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1. INTRODUCTION 

Group von Neumann algebras of discrete groups are an important 

source of examples of finite von Neumann algebras and several 

authors ( [2], [6], [13], [15], [16]) have studied their natural *-

automorphisms, i.e. those induced by characters and by automor-

phisms of the group. 

In this note we generalize some of the known results by ele-

mentary methods and complement· the exposition given in [18, Sec-

tions 22.10-22.13]. ·we first describe the group generated by 

natural *-automorphisms and give some criterions for properly 

outerness. Secondly, we obtain some relations between fixed point 

algebras and crossed products of group von Neumann algebras which 

may be of interest in view of the isomorphism problem for such 

algebras. The final example section is mainly devoted to non inner 

amenable groups, since the associated group factors are then known 

to be full ( [1], [10]) and thus· being far less understood. 

vve now fix ,some notation. Hhen no reference or definition is 

given, the reader may consult [18] and/or some of the standard text 

books in the respective fields. 

All groups will be considered as discrete groups and G will 

always denote such a non-trivial group, with identity element e. 
·' 

cl.(G) will denote the· (group) von Neumann algebra generated by the 

left regular representation g ~ A(g) of G on 1 2 (G). ~(G) is 

a (group) factor if and only if G is ICC, in which case it is a 

rr 1-factor. 

An element ·AE£(G) is usually identified with fA= Ao E12(G), 

where o denotes the characteristic function of {e}, and we set 

supp(A) = {gEGifA(g):fO}. Then when H is a subgroup of G, we may 

identify cl (H) with {AE J:( G) I supp (A) :;: H}. 
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r will always denote the character group of G, with identity 

element 1, and CG the commutator subgroup of G. 

Let H be a von Neumann algebra. When <!J is a group-homo-

morphism from a group K into Aut(G) (resp. Aut(H)), the semi-

direct product of G (resp. the crossed product of M) by the 

action <1> of K is denoted by G x<!JK (resp. H x<I>K). 

At last, for nE{l,2, .•. ,oo}, ~ will denote the cyclic group 
n 

with n elements and Jr the free group on n generators. 
n 

Acknowledgements: Our hearthy thanks go to Erling St¢rmer for his 

support during this work.· 

2. ON THE NATURAL *-AUTOMORPHISMS OF .C(G) 

2 .1. For yEr (resp. crEAut(G)), we let a 
y 

(resp. ~ ) cr denote 

the *-automorphism of dt(G) induced by y (resp. cr), and a 

(resp. ~) the associated action of r (resp. Aut(G)) into 

Aut(~(G)). We recall that 

ay(A(g)) = y(g)A(g), ~cr(A(g)) = A(cr(g)) ( g EG) . 

2.2. He define N(c£..(G)) to be the subgroup of Aut(c£.(G)) gener­

ated by a(r) U ~(Aut(G)). Let <!J:Aut(G) ~ Aut(r) be the action 

defined by 

and define 

-1 
<l>cr(y) = yocr (crEAut(G), yEf), 

i:f x<I>Aut(G) ~ N(~(G)) by 

i(y,cr) = a ~ • 
y cr 
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Then we have: 

Proposition: The mapping i is an isomorphism of r x¢Aut(G) 

onto N(eC.(G)). 

Proof: One obtains immediately that 

( 1) a: Q - Q a: Q a: -a: Q (yEr,· aEAut(G)). yf'y- f'a yoa' f'a y -. yoa~ 1 f'a 

Thus 

i((yl,al)(y2,a2)) = i(yl¢a (y2),al a2) 
1 

= i(yl(y2oa~l),aia2) 

= a -1 ~ 
Y1(Y2°a1 ) a1a2 

= a: a: -1 ~ ~ 
Y1 (y2oa1 ) a1 a2 

= a: ~ a: ~ 
Y 1 a l Y 2 a2 

= i(yl,al)i(y2,a2) 

for all y.Er, a.EAut(G), ~ = 1,2. 
J J 

Further, i is easily seen to be injective and it follows from (1) 

that i is onto. • 
·'· 

2.3. Some of the results of [2; Sections 4, 5] may be viewed as 

criterions for the outerness of elements of N(.(.(G)). On the other 

hand, recall that ( [13], [18; prop. 22.12]), for aEAut(G), we 

have: ~a is properly outer (or freely acting) if and only if 

( 2) the set {a(a)ga-1 ;aEG} is infinite for every gEG. 

