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Abstract

We give a necessary and sufficient condition (in terms of u, v, Db,

o) that a time change of an n-dimensional Ito stochastic integral

Xt on the form
X = u(t,w)dt + v(t,w)dB
t t
has the same law as a diffusion Yt on the form
d = b dt + Y )d .
Yt (Yt) t af t) B,

As an application we prove a change of time formula for n-

dimensional Ito integrals.
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91. The Main Result

. . X . . .
In the following we will let Yté Yt denote an Ito diffusion, i.e.
. . n .
a (weak) solution in an open set U < R of the Ito stochastic

differential equation

° = + =
(1.1) ay, b(Yt)dt d(Yt)dBt, Y, X

: xm .
where the functions b: Rn > Rn and c:an ->|Rn are continuous
and (Bt/ Q, Ft, PX) denotes m-dimensional Brownian motion. And we
will let Xt= Xi denote an Ito stochastic integral
(1.2) dXt = u(t,w)dt + v(t,w)dBt, XO = x,

where u(t,w) € R, v(t,w) ¢ RMT satisfy the usual conditicns for
existence of the stochastic integral: u(t,w) and v(t,w) are ?t—

adapted and

t t

Po{w; [ Jul(s,w)| + ] | |vij(s,w)l2ds<m for all t} = 1.
0 i3

(See e.g. [4] or [7]). The time changes will consider are of the

following form:

Let c(t,w) > O Dbe an Sjt—adapted process. Define

t
(1.3) B, = Blt,w) = [ c(s,w)ds
0



We will say that Bt is a time change with time change rate

c(t,w). Note that Bt is also '?t—adapted and for each ww the map

t > Bt is nondecreasing. Let a, = a«(t,w) be the right continuous
inverse of Bt:
. = i ; >t
(1.4) @, inf{s B }
Then w + al(t,w) 1is an {?é}—stopping time for each +t, since

{w: alt,w)<s} = {w; t<B(s,w)} ¢ Fs

We now ask the question: When does there exist a time change Bt

above such that X ~Y, , i.e. X is identical in law to Y, ?
a t a t
t t

§1 we give an answer to this question (Theorems 1-3) and in §2 we

use this to prove a change of time formula for stochastic inte-

grals. .
. Note that B(at) = t for all (t,w), so that
(1.5) (w) = ——— £ £30, weo
. aglw C(at,w) or a.a , WEQ.
Moreover,
t . e t
[ cle ,wlda_ = [ c(s,w)ds = | dr
0 0 0
or
(1.6) c(at,w)dQt = dt, for each wéQ ,

A . .
where dat denotes the measure dat with the point masses corre-

sponding to the discontinuities of L3 taken out.

First we establish a useful measurability result. We let'mﬂt and
J$£denote the o-algebras generated by {XS; s<t} and {YS; s<t},

respectively, and we define Wwd to e the o—-algebra in Q gene-
t

rated by the functions w - Xa ; s<t.
s



Wwe let C%(U) denote the twice continuously differentiable

. . . T
functions with compact support in U, and Vv denotes the

transposed of the matrix

Lemma 1

Let dXt = u(t,w)dt + v(t,w)dBt, c(t,w), @ be as above. Then

(va)(a ,wla! is YN -adapted
t t at

Proof.

By Ito's formula we have

. . t . t . t
(1), (3) _ (i), (3) (1) 4. (3) (3) 5 (1) T
X 7KL = X537 %, + g X dxs + é X dxs + é (vv )ij(s,w)ds

Hence, if we put

MEU

(i)

S

_ L) (9) () (1) () 5 (9
Hij(t,m) = XK - X, XS axg - é X 7T

O— ¢+

then H(t,w) is Wmt-adapted and we have

a

t T
[ (vwwi)(s,w)ds = H(a ,w)
0
Therefore
H ’ -H ,
(VVT)(a w)a'! = lim (at > (at-r >
tf t r ’

r+0

which shows that (VVT)(at,w)aé is Vmﬁ -adapted.
t

Remarks

1) One may ask if it is also true that u(at,w)aé is de -adapted.
t

However, the following example, which was pointed out to me by
the referee, shows that this fails even in the case when

@, =+t, vV=1, m=n= 1:



Put
Bi7By if eal
T-t
u(t, w) -
0 if ot
and define
- t
B, = - [ u(s,w)ds + B,
0
Then ét is a Brownilian motion and
t -
B, = é uls,w)ds + B

but u(t,w) is not th—adapted.

