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WHEN IS A STOCHASTIC INTEGRAL A TIME CHANGE OF A DIFFUSION? 

Bernt 0ksendal 

P..bstract 

We give a necessary and sufficient condition (in terms of u, v, b, 

a) that a time change of an n-dimensional Ito stochastic integral 

Xt on the form 

dX = u(t,w)dt + v(t,w)dB 
t t 

has the same law as a diffusion yt on the form 

dY = b(Yt)dt + a (Y ) dB . 
t t t 

As an application we prove a change of time formula for n-

dimensional Ito integrals. 
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vJHEN IS A STOCHASTIC INTEGRAL A TIJVIE CHANGE OF A DIFFUSION? 

Bernt 0ksendal 

~1. The Main Result 

In the following we will let denote an Ito diffusion, i.e. 

a (weak) solution in an open set U c Rn of the Ito stochastic 

differential equation 

( 1 ' 1 ) 

where the functions 
n n 

b: IR + R and 
n nxm 

a: R + R are continuous 

and (Bt' 

will let 

Q, 'Ft' Px) denotes n-dimensional Brownian motion. And we 

X = Xx denote an Ito stochastic integral 
t t 

( l • 2 ) dXt = u(t,w)dt + v(t,w)dBt, x 0 = x, 

where 
n nxm 

u(t,w) E R, v(t,w) E IR satisfy the usual conditions for 

existence of the stochastic integral~ u(t,w) and v(t,w) 

adapted and 

t t 

P0 {w: f iu(s,w) I + I f 
0 ij 0 

jv .. (s,w) j 2 ds<oo 
l.J 

for all t} = l . 

are 

(See e.g. [4] or [7]). The time changes will consider are of the 

following form: 

Let c(t,w) ~ 0 be an 'f' t-adapted process. Define 

t 
( 1 • 3 ) ~t = ~(t,w) = J c(s,w)ds 

0 

f -
t 
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He will say that ~t is a t_ime change with time change rate 

c{t,u.J). No·te that ~t is also 
t. 
-adapted and for each w the map 

t .... ~t is nondecreasing. Let at = a('c,w) be the right continuous 

inverse of (3 : 
t 

( 1 • 4) a: t = inf { s i (3 > t} 
s 

Then w + a:(t,w) is an {~8 }-stopping time for each t, since 

{w; o:(t,w)<s} = rw· 
l ' 

We nov! ask the question: Hhen does there exist a time change ~ as 
"t 

above such that X ~ Yt' i.e. 
o;t 

X is identical in law to Yt? In 
a:t 

§1 we give an answer to this question (Theorems 1~3) and in §2 we 

use this to prove a change of time formula for stochastic inte~ 

grals. 

Note that ~ (at) = t for all ( t, w) , so that 

at' (w) = 
c(a:t,w) 

for a.a t)O, wEQ. 

l\1oreover, 

(It t 

= J c(s,w)ds = J dr 
0 0 

or 

( l . 6 ) 

where denotes the measure da:t wi t.h the point masses corre-

sponding to the discontinuities of 0:: 
t 

taken out. 

First we establish a useful measurability result. He 

J\\tdenote the a-algebras generated by {x ; s.-;t} 
s 

and 

let ifVl t and 

{Y; s.-;t}, 
s 

respectively, and we define 1f'r1 
a:t 

to be the a-algebra in Q gene-

rated by the functions 
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We let C~(U) denote the twice continuously differentiable 

functions with compact support in U, and 
T 

v denotes the 

transposed of the matriY 

Lemma l 

Let dXt = u(t,w)dt + v(t,w)dBt, c(t,w), at be as above. Then 

(vvT)(a:t,w)a~ is um -adapted 
at 

Proof. 

