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Abstract

Several diffefent classes of hypercausal operators are useful in
linear system theory. The relationships amongst these classes have
not, in all instances, heen clarified. It is the purﬁose of this

note to clarify these relationships and to provide, for each pair
of classes of hypercausal operators, necessary and sufficient con-
ditions on the Hilbert resolution space to guarantee equality of

the classes. TIn addition, the effect of similarity transforms on

each class 1s discussed.
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In linear system theory the concept of physical realizability,
or causality, of an operator corresponds to the mathematical con-
cept of a nest algebra. The reader is referred to [3] and to the
bibliography cited therein for a detailed account of the rationale
behind the identification of the causal operators as the operators
in a nest algebra. Three separate hypercausality concepts are
discussed in [3], each to express in some fashion the notion that
the present output of a system does not depend upon the present

input. The strongest, strict causality, coincides with the Jacob-

son radical of the nest algebra. The other two are, in order of
strength, strong causality (introduced in [2]) and strong strict
causality. In between these two lies Larson's ideal RE. We shall

define all four of these concepts below, using a single coherent
scheme, and give necessary and sufficient conditions on the nest
for each pair of concepts to coincide.

Throughout this paper, H will denote a separable Hilbert

space. A nest (or resolution of the identity) is a subset of the

set of orthogonal pfojections on H which contains 0 and I, is
totally ordered under the usual ordering for projections, and is
closed in the strong operator topology. The pair (H,N) is called

a Hilbert resolution space and the causal operators are, by defini-

tion, just the operators in nest algebra, AlgN={T€B(H)|TP=PTP, for
all Pen}.

A projection E in B(N) 1is called an interval from. N if

E can be written as E=P-Q, where P,Q¢N and Q<P. If E 1is an
interval then the projections P and Q are uniquely determined.

They are called the upper and lower endpoints of E. There is a

natural partial order << on the set of intervals from N: we say
that E<<F if the upper endpoint of E 1is a subprojection of (or

equal to) the lower endpoint of F.



}

vals from N such that 2 E.=I. (The sum converges in the strong
1€l

operator topology over the net of finite subsets of the index set

A partition P={Ei ie] is a family of pairwise orthogonal inter-

I.) Since the Hilbert space is separable, the index set I is
always finite or countably infinite. If E and F are two ortho-
gonal intervals from N, then either E<<F or F<<E; consequent-

ly, each partition P is totally ordered by <<. It is easy to
construct an example of a partition with any given countable order
type. If (P,<<) 1is order isomorphic to a subset of the integers,

with the usual ordering, then we say that P is an integer ordered

partition. If P ={Fj}j61 ~and P={Ei}iEI are partitions, we say
that P' is a refinement of P and write P<P' if each Fj is a
subprojection of some Ei' This gives a partial order on the fami-

ly of all partitions. Each of the three families, the set of all
partitions of N, the set of integer ordered partitions, and the
set of finite partitions becomes a directed set under ordering by
refinement. FEach of these directed sets will serve as the index
set for convergent nets used in the definition of distinct notions
of hypercausality.

For finite partitions, the more customary definition of parti-
tion can be obtained by replacing the intervals in the partition by
the endpoints of the intervals. For integer ordered partitions,
the endpoints of the intervals form a generalized partition, as
defined in [3, Chapter 2, section C]. In each case the two ap-
proaches . are equivalent; it is more convenient for us to define
partitions in terms of intervals so that we can accomodate
arbitrary partitions without change of notation.

If P={Ei}. is a partition of N and A€AlgN is a causal

1€]
operator, let AP= y EiAEi' (When infinite, the sum converges in
i

1

€l

the strong operator topology over the net of finite partial sums.)