These approaches may be unified as follows. 
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Lemma: Let e = a ~ , yEr, crEAut(G), and let AEl(G) be a e­
Y cr 

dependent element, i.e. AB = 8(B)A, for all BE~(G). 

Then we have: 

i) y(cr(a))fA(g) 
-1 (a,gEG), = fA(cr(a)ga ) 

ii) the set {cr(a)ga 
-1 

~aEG} is finite for every gEsupp (A), 

iii) supp(A) lies in a coset of Go, where Go denotes the normal 

subgroup of G consisting of all elements in G with finite 

conjugacy classes. 

Proof: By assumption we have: AA(a) = 8(A(a))A (aEG), which 

gives 
~. -1 

y(cr(a))A = A(cr(a))~AA(a) = A(cr(a) )Aida), from which i) 

follows. ii) follows from i) and the fact that JfAJE~ 2 (G), while 

iii) is immediate from ii). 

2.4. Proposition: Let 8EN(~(G)) be given as 

crEAut(G). Then e is properly outer whenever: 

i) cr satifies (2) or 

e = a ~ I yEr, 
y cr 

• 

ii) y*l, cr is inner and at least one of the following conditions 

is satisfied: 

a) Go agrees with the center z of G. 

b) y is of infinite order. 
·'· 

c) the set {a'ga -1 ~aEG} is infinite for every 

gEGY = {gEGJy(g) = 1}, g*e· 

Proof: Let A be a e-dependent element in l(G). If i) holds 
. -

then lemma 2.3 ii) implies that supp(A) = ¢, i.e. A = 0 and thus 

e is properly outer. Next, suppose y*l and cr is inner. Then 

~cr is inner, and e 

may suppose e = a • 
y 

will be properly outer if a is. Thus we 
y 

We will now apply lemma 2.3 i) and ii) (with 

cr = identity). Suppose A*O and let bEsupp(A). Here we obtain 
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that bEG0 and that the centralizer of b in G is a subgroup of 

GY. Thus the index of Gy in G must be finite, i.e. y is of 

finite order, and further G = GY, i.e. y = 1 if G0 = z. So by 

contraposition, e is properly outer if a) or b) is satisfied. If 

now c) is satisfied, one easily obtains that GYn supp(A) = ¢. 

Since a (A) = A by [4], we have also supp(A) ~ Gy (cf. proposi-
y 

tion 3.1). Thus supp(A) = ¢, i.e. e is properly outer. • 
The essence of [ 2 ~ Cor. 1 and 2, p. 589] is that cr is outer if 

and only if cr satisfies (2) when G is an R-group or has no 

normal subgroups of finite index other than itself. Observe also 

that G0 = Z trivially when G is ICC or abelian and that c) is 

especially satisfied when Gy is ICC. 

2.5. Let yEr. Since yocr = y whenever crEAut(G) is inner, i.e. 

crEint(G), one may also consider r x~ Out(G), where 
<l> 

Out(G) = Aut(G)/Int(G) and <j>:Out(G) ~ Aut(r) is the action 

defined by: 

~;(y) = <j>cr(y) (; denoting the coset of crEAut(G)). 

Then we have: 

Proposition: Suppose G0 = z. Then 

i) The action a of r in ~(G) is properly outer. 

ii) e = ay~cr (yEr, crEAut(G)) is inner if and only if y = 1 and 

cr is inner. 

iii) Out(~(G)) = Aut(J(G))/Int(£(G)) contains a subgroup 

isomorphic to r X~ Out(G). 
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Proof: i) This follows from proposition 2.4 ii) a). 

ii) Suppose 9 = Ad(U), U unitary in ~(G). Let bEsupp(U) and 

set cr' = ad(b)Eint(G). Then ~:7e = Ad(~(b)*u) EN(~(G)) and 

* -1 ~(b) U is a ~cr·9-dependent element in L(G) such that 

* e Esupp(~(b) U) since f~(b)*u(e) = fu(b)*O. By lemma 2.3 iii) we 

obtain: supp(~(b)*u) ~ G0 = Z, i.e. ~::a is the identity auto­

morphism and so y = 1 and cr = cr'Eint(G) by proposition 2.1. 