By Ito's formula we have 

Hence, if we put 

LI (t ) = x(i)x(j) 
l. ij 'w t t 

t f x(j)dX(i) 
0 s s 

then H(t,w) is ~~t-adapted and we have 

0: 

t T J ( vv ) ( s , w ) ds = H ( at, w ) 
0 

Therefore 

T 
( vv ) ( a t, w ) a ~ = 1 im 

H(o: ,w)-H(o:t ,w) 
t -r 

which shows that 

Remarks 

r4-0 r 

is ~A -adapted. 
o:t 

1 ) One may ask if it is also true that u(at,w)a~ is ~m -adapted. 
at 

However, the following example, which was pointed out to me by 

the referee, shows that this fails even in the case when 

N = t v= 1 m = n = l • u.t ' ' . 



~ 4 -

Put 

fB -B if t<l 
; "-t t 

u(t,w) 
if t>l 

and define 
-l 0 

Then 

t 

J u(s,w)ds + Bt 
0 

is a Brownian motion and 

t 
= J u(s,w)ds + Bt' 

0 

but u(t,w) is not ~ t -adapted. 

2) The next example shows that it need not be the case that 

is 1M -adapted, even if rxt = t: Choose v( t, w) 
rxt 

non-constant with the values ±l and independent of {B } 
t t:>O 

( m=n=l ) . Define 

Then Bt is a Brownian motion (see McKean [4], ~2.9 and also 

Corollary later in this article) . Hence we have 

but v(t,w) is not 'f t- adapted. 

Let ~ denote the Borel a-algebra of subsets of [O,oo). For t)O 

we define a measure Q on 65 x ~ by setting 
rxt 

at 
= Ex[j f(s,w)ds] 

0 

if f(s,w) is bounded and QS xS -measurable. Let X denote the cr-

algebra in [O,oo) x Q generated by the function (s,~) ~X (w) and 
s 
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let E [giXJ = E [giX] denote the conditional expectation of 
o:t a:t 

g(s,w) wrt~ X and wrt. the measure 

We can now state and prove the main result. First we consider the 

case when 

( l • 9) 8 = 00 
00 

for all t<ro a.s.) 

The general case will considered later in this section (Theorem 2). 

Theorem 1 . 

Assume that (1 .9) holds. Then the following 3 statements, (I), (II) 

and (III), are equivalent~ 

(I ) ( i) 

( . ' ) ,ll 

(II) (i) 

(III) 

Proof. 

b(X)E [ciX] 
a:t 

for all 

( VVT ) ( t, w ) = 
'T' 

c(t, w) (era-) (Xt) for 

= b(X)E [ciXJ 
a:t 

for all 

t~O and 

a.a. t E ( 0 , a: ) , - wE Q • 
co 

t~O and 

T 
era (X)E [ciX] for all t~O 

- y 
t 

a:t 

(I) => (II): This follows by noting that (i) and (iii) state that 

a:t a:t 
(1.10) EX [j u ( s, w ) g (X ) ds ] = 

0 s 
EX [f b (X ) g (X ) c ( s, w) ds] 

0 s s 
and 

( L 11 ) 

a: 
X t, T 

E [f ( vv ) ( s, w ) g (X ) ds ] = 
0 s 

a 
t T 

Ex[J (erer )(X )g(X )c(s,w)ds] 
0 s s 

for all bounded functions g. 



- 6 -

(II)=> (III): 

For 0 < t < ro we define a bounded linear functional Wt on Cb(U) 

(the bounded real continuous functions on U equipped with the sup 

norm) by 

Since is a stopping time we have by Ito's formula (see e.g. 

[ 7 J , Lemma 7 • 8) if f E C 6 ( U ) : 

at 
Wtf = Ex[f(X0 )] + Ex[j {I u. (s,w) of (X ) + 

0 i l oxi s 

T d 2 f 
~ I ( vv ) .. ( s, w) 0 x. 0 x . (X s)} ds 

.; J. l] , J 
-<. ' ..... 

