```
ISBN 82-553-0588-2
No }
October 4 1985
```

WHEN IS A STOCHASTIC INTEGRAL
A TIME CHANGE OF A DIFFUSION?

Bernt $\varnothing$ ksendal

# WHEN IS A STOCHASTIC INTEGRAL A TIME CHANGE OF A DIFFUSION? 

Bernt $\emptyset$ ksendal

## Abstract

```
We give a necessary and sufficient condition (in terms of \(u\), \(v, b\), \(\sigma\) ) that a time change of an \(n\)-dimensional Ito stochastic integral \(X_{t}\) on the form
\[
d x_{t}=u(t, \omega) d t+v(t, \omega) d B_{t}
\]
has the same law as a diffusion \(Y_{t}\) on the form
\[
d Y_{t}=b\left(Y_{t}\right) d t+\sigma\left(Y_{t}\right) d B_{t}
\]
As an application we prove a change of time formula for \(n\) dimensional Ito integrals.
```

WHEN IS A STOCHASTIC INTEGRAL A TIME CHANGE OF A DIFFUSION?

## Bernt 0 ksendal

81. The Main Result

In the following we will let $Y_{t}=Y_{t}^{X}$ denote an Ito diffusion, i.e. a (weak) solution in an open set $U \subset \mathbb{R}^{n}$ of the Ito stochastic differential equation

$$
\begin{equation*}
d Y_{t}=b\left(Y_{t}\right) d t+\sigma\left(Y_{t}\right) d B_{t} \cdot Y_{0}=x \tag{1.1}
\end{equation*}
$$

where the functions $b: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times m}$ are continuous and $\left(B_{t}, \Omega, \mathcal{F}_{t^{\prime}} P^{x}\right)$ denotes m-dimensional Brownian motion. And we will let $X_{t}=X_{t}^{X}$ denote an Ito stochastic integral

$$
\begin{equation*}
d X_{t}=u(t, \omega) d t+v(t, \omega) d B_{t^{\prime}} X_{0}=x \tag{1.2}
\end{equation*}
$$

where $u(t, \omega) \in \mathbb{R}^{n}, v(t, \omega) \in \mathbb{R}^{n \times m}$ satisfy the usual conditions for existence of the stochastic integral: $u(t, \omega)$ and $v(t, \omega)$ are $\mathcal{F}_{t}=$ adapted and

$$
P^{0}\left\{\omega ; \int_{0}^{t}|u(s, \omega)|+\sum_{i j} \int_{0}^{t}\left|v_{i j}(s, \omega)\right|^{2} d s<\infty \quad \text { for all } t\right\}=1 .
$$

(See e.g. [4] or [7]). The time changes will consider are of the following form:

Let $c(t, \omega) \geqslant 0$ be an $\mathcal{F}_{t}$-adapted process. Define

$$
\begin{equation*}
\beta_{t}=\beta(t, \omega)=\int_{0}^{t} c(s, \omega) d s \tag{1.3}
\end{equation*}
$$

We will say that $\beta_{t}$ is a time change with time change rate
$c(t, \omega)$. Note that $\beta_{t}$ is also $\mathcal{F}_{t}$-adapted and for each $\omega$ the map $t \rightarrow \beta_{t}$ is nondecreasing. Let $\alpha_{t}=\alpha(t, \omega)$ be the right continuous inverse of $\beta_{t}$ :

$$
\begin{equation*}
\alpha_{t}=\inf \left\{s ; \beta_{s}>t\right\} \tag{1.4}
\end{equation*}
$$

Then $\omega \rightarrow \alpha(t, \omega)$ is an $\left\{\mathcal{F}_{s}\right\}$-stopping time for each $t$, since

$$
\{\omega ; \alpha(t, \omega)<s\}=\{\omega ; t<\beta(s, \omega)\} \in \mathcal{F}_{s^{\circ}}
$$

We now ask the question: When does there exist a time change $\beta_{t}$ as above such that $X_{\alpha_{t}} \sim Y_{t^{\prime}}$ i.e. $X_{\alpha_{t}}$ is identical in law to $Y_{t}$ ? In §1 we give an answer to this question (Theorems 1-3) and in $\$ 2$ we use this to prove a change of time formula for stochastic integrals.

Note that $\beta\left(\alpha_{t}\right)=t$ for all $(t, \omega)$, so that

$$
\begin{equation*}
a_{t}^{\prime}(\omega)=\frac{1}{c\left(\alpha_{t}, \omega\right)} \text { for } a \cdot a \quad t \geqslant 0, \omega \in \Omega \text {. } \tag{1.5}
\end{equation*}
$$

Moreover,

$$
\int_{0}^{t} c\left(\alpha_{r}, \omega\right) d \hat{\alpha}_{r}=\int_{0}^{\alpha} c(s, \omega) d s=\int_{0}^{t} d r
$$

or

$$
\begin{equation*}
c\left(\alpha_{t}, \omega\right) d \hat{\alpha}_{t}=d t, \text { for each } \omega \in \Omega \tag{1.6}
\end{equation*}
$$

where $d \hat{\alpha}_{t}$ denotes the measure $d \alpha_{t}$ with the point masses corresponding to the discontinuities of $\alpha_{t}$ taken out.

First we establish a useful measurability result. We let $\mathcal{M}_{t}$ and $\mathcal{N}_{t}$ denote the $\sigma$-algebras generated by $\left\{X_{s} ; s \leqslant t\right\}$ and $\left\{Y_{s} ; s \leqslant t\right\}$, respectively, and we define $V_{\alpha_{t}}$ to be the $\sigma$-algebra in $\Omega$ generated by the functions $\omega \rightarrow X_{\alpha_{s}} ; s \leqslant t$.

We let $C_{0}^{2}(U)$ denote the twice continuously differentiable functions with compact support in $U$, and $v^{T}$ denotes the transposed of the matrix .

## Lemma 1

Let $d X_{t}=u(t, \omega) d t+v(t, \omega) d B_{t^{\prime}} c(t, \omega), \alpha_{t}$ be as above. Then $\left(v v^{T}\right)\left(\alpha_{t}, \omega\right) a_{t}^{\prime}$ is $\int \Omega_{\alpha_{t}}$-adapted

Proof.
By Ito's formula we have

$$
X_{t}^{(i)} X_{t}^{(j)}=X_{0}^{(i)} X_{0}^{(j)}+\int_{0}^{t} X_{s}^{(i)} d X_{s}^{(j)}+\int_{0}^{t} X_{s}^{(j)} d X_{s}^{(i)}+\int_{0}^{t}\left(v v^{T}\right){ }_{i j}(s, \omega) d s
$$

Hence, if we put

$$
H_{i j}(t, \omega)=X_{t}^{(i)} X_{t}^{(j)}-X_{0}^{(i)} X_{0}^{(j)}-\int_{0}^{t} X_{s}^{(i)} d X_{s}^{(j)}-\int_{0}^{t} X_{s}^{(j)} d X_{s}^{(i)}
$$

then $H(t, \omega)$ is $M_{t}$-adapted and we have

$$
\int_{0}^{\alpha}\left(v v^{T}\right)(s, \omega) d s=H\left(\alpha_{t}, \omega\right)
$$

Therefore

$$
\left(v v^{T}\right)\left(\alpha_{t^{\prime}} \omega\right) \alpha_{t}^{\prime}=\lim _{r \rightarrow 0} \frac{H\left(\alpha_{t^{\prime}} \omega\right)-H\left(\alpha_{t-r^{\prime}} \omega\right)}{r}
$$

which shows that $\left(v v^{T}\right)\left(\alpha_{t}, \omega\right) \alpha_{t}^{\prime}$ is $\prod_{\alpha_{t}}$-adapted.

