nal of a nest the su})a. . * n (Algl\1 the 

operators in the di are the If AEAlgN 

and the net Av is ~Ln any of the senses above, then 'the 
I 

limit, D, commutes with each project 'Thus the l 

when it exists, 1s Hl the di:.igonaJ and may be of as t.he 

diagonal (or memoryless) part of A. In this case, of course, A-D 

belongs to the ideal which corre which the 

net converges. 

It is instructive to look, in icular, a·t the behavior '"at 

atoms", lm atom is an interval E=P-Q from N vlhere Q is the 

immediat.e predecessor of P in t.he order of ·the nest. Suppose 

that E is an atom and that P..ESN . Let X be any vector :tn E. 

If p is any parti·tion which cont~ains E, ·then A x=EAEx. 
"P 

Since 

every partition has a refinement vv·hich contains E, \'.'e see that 

II EAEx II< E:, for every ~::>0. Thus 

part of the diagonal of A corre to the 

ticular, suppose that AI 

where P={E. }. _ 
l lEi 

is the set of atoms from f\1 , 

ev,; EAE as the 

;J.tom T _n 

I== I E. ' 
iEI 1 

par~ 

In tJ1e net of arbi-
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trary refinements of N P the nal element. Therefore, 

(arb)-lim Ap 
p 

and (arb)-s-lim Ap 
p 

s exist and both are equal 

to L E. AE. 
i EI 1 l 

TI1us for a total atomic nest 

consists of the causal opera tors vli ·th l part zero, i.e" 

AER~=SN if, and only if, EAE=O for every atom E from N. We 

now proceed to the propositions which clasify vihen the var s 

ideals of hypercausal s are 

!:,reposition 2. Let N be a nest. 'I"he fol ng are equivalent: 

( i ) 0 has an im.med e successor and I has an iate 

ssor~ 

( ii} 

Proof. Assume (i) holds. It is then clea.r any ition P 

of N must have a first and a last element w1th to the 

order <<. If P is integer ordered, then P is necessarily 

finite. Thus the directed set of finite itions concides with 

the directed set of integer ordered 

Now assume that (i) does not hold. e, for , that 

I has no irm:nediate predecessor (the is essent.ial the 

same if 0 has no immediate successor). Then there is an 

of project in N vihich converges 

strongly to r, and =P. ~P 
1. 

P={Ei}iEN is an integer ordered partition. 

vector in E., for each 
l 

00 

i and let A= ~ x 
i=2 

operator x.®x. l 
1 1.-

is defined by 

l • for i>2. Then 

Let x: " be a unit 
l 

i·~ l ' (The rank one 

It is 

s-

easy ·to check that the infinite sum con verges in the strong opera-

tor topology. ) Since any integer ordered ion possesses an 

integer ordered refinement vvh.ich also a ref of P and 



since P,p""'O, 

is a finit.e ref 

(namely, tb.e 

EE =F. i ~i 
for all 

and so 

Proposition 3. 

is clear t.l1at l l ER irtt 
, 'N On th._~, ct.her hand, if Q 

t. and f F' 
-' is the last erval Q 

wh has I as its upper ) , then 

i some eger crherefore 

IIA II '""I 
Q 

4::tn_Cl so 

Let N be a nest. 'I'he fol 

IJ 0 I 

diate cessor and an imm.ediate sus:o;essor. 

ii) 

Proof" Condit. equivalent to the s aternent that N is 

order c to a subset of the exLended t eg e r s , {·-co } U Z U { oo } • 

vfuen this holds {If is total atc'Tiic and the set of a.toms 

forms an integer ordered partition. 

nal element in the directed net of a 

cular, eve1-y ition is 

\.Yhenever ( i) holds 

The i:hat { ii ' . 1.1.es 

proof of the n0 propos ion, 

element of N th no 

works if P has no 

sequence of project in N 

all E =P ~P 

F'urthermore P is the 

part. :Lons part. 

"' 'I'herefore R.~1 =R.N 

lS .~ 

ssor.) 

such that_ 

fcrc 

lar to the 

an 

:s argumen·t 

Then ·there a 

:=I' p >P . , 
n n+l-

Let X 

for 

be n, and lim P =P. 
n n n n+ n 

a unit vector in and let Then A and 
n n=i 

UA"=l. Also note that if Q any pro ect.ion ch is 

than P, then 

The set of ls a of 

/\1 and is to check t.bat On the other 

hand, if Q:= { an ordered it then there an 
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inteqer k such that F k =Qk -Rk 

Therefore II F k AF k II = l , hence Since n is an arbitrary 

integer ordered partition, we see that 'l'hus (ii)=>(i). 

