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We consider a situation where relative prices of assets may change continuously and also have 

discrete jumps at random time points. The problem is the one of portfolio optimization. If the 

utility function used is the logarithm, we first argue that an optimal investment plan exists. 

Secondly, we show that any such plan has a certain optimality property known to hold also in 

discrete time models. Moreover, we show that this optimality criterion can be simplified 

significantly. In particular we show how admissibility can be related directly to observable 

characteristics of the investment strategy. 



1. Introduction 

We assume an agent is faced with d different investment alternatives. The price of 

alternative fat timet is denoted by Pe(t), e = 1 ,2, ... , d, and the dynamic equations for these prices are 

( 1 ) 

dp e(t) 
-- = P/l,w)dt + 
P e(t) 

m 

d 

L o eP•w)db p) 
j=l 

+ L ~tkdNtk(t) 
k=-m 

f=1,2, ... ,d 

Here p(t) = (pl(t), P2(t), ... , Pd(t))', p = (pl, P2, ... , lJ.d)' is the drift vector, and o = (oej) is the diffusion 

matrix for the continuous part of the relative price vector, where b(t) = (bt(t), ... , bd(t))' is a vector of 

independent standard Brownian motions. (The transposed of a matrix A is denoted by A'.) 

Nek(t)) are orthogonal (i.e., they do not have simultaneous jumps) point processes (e.g., Poisson) 

counting the number of price changes of relative size ~tk that occurred during [O,t] for asset e, k = -m, 

-m+ 1, ... , m-1, m and -1 < ~e •. m < ... < ~e,m' e = 1,2, ... ,d. 

Equation (I) is a stochastic differential equation, and the model can be interpreted as a time 

series model in continuous time. By this we mean that the model is not a result of economic 

equilibrium theory, or similar theoretical analysis, rather it may be used in practice to fit real price 

data. Since the present model allows (or jumps, it is likely that good fits may be easier to obtain for a 

stretch of data {p(t), t E [O,T]}, than in the case where only diffusion and drift components determine 

the model. A further advantage for practical purposes is that estimation problems for this model have 

been considered (Aase and Guttorp (1984)). Portfolio optimization is treated in Aase (1984), (1985b) 

and economic equilibrium theory for semimartingales can be found in Harrison and Pliska (1981) and 

Huang (1985). Stochastic control can be found in Aase (1986a), applications to insurance in Aase 

(1985c), and applications to R&D in Aase (1985a). Option pricing formulas for such combined 

processes can be found in Aase (1986b). 

The organization of the paper is as follows: In Section 2 we define an optimal investment 

strategy, which is shown to exist in Section 2.1. In Section 2.2 we use Breiman's definition of an 

admissible investment strategy, where we show in Theorem 1 how it is related to optimal portfolio 

rules. Finally, in Theorem 2 we demonstrate how admissibility relates directly to observable 

characteristics of the investment strategy. 
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2. Portfolio optimization 

Let W t be the wealth of the agent at timet. The associated dynamic equation for Wt is 

( 2 ) 
d dp e(t) 

dW = W ""' Pe(t,w) --
t t- {:;1 p e<t) 

where P/t,w) is the fraction ofthe agents wealth which is invested in alternative eat timet. 

We consider utility functions U(x) from R into R satisfying the usual U' >0, U" <0. For models in 

discrete time, some optimality results are known when U(x) = In x. In this connection we think of 

optimality in a normative sense (Thorp (1975)). 

As usual a probability space (Q,F,P) is given as well as a filtration {Ft. t ~ 0}, and we assume that 

all strategies p(t,w) = (p/t,w)), e = 1, ... ,d, are Ft-predictable stochastic processes satisfying ~Pe = 1. 

Our goal is to find a strategy (an investment policy) p(t,w) which maximizes 

( 3 ) 
1 

limsup - E{U(W )}. 
t -+oo t t 

(We use limsup here to avoid complications if the limit does not exist.) 