So if (II) holds we obtain, using (l .10), (1 .11) and (l .6) 

a:t 
(X )}c(s,w)ds] = f(x) + Ex[f {I b. (X ) 

s 0 i l ar 
of . --ox. 

l 

a:t 

(X ) + 
a: 

r 

Y T 
~ (aa ) .. (X ) e . , . lJ a 

(X ) } dr J 
a: 

r 
= f(x) + Ex[f Af(X )dr] 

0 ar :L, J r 

where A=~, bi(o/oxi) 
1. 

of Yt. Therefore 

d 
dt Wtf = Wt(Af) 

(1.12) 
w0 £ = f(x) 

for all f E Ct(U). Similarly we obtain, if we put 

that 

is the generator 
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( L l 3) 

d 
dt Vtf = Vt(Af) , t>O 

v 0 t = f(x) 

for all f E C~(U). Since the solution of the equations (l .12) and 

(l .13) is unique (see [6], Lemma 2.5) we conclude that 

for all 

Similarly we prove by induction on k that 

gk (X ) J 
a~ 

for all t, t 1 , ••• ,tk > 0 and f, g 1 , ••• ; gk E CB(U) by applying 

the above argument to the n(k+l) -dimensional processes 

and (Yt,Y , ... ,Yt). t, k 

(III)=> (I). Suppose X - Y t. Since 
o:t 

is a Markov process wrt. 

\)( it follows that 
t 

is a Harkov process wrt. 1fYl 
at 

and with 

generator A. Therefore, using Dynkin's formula (see e.g. [7], Th. 

7.10) and (1.6) we have, for f E c6(U): 

(1 '14) Ex[f(X ) \ a ] = E 
at+h t 

a:h 

[ f {I b. (X ) 
0 i l s 

of 
0 X. 

l 

f (X ) + 
a:t 

(X ) + 
s 
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On the other hand, from Ito's formula we get as before 

(1.15) 
X 

= f (X ) + E [ f (X ) - f (X ) j"~ ] 
at at+h at t 

= f( of (X ) + 
s 

T o2 f 
~ I ( vv ) . . ( s , w ) 0 ~ (X ) } ds l'lll1 ] , 

. . lJ x. x. s "'ut 
l, J l J 

and a similar formula, denoted by ( l . ·15 )~ if we replace at by 0. 

Comparing (1.14) and (1.15)~ for f(x 1 , ... ,xn)=exp(i(A. 1x 1+ ... +A.nxn)) 

(where i=l=l ) we see ·tha·t ( 1 • l 0) and ( 1 • 11 ) holds by putting t=O. 

Thus it remains to prove property (ii) . 

From (l .14) and (l .15) we conclude that if we fix i, j and put 

at 

= J ( vv T) .. ( s, w) ds 
0 l] 

then 

X 
T (era ) .. (X ) 

l J a:t 

a.._ h T 
= lim h E '- [f ( crcr ) .. (X ) dr] 

h~O 0 l.J a:r 

(1.16) 

Choose a t>O such that 

Define, for h>O, 

L N 

F' 
t 

exists 

if 

if 

a.s. Let N 

< -N 

> N 

be an integer. 
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and put 

Fh(w) if IF-h(w) I ;;; N 

H0 ( w) = -N if Fh(w) < -N 

N if F h ( w) > N, 

Then is measurable wrt. 1ffi by Lemma l . By bounded conver-
at 

gence we have 

(1.17) a. s. 

Put vl = { w; 

Choose wEvV. Then there exists h(w) > 0 such that 

'de want to conclude that 

( L 18) 

for a. a wE'tJ. 

To obtain this write 

where Q is a conditional probability distribution of P given 
w 

1'n . (See Stroock and Varadhan [8], Theorem 1. 1 6) 
a:t 

Let 

be the ~ -atom containing w. 
at 

Since 

Q (V(w)) = for a. a. w 
w 
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( [ 8 J , Theorem 1 • l 8) and V(w)c:W forall wEvv (since WEVQ ),vJe 
a:t 

have for a.a. wEW and h<h(w) 

and (1 .18) follows. 