## Remarks

1) One may ask if it is also true that $u\left(\alpha_{t}, \omega\right) \alpha_{t}^{\prime}$ is $M_{\alpha_{t}}$-adapted. However, the following example, which was pointed out to me by the referee, shows that this fails even in the case when $\alpha_{t}=t, v=1, m=n=1:$

Put
and define

$$
u(t, \omega)-\left\{\begin{array}{ccc}
\frac{B_{1}-B_{t}}{1-t} & \text { if } & t<1 \\
0 & \text { if } & t \geqslant 1
\end{array}\right.
$$

$$
\tilde{B}_{t}=-\int_{0}^{t} u(s, \omega) d s+B_{t}
$$

Then $\tilde{B}_{t}$ is a Brownian motion and

$$
B_{t}=\int_{0}^{t} u(s, \omega) d s+\tilde{B}_{t^{\prime}}
$$

but $u(t, \omega)$ is not $\mathcal{F}_{t}$-adapted.
2) The next example shows that it need not be the case that
$v\left(\alpha_{t^{\prime}} \omega\right) \alpha_{t}^{\prime}$ is $M_{\alpha_{t}}$-adapted, even if $\alpha_{t}=t$ : Choose $v(t, \omega)$ non-constant with the values $\pm 1$ and independent of $\left\{B_{t}\right\}_{t \geqslant 0}$ ( $m=n=1$ ). Define

$$
d \tilde{B}_{t}=v(t, \omega) d B_{t}
$$

Then $\tilde{B}_{t}$ is a Brownian motion (see McKean [4], 82.9 and also Corollary 1 later in this article). Hence we have

$$
d B_{t}=v(t, \omega) d \tilde{B}_{t^{\prime}}
$$

but $v(t, \omega)$ is not $\mathcal{F}_{t}$-adapted.

Let 03 denote the Bore $\sigma$-algebra of subsets of $[0, \infty)$. For $t \geqslant 0$ we define a measure $Q_{\alpha_{t}}$ on $B \times F$ by setting

$$
Q_{\alpha_{t}}(f)=E^{x}\left[\int_{0}^{\alpha_{t}} f(s, w) d s\right]
$$

if $f(s, w)$ is bounded and $\hat{B} \times F=$-measurable. Let $X$ denote the $\sigma^{-}$ algebra in $[0, \infty) \times \Omega$ generated by the function $(s, \omega) \rightarrow X_{S}(\omega)$ and
let $E_{\alpha_{t}}[g \mid X]=E_{\alpha_{t}}[g \mid X]$ denote the conditional expectation of $g(s, \omega)$ wrt. $X$ and wrt. the measure $Q_{\alpha_{t}}$.

We can now state and prove the main result. First we consider the case when

$$
\begin{equation*}
\beta_{\infty}=\infty \text { a.s. (i.e. } \alpha_{t}<\infty \text { for all } t<\infty \text { a.s.) } \tag{1.9}
\end{equation*}
$$

The general case will considered later in this section (Theorem 2).

## Theorem 1 .

Assume that (1.9) holds. Then the following 3 statements, (I). (II) and (III), are equivalent:
(I) (i) $\quad E_{\alpha_{t}}[u \mid X]=b(X) E_{\alpha_{t}}[c \mid X]$ for all $t \geqslant 0$ and
(ii) $\left(v v^{T}\right)(t, \omega)=c(t, \omega)\left(\sigma \sigma^{T}\right)\left(X_{t}\right)$ for a.a. $t \in\left(0, \alpha_{\infty}\right), \omega \in \Omega$.
(II) (i) $\quad E_{\alpha_{t}}[u \mid X]=b(X) E_{\alpha_{t}}[c \mid X]$ for all $t \geqslant 0 \quad$ and
(iii) $E_{\alpha_{t}}\left[v v^{T} \mid X\right]=\sigma \sigma^{T}(X) E_{\alpha_{t}}[c \mid X]$ for all $t \geqslant 0$
(III) $\quad X_{\alpha_{t}} \sim Y_{t}$

Proof.
(I) $\Rightarrow$ (II): This follows by noting that (i) and (iii) state that
(1.10) $\quad E^{X}\left[\int_{0}^{\alpha} u(s, \omega) g\left(X_{s}\right) d s\right]=E^{X^{x}}\left[\int_{0}^{\alpha} b\left(X_{s}\right) g\left(X_{s}\right) c(s, \omega) d s\right]$ and

$$
\begin{equation*}
E^{X}\left[\int_{0}^{\alpha}\left(v v^{T}\right)(s, \omega) g\left(X_{s}\right) d s\right]=E^{X}\left[\int_{0}^{\alpha}\left(\sigma \sigma^{T}\right)\left(X_{s}\right) g\left(X_{s}\right) c(s, \omega) d s\right] \tag{1.11}
\end{equation*}
$$

for all bounded functions 9 .
$(I I) \Rightarrow$ (III):

For $0 \leqslant t<\infty$ we define a bounded linear functional $W_{t}$ on $C_{b}(U)$ (the bounded real continuous functions on $U$ equipped with the sup norm) by

$$
W_{t} f=E^{X}\left[f\left(X_{\alpha_{t}}\right)\right] ; f \in C_{b}(U)
$$

Since $\alpha_{t}$ is a stopping time we have by Ito's formula (see e.g. [7]. Lemma 7.8) if $f \in C_{0}^{2}(U)$ :

$$
\begin{aligned}
& W_{t} f=E^{X}\left[f\left(X_{0}\right)\right]+E^{X}\left[\int _ { 0 } ^ { \alpha } \left\{\sum_{i}^{t} u_{i}(s, \omega) \frac{\partial f}{\partial X_{i}}\left(X_{s}\right)+\right.\right. \\
& \left.\frac{1}{2} \sum_{i, j}\left(\nabla v^{T}\right)_{i j}(s, \omega) \frac{d^{2} f}{\partial X_{i} \partial X_{j}}\left(X_{s}\right)\right\} d s
\end{aligned}
$$

So if (II) holds we obtain, using (1.10), (1.11) and (1.6)

$$
\begin{aligned}
& W_{t} f=f(X)+E^{X}\left[\int _ { 0 } ^ { \alpha } \left\{\sum_{i} b_{i}\left(X_{s}\right) \cdot \frac{\partial f}{\partial X_{i}}\left(X_{s}\right)+\frac{1 / 2}{\sum_{i, j}}\left(\sigma \sigma^{T}\right)_{i j}\left(X_{s}\right) \cdot\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\frac{1}{2} \sum_{i, j}\left(\sigma \sigma^{T}\right)_{i j}\left(X_{\alpha_{r}}\right) \cdot \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(X_{\alpha_{r}}\right)\right\} d r\right]=f(x)+E^{X^{\alpha}\left[\int_{0}^{t} A f\left(X_{\alpha_{r}}\right) d r\right]}
\end{aligned}
$$

where $A=\sum_{i} b_{i}\left(\partial / \partial x_{i}\right)+\frac{1 / 2}{} \sum_{i j}\left(\sigma \sigma^{T}\right)_{i j}\left(\partial^{2} / \partial x_{i} \partial x_{j}\right)$ is the generator of $Y_{t}$. Therefore

$$
\begin{align*}
\frac{d}{d t} W_{t} f & =W_{t}(A f) \quad ; \quad t \geqslant 0  \tag{1.12}\\
W_{0} f & =f(x)
\end{align*}
$$

for all $f \in C_{0}^{2}(U)$. Similarly we obtain, if we put

$$
V_{t} f=E^{X}\left[f\left(Y_{t}\right)\right], t \geqslant 0
$$

that
(1.13)

$$
\begin{aligned}
\frac{d}{d t} V_{t} f & =V_{t}\left(A_{f}\right), t \geqslant 0 \\
V_{0} f & =f(x)
\end{aligned}
$$

for all $f \in C_{0}^{2}(U)$. Since the solution of the equations (1.12) and (1.13) is unique (see [6], Lemma 2.5) we conclude that

$$
W_{t} f=V_{t} f \text { for all } t \geqslant 0, f \in C_{0}^{2}(U)
$$

Similarly we prove by induction on $k$ that

$$
E^{X}\left[f\left(X_{\alpha_{t}}\right) g_{1}\left(X_{\alpha_{t}}\right) \ldots g_{k}\left(X_{\alpha_{t_{k}}}\right)\right]=E^{X}\left[f\left(Y_{t}\right) g_{1}\left(Y_{t_{1}}\right) \ldots g_{k}\left(Y_{t_{k}}\right)\right]
$$

for all $t_{,} t_{1} \ldots \ldots, t_{k} \geqslant 0$ and $f_{1} g_{1} \ldots . g_{k} \in C_{0}^{2}(U)$ by applying the above argument to the $n(k+1)$ - dimensional processes

$$
\left(X_{\alpha_{t}}, X_{\alpha_{t_{1}}}, \ldots, X_{\alpha_{t_{k}}}\right) \text { and }\left(Y_{t}, Y_{t_{1}}, \ldots, Y_{t_{k}}\right)
$$