ByusingV(t) = lnWt(=U(Wt))wemaynotethefollowing:. 

Formally we define (Markowitz (1976)) 

Rate of growth (ofwealth) = exp [; ( dV(s)] - 1 

Average return= 1 It w-l dW 
t 0 s- s 

By maximizing 

we are certain to make the expected rate of growth large, since by Jensen's inequality 

( 4) E { ~<p l ; f ~ dV(s) 1-1} ~ exp { E l ~ J ~ dV(s) 1} - 1. 
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On the other hand, by maximizing the expected average return it does not follow that the 

expected rate of growth becomes large. Further, by maximizing the expected rate of growth, the 

expected average return becomes large. 

Other reasons for using the logarithmic utility function are: (a) the existence of an optimal 

investment strategy p*, (b) computational convenience. The latter fact includes that we avoid using 

the Bellman optimality principle in order to find p* (see Aase (1985b)). This is very fortunate, since 

the Bellman equation is generally very hard to solve (in this case it is possible, see Aase (1984)). 

Using the logarithm as the utility function is sometimes called the Kelly criterion (Thorp (1971)). 

We shall call a strategy p* optimal if it maximizes 

E[znwt] forallt~O. 

If p* is optimal, the wealth W corresponding top* is denoted by WP* or simply W*. 

2.1 Existence of an optimal policy 

In this section we shall discuss conditions sufficient for an optimal portfolio choice to exist. 

First we notice that by use of the Ito-Meyer's lemma (or by the Doleans-Dade's exponential formula) 

we have fort ~ s 

( 5 ) ln W = ln W + It f (r)dr + It """ p. o .. db .(r) + It """ ln (1 + ~ .kp)dM .k(r) t s p LIIJJ L II I 
s s ij s ik 

where 

and 

(7) 

Here Mik(t) are Ft-margingales. !See Aase (1984) and Aase (1985b) eqn. (17).) Also, Aik(t) are theFt­

intensity processes of l" ik( t). 
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In particular it follows that 

( 8 ) 

The coefficients lli, Oi£ and Aik are all assumed to be Ft-predictable (for example, it sufficies that they 

are left continuous and Ft-adapted). From these assumptions it follows that the conditional 

expectation of the integrands in (8) given Fr is exactly fp(r). Now, given that the process {pt(w), 

tE[O,Tl} is well-behaved (sufficient conditions are given below), we may maximize E{ln WJ by 

choosing for each wEQ, s:5;t, p(s,w) such that fp is maximized subject to the constraints Epi= 1, Pi~ 0, 

i = 1,2, ... ,d. Since the set 

d 

{p:) p.=1,p ~O,i=1,2, ... ,d} 
"-- I I 

i=l 

is a compact simplex of Rd, and fp is continuous on this set, it is clear that (at least) one such optimal 

strategy p* = p* (s,w) exists. 

For sufficient conditions on the process Pt(w) for this procedure to provide an optimal solution, we 

rely on a theorem of Bene~ (1970) and on results in Bremaud (1981): Let Dd[O,T] be the space of 

sample functions on [O,T] which are continuous on the right having limits on the left (corlol = cadlag) 

with values in Rd. We then assume 

(a) J; EIIPl dt < 00 , where II II is the Euclidean norm on Rd 

(b) 0 :5; f (t) :5; C(1 + It liP lfds), VtE[O,T],pEDd [O,T] whereCissomepositiveconstant. 
p 0 s + 

Notice that a linearly boundedness assumption (see Gihman and Skorohod (1979), p. 120) is a 

sufficient condition for (a) to hold and for the upper bound in (b) to hold. In order that 0 :5; fp(t), 

VtE [O,T], the expected returns on the stocks cannot be too small as compared to the volatility of the 

stocks. 
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Notice that p* does not depend on t, i.e., p*(s,w) maximizes E{lnWt}for all t. hence 

limsup .!_ E{tn Wp•} ~ limsup .!_ E{ln wP}, Vp 
t +oo l t t -+oo l t 

and therefore p* also solves the problem of maximizing (3). 