Combining (l .17) and (l .18) we obtain that 

F' 
t a.s. in 

And since N was arbitrary we conclude from (1 .16) 

w 

(1.19) for a.a. t,w 

or 

( 1 • 20) T (vv ) .. (a:t,w) 
1.] 

Moreover, if we define 

(1 .21) = l1.'m 1 (F F) -- h t+h- t' 
h-,;.0 

for 

for all t, w' 

then using (l .15) and Fatou's lemma we get 

( 1. 22) 
T 

= ( crcr ) .. (X ) < oo 
1J at 

for all t, w 

a.a. t,w. 

Thus t..., Ft(w) is absolutely continuous for each w. Therefore 

rr 
(vv ) .. (s,w) = 0 a.e. on each s-interval where s..., ~(s,w) is 

1.] 

constant i.e. where s..., c(s,w) is 0 a.e. and, by (1 .6) 

T ( vv ) .. (a , w) da = 
lJ r r 

T = (crcr ) .. (X )c(a ,w)da: 
lJ a:r r r 
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This is equivalent to saying that _ 

T (vv ) .. (s,w)ds lJ . 
T (c;a ) .. (X )c(s,w)ds 

lJ s 

for all t,w. Thus (ii) holds and the proof of Theorem 1 is com-

plete. 

Remark. Consider the more general situation when Yt is not ssumed 

to be a diffusion, but just a stochastic integral of the same type 

( l • 1 ) dYt = e(t,w)dt + f(t,w)dBt' Y0 = x. 

It is natural to ask if one can find conditions on the coefficients 

in order that - y t in case. 

We end this section by considering the case when we do not assume 

that (1 .9) holds, i.e. we allow ~ < oo. This case will be a special 
"" 

case of the following situation: Let 

X = X, (w) = 
l. 

X + 
t t 
J u ( s, w ) ds + J v ( s , w ) dB t; 0 ~ t < -r 
0 0 

be a stochastic integral in an open set W c U c Rn, where • is an 

~t-stopping time such that the first exit time from w of 

Xt. The probability law of Xt starting at -x x, P , is defined by 

-x 
P [Xt EF 1 , ... ,XL EFk] 

1 1\. ~k 1\1: 

and -x 
E denotes integration wrt. Px. Suppose Yt is as before and 

let ~x denote the probability law of Xt starting at x. Then we 

say that Xt is a time change of Yt (with time change rate 

c(t,w)) if the process zt defined by 
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0 ,;;; t < B 
. '" 

(1.23) 

with probability law -x p defined by 

X X 
(1 .24) f '+1 (Yt ~ -P ) • •• fk (Yt '"-P 

J ]+ 1 f''" k 1-''" 

coincide in law with Y t for every xEW. 

(For simplicity we suppress the superscript x in what follows) 

Then question when Xt is a time change of Yt can now by given an 

answer similar to Theorem 1, except that in this case the measure 

Q must be modified to the measure Q defined by 
at at" -r 

a "'" t 
Q (f) =Ex[ J f(s,w)ds] 
at"'" 0 

if f) 0 is fB x7"-measurable. The corresponding condi tonal expecta-

tion is denoted by E [ J ] "a 1\'t" • 
t 

Theorem 2. The following are equivalent: 

(A) E [uJX] = b(X)E [cJX] 
at"'" at"'" 

T T (vv )(t,w)=c(t,w)(crcr )(Xt) 

for all t>O and 

for a.a. t,w such that 
'" 

t<~ . 

'" 
(B) Xt is a time change of Yt, with time change rate c(t,w). 

Proof. (A) => (B): We proceed as in the proof of (II) => (III) in 

Theorem 1, except that now we put 

f E c5 (U) , t) 0. 