(III) $\Rightarrow$ (I) . Suppose $X_{\alpha_{t}} \sim Y_{t}$. Since $Y_{t}$ is a Markov process wrt. $\mathcal{M}_{t}$ it follows that $X_{\alpha_{t}}$ is a Markov process wrt. $\prod_{\alpha_{t}}$ and with generator A. Therefore, using Dynkin's formula (see e.g. [7], Th. 7.10 ) and (1.6) we have, for $f \in C_{0}^{2}(U)$ :
(1.14) $E^{X}\left[\left.f\left(X_{\alpha_{t+h}}\right)\right|_{\alpha_{t}}\right]=E^{X_{\alpha^{\prime}}}\left[f\left(X_{\alpha_{h}}\right)\right]=f\left(X_{\alpha_{t}}\right)+$

$$
\begin{aligned}
& E^{X_{\alpha^{\prime}}} t_{\left[\int_{0}^{h}\left\{\sum_{i}^{h} b_{i}\left(X_{\alpha_{t}}\right) \cdot \frac{\partial f}{\partial x_{i}}\left(X_{\alpha_{t}}\right)+\frac{1}{2} \sum_{i, j}\left(\sigma \sigma^{T}\right)_{i j}\left(X_{\alpha_{t}}\right) \cdot \frac{d^{2} f}{\partial x_{i} \partial x_{j}}\left(X_{\alpha_{t}}\right)\right\} d r\right]}^{=} \begin{array}{l}
f\left(X_{\alpha_{t}}\right)+E^{\alpha_{t}}\left[\int _ { 0 } ^ { \alpha _ { i } } \left\{\sum_{i} b_{i}\left(X_{s}\right) \cdot \frac{\partial f}{\partial x_{i}}\left(X_{s}\right)+\right.\right. \\
\left.\left.\frac{1}{2} \sum_{i, j}\left(\sigma \sigma^{T}\right)_{i j}\left(X_{s}\right) \cdot \frac{d^{2} f}{\partial x_{i} \partial x_{j}}\left(X_{s}\right)\right\} c(s, \omega) d s\right]
\end{array} .
\end{aligned}
$$

On the other hand, from Ito's formula we get as before
(1.15) $E^{X}\left[f\left(X_{\alpha_{t+h}}\right) \mid M_{c_{c}}\right]=E\left(X_{\alpha_{t}}\right)+E^{X}\left[f\left(X_{\alpha_{t+h}}\right)-f\left(X_{\alpha_{t}}\right) \mid M_{\alpha_{t}}\right]$

$$
\begin{aligned}
= & f\left(X_{\alpha_{t}}\right)+E^{X}\left[\int _ { \alpha _ { t } } ^ { \alpha + h } \left\{\sum_{i} u_{i}(s, \omega) \cdot \frac{\partial f}{\partial x_{i}}\left(X_{s}\right)+\right.\right. \\
& \left.\left.\frac{1}{2} \sum_{i, j}\left(v v^{T}\right)_{i j}(s, \omega) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(X_{s}\right)\right\} d s \mid m_{\alpha_{t}}\right]_{0}
\end{aligned}
$$

and a similar formula, denoted by (1.15) if we replace $\alpha_{t}$ by 0 . Comparing (1.14) and (1.15) for $f\left(x_{1} \ldots \ldots x_{n}\right)=\exp \left(i\left(\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}\right)\right)$ (where $i=\sqrt{-1}$ ) we see that (1.10) and (1.11) holds by putting $t=0$. Thus it remains to prove property (ii).

From (1.14) and (1.15) we conclude that if we fix i,j and put

$$
F_{t}(\omega)=\int_{0}^{\alpha}\left(v v^{T}\right)_{i j}(s, \omega) d s
$$

then

$$
\begin{align*}
\left(\sigma \sigma^{T}\right)_{i j}\left(X_{\alpha_{t}}\right) & =\lim _{h \rightarrow 0} \frac{1}{h} E^{X_{\alpha_{t}}}\left[\int_{0}^{h}\left(\sigma \sigma^{T}\right)_{i j}\left(X_{\alpha_{r}}\right) d r\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h} E^{X}\left[F_{t+h^{-}} F_{t} \mid m_{\alpha_{t}}\right] \text { for all } t, \omega . \tag{1.16}
\end{align*}
$$

Choose a t>0 such that $F_{t}^{\prime}$ exists a.s. Let $N$ be an integer. Define, for $h>0$,

$$
\begin{aligned}
& G_{h}(\omega)=\frac{1}{h}\left(F_{t+h}(\omega)-F_{t}(\omega)\right) \\
& H_{h}(\omega)= \begin{cases}G_{h}(\omega) & \text { if }\left|G_{h}(\omega)\right| \leqslant N \\
-N & \text { if } G_{h}(\omega)<-N \\
N & \text { if } G_{h}(\omega)>N\end{cases}
\end{aligned}
$$

and put

$$
H_{0}(\omega)= \begin{cases}F_{h}^{\prime}(\omega) & \text { if }\left|F_{h}^{\prime}(\omega)\right| \leqslant N \\ -N & \text { if } F_{h}^{\prime}(\omega)<-N \\ N & \text { if } F_{h}^{\prime}(\omega)>N,\end{cases}
$$

Then $H_{0}$ is measurable wrt. $M_{\alpha_{t}}$ by Lemma 1. By bounded convergence we have

$$
\begin{equation*}
\lim _{h \rightarrow 0} E^{x}\left[H_{h} \mid \mu_{\alpha_{t}}\right]=E^{x}\left[\lim _{h \rightarrow 0} H_{h} \mid \psi_{\alpha_{t}}\right]=H_{0} \quad \text { a.s. } \tag{1.17}
\end{equation*}
$$

Put

$$
W=\left\{\omega ;\left|F_{t}^{\prime}(\omega)\right| \leqslant \frac{1}{2} N\right\} \in M_{\alpha_{t}} .
$$

Choose $\omega \in W$. Then there exists $h(\omega)>0$ such that

$$
h<h(\omega) \Rightarrow\left|G_{h}(\omega)\right| \leqslant N \text { i.e. } \quad G_{h}(\omega)=H_{h}(\omega) \text {. }
$$

We want to conclude that

$$
\begin{equation*}
\lim _{h \rightarrow 0} E^{x}\left[G_{h} \mid \geqslant m_{\alpha_{t}}\right]=\lim _{h \rightarrow 0} E^{x}\left[H_{h} \mid \geqslant M_{\alpha_{t}}\right] \tag{1.18}
\end{equation*}
$$

for a.a $\omega \in W$.
To obtain this write

$$
E^{x}\left[f \mid \mathcal{N}_{\alpha_{t}}\right](\omega)=\int f(\eta) d Q_{\omega}(\eta) \text {, for a.a. } \omega \in \Omega \text {. }
$$

where $\Omega_{\omega}$ is a conditional probability distribution of $P$ given $m_{\alpha_{t}}$. (See Stroock and Varadhan [8]. Theorem 1.16)
Let

$$
v(\omega)=n\left\{v \in \mathcal{M}_{\alpha_{t}} ; \omega \in v\right\} \in M_{\alpha_{t}}
$$

be the $M_{\alpha_{t}}$-atom containing $\omega$.
Since

$$
Q_{\omega}(V(\omega))=1 \quad \text { for } \quad \text { a.a. } \quad \omega
$$

([8], Theorem 1.18) and $V(\omega) \subset W$ for all $\omega \in W$ (since $W \in T_{\alpha_{t}}$ ), we have for a.a. $\omega \in W$ and $h<h(\omega)$

$$
E^{X}\left[G_{h} \mid \not O_{\alpha_{t}}\right](\omega)=\int_{W} G_{h} d \rho_{\omega}=\int_{W} H_{h}(\omega) d Q_{\omega}=E^{x}\left[H_{h} \mid \sigma_{\alpha_{t}}\right]
$$

and (1.18) follows.