For each causal operator A we thereby obtain three distinct nets
of operators, depending on whether we take as the index set the
finite partitions, the integer ordered partitions, or the arbitrary
partitions. A class of hypercausal operators is obtained by con-
sidering all causal operators A such that AP+O with respect to
one of these index sets with convergence in one of the five natural
toplogies on AlgN. Fortunately (at least from the point of view
of reducing the tedium), the a priori possibility that there are 15
distinct notion of hypercausality does not, in fact, occur. In-
deed, there are at most five (and at least four) separate notions.
In what follows, lim will denote convergence with respect to
the norm topology and (fin)-, (int)-, or (arb)- preceding the word
lim will indicate whether the index set is the directed set of
finite partitions, integer ordered partitions or arbitrary parti-
tions. Convergence in the strong operator topology will be denoted
by s-lim and in the weak operator topology (which we shall have
little cause to discuss) by w-1lim. The remaining two topologies,
the ultrastrong and the ultraweak, yield nothing new: indeed, the
strong and ultrastrong (respectively, weak and ultraweak) topolo-
gies agree on bounded sets and each of the nets AP is bounded.
The following proposition further limits the number of hypercaus-

ality concepts:

Propositon 1. TLet A€AlgN. Then the following are equivalent:

(1) (fin)=-s=-1im A_=0
p
p
(i1) (int)=-s=1lim A_=0
P
P
(iii) (arb)-s-lim A_=0.

p P



Proof. Let U denote either the directed set of integer ordered
partitions or the directed set of arbitrary partitions. We shall
show (i)=>(ii) and (i)=»>(iii) simultaneously; the two arguments are
identical and each implication is obtained by giving 0 the appro-
priate interpretation. Assume that (i) holds and let >0 and

x€H Dbe given. We must prove that there exists a partition P in D

such that if O is a partition in 0 which refines P then

HAan2<e.
=1 . o

Let 6&=e(1+IAI2) . Let P={E1,...,En} be a finite partition
such that for any finite refinement Q' of P, we have MAO,xH2<e.
Now suppose that Qz{Fj}jéj is a partition in DU which refines
P. We will show that "AQX"2<€. Since ) F.=I, there is a finite

jeJ

subset J, c J such that (] Fj)xu2<6. For each jeJ,, Fy- is

347,
a subproijection of some Ei in P, hence there exists a finite

partition G={c

e j G i
> ,Cn} such that {Fjljejo} = G and refines

n
P . Therefore, Y IF_.AF x12< § IG,AG,xI2=1A _x12<8. Consequent-
2 i j L i i G
jEJO i=1
ly, we have
nonu2 = Y IF,AF.xI2 = ) IF,AF.xI2 + J IF,AF_.xI?
< jeg A J jer, 1 jd7,

< &5+ ) IAN2IF.xN2 = 8 + WANZN ) F.xI?
3¢7, ] 367,

< 5+ IAN2s = €.
This completes the proof that (i)=>(ii) and (i)=>(iii).
The converses, (ii)=>(i) and (iii)=>(i) will also be proven
simultaneously. So assume either (ii) or (iii), i.e. assume

s=1lim AP=O' where P€D. We must prove that (£fin)-s-1lim Ap=0. TLet
P P

>0 and x€H be given. We must find a finite partition P such

that ”AP,X"2<E for any finite partition P' which refines P.



Let Q:{Ei}iEI be a partition in D such that for any
refinement Q' in D, "AO,X"2<6. There exists a finite subset
I, I such that n( y E,)xﬂ2 = HEixH2<6, Let P be the

P41,

finite partition obtained by arranging in order the right and left

i¢10

endpoints of the intervals Ei,iEIO and taking successive differ-
ences. P is, in fact, the smallest finite partition such that
{Eiliélo} < P. Let P'={G1,...,Gn} be any finite partition which
refines P. We shall prové that MAP.X"2<E.

Now, every projection G. 1is either a subprojection of some
J

Ei with iEIO or is orthogonal to each Ei with iEIO. Let

J —_ ) r -

o {j]Gj < E,, for some 1610} and

J. = {j|c.E, = 0, f i = {j]c. < E,

: {31 h for all 1610} {31 5 j%I 1}
)

Then JO n J] = ¢ and JO U J} = {1,2,...,n}. Let 92' be a par-
tition in 0 which is a common refinement of ¢ and P' and has
the property that {Gj|j€JO} c Q! (such refinements exist since
every G, with jEJO is a subprojection of some Ei in P.)