Then by Ito's formula we get 
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a:t 

E[f(Zt)·x{t<B }]=E[f(x)•x{t<~ }]+E[f (Vf)T(X 8 )v(s,w)dB 8 •x{t<~ }] + 
. ~ ~ 0 ~ 

o:t 

E [ f {I u . ( s ' w ) ~ f (X ) + y ( vv T ) . . ( s ' w ) 0 ~ ~ ; X • (X s ) d s • X { t < B ,.,. 1. J 
O i l uXi S i,j lJ 1. J ,t 

Similarly 

X 

E[f(Zt) @ Xft>B }] = E[f(Yt~S • Xft)8 }] 
't' ~ ~· 

(l .26) 

By Ito's formula we get 

(1.27) 

so by adding (1 ,26) and (1 .27) we obtain 

a: tA~ 

= f ( X) + E [ f ( 'l f) T (X ) v ( s , w) dB ] 
0 s s 

a:tA1: 

+ E [f {J, u . ( s, w) $ ~ f (X ) + j ( vv T) .. ( s, w) • 0 ° 2 ~ (X ) } ds 
0 1., l u x 1. S . . . 1.] X. X. S 

l,J l J 

Since is a stopping time the second term on the right of 

(1 .28) is 0 and by (A) the third term is the same as 



a 1\1': 
1: 

E[ f 
0 

1: 
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+ E[j(Af){X 8 )c(s,w'>ds" X{t;;.~ }] 
0 1: 

t ~1: 
- E[b(Af)(Xar)dr $ X{t<~c}J + E[ b(Af)(Xar)dr • X{t;;.~c}J 

(Noi:e ·that 

1: 
a:~ 

1: 

j(Af) (X )c(s,w)ds 
0 s 

= f ( Af) (X ) c ( s, w) ds, 
0 s 

since c{s,w) = 0 for a.a. s E (c, a: 6 )). 
1: 

Subst.it.uting (l .29) in (1 .28) and comparing with (1 .24) we conclude 

that. 

t 
= f(x) +E[j(Af)(Z )ds]. 

0 s 

Thus we have obtained (l .11) and the rest of the proof of (i) => 

(ii) follows the proof of (II) => (III) in Theorem 1. 

(B) => (A)~ We reverse the argument just given. If Zt is a Markov 

process with generator A we get by the Dynkin formula 

t 
E(f(Zt)] = f(x) + E[j(Af)(Z )ds] 

0 s 

tA61: t 

=f(x)+E[ J (Af) (Z )ds] + E[ J (Af) (Zv)dv] 
0 8 tAB 

1: 

tAS1: t 

=f(x)+E[ b (Af)(Xa:r)dr] + E[( 6 j(Af)(Zv)dv)xft;;.f31:t] 

T 

o::t/\T t X 

(lc31) =f(x)+E[ f (Af)(X )c(s,w)ds]+E[(j (Af)(Y ~a )dv) "X{t 0 1] 
0 s 8 v PT . ;;.~1:r 

T 

Comparing ( l . 28) and ( l . 31 ) we conclude that 
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a 

E[ f 
0 

u(s w)g(X )ds] 
s 
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a 1\-c 
t 

"" E [ f 
0 

b (X ) c ( s, w) g (X ) ds] 
s s 

T (vv )(s,w)g(X )ds] . s 

o;t/\1: 

= E[ J (crcrT)(X }c(s,w)g(X )ds] 
0 s s 

for all bounded functions g. 

This proves the first identity in (A). To obtain the second identity 

vJe proceed as in t~oof of (I II) => (I) in Theorem 1: Let 1'ilt 
denote the cr~algebra generated by {Z 8 ; s(t}. Then by the strong 

t"larkov property we have for all t,w 

(1.32) lirn 
hfO 

On the other hand, from the general calculation in (1 .28) we get 

lim 
h-»0 

l 
h-» 0 

at+h/\'t' 

hE[ J {I u. (s,w) ·~f {X )+I (vvT) .. (s,w) ·a 02 ~ (X ) }ds I"~] 
~. 1.\~ ~ 1 X: s 1.J. lJ x 1. xJ. s 

lim 
h~>O 

~~ " ~ ~ 

t+h X 
}£;[ J ( Af) ( Xv~ ~ ) d v • X { t > ~ } I ~ ] 

t -c 1: 

this to the function 

bining (L32) and (1.33): 

t+h 
+lim 1 E[j (crcr~.)(Z )dv j1- ] h 1. J v • X { t ;J; ~ } Jif\.t 
~0 t ~1: 