In the present case the solution may be found explicitly subject to certain conditions being met 

(see Aase (1984), (1985b)). 

2.2 Optimal strategies and admissible strategies 

In this section we follow Breiman (1960) in order to establish an optimality property for the 

Kelly criterion itself. 

Under certain conditions there is, in the discrete time version, a fixed fraction strategy, 

independent oft, t = 0, 1, 2, ... , which maximizes E[ln Wt1 (see Breiman (1961)). In the present model 

the process p(t) is not assumed to be time homogeneous (stationary), and the resulting optimal 

strategy will in general depend on time. 

Below we let Wt' be the fortune using the investment strategy p'. 

Historically the concept of admissibility has received much attention in the finance literature: 

Following Breiman (1960), we formalize as follows: 

Definition 1 

The strategy pis inadmissible if there is a fixed number a > 0 such that for every c > 0 there exists a 

competing strategy p' such that on a set of probability greater than a-c limsup(Wt!Wt') = 0 and 
t-oo 

except on a set of probability at most c 

limsup(W /W /) S 1. 
t-+oo 

We say that pis admissible if pis not inadmissible. 

Theorem 1. Let p be a given strategy with corresponding wealth WP Consider the following 

statements: 

en p [timsup w~ = o] > 0 
w 

t 

w 
an p [ limsup ~ = 0 1 > 0 

wt 

for some optimal stm tegy p*. 

for some strategy p". 
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am p is inadmissible 

(IV) P [lim inf W~ = 0] > 0 for aU optimal strategies p*. 
wt 

We have the following relations between these statements: 

(I) ~(II)~ (III) =>(IV). 

However, the implications (III) =>(I) and (IV)~ (III) are not true in general. 

Before we prove Theorem 1 we note the following immediate consequence: 

Corollary 1. All optimal strategies are admissible. 

Proof of Corollary 1. If p is optimal, then by choosing p* = p we see that (IV) cannot hold. Hence 

(III) does not hold, i.e., pis admissible. 

In the proof of Theorem 1 we will need the following auxiliary results: 

Wt* 
Lemma 1. The two processes ln -

Wt 

Wt* 
and- are both submartingales 

Wt 
wrt. {FJt 2 O· 

Proof. By (5), (6) and (7) we have, fort ~ s, 

Thus 

• • • 
E[ln wt IF ] = ln ws + E[ It (f .(r)- f (r))driF ] ~ ln ws' w s w p p s w 

t s s s 

since p* is chosen to maximize f. 

X = ln 
t 

w· 
t . b . le - /.Sa su martmga . 

wt 

Since <tJ(x) = exp xis convex and increasing it follows from Jensen's inequality that 

w* 
<tJ(X ) ~ <tJ(E[X IF ]) ~ E[<t>(XtliF ] , i.e., that¢(X) = _t is a sub martingale. 

s t s s t w 
t 

Wt* 
Lemma 2. lirnsup-- > 0 a.s. 

t-x Wt 
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Proof. 
Wt* 

Put Xt = In -- and for all integers n define 
Wt 

"Ln = inf {t > 0; Xt ~ n} 

Then "Ln is an Ft- stopping time and therefore XtAt is a submartingale by Lemma 1. Since 
n 

Xt-'\t is bounded above, it follows from Doob's submartingale convergence theorem (Doob 
n 

(1953)) that 

exists (and is finite) a.s. 

Since this holds for all n, we conclude that P[lim Xt = - oo] = 0, so that 
t~oo 

limsup Xt > - oo a.s. and Lemma 2 follows. 
t~oo 

Proof of Theorem 1 

(I) ~(II) and (III) ~(II) are trivial. 

(II) ~ (III): Assume (II) holds. Put 

B= {w;limsup W~ =O},P(B)=a>O. 
wt 

Letc > 0. 