J

Since 0 refines 0, we have HAQIXH<6. But {GjleJO} — Q': so

we obtain 2 IG .AG .x12<8. Therefore,

JEJO
2 ? 2
IA,,x12 = § IG AG.xI
P 5= 33
= Y UG.AG.x12 + ) IG.AG.xI?
jeg, I jeg, I
0 1
< & + IANZ Y nijn2
jeT,
=& + IAI2N( ) G.)xI?2
]EJ]
= & + IANZ20( ) Ei)xu2
iEIO

<& + IAN28 = .

This ends the proof of the proposition.



Remark. Essentially the same argument as the one given above, with
a few fairly routine modifications, proves the equivalence of the
three conditions (fin)-w-1lim AP=O' (int)-w=-1im AP=0’ and

P p

(arb)-w-1lim AP=O' for A€Alg N. It is also immediate that, for
A€AlgN, sflim AP=O implies w—l;m AP=O' It is not known if, and
perhaps not likely that, the converse holds. The three pbssible
limits in the uniform topology are, in general, distinct. They
are, however, easier to work with than the strong or weak topology
limits. The reason is that if P is any partition which refines Q,

then HAPH<HAOH. Thus, for each of the three nets, to prove

<~

lim AP=O’ it is sufficient to find, for >0 given, an appropriate
P
partition P such that NAPM<5.

Definition. TLet N be a nest. Define the following families of

causal operators:

R = {peAlgN|(fin)-1im A = 0},
N P P

pint {AealgN | (int)-1lim A, = 0},
N p P

R, = {[neAlgN|(arb)-lim A_ = 0},
N D P

S = {AEAlgNl(fin)—s—lim A = O}.
N D P

In view of the remark above, RN consists of exactly those
causal operators which satisfy Ringrose's criterion for membership
in the radical of AlgN [5], thus R is precisely the Jacobson

N
radical of AlgN. Rﬁnt is exactly the set of strongly strictly

causal operators, as defined in [3, Chapter 2, section B]. As

int
N

R;, another uniformly closed two-sided ideal, was introduced by

shown in [3], R is a uniformly closed two-sided ideal in AlgN.

Larson in [4 ] and plays an important role in the study of similari-



ties of nest algebras. SN is the uniformly closed left ideal of

strongly causal operators, as defined in [2] or [3]. With the aid

of Proposition 1, the relation between the strongly strictly causal
operators and the strongly causal operators now becomes clear:

Rint c S. 1Indeed, in view of the remark above, the following rela-
tions are evident.:

Ry < RAME 2 RY < s
Propositions 2, 3 and 5 below will provide appropriate necessary
and sufficient conditions on the nest N +to ensure that each con-
tainment is, in fact, an equality.

Fach of the four ideals above can be viewed as the operators
which have, in an appropriate sense, zero diagonal part. The dia-
gonal of a nest algebra is the subalgebra AlgN N (AlgN)*; the
operators in the diagonal are the memoryless operators. If A€AlIgN
and the net AP is convergent in any of the senses above, then the
limit, D, commutes with each projection in N. Thus the limit,
when it exists, is in the diagonal and may be thought of as the
diagonal {(or memoryless) part of A. 1In this case, of course, A-D
belongs to the ideal which corresponds to the sense in which the

net converges.

It is instructive to look, in particular, at the behavior "at

atoms". An atom is an interval E=P-Q from § where Q is the
immediate predecessor of P in the order of the nest. Suppose
that E 1is an atom and that AESN, Let x Dbe any vector in E.

If P is any partition which contains E, then APx=EAEx. Since

every partition has a refinement which contains E, we see that

IEAExlI<e, for every €>0. Thus EAE=0. We may view EAE as the

part of the diagonal of A corresponding to the atom E. In par-

ticular, suppose that N is purely atomic, i.e. that I=§IEi,
i€

}iEI is the set of atoms from N. In the net of arbi-

where P={E,
i




trary refinements of N, P 1is the terminal element. Therefore,

(arb)-1lim Ap, and (arb)-s-lim A, always exist and both are equal
P P

to X EiAEi° Thus, for a totally atomic nest N, RN=SN and each
i€l

consists of the causal operators with diagonal part zero, i.e.