(1.33) 

x . x . . we get by com
l J 

the same argument as in the proof of ( 1 . 1 9) , 
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(L 34) 

Put B = {w; t<a } and let 
't 

Then 

so 
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""' = f E [X B j~Jfvlt ] dP = 0, 

Ao 

a.s. on B 

Therefore we can conclude from ( 1 • 34) that for all t:> 0 

T 
(vv ) .. (at,w) 

l] 

for a. a. IJJ s. t. t < ~ ( w) . 
't 

Thus we obtain the same conclusion (I) as in Theorem 1, except that 

it is only valid for a.a. 

-tes t.he proof of Theorem 2. 

Corolla;:y 1. Suppose 

u(t,w) = c(t,w)b(Xt) 

t,w such that t < ~ (w). That conple-
1: 

and 
T T 

(vv )(t,w) = c(t,w)(crcr )(Xt) 

for a.a. t,uJ sucht that t < ~ • 
't' 

Tl'1en Xt is a time change of Yt' with time change rate c(t,w). 

Theorem 2 allows us to extend the characterization of Markovian 

path-preserving functions given in Csink and ¢ksendal [l] to the 

case v1hen the time change ~ t is not necessarily strictly increas-



Theorern 3" Let dS = a(S )dt + y(S )dB and dY = b(Y )dt + 
t t t t t t 

be Ito diffusions on open sets and n 
U c IR , res-

pective , Denote the geno:::.car.:.ors of St and Yt by A and A, 

respe ly, Let ~: G ~ U be a c2 function. Then the following 

are lent~ 

( 1 ) There exists a con·tinuous function A.>O on G such that 

(1 c35) A[fo¢] = A.A[f] 0 <P for all f E c2 (U) 

(2) For each open set D with D c G the stochastic integral 

q,(s )~ t < .. 
t 

D 
is a time change of X , with time change rate 

t 

A.(S~,.) {in t_he sense of (1.23)-(1.24)). 
t.; 

Proof, By the Ito formula we have that Xt= q,(St), t<1:w' satisfies 

dx (k)= ( )(S )d +" T(S) ( )d t A<jlk t t v<jlk t y 8 t 3 t' k=l , ••• , m 

where is component no. k of xt. Therefore by Theorem 2 (2) 

holds if and only if 

( l e 36) 

and 

(1~37) 1 <k, J.<m, 

for a.a. t,w such that t < ~ • Letting t~o we se that equation 
't "t 

(1 .37) is equivalent to 

(L 38) T T T 
V <tJ k y y \1 <jJ J. ( X) = A. ( X ) ( cr cr ) ki ( <!> ( X) ) , l < k, J. < m 

for all xEG. 

s lar we claim that (1 .36) is equivalent to 
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( 1 0 39) ; 1 .;; k < m, X EG • 

It is clear that (1 .39) implies (l .36). Conversely, if (l .36) holds 

we consider two cases: 

Case~~ x belongs to the S-fine interior D of N = {z; A(z)=O}; 

Le. ~N = inf{t>O: St~N} > 0 a.s. Since a = lim a = " we 
0+ t.J..O t N 

then get from (1 .36) that 

-.NA" 

K(x) = Ex[f (A¢k)(St)dt] = 0 
0 

for all xED. 

Applying the characteristic operator 01. of S t to the function K 

we get: ( s e [ 7 J , p . 1 3 8 ) 

for all xED, 

so (1 .39) holds in this case. 