Then by choosing s large enough we can find B8 E F s such that P(B5~B) < c , where ~ denotes the 

symmetric set difference. Now define p' as follows: 

p(t,w) ift < s 

p' (t,w) p"(t,w) ift ~sand wEBs 

p(t,w) if.t ~ sandwit'B5 

Since the occurrence of jumps of\Vt does not depend on p, we see from (5) that on B5 we have 
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wt 
ln-. 

wt 

w 
s 

=ln-. 
w 

s 

forallt;:::s, 

since p' = p" fort ;::: s. 

Therefore 

Thus 

. . 
w W1 

lim ln ~ = ln -. 
t-+oo W W 

t s 

w 

< oo onB . 
s 

w 
. 

l . t 
zmsup -. 

( w1 
limsup -. · ~)=oonB nB. 

"' s t-+oo \\' 
t 

t-+oo W 
t t 

Outside Bs we clearly have Wt = Wt'· 

Hence 

wt 
limsup -. 
t-+oo W 

t 

:5; 1 outside Btl.B . 
s 

Since P(B~B5) < e we have shown that pis inadmissible. 

(III)~ (IV): Assume (III) holds. Then there exists a strategy p' with 

Hence 

P lzimsup W ~ = 0 ] > 0 
t-+oo W 

w 
l . . f t 
zmm -. 
t-+oo \\' 

t 

t 

= limint( w,1 . 
t-+oo ·. W 

t 

Wt' 

wt' 
w*) = o 

t 

with positive probability, since liminf -- < oo a.s. by Lemma 2 Hence (IV) holds. 
Wt• 
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To prove the last two assertions it suffices to point out a situation where we have (Ill) but not (I) 

and a situation where we have (IV) but not (III): 

Choose .l3ij = 0 for all ij and choose 

.l.l = ((I+ c)u,u,O) where 

u = u(t) ~ 0, c = c(t) ~ 0 are to be determined. 

Then 

f (t) = "'P·ll· p L. I I 

1"' , 12 L. p.p .(oo ) .. = p1(1 +c)u + p2u- - p 1 2 . . I J I) 2 
IJ 

so it is easily seen that 

1 2 2 
p*=(cu,1-cu,O),{.=-cu +u. 

p 2 
Let 0 s o(t) s 1 be a function to be determined and put 

and 

Then 

( 9} 

and 

( 1 0) 

p = (8, 1 - 25,8) so that f = (1 + 5c- 5)u 
p 

p' = (5,1-5,0) so that{.= (1 +8c)u. 
p 

It It It 1 It (f -f .)dr + (5-cu)db 1 = ((5c-5)u- - c2u 2)dr + (5-cu)db 
oPP 0 0 2 0 1 

wt 
ln-.=-

wt 

t . I 5u drs 0 i.e., w s w' forallt ~ 0. 
0 t t 

Now choose u(r) = c(r) = r-3/4 

and 5(r) = r-1/4 for r ~ 1. 

Then 

wt 
ln -. ~ - oo a.s. as t~ :x;, 

w 
t 

so 
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( 11 ) 
wt 
-. -+0 a.s.ast-+cc, 
wt 

Moreover, note that 

( 12) It 1 2 2 
((oc- o)u - - c u )dr- - log t for large t. 

0 2 
t 

In general an Ito integral ofthe form Y t = f E aidbi is a time change of one-dimensional 
0 i 

Brownian motion; more precisely we have 

( 13) Y = It) a.db = br.t , 
t O~ .1 I pt 

I 

for some one-dimensional Brownian motion b, where 

( 14) 13 = It ( 2 a 2(r))dr 
t O . I 

I 

(~ksendal (1985)) 

The law of iterated logarithm for Brownian motion (Karlin and Taylor (1975)) states that 

( 15) 

This gives that 

( 16) 

bT 
limsup ;==:::;:::=:::==;;:: 
r~ I2Tlnln T 

1 a.s. 