Combining (1.17) and (1.18) we obtain that

$$
\lim _{h \rightarrow 0} E^{x}\left[G_{h} \mid O \alpha_{\alpha_{t}}\right]=F_{t}^{\prime} \quad \text { a.s. in } W
$$

And since $N$ was arbitrary we conclude from (1.16)
(1.19) $\left(\sigma \sigma^{T}\right)_{i j}\left(\mathrm{X}_{\alpha_{t}}\right)=\left(v \mathrm{v}^{\mathrm{T}}\right)_{i j}\left(\alpha_{t}, \omega\right) \alpha_{t}^{\prime}$ for a.a. $t, \omega$ or

$$
\begin{equation*}
\left(v v^{T}\right)_{i j}\left(\alpha_{t}, \omega\right)=c\left(\alpha_{t^{\prime}} \omega\right)\left(\sigma \sigma^{T}\right)_{i j}\left(X_{\alpha_{t}}\right) \text { for a.a. } t_{,} \omega \tag{1.20}
\end{equation*}
$$

Moreover, if we define

$$
\begin{equation*}
F_{t}^{\prime}(\omega)=\frac{l i m}{h \rightarrow 0} \frac{1}{h}\left(F_{t+h}-F_{t}\right) \quad \text { for all } t, \omega \text {, } \tag{1.21}
\end{equation*}
$$

then using (1.15) and Fatou's lemma we get

$$
\begin{align*}
F_{t}^{\prime}(\omega) & =E^{x}\left[F_{t}^{\prime} \mid \eta_{\alpha_{t}}\right] \leqslant \frac{1 i m}{h \rightarrow 0} \frac{1}{h} E^{x}\left[F_{t+h}-F_{t} \mid \sum_{\alpha_{t}}\right] \\
& =\left(\sigma \sigma^{T}\right)_{i j}\left(X_{\alpha_{t}}\right)<\infty \quad \text { for all } t, \omega \tag{1.22}
\end{align*}
$$

Thus $t \rightarrow F_{t}(\omega)$ is absolutely continuous for each $\omega$. Therefore $\left(v v^{T}\right)_{i j}(s, \omega)=0$ a.e. on each s-interval where $s \rightarrow \beta(s, \omega)$ is constant i.e. where $s \rightarrow c(s, \omega)$ is 0 a.e. and, by (1.6)

$$
\left(v v^{T}\right)_{i j}\left(\alpha_{r}, \omega\right) d \alpha_{r}=\left(\sigma \sigma^{T}\right)_{i j}\left(X_{\alpha_{r}}\right) \mathrm{dr}=\left(\sigma \sigma^{T}\right)_{i j}\left(X_{\alpha_{r}}\right) c\left(\alpha_{r}, \omega\right) \mathrm{d} \alpha_{r}
$$

This is equivalent to saying that.

$$
\int_{0}^{\alpha}\left(v v^{T}\right)_{i j}(s, \omega) d s=\int_{0}^{\alpha}\left(\sigma \sigma^{T}\right)_{i j}\left(X_{s}\right) c(s, \omega) d s
$$

for all $t, w$. Thus (ii) holds and the proof of Theorem 1 is complete.

Remark. Consider the more general situation when $Y_{t}$ is not ssumed to be a diffusion, but just a stochastic integral of the same type as $X_{t}$ :

$$
\begin{equation*}
d Y_{t}=e(t, \omega) d t+f(t, \omega) d B_{t^{\prime}} \quad Y_{0}=x . \tag{1.1}
\end{equation*}
$$

It is natural to ask if one can find conditions on the coefficients in order that $X_{\alpha_{t}} \sim Y_{t}$ in case.

We end this section by considering the case when we do not assume that (1.9) holds, i.e. we allow $\beta_{\infty}<\infty$. This case will be a special case of the following situation: Let

$$
X_{t}=X_{t}^{x}(\omega)=x+\int_{0}^{t} u(s, \omega) d s+\int_{0}^{t} v(s, \omega) d B_{t^{i}} 0 \leqslant t \leqslant \tau
$$

be a stochastic integral in an open set $W \subset U \subset R^{n}$, where $\tau$ is an $\mathcal{F}_{t}$-stopping time such that $\tau \leqslant \tau_{W^{\prime}}$ the first exit time from $W$ of $X_{t}$. The probability law of $X_{t}$ starting at $x, \bar{P}^{x}$, is defined by

$$
\bar{P}^{\mathrm{X}}\left[\mathrm{X}_{\mathrm{t}_{1} \wedge \tau} \in \mathrm{~F}_{1} \ldots . . \mathrm{X}_{t_{k} \wedge \tau} \in \mathrm{~F}_{k}\right]=\mathrm{P}^{0}\left[\mathrm{X}_{\mathrm{t}_{1} \wedge \tau}^{\mathrm{X}} \in \mathrm{~F}_{1} \ldots . . \mathrm{X}_{t_{k} \wedge \tau}^{\mathrm{X}} \in \mathrm{~F}_{k}\right]
$$

and $\bar{E}^{\mathrm{X}}$ denotes integration wrt. $\overline{\mathrm{P}}^{\mathrm{X}}$. Suppose $\mathrm{Y}_{\mathrm{t}}$ is as before and let $A^{x}$ denote the probability law of $X_{t}$ starting at $x$. Then we say that $X_{t}$ is a time change of $Y_{t}$ (with time change rate $c(t, w)$ ) if the process $z_{t}$ defined by

$$
Z_{t}= \begin{cases}X_{\alpha_{t}} & ; \quad 0 \leqslant t<\beta_{\tau}  \tag{1.23}\\ Y_{t-\beta_{\tau}} & ; \quad t \geqslant \beta_{\tau}\end{cases}
$$

with probability law $\tilde{\mathrm{P}}^{\mathrm{X}}$ defined by
$\tilde{E}^{x}\left[f_{1}\left(z_{t_{1}}\right) \ldots f_{k}\left(z_{t_{k}}\right) \cdot \chi\left\{t_{j}<\beta \tau_{j+1}\right\}\right]=E^{x}\left[f_{1}\left(X_{\alpha_{t_{1}}}^{x}\right) \ldots f_{j}\left(X_{\alpha_{t_{j}}}^{x}\right) \cdot\right.$

$$
\begin{equation*}
\left.\left.f_{j+1}\left(Y_{t_{j+1}-\beta_{\tau}}\right) \ldots f_{k}\left(Y_{t_{k}-\beta}^{X}\right) \cdot \chi_{\left\{t_{j}<\beta\right.}^{\tau_{\tau} \leqslant t_{j+1}}\right\}\right] \tag{1.24}
\end{equation*}
$$

coincide in law with $Y_{t}$ for every $x \in W$.
(For simplicity we suppress the superscript $x$ in what follows)
Then question when $X_{t}$ is a time change of $Y_{t}$ can now by given an answer similar to Theorem 1, except that in this case the measure $Q_{\alpha_{t}}$ must be modified to the measure $Q_{\alpha_{t^{\wedge} \tau}}$ defined by

$$
Q_{\alpha_{t^{\wedge \tau}}}(f)=F^{X^{\alpha}}\left[\int_{0}^{t^{\wedge \tau}} f(s, \omega) d s\right]
$$

if $f \geqslant 0$ is $\hat{B} \times \mathcal{F}$-measurable. The corresponding conditonal expectation is denoted by $\mathrm{E}_{\alpha_{t} \wedge \tau}[\mid]$.

Theorem 2. The following are equivalent:
(A) $\quad E_{\alpha_{t} \wedge \tau}[u \mid X]=b(X) E_{\alpha_{t} \wedge \tau}[c \mid X]$ for all $t \geqslant 0$ and
$\left(v v^{T}\right)(t, \omega)=c(t, \omega)\left(\sigma \sigma^{T}\right)\left(X_{t}\right)$ for a.a. $t, \omega{ }_{\tau}$ such that $t<\beta_{\tau}$.
(B) $\quad X_{t}$ is a time change of $Y_{t}$, with time change rate $c(t, \omega)$.