The converse is trivial. 

iii) Let n:Aut(~(G)) + Out(L(G)) denote the canonical homomor-

phism and define n' = noi where i:r x~Aut(G) +N(~(G)) is defined 

in 2.2. Then ker n' = {{1, cr) ;a Eint(G)} by ii), and one checks 

that (r x~Aut(G))/ker n' ~ r x¢ Out(G) under the obvious isomer-

phism. Thus r x~ Out(G) ~ n' (r x~Aut(G)). • 

3. FIXED-POINT ALGEBRAS AND CROSSED PRODUCTS 

3.1. Fixed-point algebras of J((G) under automorphisms induced by 

characters have a nice description: 

Proposition: Let yEr, r• be a subgroup of r and set 
·'· 

Gy = {gEGjy(g)=l}, Gr' = n Gy and Then we have: 
yEr' 

0: 0: 

i) J._(G) Y "',l(GY), where c£..(G) Y 

ii) ' r• .[(G)o: "'i,(G ), where 

= {A E ((G) I 0: y (A) =A} . 

0: 

= n .l..(G) Y 
yEr' 

iii) l(G)o: "'~(CG). Especially, a is ergodic if and only if G 

iv) 

is abelian. 

r• 
N = GY, G 

neither. 

or CG is not inner amenable whenever G is 
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Proof: 

i) 

ii) 

Let AE£(G). Then a (A) = A <=> 
y 

y(g)fA(g) = fA(g) (gEG) <=> fA(g) = 0 (gEG, g*GY). 

a 
Hence /_(G) y = {AE.((G) isupp(A) ~ GY} "'.[(GY). 

a 

n ~(G) Y = {AE{(G) I supp(A) c 
yEr' 

iii) We have that 
r 

CG = G and that CG = { e} if and only if 

is abelian ( cf. [11.; th. 23.8]), so iii) follows from ii). 

iv) Since N contains CG, G/N is abelian and thus amenable. 

The result now follows from [1; Cor. 2 iv)]~ 

G 

• 
Corollary: Suppose G is a countable ICC-group and let r• be a 

finite subgroup of r of order n. Set a' =air' and 
r• 

M = the 
n 

nxn-complex matrices. Then: £(G) X I r I "' £,( G ) ® Mn. a , 

Proof: Combine the proposition, proposition 2.5 i) and [6]. 8 

3.2. Consider now an exact sequence of groups: 

1 ~ H ~ G ~ K ~ 1. 

When the extension splits, one may write G as a semidirct product 

of H by K and so ( cf. [ 18; 22. 10]) there exis,ts an action 

<j!:K ~ Aut(c(.(H) such 'that 

It follows from the deep [19; th. 6.1] that the same conclusion is 

true when £(H) is a II 1-algebra and K is finite. However, there 

exist extensions (cf. [9]) where such a conclusion is not possible 

and one is then forced to introduce a so-called regular extension 

of ,C,.(H) by K (see [7], [19] for definitions and other results). 
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Vile now show how cyclic extensions may be handled by elementary 

methods. From now on, we identify H with its image in G. 

Proposition: Suppose the above extension is cyclic, i.e. K is 

cyclic. Then there exists an action ~:K ~ Aut(L(H)) such that: 

Moreover, the action ~ is properly outer whenever H satisfies: 

( 4) the set {hgh-1 :hEH} is infinite for every gEG, g*H. 

Proof: Suppose first K = ;£. I n<+oo. 
n 

Then there exists an 

such that G is generated by a and H, and such that: 

m 
a ¢H (l~m~n-1), while 

n 
a EH. 

Now, let V be an n-th root of 
n 

1-.(a ) in o(.( H) and set 

aEG 

* ~ * U = V 1-.(a), which is an unitary in ~(G). Then ~(A) = UAU , 

(AEL(H)) defines an *-automorphism of ~(H), since H is normal 

in G, which is such that 

~n(A) = (v*t-.(a))nA(t-.(a)*v)n 

= ((v*)nt-.(an))A(t-.(an)*vn) =A (AE((H)), 
·'·. 

* since V commutes with 1-.(a) . So we may define an action 

~:K ~ Aut(,C(H)) by 

' 1•• (A) = ,,,j (A) = UjA(Uj )* (AE r(H) 'EK) 'I' 'I' -...,]. 
J 

Clearly, ~(G) is generated by ~(H) and U. Further, let 

E: ~{G) ~£(H) be the canonical conditional expectation, which is 

such that E(l-.(g)) = 0 when gEG, g*H. Then 
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(jEK, j:fO). 