AER;=SN if, and only if, EAE=0 for every atom E from N. We

now proceed to the propositions which clasify when the various

ideals of hypercausal operators are equal.

Proposition 2. Let N be a nest. The following are eguivalent:

(i) 0 has an immediate successor and I Thas an immediate
predecessor.
.. int
(ii) RN-RN .
Proof. Assume (i) holds. It is then clear that any partition P

of N must have a first and a last element with respect to the
order <<. If P is integer ordered, then P 1is necessarily

finite. Thus the directed set of finite partitions concides with

. . A int
the directed set of integer ordered partitions and so RN=RN .

Now assume that (i) does not hold. Suppose, for example, that
I has no immediate predecessor (the argument is essentially the

same if O Thas no immediate successor). Then there is an increas-

ing sequence O<P]<P2<... of projections in N which converges

strongly to I. Let E,=P and E.,=P.-P. ., for 1i»2. Then
1 71 A A

P={E is an integer ordered partition. Let X be a unit

i}iGN
vector in Ei' for each i, and let A= 2 xf@xi - (The rank one
i=2 -

( i i . =< >, . i
operator xfgmi_ is defined by (Xf&Xi—])Y VX 2%, g It is

1
easy to check that the infinite sum converges in the strong opera-
tor topology.) Since any integer ordered partition possesses an

integer ordered refinement which is also a refinement of P and




;nt. On the other hand, if @

is a finite refinement and if E is the last interval in ¢

since AP=O, it 1s clear that A€R

(namely, the interval which has I as its upper endpoint), then

EEi=Ei for all i greater than some integer io. Therefore

int
I = ! =1, , .
EAEI=1 and so IAQH 1 Thus A¢RN and so RN*RN

Proposition 3. Let N Dbe a nest. The following are equivalent:

(1) Each element of N excepting 0 and I Thas an imme-
diate predecessor and an immediate sussessor.

(i1) REPE=RT.
Proof. Condition (i) is equivalent to the statement that N 1is
order isomorphic to a subset of the extended integers, {[-=}luzu{=}.
When this holds N is totally atomic and the set of atoms, P,
forms an integer ordered partition. Furthermore, P is the termi=-
nal element in the directed net of arbitrary partitions; in parti-
cular, every partition is integer ordered. Therefore Rtnt=R;
whenever (i) holds.

The proof that (ii) implies (i) is, in spirit, similar to the
proof of the preceding proposition. Suppose that P#0,I 1is an

element of N with no immediate successor. (An analogous argument

works if P has no immediate predecessor.) Then there is a

sequence Pn of projections in N such that P1=I, Pn>Pn+1' for
all n, and lim P =P. Let E =P -P , for all n. Let X be
N s n n n+l n
a unit vector in E and let A= ) x ®x . Then A€AlgN and
n n=1 B n+1
IAl=1. Also note that if Q is any projection in N which is

greater than P, then I(Q-P)A(Q-P)I=1.

The set of intervals P={En|n=1,2,...}U{P} is a partition of

N and it is easy to check that AP=O. Thus AER:. On the other

hand, if Q={Fn} is an integer ordered partition, then there is an



integer %k such that F,=0Q -R with Q. ,R, €N and Rk<P<Qk.

k "k k kT k
Therefore HFkAFkN=1, hence IIApl=1. Since O is an arbitrary
. . — int . .
integer ordered partition, we see that A¢R§n . Thus (ii)=>(1i).

Remark The known fact that RN=RZ if, and only if N is a finite
‘nest also follows from Propositions 2 and 3.

Proposition 5 will characterize the nests for which R;=SN.
The most essential ingredient is contained in the lemma below. A
continuous nest is a nest which has no atoms. Every continuous
nest is order isomorphic to the interval [0,1]. (Indeed, if x 1is
a separating vector for the abelian von Neumann algebra generated
by N then the mapping P-+<Px,x> is an order isomorphism of N
onto [0,1].) Thus when N is continuous, we may use [0,1] as an

index set for the elements of N.