2) The next example shows that it need not be the case that

v(a ,w)aé

e isfwmh -adapted, even if «a, = t: Choose v(t,w)

£ t
non-constant with the values *1 and independent of {Bt}t>O

(m=n=1). Define

dg. = v(t,w)dB

t t

~

Then Bt is a Brownian motion (see McKean [4], $2.9 and also

Corollary 1 later in this article). Hence we have

dBt = V(t,m)dBt,

but v(t,w) 1is not r'Ft—adapted.

Let @) denote the Borel c-algebra of subsets of [0,=). For +t3>0

we define a measure Qa on Bx¥§ by setting
t

%

EX[[ £(s,w)ds]
0

Q  (f)
t

if f(s,w) is bounded and (BX§—measurable. Let L denote the o-

algebra in [0,») x Q@ generated by the function (s,w) » Xs(w) and



let E, [g|x] = E, [g|X] denote the conditional expectation of
t t .

g(s,w) wrt. X and wrt. the measure Q,
t

We can now state and prove the main result. First we consider the

case when

(1.9) B =« a.s. (i.e. at<co for all t<= a.s.)

The general case will considered later in this section (Theorem 2).

Theorem 1.

Assume that (1.9) holds. Then the following 3 statements, (I), (II)
and (ITII), are equivalent:
(1) (1) E [u]|X] = b(X)E_ [c|X] for all >0 and

%t %t

(ii) (VVT)(t,w) = C(t,w)(ocT)(Xt) for a.a. tE(O,am),‘wEQ.

(11) (i) E_ [ulx] = b(X)E_ [c|X] for all >0 and
% %o

(iii) £, [vv']

X] = ool (X)E [c|X] for all +>0
t %

(111) X ~ Y

Proof.

(I) => (II): This follows by noting that (i) and (iii) state that

% : %y
(1.10) B[] uls,w)g(x_)ds] = E*[[ b(Xx_)g(X_)c(s,w)ds] and
0 0 S S
e | %
(1.11) EX[f (VVT)(s,w)g(Xs)ds] = g*[f (ccT)(XS)g(XS)c(s,w)ds]
0 0

for all bounded functions g.



(11) => (II1):

n

For O t < » we define a bounded linear functional W on Cb(U)

t

(the bounded real continuous functions on U equipped with the sup
norm) by

ey X e
W, f=E [f(xat)], f ¢ Cb(U).

Since a, is a stopping time we have by Ito's formula (see e.g.

[7], Lemma 7.8) if £ ¢ c%(u):

a

W = BYLE(X)] + B[ {] u,(s,0) 2L (x ) +
0 i i
2
%.2.(VVT)ij(s'w) g%f§§4(xs)}ds
1,3 1 J

So if (II) holds we obtain, using (1.10), (1.11) and (1.6)

o4

t
Wof = £(x) + Ex[é {g b, (X_) -

df T
ax.<Xs) + %_E_(cc )ij(Xs) .
i i,J

a
2 t
—Q—EEE (Xg)he(s,w)ds] = £0x) + B[ {] by (X, ) 2t

0x.90 a (Xa )+
i i r i r

a

t

(x )ldar] = £(x) + B[ Af(X_ )dr]
04 0 04

T 32 f
5 7 (o7 ),.(X ) o ———
2
L 1]« r

1,73 r axiaxj r

N

where A =) b, (d/3x,) + y (ccT)ij(az/bxiaxj) is the generator
i ij

of Yt. Therefore

d = °
Tt Wtf = Wt(Af) : >0

Wof

(1.12)
f(x)

il

for all £ ¢ C%(U). Similarly we obtain, if we put

I
v.E =E [f(Yt)1 , t>0

that



l

= Vt(Af) , t»0

<
Hh
Il

f(x)

for all £ ¢ C%(U). Since the solution of the equations (1.12) and

(1.13) is unique (see [6], Lemma 2.5) we conclude that
w =V £ for all 30, £ € C§(U).