Thus the first part (3) follows from [18; 22.2] in this case. Hhen 

K = ~. the extention splits and (3) again follows. We may also 

clearly proceed along the same lines as above. 

The second part may be verified by direct computation. It is 

also a consequence of [18; 22.3] since (4) is equivalent to 

J:(H) 1 noL(G) '=.~(H). • 

Corollary: Let yEf be of finite order ' n ( resp. such that 

and let K1 ,= 'l. (resp. Z). 
n 

Then there exists an action 

a a 
<V 1 : K 1 ~ Aut ( .C (G) Y) such that: L (G) "' J.. (G) Y x <V 1 K 1 , and which is 

properly outer if Gy satisfies (4). 

Proof: Combine the proposition and proposition 3.1. • 
3.3. If H satisfies: 

( 5) the set 
-1 

{hgh :hEH} is infinite for every gEG, g:fe, (i.e. 

(H) 1 n (G) reduces to the scalars) 

then H satisfies (4) and both H and G are ICC. 

We have: 

Proposition: For gEG, let I = {hEHihg=gh}. 
g 

Suppose H is not 

amenable (resp. not inner amenable) while I is amenable (resp. 
g 

inner amenable)·-for all gEG, g*H. Then H satisfies (4). If the 

same is true for all gEG, g:fe, then H satisfies (5). 
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Proof: Suppose that X = { hg 0h -l ; hE H } is finite for some g 0 EG, 

go=l=e. Then consider the action of H on X defined by con juga-
~"' 

tion. For xEX, 

[1; addendum], 

the isotropy subgroup is then I . Therefore, 
X 

H is amenable (resp. inner amenable) if I is 
X 

amenable (resp. inner amenable) for all xEX. Since X c G'{e} 

by 

and X c G\H if g 0 EG\H, the result follows by contraposition. • 

3.4. Suppose that in 3.2, K ~ ~ x ~· • Then we may apply propo­
nl n2 

sition 3.2 twice and obtain that there exist an action 
' 

~ 1 :Zl -+ Aut(.(.(H)) and an action ~ 2 ::1 -+ Aut(.((H)x,1• ~ ) such 
nl n2 ~1 nl 

that: 

.(_(G) 

This generalizes clearly to the case when K is abelian and 

finitely generated. 

4. SOME EXAMPLES AND OPEN PROBLEMS 

In each case we only give some relevant details. For all asser-

tions about non inner amenability, we refer to [1]. Non inner 

amenable groups are automatically ICC. 

4.1. Let G = f = <a 1 , ... ,a >, 2~n~+oo. Then G is not inner 
n n 

amenable and we have that r ~ Tn (T denoting the circle group) 

under the isomorphism given by y-+ (y(a1 ), ..• ,y(an)). 

Further G y ( resp. Gr' ) is a free subgroup of G whose ,rank 

depends on the order of G/Gy r• 
(resp. G/G ) ( c f • [ 14 i th . 2 . 1 0 J ) • 

Especially, Gy~ Wm(n-l)+l if y is of finite order m, while 

Gy~ W otherwise. An easy application of proposition 3.3 shows 
00 
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that Gy always satisfies condition (5}. Corollary 3.2 may now be 

applied specifically to obtain analoguous statements of known 

results. For example, the case n = 2, y = (A,A}, AET, is the one 

studied in [6], while the case y = exp(2ni/m,l, ... ,1} corresponds 

to [16; prop. 4.5]. At last, Aut(G} is described in [14; sect. 

3.5]. The condition (2} is easily verified for many crEAut(G}. 

4.2. Let G be the free product Then G is 

not inner amenable when p (or q} >2, while G is not ICC when 

p = q = 2. From [14; p. 193-197], we may obtain what follows. 

First, we have that 

CG"" f(p-l}(q-l} and G / CG "" Z. x 1 . 
p q 

Hence £.(G}a o:[('[r(p-l}(q-l}) (by 3.1} and 

J:.(G} ""L<.t<r(p-l}(q-l}}x<V 1 :~-P}x<V 2 Zq (by 3.4). 

Let us be more specific for G = ~2*~3 o:PSL(2,~). 