Remark 'I'he known fact that RN=R~ iL and only if N is a finite 

nest also follows from Propositions 2 and 3. 

Proposition 5 will characterize the nests for wh 

The most essential ingredient contained the lemma below. A 

continuous nest is a nest which has no atoms, Every continuous 

nest is order isomorphic to the interval [0,1 ]. (Indeed if x is 

a separating vector for the abelian von Neumann algebra generated 

by N then the mapping P+<Px,x> is an order is ism of N 

onto [ 0, 1 J.) Thus when N is continuous, we may use [ 0, l ] as an 

index set for the elements of N. 

Lermna 4. 

Proof. 

ro 
If N is a continuous nest then RN is a proper subset 

Let N= {P I rE[O, 1]} be a continuous nest., 
r 

Enumerate the 

rational numbers in (0, 1), Le. write Qn(O, -1 as a sequence 

He v..rill choose by induction bvo sequences, 

( t ) 
n n=l , 2, • , . and 

2 ' ... 
with Jche following properties: 

( i) 

( 2 ) 

( 3 ) 

1 
O<E <-:t:T ' n 2 n 

for all n 

The intervals [ ' ' + J n·~l L. -E ,L.. E , -·--
n n n n 

dis joint subintervals of [ 0, 1 ] • 

are 

Each t EQn(O,l ), 
n 

If t 
n 

and j<h then 

r,E U ["c.~f, ·t.+c]. 
J i<n l l l l 

pairwise 

Indeed, let t 1 =r1 and let t.: 1 <1 /4 be suff:Lciently small that 



It_~;:: ,t +E J c ro,l ]. 
Ll l l 1-· 

have he chosen sAtis 

such that [ }· c "- -L r J L,=r:. .• vL,,Jc.,. 
l l l l 

and let 

" an.ct 

h be the smallest integer 

S inc•:: the comple-

ment of [ +- ···E "c +.-~ • ' f • c-_ ' 
]_ }_ J_ ]_ 

in [ 0 ' l l l t; 

E such that O<E < 
n n 

dis nt frorr 

For each pair of numbers 

For e:::i.ch n=1 tr2 

E[t ,t +E j 
n n n 

and let y be a unit 
n 

,1'1,= L X 

n=l 
n 

It i.s easy t_() 

strong operator 

finish the proof ShtYtJ 

To prove that. A 
N' 

that 

le"c C. II 
'-n 

projections +c J n 

integer rn such that 

p::c I E [ t. ~ E, 
n>m n L 

t +E l 
rt n 

and 0= /" E [ t 
no;;m 

are disj nt projec'ciO/lS 

tion vihich con·tains the inbc=~rvals 

·' l 

[t-s ,t +s l n n n n-

let 

is 

be a unit vector in 

ctor ~n Ert -E ,t 1. 
- n n n· 

Let 

a:nd c 0 

t +::: J 
n n· 

II 2 -:. t: . 

.L > - J JL."rt.. ~ 

n n 

II }l. II """'l ide shall 

Since ·the 

Let 

Then p and Q 

be a 

and E[t ,t +E ] 
n n n 

an 

n=l 2, ... ,m c.rnong i·ts elements. Let p~ { F . ) : E 
1. L- I 

be any r-efinement 

of p'. IJJe need merely sh0\4 tha.t II 2 < c, 

If F .::p [ i ~ -J 

]= { i EI IF. G~Q) 0 

l 

Ill-\ w11 2 ~ 
p 

i 

~~ 

~l 

I 
\'' 
L 

II F . l\F . w II 2 ""' 
l ]_ 

li F , l1J" . Pw li 2 ,;; 
l ]_ 

c< IIPw II 2 < E. 