Proof. (A) => (B): We proceed as in the proof of (II) => (III) in Theorem 1, except that now we put

$$
W_{t} f=\tilde{E}\left[f\left(z_{t}\right)\right] ; \quad f \in C_{0}^{2}(U), \quad t \geqslant 0 .
$$

Then by Ito's formula we get

$$
\begin{aligned}
& \tilde{E}\left[f\left(z_{t}\right) \cdot \chi_{\left\{t<\beta_{\tau}\right\}}\right]=\tilde{E}\left[f(x) \cdot \chi_{\left\{t<\beta_{\tau}\right\}}\right]+\tilde{E}\left[\int_{0}^{\alpha}(\nabla f)^{T}\left(X_{s}\right) v(s, \omega) d B_{s} \cdot \chi_{\left\{t<\beta_{\tau}\right\}}\right]+ \\
& \tilde{E}\left[\int_{0}^{\alpha}\left\{\sum_{i}^{t} u_{i}(s, \omega) \frac{\partial f}{\partial x_{i}}\left(X_{s}\right)+\sum_{i, j}\left(v v^{T}\right)_{i j}(s, \omega) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(X_{s}\right) d s \cdot \chi_{\left\{t<\beta_{\tau}\right\}}\right]\right.
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \tilde{E}\left[f\left(Z_{t}\right) \cdot \chi_{\left\{t \geqslant \beta_{\tau}\right\}}\right]=E\left[f\left(Y_{\tau-\beta_{\tau}}\right) \cdot x_{\left\{t \geqslant \beta_{\tau}\right\}}\right] \\
& =E\left[f\left(X_{\tau}\right) \cdot x_{\left\{t \geqslant \beta_{\tau}\right\}}\right]+E\left[\int_{0}^{t-\beta}{ }^{\tau}(A f)\left(Y_{u}{ }^{\chi}\right) d u \cdot x_{\left\{t \geqslant \beta_{\tau}\right\}}\right] \\
& \text { (1.26) }=E\left[f\left(X_{\tau}\right) \cdot x_{\left\{t \geqslant \beta_{\tau}\right\}}\right]+E\left[\int_{\beta_{\tau}}^{t}(A f)\left(Y_{v-\beta_{\tau}}^{X_{\tau}}\right) d v \cdot x_{\left.\left\{t \geqslant \beta_{\tau}\right\}\right]}\right.
\end{aligned}
$$

By Ito's formula we get

$$
E\left[f\left(X_{\tau}\right) \cdot \chi_{\left\{t \geqslant \beta_{\tau}\right\}}\right] \neq E\left[f(x) \cdot \chi_{\left\{t \geqslant \beta_{\tau}\right\}}\right]+E\left[\int_{0}^{\tau}(\nabla f)^{T}\left(X_{s}\right) v(s, \omega) d B_{s} \cdot \chi\left\{t \geqslant \beta_{t}\right\}\right]
$$

$$
\begin{equation*}
+E\left[\int_{0}^{\tau}\left\{\sum_{i} u_{i}(s, \omega) \cdot \frac{\partial f}{\partial x_{i}}\left(X_{s}\right)+\sum_{i, j}\left(v v^{T}\right)_{i j}(s, \omega) \cdot \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(X_{s}\right)\right\} d s \cdot \chi_{\left\{t \geqslant \beta_{\tau}\right\}}\right] \tag{1.27}
\end{equation*}
$$

so by adding (1.26) and (1.27) we obtain

$$
\begin{gathered}
\tilde{E}\left[f\left(Z_{t}\right)\right]=f(x)+E\left[\int_{0}^{\alpha}(\nabla f)^{\wedge \tau}\left(X_{s}\right) v(s, \omega) d B_{s}\right] \\
+E\left[\int_{0}^{\alpha} t_{i}^{\wedge \tau}\left\{\sum_{i} u_{i}(s, \omega) \cdot \frac{\partial f}{\partial x_{i}}\left(X_{s}\right)+\sum_{i, j}\left(v v^{T}\right)_{i j}(s, \omega) \cdot \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(X_{s}\right)\right\} d s\right. \\
(1.28)+E\left[\int_{\beta_{\tau}}^{t}(A f)\left(Y_{v-\beta_{\tau}}\right) d v \cdot \chi_{\left\{t \geqslant \beta_{\tau}\right\}}\right] .
\end{gathered}
$$

Since $\alpha_{t} \wedge \tau$ is a stopping time the second term on the right of (1.28) is 0 and by (A) the third term is the same as

$$
\begin{aligned}
& E\left[\int_{0}^{\alpha}(A f)\left(X_{s}\right) c(s, \omega) d s\right]=E\left[\int_{0}^{\alpha}(A f)\left(X_{s}\right) c(s, \omega) d s \cdot \chi_{\left\{t<\beta_{\tau}\right\}}\right] \\
& +E\left[\int_{0}^{\tau}(A f)\left(X_{s}\right) c(s, \omega) d s \cdot \chi_{\left\{t \geqslant \beta_{\tau}\right\}}\right]
\end{aligned}
$$

(1.29) $=E\left[\int_{0}^{t}(A f)\left(X_{\alpha_{r}}\right) d r \cdot x_{\left\{t<\beta_{\tau}\right\}}\right]+E\left[\int_{0}^{\beta}(A f)\left(X_{\alpha_{r}}\right) d r \cdot x_{\left\{t \geqslant \beta_{\tau}\right\}}\right]$
(Note that
(1.30)

$$
\int_{0}^{\tau}(A f)\left(X_{s}\right) c(s, \omega) d s=\int_{0}^{\alpha}(A f)\left(X_{s}\right) c(s, \omega) d s,
$$

since $c(s, w)=0$ for a.a. $\left.s \in\left(\tau, \alpha_{\beta_{\tau}}\right)\right)$.
Substituting (1.29) in (1.28) and comparing with (1.24) we conclude that

$$
\tilde{E}\left[f\left(z_{t}\right)\right]=f(x)+\tilde{E}\left[\int_{0}^{t}(A f)\left(Z_{s}\right) d s\right] .
$$

Thus we have obtained (1.11) and the rest of the proof of (i) => (ii) follows the proof of (II) $\Rightarrow$ (III) in Theorem 1 .
$(B) \Rightarrow(A):$ We reverse the argument just given. If $Z_{t}$ is a Markov process with generator $A$ we get by the Dynkin formula

$$
\begin{aligned}
& \tilde{E}\left(f\left(z_{t}\right)\right]=f(x)+\tilde{E}\left[\int_{0}^{t}(A f)\left(z_{s}\right) d s\right] \\
& =f(x)+\tilde{E}\left[\int_{0}^{t \wedge \beta} \tau(A f)\left(Z_{s}\right) d s\right]+\tilde{E}\left[\int_{t \wedge \beta}^{t}(A f)\left(Z_{v}\right) d v\right] \\
& =f(x)+E\left[\int_{0}^{t \wedge \beta} \tau(A f)\left(X_{\alpha_{r}}\right) d r\right]+\tilde{E}\left[\left(\int_{\beta}^{t}(A f)\left(Z_{v}\right) d v\right) \chi_{\left\{t \geqslant \beta_{\tau}\right\}}\right] \\
& \text { (1.31) }=f(x)+F\left[\int_{0}^{\alpha}(A f)\left(X_{s}\right) c(s, \omega) d s\right]+E\left[\left(\int_{B}^{t}(A f)\left(Y_{\tau-B}^{X}\right) d v\right) \cdot x_{\tau}\left\{t \geqslant \beta_{\tau}\right\}\right]
\end{aligned}
$$

$$
E\left[\int_{0}^{\alpha} t^{\wedge \tau} u(s, \omega) g\left(X_{s}\right) d s\right]=E\left[\int_{0}^{\alpha} b\left(X_{s}\right) c(s, \omega) g\left(X_{s}\right) d s\right]
$$

and

$$
E\left[\int_{0}^{\alpha} t^{\wedge \tau}\left(v v^{T}\right)(s, \omega) g\left(X_{s}\right) d s\right]=E\left[\int_{0}^{\alpha} t^{\wedge \tau}\left(\sigma \sigma^{T}\right)\left(X_{s}\right) c(s, \omega) g\left(X_{s}\right) d s\right]
$$

for all bounded functions 9 .