Similarly we prove by induction on k that

X X
E [f(xat)g](xat) ce gk(x“tk)] = E [f(Yt)g1(Yt])'.. gk(Ytk)]
for all <, ti""’t

x>0 and £, g;,...; g € C%(U) by applying

the above argument to the n(k+1) - dimensional processes

(I11)=> (I). Suppose Xa ~ Yt' Since Yt is a Markov process wrt.
t

bM; it follows that Xa is a Markov process wrt.{Un and with
a
t t

generator A. Therefore, using Dynkin's formula (see e.g. [7], Th

Lile

7.10) and (1.6) we have, for f ¢ CS(U):

X Xat
(1.14) E7[£f(X ) | ] =t “[£f(x )] = £(x_ ) +
“e+n %t %y @,
Xa h
t df T d2f
E [é{g bi(xat)‘ ggz(xat)+%iij(co )ij(xat)'axiax.(xat)}dr]
X a
o h
= £x, )+ B C [ {]bx) o 2+
t 0O i i
2
5] (607) (X)) + 5o (x_)}els,w)ds]



On the other hand, from Ito's formula we get as before

(1.15) Ex[f(Xa h>m;vm] = £(x_ )+ Ex[f(Xa ) - f(xat>mzat1

t+ t t+h
y %+ .\ e
=£(xX )+ E[ [ {] u(s,w) - (x ) +
a, : 1 0X. s
T Czt 1 1

T d2f
L (vv™)..(s,w) (X )}ds{ P
2i§j 1] axiaxj s ’”%t

and a similar formula, denoted by (1.15)), if we replace @, Dby 0.

Comparing (1.14) and (1.15)" for f£f(x .,xn)=exp(i(k AR ))

1° 171
(where i=/=1) we see that (1.10) and (1.11) holds by putting t=0.

o]

Thus it remains to prove property (ii).

From (1.14) and (1.15) we conclude that if we fix 1i,J and put

%y

Fé(w) = é (VVT)ij(S,w)dS
then
X
(607), . (X ) = lim lg at[?<ccT)..(x )dr ]
17 @ hs0 h 0 1] x.
(1.16) = lim % EX[Ft+h—FtrW% ] for all t,w.
h-+0 t

Choocse a t>0 such that Fé exlists a.s. Let N ©Le an integer.

Define, for h>0,

1

Gh(w) =5 (Ft+h(w) - Ft(w))
Gy (w) if IGh(w)I < N
Hh(w) = -N if Gh(w) < =N
N if G.(w) > N

h



and put
Filw) if |Fi(w)] < N
= - ] ! < =N
Ho(w) N if Fh(w>
. . N
N if Fh((.l)) N,
Then HO is measurable wrt. M| by Lemma 1. By bounded conver-
a
t
gence we have
X X
(1.17) lim E”[H, | ] = E"[1im H_| ] =H a.s.
h~»0 hWlat h+0 h’mxt 0

Put W {ws ]FL(w)[<%N} Evna

t

Choose wéW. Then there exists h(w) > 0 such that

h < h(w) => |Gh(w)]<N i.e. Gh(w) = Hh(w).

We want to conclude that

(1.18) lim EX (G, |m. ] = lim E-[H, |7 ]
h>0 hlwkt h>0 h Akt

for a.a weEW.

To obtain this write

E*[£lm, 1(w) = / £(n)d0 (n), for a.a. wea.
t

where @ is a conditional probability distribution of P given
w
M, - (See stroock and Varadhan [8], Theorem 1.16)
t
Let

V(iw) = n{velh ; wev}l €M
% %

be the Wna -atom containing w.
t

Since



([8], Theorem 1.18) and V(w) ¢ W for all wéW (since wéW% ), we
t

have for a.a. wéW and h<h(w)

X el
EX[Ghyn% 1(w) = [ g a0 = [ H (w)do =8 [A | ]
: t W W t
and (1.18) follows.

Combining (1.17) and (1.18) we obtain that

. x :
lim ET[G, | ] = F! a.s. in W
L n il £

And since N was arbitrary we conclude from (1.16)

(1.19) (ccT)ij(Xat) = (VVT)ij(at,w)aé for a.a. t,u
or
(1.20) (VVT)ij(at,w) = c(at,m)(ccT)ij(Xat) for a.a. t,w.