+c ] 
n· 

then 

L IIF P+Q) I·Q F~v;ll 2 
L ' c-}_ \,j 

·~ 

iEJ 
II F, P~v II 2 

1 

To shmv that A¢R~ c we shall prove that 

partition P" So l e·t p = { F . } 
)_ 

be a pa ition. Ea 

Let 

for any 



in P is of the form E[lk,hk], for uniquely de ned elements 

[0,1]. 

u [t -t: ,t +t: J 
n n n n n=l 

By the choice of the t: , the set 
n 

has Lebesque measure strictly smaller than l , 

00 

On 

the other hand, since I F_ =I, the set 
k=l k 

U ( 1 
\ k has measure l . 

k=l 

Therefore, there exists a number qE[O, l] and an index k such 

that q belongs to the open erval but does not belong 

to U [ t _~ e: _ , t +e: ] , Since q*hk, there a 6>0 so that. 
n:l n n n n· 

(q,q+6) c , hk]. Let_ r he a rational numl:>er H1 ·the interval 

( q, q+ 6) ' Since Qn(O,l) c U [t -c: ,t +E], r lies in some inter-
n:o::l - n n n n 

val [t -~t: ,t +t: ], 
n n n n 

But. a~[t -c: t +t: ], so we must have 
' n n n n 

q < t - E < r < q+ 6 , 
n n 

We would like to have t +t: 
n n 

6 but. t.h is may not 

be true. The situation is easily rec·ti fied by repeating Jche proce-

dure once again: let_ s be a rational number in the 

(q,t -t: ) 
n n 

and let. m be such that: sE[t ~t:: ,t +t: ]. 
rn m m m 

obtain 

q<t -t: <s<t +t: <t -E <q+6. 
m m m m n n 

In particular, Therefore, 

in particular, Thus 

enTal 

'I'his time we 

F f.\.F X =y ; 
k k m m 

Proposition 5 Let N be a nest. 'rhe following are equi valent: 

( i) N is totally atomic 

Proof. The easy implication (i)=>(ii) has already been given in 

the paragraph imrnediately preceding Proposition 2 o So suppose that 

co 

N is not totally atomic; we must shmv RN=I=SM· 

Let be the (pass empty) set of atoms from N. 



Let £:::o:I-- I E 
i E I 1 

10 E Let. K be U1e range of the 

projection E- De fine a n.est on t.he Hilbert space K by 

Observe that. N E a continuous nest. Each ope-

rator A in B(K) has a bounded linear extens to I< 

which vanishes on the or complern1"!nt, lrJe denote 

this extens i·Jote that AEAl 

AEAlgN. 

1s a continuous neat. 

Fix an elemen·t A of 8 'J ~E 

show tha·t AES M 

a proJect.ion in N~, then one can, 
l~ 

an. d. 

adc1 

ill t.o Q, obtain a projection P :U.1 ~J 

Qo=O<Ql <' .• <Q_ =IK n 
1s a finite subnest o 

project 1n (\] 

i=l, ... ,n. 

n 
\ ( ) ~ .. 
L II , P . ··• P , . A t P " ~ P .: . 

1 '~I J.. 1·~1 
11 2 = 

i=l - ~ . 

From these remarks lt is clee~.r 

Final we need to shov; 

i,e. assume that AER~, Le·t 

tit 

set 

II F. 
l 

P={ 1 
1 i EI 

of 

PE={FiEjiEI a.nd 

Ell= II II< s 
], 

IV such 

for all 

tJ·1at 

that 

t'hat. 

is a 

P.. 

II F. 
1. 

'I'hus 

if, and on 

1s a proper subset of 

vle shall 

ven. If Q 

appropriate atoms of 

so tha'c If 

ME' then v.;e can obtain 

l\s ume the 

'l'hen there is a par~ 

. II <c.:, fo:r all i, 
1. 

of /liE and 

The 

contrary to hypothe-

sis. This completes the of the proposition. 

Remark From Propositions 3 and 5 and the first sr::n1tence of the 

proof of it 3, 1r1e see that. i:he strongly strictly causal 

operators and the s causal operators on a nest N coincide 

if, and only if, N is order is c to a subset of the e;'{.tended 

integers 



- 14 -

He conclude this note with a discuss of the effect of simi~ 

larities on each of the classes of hypercausal operators considered 

above. The significance of similarities for system theory is 

indicated by the fact that Larson's theorem [ 4] that any two con-· 

tinuous nests are similar implies that there exist positive de-

finite hermitian opera tors which do not admit spectral factor 

zation. (See [3] for a discussion of factorization problems.) 