Here CG "' fF and r "' a x ~3 "" ~6. 2 2 

Thus .(_(~*Z3)a ""/...(F2)' cl.< a2*~ > X ~ "' .((IF 2) ® H6 a 

and .(<~*~) "" .( (F 2} x<V a6' where <V::l6 ~ Aut (.[(lF 2 )) is the 

action obtained in 3.2, this being outer by 3.3. At last, observe 
·'· 

4.3. As we have seen in 2.5, Out(L(G}) contains a copy of 

r x~ Out(G) when G is ICC. It would be interesting to know if 
(jl 

these groups are-more intimately related, at least in some cases. 

Connes has shown in [8] that Out(L(G)) is countable whenever .G 

is ICC and has property T (G is then especially non inner 

amenable}. We now mention two examples of such groups for which 

r x~ Out(G} "" ~2 . In both cases, it is·an open problem whether 

Out ( L ( G } ) "' ~ • 
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a) Let G = SL ( 3, ~) . 

Here r = {1} while Out ( G ) "' Z by [ 12 ] . 
2 

A representative 

~EAut(G) of the non trivial element in Out(G) is defined by 

~(a) = (at)-l (aEG), where at denotes the transpose of a. 

b) Let G = SL ( 3 , :;!.) x ~ ~ . 

Now one may check that r "' ~ while Out(G) is trivial. 

Observe also that ,/:..,(G) xa ~ "' .( ( SL ( 3, :l.)) ® M2 . 

4.4. In the same spirit one may ask whether Out (l._( G) ) and 
' 

r x~ 

<P 
Out(G) are isomorphic for some G. Another open problem 

whether r x~ 

<P 
Out(G) (or even more Out(.{( G) ) ) may be trivial 

some countable non inner amenable group G. Besides other ICC 

groups with property T, we mention as possible candidates: 

-the Ol'shanskii group ( [17]) 

-the amalgams of the type F2 * F2 constructed in [3]. 
F 

00 

is 

for 

These groups are simple and thus at least with trivial character 

group. 



- 13 -

References: 

1. E. Bedos, P. de laHarpe: Moyennabilite interieure des groupes: 

definitions et exemples. Ens. Hath. (to appear). 

2. H. Behncke: Automorphisms of crossed products. 

Tohoku J. Math. 11: ( 1969), 580-600. 

3. R. Carom: Simple free products. 

J. London Hath. Soc. 28 (1953), 66-76. 

4. H. Choda: On freely acting automorphisms of operator algebras. 

Kodai Hath. Sem. Rep. 26 (1974), 1-21. 

5. H. Choda: A comment on the Galois theory of.finite factors. 

Proc. Jap. Acad. 50 (1974)., 619-622. 

6. M. Choda: Automorphisms of finite factors on free groups. 

Math. Jap. 22 (1977), 219-226. 

7. H. Choda: Some relations of rr 1-factors on free groups. 

Math. Jap. 22 (1977),. 383-394. 

8. A. Connes: A factor of type rr 1 with cotintable fundamental 

group. J. Operator theory 4 (1980}, 151-153. 

9. A. Connes, v. Jones: Property T for von Neumann algebras. 

Bull. London Math. Soc. 17 (1985}, 57-62. 

10. E. G. Effros: Property r and inner amenability. 

Proc. Amer. Math. Soc. 47 (1975}, 483-486. 

11. E. Hewitt, K. Ross: Abstract Harmonic Analysis, vol. I. 

Springer Verlag 1963. 

12. L. K. Hua, I. Reiner: Automorphisms of the unimodoular group. 

Trans. Amer. Math. Soc. 71 (1951), 331-348. 

13. R. R. Kallmann: A generalization of free action. 

Duke J. Hath. 36 (1969), 781-789. 

14. w. Magnus, A. Karass, D. Solitar: Combinatorial group theory. 

Interscience 1966. 

15. w. L. Paschke: Inner product modules arising from compact 
,1,. 

automorphisms gro,ups of von Neumann algebras~· 

Trans. Amer. math. soc. 224 (1976), 87-102. 

16. J. Phillips: Automorphisms of full rr 1-factors with applica­

tions to factors of type III. 

Duke J. Math. 43 (1976), 375-385. 

17. A. Yu. Ol'shanskii: On the problem of the existence of an 

invariant mean on a group. 

Russian Math. Surveys 35 (1980}, 180-181. 

18. S. Stratila: f1odular theory in operator. algebras. 

Editira Academiei-Abacus Press 1981. 

19. C. E. Sutherland: Cohomology and extensions of von Neumann 

algebras II. Publ. RIHS (Kyoto Univ.) 16 (1980}, 135-174. 