Case 2: 

(1 .36) 

lim 
t-1-0 

~ lim 
t-.1-0 

as claimed. 

a. s. Then we have a.s. and therefore from 

O:t/\1: 

Ex[f (A<jlk)(S )dr] 
Ex [at/\'" J 0 r 

A(S )bk(q,(s ))dr] = r , r A ( X ) bk ( ¢ ( X ) ) , 

We now note that (1 .38) and (1 .39) are equivalent to requiring that 

A [ f o ~ ] = AA [ f ] o ¢ 

for all polynomials 

f(x 1 , ••• ,x) =I cox.+ I d. oX,Xo 
n 0 1. 1. 0 • l.J 1. J 

l. l.,J 

of < 2, and hence that (1 .35) holds for all f E c 2 (U). 
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Remark. It is natural to ask what happens if 1.ve allow a more gene-

ral time change rate c(t,w) (not necessarily of the form A(St)) 

which makes q, (S t) a time change of Xt. However, the argument 

above gives that if such a c(t,w) exists, then as in (l .37) 

and so 

c(t,w) = 

with 

A ( x) = 

A(S ) 
t 

for 1 <k, .J1...:m, 

i.e. we have a time change of the type discussed in Theorem 3. 

§2 o A TH1E CHANGE FORJ!ULA FOR ITO INTEGRALS 

As an illustration we first use Theorem 1 to characterize the sto-

chastic integrals which are time changes of Brownian motion. If u=O 

the corresponding result without time change (and with time change 

if n=l) was first proved by McKean ([4], §2.9). The sufficiency of 

condition (2.1) has been proved by F. Knight [3] (in a martingale 

setting). 

Corollary 2. Let be the n-dimensional stochastic integral in 

(l .2). Then there exists a time change at as above with time 

change rate c(t,w) > 0 such that 

X ~ Bt (n-dimensional Brovmian motion) 
a:t 

if and only if 



( 2 • 1 ) for all t and 

for all a.a t)O, a.a. wEQ 

where I is the nxn identity matrix. 
n 

m 

(vvJ.)(t,w) = c(t,w)I 
n 

Example 1 • If X 
t 

is a 2-dimensional process the form 

dX = v(t,w)dB 
t t 

where 
2x2 

v E R and is 2-dimensional Brownian motion, then Xt 

is a conformal martingale if and only if 

T 
(vv )(t,w) = n(t,w)I 2 for some n(t,w) ) 0. 

(See [2]). Thus it follows from Corollary 2 that a conformal martin

gale is a change of time of Brownian motion (in RL), This was proved 

by Getoor and Sharpe ([2]), p. 292-293) and it follows from the 

result by Knight in [3]. 

A special case of Corollary 2 is the following: 

£Qrollary 3. Let c(t,w) > 0 be given and let at correspond to 

c as before. Put 

t 
= J 

0 
lc(s,w)dB 

s 

where B 
s 

is n-dimensional Brownian motion. Then X is also an 
at 

n-dimensional Brownian motion. 

We now use this to prove that a time change of a stochastic integral 

is again a stochastic integral, but driven by a different Brownian 

motion Bt. First we construct Bt: 

Lemma 2. Suppose t ~ a(t,w) is continuous, a(O,w) = 0 for a.a 
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w. Fix t>O. For k = l ' 2 ' • ' . put 

~{:·2-k if j 
-k . 2 ,;; t 

t. 
-k J if j . 2 > t 

and chaos e r . such that a = t .. 
J r. J 

J 

Suppose f(s,w) > 0 is 'f -adapted and satisfies 
s 

Then 

( 2 • 2) 

where a . = 
J 

t 
p 0 [J f(s,w) 2 ds<ro] = 

0 

a:t 
lim I f (a: . , w) t.B 
k~ro j J O:j 

= f f(s,w)dB 
0 s 

t.B 
a:. 