If N is a nest and T is an invertible operator in B (H) 

then, for each 
~1 

pEN I TPT is an idempotent (not necessarily self~ 

adjoint). Let <PT(P) be the orthogonal project on the range of 

-l 
TPT Thus, T maps the range space of P onto the range space 

of lj)T ( p) , Let TN denote the nest. {rp,_r(P) I PEN}, We say that two 

nests M and N are similar •.c: l.L M=TN for some invertible 

T EB (H) • The map (j)T: N+M induced by T is an order isomorphism of 

N onto M. If ¢ is any order i ism of N onto M then 

<!> has a natural extension to a map from the set of intervals from 

N to the set of intervals from M: define ¢(P-Q) to be 

q,(P)-Ijl(Q}. (iile denote the extens the same symbol") In par-

ticular, atoms from N correspond to atoms from M If corre~ 

sponding atoms have the same ion, vle say that ¢ £_reserves 

dimension. It is evident that each order isomorphism of the form 

¢T preserves dimension, Recently, Davidson [1] has proven the 

converse to this: if ¢ is an order isomorphism of N onto M 

which preserves dimension, then there is an rtible operator T 

such that M=TN and 

Fix a nest N and an T and let M=TN. 

Then the two nest algebras AlgN and AlgM are similar: 

-l 
AlgN=T (AlgM)T. Furthermore, and , i.e. 

the strictly causal operators and the strongly strictly causal 

operators are preserved by similarities, The first of these two 



facts is completely trivial - follovJ:s immecHately from the defi-· 

ni ton of the t·ad 1 as the intersect of t.he kernels of all the 

irreducible representations of the a ebra. If follows equally 

rapidly from the characte z<:d: ion C)f tJ:H::, radical as the st 

ideal consisting entire of quasi~"nil element.s, et a 'chird 

proof is available: both similari results stated above follow 

frorn a lemma of Larson that if any 

interval fcom /11 and 
~l 

K::-cliT il liT li, 

II E/-lli II ,;; K II <P C"l ( E 'I' 
L 

l¢1T E)ll and To obtain 

the two similari 

p={E,}.E 
l 1. -I 

is a 

results one need mere 

nlte or in 

observe t.hat. if 

it.ion of M t.hen 

{¢T(Ei) }iE I is a finite or integer 0rdered partition of M-

If P ]_ :3 an a.rb i it~ ic~I1 it is not necessarily 

"" t.he case tha·t a pa.r t t icJI1 .. As a consequence, RN 

need not be preserved sirnilarities .. A detailed discussion of 

th rnay be found tn [ 4 ] . 

Fi11.al \-.Je "'curn to (' 
..) 

/1} 
In. of Larson's results on R~, 

it_ :1s not smrprisinq tl!at_ v1e find tl•at S N need net be preserved 

similarities. 

Example. a 

pair of s ilar nests. If is a fin t.e Borel measure on 

:eor each (:resp. 

denote Ute mul"c lit:a t. operator the characterist function 

of [o,t] (resp. [o,t)) Let N p. denote m?!st consisting of all 

the project~ions P~ artd 

Let \1 a pure atomic xneasure on th 

equal to Qll(O,l). find tJ1at 

and only if tEQn(O,l ). The nest t_c)i:a 1 and the atoms 

are the :Ln·ter?al 
v v v 
~P"'-···Pt , tEQil 

L -
' l be Lebesgue 
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measure on [0,1 l and let A=m+v. In the nest N" the atoms are 

once again the intervals 

nest is not totally atomic. Indeed, H =H ~H and the sum of the A m v 

atoms from N 'A is the projection on H , not the identity on the v 
v A. v A 

whole Hilbert space H'A. The map ~:N ~N given by ¢(Pt)=Pt and 

v A ¢(P _)=P _, for all t, is an order isomorphism which preserves 
t t 

dimension (all atoms are one dimensional). By Davidson's theorem 

[4], ~=¢T for some invertible operator To So NA.=TNv and 

v -1 A ~l 
AlgN =T (AlgN )T. We shall show that S :J:T S 'r. 

N v N'A 

Let A be a non-zero operator in (AlgNA)n(AlgN'A)* with the 

property that EAE=O for ev~ry atom from N A. (A is simply a 

multiplication operator by a function f EL oo ( [ 0, l ] , A) with the 

property that f(r)=O, for all rEQn(O,l).) Since A is memory-

less, it commutes with each projection in 

any partition p • Thus 

A 
N ~ therefore A =A 

p 
for 

Let B=T-l AT. Then BEAlgN v. By Larson's lemma [ 4], 

IIFBFII"IITIIIIT-liiii¢T(F)TBT-l ¢T(F) II=IITIIIIT-liiii¢T(F)A¢T(F) 11=0, for every 

atom F f Nv. rom . !IV Slnce ~~ 

-1 
~ T S AT, so 

N 

is totally atomic But 

as desired. 
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