This proves the first identity in (A). To obtain the second identity we proceed as in the proof of (III) $\Rightarrow$ (I) in Theorem 1: Let $\tilde{m}_{t}$ denote the $\sigma$-algebra generated by $\left\{Z_{s} ; s \leqslant t\right\}$. Then by the strong Markov property we have for all t,w
(1.32) $\lim _{h \rightarrow 0} \frac{1}{h} \tilde{E}\left[f\left(z_{t+h}\right)-f\left(z_{t}\right) \mid \tilde{m}_{t}\right]=\lim _{h \rightarrow 0} \frac{1}{h} \tilde{E}^{Z}\left[f\left(z_{h}\right)-f\left(z_{0}\right)\right]=(A f)\left(z_{t}\right)$

On the other hand, from the general calculation in (1.28) we get
$\lim _{h \rightarrow 0} \frac{1}{h} \tilde{E}\left[f\left(z_{t+h}\right)-f\left(z_{t}\right) \mid \tilde{m}_{t}\right]=$
$\lim _{h \rightarrow 0} \frac{1}{h} \tilde{E}\left[\left.\int_{\alpha_{t} \wedge \tau}^{\alpha+h^{\wedge \tau}}\left\{\sum_{i} u_{i}(s, w) \cdot \frac{\partial f}{\partial x_{i}}\left(X_{s}\right)+\sum_{i j}\left(v v^{T}\right)_{i j}(s, \omega) \cdot \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(X_{s}\right)\right\} d s \right\rvert\, \tilde{m}_{t}\right]$
$\left.\lim _{h \rightarrow 0} \frac{1}{h} \tilde{E}\left[\int_{t}^{t+h}(A f)\left(Y_{V-\beta_{\tau}}^{X}\right) d v \cdot x_{\left\{t \geqslant \beta_{\tau}\right\}}\right\} \tilde{m}_{t}\right]$

Applying this to the function $f\left(x_{1} \ldots \ldots x_{n}\right)=x_{i} x_{j}$. we get by combining (1.32) and (1.33):

$$
\begin{aligned}
& \left(\sigma \sigma^{T}\right)_{i j}\left(z_{t}\right)=\lim _{h \rightarrow 0} \frac{1}{h} E\left[\int_{\alpha_{t}}^{\alpha+h}\left(v v^{T}\right)_{i j}(s, \omega) d s \cdot \chi_{\left.\left\{t<\beta_{\tau}\right\} \mid \tilde{m}_{t}\right]}+\lim _{h \rightarrow 0} \frac{1}{h} \tilde{E}\left[\int_{t}^{t+h}\left(\sigma \sigma_{i j}^{T}\right)\left(z_{v}\right) d v \cdot \chi_{\left.\left\{t \geqslant \beta_{\tau}\right\} \mid i \tilde{m}_{t}\right]}\right.\right. \\
& =\left(v v^{T}\right)_{i j}\left(\alpha_{t}, \omega\right) \alpha_{t}^{\prime} E\left[\chi_{\left\{t \geqslant \beta_{\tau}\right\}} \mid \tilde{m}_{t}\right]+\left(\sigma \sigma^{T}\right)_{i j}\left(z_{t}\right) \cdot E\left[\chi_{\left\{t \geqslant \beta_{\tau}\right\}} \mid \tilde{m}_{t}\right]
\end{aligned}
$$

by the same argument as in the proof of (1.19).

## Hence

$$
\begin{equation*}
\left(\sigma \sigma^{T}\right)_{i j}\left(Z_{t}\right) E\left[\chi_{\left\{t<\beta_{\tau}\right\}} \mid \tilde{M}_{t}\right]=\left(v v^{T}\right)_{i j} \alpha_{t}^{\prime} E\left[\chi_{\left\{t \geqslant \beta_{\tau}\right\}} \mid \tilde{M}_{t}\right] \tag{1.34}
\end{equation*}
$$

Put $B=\left\{\omega_{i} t<\beta_{\tau}\right\}$ and let

$$
A_{0}=\left\{\omega ; E\left[\chi_{B} \mid \tilde{\eta}_{\tau}\right]=0\right\} \in \tilde{\eta}_{t}
$$

Then

$$
P\left(B \cap A_{0}\right)=\int_{A_{0}} \chi_{B} \cdot d P=\int_{A_{0}} E\left[\chi_{B} \mid \tilde{m}_{t}\right] d P=0
$$

so

$$
E\left[x_{B} \mid \tilde{m}_{t}\right]>0 \quad \text { a.s. on } B
$$

Therefore we can conclude from (1.34) that for all $t \geqslant 0$

$$
\left(V^{T}\right)_{i j}\left(\alpha_{t}, \omega\right)=c\left(\alpha_{t}, \omega\right)\left(\sigma \sigma^{T}\right)_{i j}\left(X_{\alpha_{t}}\right)
$$

for a.a. $\omega$ s.t. $t<\beta_{\tau}(\omega)$.

Thus we obtain the same conclusion (I) as in Theorem 1, except that it is only valid for a.a. $t, \omega$ such that $t<\beta_{\tau}(\omega)$. That completes the proof of Theorem 2 .

Corollary 1. Suppose

$$
u(t, \omega)=c(t, \omega) b\left(X_{t}\right) \text { and }\left(v v^{T}\right)(t, \omega)=c(t, \omega)\left(\sigma \sigma^{T}\right)\left(X_{t}\right)
$$

for a.a. $\quad t, \omega$ sucht that $t<\beta_{\tau}$.
Then $X_{t}$ is a time change of $Y_{t}$, with time change rate $c(t, \omega)$. Theorem 2 allows us to extend the characterization of Markovian path-preserving functions given in Csink and фksendal [1] to the case when the time change $\beta_{t}$ is not necessarily strictly increasing:

Theorem 3. Let $d S_{t}=a\left(S_{t}\right) d t+\gamma\left(S_{t}\right) d B_{t}$ and $d Y_{t}=b\left(Y_{t}\right) d t+$ $\sigma\left(Y_{t}\right) d B_{t}$ be Ito diffusions on open sets $G \subset \mathbb{R}^{p}$ and $U \subset \mathbb{R}^{n}$, respectively. Denote the generators of $S_{t}$ and $Y_{t}$ by $\bar{A}$ and $A$, respectively. Let $\phi: G \rightarrow U$ be a $C^{2}$ function. Then the following are equivalent:
(1) There exists a continuous function $\lambda \geqslant 0$ on $G$ such that (1.35) $\bar{A}[f \circ \phi]=\lambda A[f] \circ \phi$ for all $f \in C^{2}(U)$
(2) For each open set $D$ with $\bar{D} \subset G$ the stochastic integral $\phi\left(S_{t}\right), t \leqslant \tau_{\bar{D}}$ is a time change of $X_{t}$, with time change rate $\lambda\left(S_{t}\right)$ (in the sense of (1.23)-(1.24)).

Proof. By the Ito formula we have that $X_{t}=\phi\left(S_{t}\right), t \leqslant \tau_{W^{\prime}}$ satisfies

$$
d X_{t}^{(k)}=\left(A \phi_{k}\right)\left(S_{t}\right) d t+\nabla \phi_{k}^{T}\left(S_{t}\right) \gamma\left(S_{t}\right) d B_{t}, \quad k=1 \ldots, m
$$

where $x_{t}^{(k)}$ is component no. $k$ of $X_{t}$. Therefore by Theorem 2 (2) holds if and only if

$$
\begin{equation*}
E_{\alpha_{t} \wedge \tau}\left[A \phi_{k}\left(S_{t}\right) \mid X\right]=b_{k}(X) E_{\alpha_{t} \wedge \tau}\left[\lambda\left(S_{t}\right) \mid X\right] \tag{1.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla \phi_{k}^{T} \gamma \gamma^{T} \nabla \phi_{\ell}\right)\left(S_{t}\right)=\lambda\left(S_{t}\right)\left(\sigma \sigma^{T}\right)_{k \ell}\left(X_{t}\right) \quad ; \quad 1 \leqslant k, \quad \ell \leqslant m, \tag{1.37}
\end{equation*}
$$

for a.a. $t, \omega$ such that $t<\beta_{\tau}$. Letting $t \rightarrow 0$ we se that equation (1.37) is equivalent to

$$
\begin{equation*}
\nabla \phi_{\mathrm{k}}^{\mathrm{T}} \gamma \gamma^{\mathrm{T}} \nabla \phi_{\ell}(\mathrm{x})=\lambda(x)\left(\sigma \sigma^{\mathrm{T}}\right)_{k \ell}(\phi(x)), \quad 1 \leqslant k, \quad \ell \leqslant \mathrm{~m} \tag{1.38}
\end{equation*}
$$