Lemma 4. If N is a continuous nest then R; is a proper subset

of SN'

Proof. Let N={Pr|r6[0,1]} be a continuous nest. Enumerate the

rational numbers in (0,1), i.e. write Qn{(0,1) as a sequence

{rk|k=1,2,3,...}. We will choose by induction two sequences,
(tn)n=1,2,... and (En)n=1,2,,.. with the following properties:
. 1
(1) 0<En<;rF_T , for all n
(2) The intervals [t _-e ,t_+e_], n=1,2,3,... are pairwise
n n’ n n .

disjoint subintervals of [0,1].

(3) Each tnEQﬂ(0,1). If t =r, and j<h then
r.€ U [t,-e.,t.+e.].
i<n Lo

Indeed, let £, =1, and let e]<1/4 be sufficiently small that



[t ~E ,t1+z ] - [0,1]¢ Suppose t t and e EERRL N

171 1 19T TR 1

have be chosen satisfying (1})-(3). TLet h be the smallest integer

such that r ¢ U [t.-e.,t.+e.] and let t =r . Since the comple-
i 1 1 1 n h

ment of U [t.~e.,t.+e. | in [0,1] 1is open and t #0,1, there
j=7 Lt 11 1° n

is a number e such that 0O<e < 1 and [t _-e_,t +e_| is
n n 9n+1 n n n n |

E[t ,t +e¢ | and let vy be a unit vector in E[t -e ,t |. Let
n n n n n n n

fe=]
A= Z Xﬁgyn° It is easy to check that the sum converges in the
n=1

strong operator topology, that A€AlgN and that ITAlI=1. We shall

finish the proof by showing that A€S and A¢R;~

N
To prove that AESN, let wéH{ and €>0 be given. Since the

projections E[t -e ,t_+e ] are pairwise orthogonal, there is an
“n n n

n

integer m such that X HE[t - _,t_+e ]w"2<gi Let
n n n n
n>m
P= ) E[t -¢ ,t +¢ | and 0= ) E[t -e ,t +e¢_|. Then P and Q
n n oo o n- - n n’ n o n
n>m n<m

are disjoint projections and A=A(P+Q). Now let P' ©be a parti-

tion which contains the intervals E[t -e t_| and E[t_,t_+e_],
n nn n""n n

n=1,2,...,m among its elements. Let p={F be any refinement

i'ier

of P'. We need merely show that HAPW"2<€-

If F.,<E[t -e ,t ] or F.<E[t_,t +e | then F,AF.,=0. Let
1 n L n n - 1 1

n n

J={i€I|Fi<I~Q}. Then we have:

IA_ w2 = § IF,AF wi?2 = § IF A(P+Q)(I-Q)F wi?
P ieg o7 i€g e
= ) IF,AF,Pwl? < ) IF,Pwli?
s 1 1 1
ie]J 1e]

VaS

1IPwi?2 < e.
To show that A¢R;, we shall prove that HAPH=1 for any

partition P. So let P:{Fi} be a partition. Fach element Fk



- 12 -

in P is of the form E[lk,hk], for uniquely determined elements

1.,h, in [0,1]. By the choice of the e . the set
U [t -e_,t +e ] has Lebesque measure strictly smaller than 1. On

the other hand, since ) F,=I, the set u (1 hk) has measure 1.