r (o-cu)db 1 fot (o-cu)db 1 

l . o z· zmsup = zmsup ----- = oo a.s. 

t~ (t<o-cu)2dr)lf2 t~ tl/4 

Combining (12) and (16) we get from (9) that 
\ 

( 17) 
( w. 

limsup ln ~ ) = oo a.s. 
t~ w 

I 

From (10) and (11) we have that pis inadmissible, i.e., p satisfies (III), and from (17) we conclude that 

(I) does not hold. Thus (Ill) ==> (I) does not hold. 
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On the other hand, if we change top = (1 ,0,0), then for any strategy p" = (8, 1-8-q,q) we have 

w It It ln ~ = (c(l - 8)+ q)u dr + (1 - 8)db 1 
w 0 0 

t 

Since c( 1-o) + 11 ;;::: 0 we conclude that 

wt 
limsup -. > 0 a.s. 
t-+<X> w 

t 

Thus pis admissible. On the other hand 

ln ::=I~ w(l- ~w)dr+ I~(1-w)db 1 , 
t 

so, again by using (15), we conclude that 

liminf( ln W ~) = - oo a.s. 
t-+<X> wt 

Sop satisfies (IV) but not (III). 

That completes the proof of Theorem 1. 

The last example illustrates that a strategy p is admissible if it is close enough to p* in a sense to 

be made precise in the next theorem. We use the notation 

d m 

h (r) = 
p L L ln(l + P/r)pik) Aik(r) 

i=lk=-m 

and similarly for p*. Let hp = hpvO and hp = (-hp)vO so that hp = hp- hp. Furthermore, let gp(r) = 

(gp(jl(r)) = (~pi(r)oij(r)) and similarly for p*. 

For the next result we need conditions guaranteeing that the processes In Wt and In W1* do not 

explode, i.e., that they do not hit ± oo at a finite time point. These processes can explode for several 

reasons: 

(i) from too much drift Pi: 

(ii) from too much local variance Oij; 

(iii) from too many jumps Aij: 

(iv) from too large jumps Bik: 
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Conditions guaranteeing that the three first cases do not occur are given in Aase (1985b) and we 

assume these to hold here. The last case will not happen here from our assumptions on the relative 

jump sizes l3ik (pi ~ 0). We also need the following: 

(18) 

and similarly for p*. 

This condition only says that the "jumps matter". Mathematically it means that the point 

processes will have an infinite number of jumps on [O,oo), which is the usual assumption for point 

processes. (For this to hold, the processes should not explode). 

Theorem 2. Assume that (18) holds. 

(a) If there exists an optimal p* such that with probability one 

(19) Joo (f .-f)dr<oo, f"" (g .-g )2dr<oo,and J
00

(h .-h )dr<oo, 
0 PP oP P oP P 

then pis admissible. 

(b) Conversely, if pis an admissible strategy, then for every optimal p* we have 

Proof. We use the law of the iterated logarithm as above to estimate the second term on the right 

hand side in 

ln wt = Jt<t-f.)dr+ ft(g -g .)db+ It± i ln(l+p{3k)dNk(r) w; 0 p p 0 p p 0 i =} k= - m I I I 

The last term can be estimated as follows: By a random time change we can transform this term to a 

standard Poisson process. From the strong Ia w of large numbers for renewal processes it follows that 

I t~~ ln(l+pf3kldN.k(r) 
-- II 1 

or=lk=-m ------------- =.:.. 1 
rt 

J h (r) dr 
0 p 

t->cr> 
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provided (18) holds. (Aase and Guttorp (1984).) If (19) holds, then (IV) in Theorem 1 does not hold 

and hence pis admissible. 

Conversely, if pis admissible, then (I) in Theorem 1 does not hold and (20) follows. 

Remark. 

Whereas earlier results on admissibility have only given conditions on the wealths Wt and Wt*, 

the importance of Theorem 2 rests on the fact that this concept is now related directly to the 

characteristics of the investment strategy p. 
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