(1.39)

$$
A \phi_{k}(x)=\lambda(x) b_{k}(\phi(x)) \quad ; 1 \leqslant k \leqslant m_{\theta} \quad x \in G
$$

It is clear that (1.39) implies (1.36). Conversely, if (1.36) holds we consider two cases:

Case 1: $x$ belongs to the $S$-fine interior $D$ of $N=\{z ; \lambda(z)=0\}$; i.e. $\tau_{N}=\inf \left\{t>0 ; S_{t} \notin N\right\}>0$ a.s. Since $\alpha_{0^{+}}=\lim _{t \downarrow 0} \alpha_{t}=\tau_{N}$ we then get from (1.36) that

$$
K(x)=E^{X}\left[\int_{0}^{\tau} N^{\wedge \tau}\left(A \phi_{k}\right)\left(S_{t}\right) d t\right]=0 \quad \text { for all } \quad x \in D
$$

Applying the characteristic operator $O$ of $S_{t}$ to the function $K$ we get (se [7], p.138)

$$
0=O K(x)=\left(A \phi_{k}\right)(x) \quad \text { for all } x \in D
$$

so (1.39) holds in this case.

Case 2: $\tau_{N}=0$ a.s. Then we have $\alpha_{0}=0$ a.s. and therefore from (1.36)

$$
\begin{aligned}
A \phi_{k}(x) & =\lim _{t \downarrow 0} \frac{1}{E^{x}\left[\alpha_{t^{\wedge}} \tau\right]} E^{X X}\left[\int_{0}^{\alpha} t^{\wedge \tau}\left(A \phi_{k}\right)\left(S_{r}\right) d r\right] \\
& =\lim _{t \downarrow 0} \frac{1}{E^{X}\left[\alpha_{t} \wedge \tau\right]} \cdot E^{X}\left[\int_{0}^{\alpha} t^{\wedge \tau} \lambda\left(S_{r}\right) b_{k}\left(\phi\left(S_{r}\right)\right) d r\right]=\lambda(x) b_{k}(\phi(x)),
\end{aligned}
$$

as claimed.

We now note that (1.38) and (1.39) are equivalent to requiring that

$$
\bar{A}[f \circ \phi]=\lambda A[f] \circ \phi
$$

for all polynomials

$$
f\left(x_{1}, \ldots x_{n}\right)=\sum_{i} c_{i} x_{i}+\sum_{i, j} d_{i j} x_{i} x_{j}
$$

of degree $\leqslant 2$, and hence that (1.35) holds for all $f \in C^{2}(U)$.

Remark. It is natural to ask what happens if we allow a more general time change rate $c(t, \omega)$ (not necessarily of the form $\lambda\left(s_{t}\right)$ ) which makes $\phi\left(s_{t}\right)$ a time change of $X_{t}$. However, the argument above gives that if such a $c(t, \omega)$ exists, then as in (1.37)

$$
\left(\nabla \phi_{k}^{\mathrm{T}} \gamma \gamma^{\mathrm{T}} \nabla_{\ell}\right)\left(S_{t}\right)=c(t, \omega)\left(\sigma \sigma^{\mathrm{T}}\right)_{k \ell}\left(\mathrm{X}_{t}\right) \quad \text { for } \quad 1 \leqslant k, \ell \leqslant m \text {, }
$$

and so

$$
c(t, \omega)=\lambda\left(S_{t}\right)
$$

with

$$
\lambda(x)=\frac{\left(\nabla \phi_{k}^{T} \gamma \gamma^{T} \nabla \phi_{\ell}\right)(x)}{\left(\sigma \sigma_{k \ell}^{T}\right)(\phi(x))}
$$

i.e. we have a time change of the type discussed in Theorem 3.

## §2. A TIME CHANGE FORMULA FOR ITO INTEGRALS

As an illustration we first use Theorem 1 to characterize the stochastic integrals which are time changes of Brownian motion. If $u=0$ the corresponding result without time change (and with time change if $n=1$ ) was first proved by McKean ([4], §2.9). The sufficiency of condition (2.1) has been proved by F. Knight [3] (in a martingale setting).

Corollary 2. Let $X_{t}$ be the $n$-dimensional stochastic integral in (1.2). Then there exists a time change $\alpha_{t}$ as above with time change rate $c(t, \omega) \geqslant 0$ such that

$$
\left.X_{\alpha_{t}} \sim B_{t} \text { (n-dimensional Brownian motion }\right)
$$

if and only if
(2.1)

$$
\begin{aligned}
& E_{\alpha_{t}}[u \mid X]=0 \text { for all } t \text { and }\left(v v^{T}\right)(t, \omega)=c(t, \omega) I_{n} \\
& \text { for all a.a } t \geqslant 0, a \cdot a \cdot \quad \omega \in \Omega
\end{aligned}
$$

where $I_{n}$ is the $n \times n$ identity matrix.

Example 1. If $X_{t}$ is a 2-dimensional process the form

$$
d X_{t}=v(t, \omega) d B_{t}
$$

where $v \in R^{2 \times 2}$ and $B_{t}$ is 2 -dimensional Brownian motion, then $X_{t}$ is a conformal martingale if and only if

$$
\left(v v^{T}\right)(t, \omega)=\eta(t, \omega) I_{2} \text { for some } \eta(t, \omega) \geqslant 0
$$

(See [2]). Thus it follows from Corollary 2 that a conformal martingale is a change of time of Brownian motion (in $\mathrm{R}^{2}$ ). This was proved by Getoor and Sharpe ([2]), p. 292-293) and it follows from the result by Knight in [3].

A special case of Corollary 2 is the following:

Corollary 3. Let $c(t, \omega) \geqslant 0$ be given and let $\alpha_{t}$ correspond to c as before. Put

$$
X_{t}=\int_{0}^{t} \sqrt{c}(s, w) d B_{s}
$$

where $B_{s}$ is n-dimensional Brownian motion. Then $X_{\alpha_{t}}$ is also an n-dimensional Brownian motion.

We now use this to prove that a time change of a stochastic integral is again a stochastic integral, but driven by a different Brownian motion $\tilde{B}_{t}$. First we construct $\tilde{B}_{t}$ :

Lemma 2. Suppose $t \rightarrow \alpha(t, \omega)$ is continuous, $\alpha(0, \omega)=0$ for $\mathrm{a} \cdot \mathrm{a}$
$\omega$. Fix $t>0$. For $k=1,2, \ldots$ put

$$
t_{j}=\left\{\begin{array}{lll}
j \cdot 2^{-k} & \text { if } & j \cdot 2^{-k} \leqslant t \\
t & \text { if } & j \cdot 2^{-k}>t
\end{array}\right.
$$

and choose $r_{j}$ such that $\alpha_{r_{j}}=t_{j}$
Suppose $f(s, \omega) \geqslant 0$ is $\mathcal{F}_{s}$-adapted and satisfies

$$
P^{0}\left[\int_{0}^{t} f(s, \omega)^{2} d s<\infty\right]=1
$$

Then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sum_{j} f\left(\alpha_{j}, \omega\right) \Delta B_{\alpha_{j}}=\int_{0}^{\alpha_{j}} f(s, \omega) d B_{s} \tag{2.2}
\end{equation*}
$$

a.s..
where $\alpha_{j}=\alpha_{r_{j}} \Delta B_{\alpha_{j}}=B_{\alpha_{j+1}}-B_{\alpha_{j}}$ and the limit is in $L^{2}\left(\Omega, P^{0}\right)$.