Therefore, there exists a number qE[O,1} and an index %k such

that g Dbelongs to the open interval (1 ’hk)’ but does not belong

k
to U [t -e ,t +e ]. Since q#h
n=1] B n n n

there is a 6>0 so that

kl

(q,a+8) < [lk,hk}. Let r Dbe a rational number in the interval
(q,9+8). Since Qn(0,1) = U [t - ,t +e ], r lies in some inter-
— =] D n n n
val [t - _,t +e ]. But q¢[t - ,t +€<}, so we must have

n n n n n n' n n

q<tn-en<r<q+6. We would like to have tn+en<q+6, but this may not
be true. The situation is easily rectified by repeating the proce-
dure once again: let s Dbe a rational number in the interval
(g,t =e ) and let m be such that sé€[t -¢ ,t +e ]. This time we

n n m m m m
obtain

<t —-e <s<t +e <t ~e <g+b.
ER m o mon n o

& i - + < +6 |« . > - =Yy
In particular, E[tm em'tm em] Elaq,q 6] Fk Therefore, FkAFkxm Yo

@

in particular, IFAF, I=1. Thus IAjI=1 and A¢R .

Proposition 5 Let N ©be a nest. The following are equivalent:

(1) N is totally atomic

(ii) RN=SN.
Proof. The easy implication (i)=>(ii) has already been given in

the paragraph immediately preceding Proposition 2. So suppose that

N is not totally atomic; we must show RE#SN.

Let be the (possibly empty) set of atoms from N.

{E;tig



Let E=I- z E By hypothesis, E+0. ©Let K be the range of the

i.

i€l
projection E. Define a nest NE on the Hilbert space K by
NE={PE|K[PEN}. Observe that NE is a continuous nest. Each ope-

rator A in B(K) has a unique bounded linear extension to K

L
which vanishes on the orthogonal complement, K , of K. We denote

this extension by A. Note that AEAlgNE if, and only if,

Aenlgy .
Since NE is a continuous nest, R; is a proper subset of
E
S« Fix an element A of § which is not in RCo . We shall
Ng Ng Ng

show that A€S, and RERY -

To prove that KESN, let x€éH and e>0 be given. If Q 1is

a projection in N_, then one can, by adding appropriate atoms of

"

N to Q, obtain a projection P in N so that Q=PE|K. If

Q0=O<Q]<“‘<Qn=IK is a finite subnest of NF’ then we can obtain
rojecti P =0<P_<...<P =I i that =P E| .,
projections P, . LIy in N oso that Q=P IK
i=1,...,n. Since Kx=EAEx, we have
n n ,
. -P. A(P.-P. 2 = =0 . =Q. .
i£1H(Pl P, _)A(P =P, . )xl iz]u(gl Q._,)A(Q,-0. )ExI

From these remarks it is clear that KESN.

Finally, we need to show that K¢R:s Assume the contrary;

e
of N such that uFiKFiu<e, for all i. The

i.e. assume that A€R Let >0 Dbe given. Then there is a par-

tition P={Fi}iEI

={FiE|iEI and FiE¢O} is a partition of N_ and

t
se P B

E
IF, EAF, EN=IF,AF, I<e, for all i. Thus A€R
1 1 iR 1

@

N contrary to hypothe-

E

sis. This completes the proof of the proposition.

Remark From Propositions 3 and 5 and the first sentence of the
proof of Proposition 3, we see that the strongly strictly causal
operators and the strongly causal operators on a nest N coincide
if, and only if, N 1is order isomorphic to a subset of the extended

integers {-=luzU{=}.




We conclude this note with a discussion of the effect of simi-
larities on each of the classes of hypercausal operators considered
above. The significance of similarities for system theory is
indicated by the fact that Larson's theorem [4] that any two con-
tinuous nests are similar implies that there exist positive de-
finite hermitian operators which do not admit spectral factori-
zation. (See [3] for a discussion of factorization problems.)

If N is a nest and T is an invertible operator in B(H)
then, for each PeN, ’I’P'T_1 is an idempotent (not necessarily self-
- adjoint). Let ¢i(P) be the orthogonal projection on the range of
TPT_]. Thus, T maps the range space of P onto the range space
of ¢T(P). Let TN denote the nest {¢T(P)]PEN}. We say that two
nests M and N are similar if M=TN for some invertible
TEB(H). The map ¢T:N+M induced by T 1is an order isomorphism of
N onto M. If ¢ 1is any order isomorphism of N onto M then
¢ has a natural extension to a map from the set of intervals from
N to the set of intervals from M: define ¢(P-Q) +to be
o(P)-¢(Q). (We denote the extension by the same symbol.) In par-
ticular, atoms from N correspond to atoms from M. If corre-
sponding atoms have the same dimension, we say that ¢ preserves
dimension. It is evident that each order isomorphism of the form
¢T preserves dimension. Recently, Davidson [1] has proven the
converse to this: if ¢ 1is an order isomorphism of N onto M
which preserves dimension, then there is an invertible operator T
such that M=TN and ¢=¢T.