J 
B 

a;. 
J 

and the limit 

Proof. For all k we hve 

E [ n: f (a: . , w) liB - f f ( s, w) dB ) 2 ] 
j J a:j s 

a: j+ 1 
=IE[( J (f(o:.,w)- f(s,w))dB ) 2 ] 

J s j a;. 
J 

. a: '+ 1 at 

a. s. , 

is in 2 ( 0 L Q,P ) • 

= L E[ J (f(o: .,w) 
j 0: . J 

- f(s,w)) 2 ds] = E[ j(f-fk) 2ds], 

J 0 

where fk(s,w) =I f(t.,w)x[t t )(s) is the elementary approxi-
j J j ' j+ 1 

mation to f. (See [7], Ch. III). This implies (2.2) in the case 

when f is bounded and t ~ f(t,w) is continuous, for a.a. w. 

The proof in the general case follows by approximation in the usual 

way. (See Ch. III, Steps 1-3 in [7]). 

The following result extends a 1-dimensional time change formula 

proved by Mckean ([4], §2.8). 
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Theorem 4. (Time change formula for Ito integrals) 

Let (B , 'f ) be rn--dimensional Brownian motion and v(t, w) E IRnxm 
s s 

as before. Suppose a: 
t 

satisfies the conditions in Lemma 2. 

( 2 . 3 ) 

-Then Bt 

Brownian 

( 2 e 4) 

is an 

motion 

a 
t 

lim 
k-!ooo 

L I c (a . , w) 6B 
J J a j 

(m-dimens ional) 'F 
a:t 

-

at 

= J I c ( s ' w ) dB 
0 s 

-Brownian motion 

'r and Bt is a martingale wrt. 
at 

t 

) 

J v(s,w)dB ::.:: J v(a: ' w)·/;' dB a. s. 
s r r r' 

0 0 

(i.e 

and 

Po. 

where a:'(w) is the derivative of a wrt. r, so that 
r r 

( 2 . 5 ) IX~ ( w ) = c ( IX , w ) for a . a r) 0 , wE Q • 
r 

~ 

Bt 

Define 

is a 

Proof. The existence of the limit in (2.3) and the second identity 

in (2.3) follows by applying Lemma 2 to the function 

f(s,w) = /c(s,w). 

Then by Corollary 2 we have that Bt is an y -Brownian motion. It 
at 

remains to prove (2.4): 

at 

J v(s,w)dB = lim I· v(a: .,w)6B 
0 

s k -loa:> j J a: . 
J 

v(o:: .,w)/ ( 1 ) = lim I /c(a: .,w)6B 
k-l-a> j J c IX.,w J a;. 

J J 

= lim I v(a: .,w)/ ( 1 ) t;B. 
k-+oo j J ca:.,w J 

J 
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and the proof is complete. 

-
l..B ' r 

Ide now apply Theorem 4 to the case when the stochastic integral Xt 

is an Ito diffusion 

( 2 • 6 ) 

where 10 n n 
a: !.!:'. -)> IR , IRn nxm 

y: -)> R are continuous. 

Corollary~. Let Xt be the Ito diffusion given by (2.6) and let 

t f a(t 1 w) be absolutely continuous, a(O,w) = 0 for a.a. w. Then 

X 
at 

is a Markov process wrt. '1/l.IL 
at 

if and only if there exists a 

function q: Rn + [O,oo) such that 

( 2. 7) 

for a.a. t < a 00 , wEQ, and in that case 

( 2 '8) dt + 

is the t -Brownian motion from Theorem 4. 
at 

Proof. If (2.7) holds then (2.8) follows from Theorem 4. Hence X 
o:t 

is a weak solution of the stochastic differential equation (2.8) and 

therefore X 
a:t 

kov process wrt. 

rem 1 we obtain 

is a Markov process. Conversely, if X 
o:t 

is a Nar-

then by the proof of (III)=>(I)(ii) in Theo-
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( 2 • 9 ) for a.a. t<aoo, wEQ 

i.e. 

with 

q(x) 

Remark. The last part of this proof does not require that 

absolutely continuous. 
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