Proof. For all $k$ we hve

$$
\begin{aligned}
& E\left[\left(\sum_{j} f\left(\alpha_{j}, \omega\right) \Delta B_{\alpha_{j}}-\int f(s, \omega) d B_{s}\right)^{2}\right] \\
= & \sum_{j} E\left[\left(\int_{\alpha_{j}}^{\alpha_{j+1}}\left(f\left(\alpha_{j}, \omega\right)-f(s, \omega)\right) d B_{s}\right)^{2}\right] \\
= & \sum_{j} E\left[\int_{j}^{\alpha+1}\left(f\left(\alpha_{j}, \omega\right)-f(s, \omega)\right)^{2} d s\right]=E\left[\int_{0}^{t}\left(f-f_{k}\right)^{2} d s\right] .
\end{aligned}
$$

where $f_{k}(s, \omega)=\sum_{j} f\left(t_{j}, \omega\right) \chi_{\left[t_{j}, t_{j+1}\right)}(s)$ is the elementary approximation to f. (See [7], Ch. III). This implies (2.2) in the case when $f$ is bounded and $t \rightarrow f(t, \omega)$ is continuous, for a.a. w. The proof in the general case follows by approximation in the usual way. (See Ch. III, Steps $1-3$ in [7]).

The following result extends a l-dimensional time change formula proved by Mckean ([4], §2.8).

Theorem 4. (Time change formula for Ito integrals)
Let $\left(B_{s}, \mathcal{F}_{s}\right)$ be m-dimensional Brownian motion and $v(t, \omega) \in \mathbb{R}^{n \times m}$ as before. Suppose $\alpha_{t}$ satisfies the conditions in Lemma 2. Define

$$
\begin{equation*}
\tilde{B}_{t}=\lim _{k \rightarrow \infty} \sum_{j} \sqrt{c\left(a_{j}, \omega\right)} \Delta B_{\alpha_{j}}=\int_{0}^{\alpha} \sqrt{c(s, \omega)} d B_{s} \tag{2.3}
\end{equation*}
$$

Then $\tilde{B}_{t}$ is an (m-dimensional) $\tilde{F}_{\alpha_{t}}$-Brownian motion (ie $\tilde{B}_{t}$ is a Brownian motion and $\tilde{B}_{t}$ is a martingale writ. $\tilde{f}_{\alpha_{t}}$ ) and

$$
\begin{equation*}
\int_{0}^{\alpha} v(s, \omega) d B{ }_{s}=\int_{0}^{t} v\left(\alpha_{r^{\prime}} \omega\right) \cdot \sqrt{\alpha_{r}^{\prime}} d \tilde{B}_{r^{\prime}} \text { ass. } p^{0} . \tag{2.4}
\end{equation*}
$$

where $\alpha_{r}^{\prime}(\omega)$ is the derivative of $\alpha_{r}$ writ. $r$, so that

$$
\begin{equation*}
\alpha_{r}^{\prime}(\omega)=\frac{1}{c\left(\alpha_{r}, \omega\right)} \text { for aba } r \geqslant 0, \omega \in \Omega \text {. } \tag{2.5}
\end{equation*}
$$

Proof. The existence of the limit in (2.3) and the second identity in (2.3) follows by applying Lemma 2 to the function

$$
f(s, \omega)=\sqrt{C(s, \omega)}
$$

Then by Corollary 2 we have that $\tilde{B}_{t}$ is an $\mathcal{F}_{\alpha_{t}}$-Brownian motion. It remains to prove (2.4):

$$
\begin{aligned}
& \int_{0}^{\alpha_{t}} v(s, \omega) d B_{s}=\lim _{k \rightarrow \infty} \sum_{j} v\left(\alpha_{j}, \omega\right) \Delta B_{\alpha_{j}} \\
& =\lim _{k \rightarrow \infty} \sum_{j} v\left(\alpha_{j}, \omega\right) \sqrt{\frac{1}{c\left(\alpha_{j}, \omega\right)}} \sqrt{c\left(\alpha_{j}, \omega\right)} \Delta B_{\alpha_{j}} \\
& =\lim _{k \rightarrow \infty} \sum_{j} v\left(\alpha_{j}, \omega\right) \sqrt{\frac{1}{c\left(\alpha_{j}, \omega\right)}} \Delta \tilde{B}_{j}
\end{aligned}
$$

$$
=\int_{0}^{t} v\left(\alpha_{r}, \omega\right) \sqrt{\frac{1}{c\left(\alpha_{r}, \omega\right)}} \Delta \tilde{B}_{r^{\prime}}
$$

and the proof is complete.

We now apply Theorem 4 to the case when the stochastic integral $X_{t}$ is an Ito diffusion

$$
\begin{equation*}
d X_{t}=a\left(X_{t}\right) d t+\gamma\left(X_{t}\right) d B_{t} \tag{2.6}
\end{equation*}
$$

where $a: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times m}$ are continuous.

Corollary 4. Let $X_{t}$ be the Ito diffusion given by (2.6) and let $t \rightarrow \alpha(t, \omega)$ be absolutely continuous, $\alpha(0, \omega)=0$ for a.a. w. Then $X_{\alpha_{t}}$ is a Markov process wrt. $M_{\alpha_{t}}$ if and only if there exists a function $q: R^{n} \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
c(t, \omega)=q\left(X_{t}(\omega)\right) \tag{2.7}
\end{equation*}
$$

for a.a. $t<\alpha_{\infty}, \omega \in \Omega$, and in that case

$$
\begin{equation*}
d\left(X_{\alpha_{t}}\right)=\frac{a\left(X_{\alpha_{t}}\right)}{q\left(X_{\alpha_{t}}\right)} d t+\frac{\gamma\left(X_{\alpha_{t}}\right)}{q\left(X_{\alpha_{t}}\right)} d \tilde{B}_{t} \tag{2.8}
\end{equation*}
$$

where $\tilde{B}_{t}$ is the $\tilde{\mathcal{F}}_{\alpha_{t}}-$ Brownian motion from Theorem 4.

Proof. If (2.7) holds then (2.8) follows from Theorem 4. Hence $X_{\alpha_{t}}$ is a weak solution of the stochastic differential equation (2.8) and therefore $X_{\alpha_{t}}$ is a Markov process. Conversely, if $X_{\alpha_{t}}$ is a Markov process wrt. $\mathcal{N}_{\alpha_{t}}$ then by the proof of (III) $=>(I)(i i)$ in Theorem 1 we obtain
(2.9)

$$
\left(\gamma \gamma^{T}\right)\left(X_{t}\right)=c(\cdot t, \omega)\left(\sigma \sigma^{T}\right)\left(X_{t}\right) \quad \text { for } a \cdot a \cdot t<\alpha_{\infty}, \omega \in \Omega
$$

i.e.

$$
c(t, \omega)=q\left(X_{t}\right)
$$

with

$$
q(x)=\frac{\left(\gamma \gamma^{T}\right)(x)}{\left(\sigma \sigma^{T}\right)(x)}
$$

Remark. The last part of this proof does not require that $\alpha_{t}$ is absolutely continuous.

## ACKNOWL EDGEMENT

I wish to thank Norges Almenvitenskapelige Forskningsrad, Norway (NAVF) for their support. I am grateful to R. Bañuelos, R. Durrett and the referee for their comments.

## REFERENCES

[1] L. Csink and B. Øksendal: Stochastic harmonic morphisms: Functions mapping the paths of one diffusion into the paths of another. Ann. Inst. Fourier 33 (1983), 219-240.
[2] R.K. Getoor and M.J. Sharpe: Conformal martingales. Invent. Math. 16 (1972), 271-308.
[3] F.B. Knight: A reduction of continuous square-integrable martingales to Brownian motion. In Martingales (ed. H. Dinges), Springer LNM 190 (1971), 19-31.
[4] H.P. McKean: Stochastic Integrals. Academic Press 1969.
[5] P.A. Meyer: Probability and Potentials. Blaisdell Publ. Co. 1966.
[6] B. Øksendal: Stochastic processes, infinitesimal generators and function theory. In Operators and Function Theory (ed. S.C. Power), D. Reidel Publ. Co 1985, 139-162.
[7] B. Øksendal: An Introduction to Stochastic Differential Equations. Springer-Verlag 1985.
[8] E.W. Stroock and S.R.S. Varadhan: Multidimensional Diffusion Processes. Springer-Verlag 1979.

Department of Mathematics
University of Oslo
Box 1053, Blindern
N-0316 Oslo 3
NORWAY