Fix a nest N and an invertible operator T and let M=TN.
Then the two nest algebras AlgN and AlgyM are similar:
AlgN=T_](AlgM)T. Furthermore, RN=T—]RMT and Rint=T_1RJntT, i.e.

the strictly causal operators and the strongly strictly causal

operators are preserved by similarities. The first of these two



facts is completely trivial - it follows immediately from the defi-
niton of the radical as the intersection of the kernels of all the
irreducible representations of the algebra. 1If follows equally
rapidly from the characterization of the radical as the largest
ideal consisting entirely of quasi-nilpotent elements. Yet a third
proof is available: both similarity results stated above follow
from a lemma of Larson [4] which asserts that if E is any
interval from N and K:HTHHT“]H, tﬁen for any A€AlgN,

]¢T(E)H and H¢T(E)TATN1¢T(E)H<KNEAEH. To obtain

IEAE 1<Kl ¢ (E)TAT
the two similarity results one need merely observe that if

P={Ei}iEI is a finite or integer ordered partition of N then
{(bT(Ei)}iEI is a finite or integer ordered partition of M-

If P is an arbitrary partition then it is not necessarily
the case that {¢T(Ei)} is a partition. As a consequenée, R;
need not be preserved by similarities. A detailed discussion of
this may be found in [4].

Finally, we turn to SN. In light of Larson's results on R;,
it is not surprising that we find that S need not be preserved

N

by similarities.

Example. We use the following standard construction to produce a

pair of similar nests. If p is a finite Borel measure on [0,1],
let HH=L2([O']]'“)' For each +t€[0,1], we let Pt (resp. Pt_)

denote the multiplication operator by the characteristic function

of [0,t] (resp. [o,t)). Let NY denote nest consisting of all

the projections PE and PE_.

LLet v ©be a purely atomic measure on [0,1} with support
equal to Qn(0,1). So, in the nest NY, we find that PZ#P;_ if,

and only if +teQn(0,1). The nest is totally atomic and the atoms

\Y

bt teon(0,1). Let m Dbe Lebesgue

are the intervals ,E=PZ—P



measure on [0,1] and let A=m+v. In the nest NA the atoms are
: , N NN . .
once again the intervals E =P _-P,_,t€Qn(0,1), but this time the

nest is not totally atomic. Indeed, szHm@Hv and the sum of the
N . . . .
atoms from N is the projection on Hv’ not the identity on the

. A . A
whole Hilbert space H The map ¢:NV+N given by ¢(PE)=Pt and

T
A . . . .
¢(Pv_)=P e for all +t, is an order isomorphism which preserves
t t
dimension (all atoms are one dimensional). By Davidson's theorem

A

[4], ¢=¢T for some invertible operator T. 8o NK=TN and

Alng=T_](Alng)T. We shall show that S V#T_]S \ T
N N

Let A be a non-zero operator in (Alng)n(Alng)* with the
property that EAE=0 for every atom from Nx. (A is simply a
multiplication operator by a function fELm([O,l],x) with the
property that f(r)=0, for all reé¢Qn(0,1).) Since A is memory-
less, it commutes with each projection in Nx; therefore AP=A for

any partition P. Thus AéSNK.

Let B=T—]AT. Then BEAlgNV. By Larson's lemma [4],

1 1 1

IFBFI<ITIIT nu¢T(F)TBT' ¢T(F)u=nTuuT" 11 (F)A¢,(F)1=0, for every

atom F from N'. Since N' is totally atomic Be€S ,° But
N
1 -1

T, so S V#T S .T as desired.
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