Moreover, 1if we define

F,) for all +t,w,

. = i L _
(1.21) Ft(w) = lim h(Ft+h e
h-+0

then using (1.15) and Fatou's lemma we get

] = X LI 1} 3 J_ X -
Filw) = E [Ftlﬂh ] < lim = EV[F, o Ft{m@ ]
t h-+0 t
T
(1.22) = (go )..(X ) < = for all t,w
3

Thus t - Ft(w) is absolutely continuous for each w. Therefore
(va)ij(s,w) =0 a.e. on each s—interval where s > B8(s,w) 1is
constant i.e. where s » c(s,w) 1is O a.e. and, by (1.6)

(VVT)ij(ar,w)dar - (GGT)ij(xar)dr = (UGT)lj(Xar)C(ar,w)dar



This is equivalent to saying that .

o a
t
T
)

é (v (s, u)ds = (GGT)ij(XS)C(s,w)ds

O—(t

for all t,w. Thus (ii) holds and the proof of Theorem 1 is com-

plete.

Remark. Consider the more general situation when Yt is not ssumed

to be a diffusion, but just a stochastic integral of the same type

Il
»

(1.1) dYt = e(t,w)dt + f(t,w)dBt, Y

It is natural to ask if one can find conditions on the coefficients

in order that X ~ Y in case.
at t

We end this section by considering the case when we do not assume
that (1.9) holds, i.e. we allow B_ < =. This case will be a special

case of the following situation: Let

t ot
X, = X (w) = x + [ u(s,w)ds + [ v(s,w)dB_; 0 < t < =
t t 0 0 t

. . . n .
be a stochastic integral in an open set W< U< R, where =+t is an

?E—stopping time such that =1 < = the first exit time from W of

W’I

Xt' The probability law of Xt starting at x, §x, is defined by
=X Or,X%x X
P [X €F. ,.0.,X €F, ] = P [X €F,, ..., X €r. ],
t]AT 1 tkAr k t1Ar 1 tkAT k
and E° denotes integration wrt. px. Suppose Y is as before and

t
let BP* denote the probability law of Xt starting at x. Then we

say that Xt is a time change of Yt (with time change rate

c(t,w)) if the process Zy defined bv



(1.23) z, =

with probability law P~ defined by

~X X X X
ET[f, (2, Ve, £.(2,. )ex 1=E°[f, X Yoo, fi(X ) e
1%, L {tj<BT<tj+]} 1 cxt] 3 atj
X’E XT
(1.24) £ (T ) E (0T ) ey ]
oI sty LS (4B <ty )

coincide in law with Yt for every x€W.

(For simplicity we suppress the superscript x in what follows)

Then gquestion when Xt is a time change of Yt can now by given an

answer similar to Theorem 1, except that in this case the measure

Qa must be modified to the measure Qa AT defined by

t t
a, AT

t
QatAT(f) = BY[ é £(s,0)ds]

if f£»0 is (gxglmeasurable. The corresponding conditonal expecta-

11

tion is denoted by E
atA'r

Theorem 2. The following are equivalent:
(A) EatAT[uIX] = b(X)EatAT[cIX] for all t>0 and

(VVT)(t,w)=c(t,w)(ccT)(X ) for a.a. t,w _such that <8
t T T

(B) Xt is a time change of Yt' with time change rate c(t,w).

Proof. (A) => (B): We proceed as in the proof of (II) => (III) 1in

Theorem 1, except that now we put
: = F . 2
W, f E[f(Zt)], £ e cg(u), 0.

Then by Ito's formula we get



- 13 -

a

t
. - . . T i
E[f(zt)'x{t<BT}J—E[f(X) x{t<BT}]+E[é (v£) (Xs)v(s,w)st X{t<81}] +
é[a? (Tu, (s,0) X (x ) + T (wT), . (s,0) b (x_)as -
0 Zui S«W7 3%, s O i5°%5:% 3x.0x%. s’'9® x{t<8 }}
1 1 1,3 1 ] T
Similarly
~ XT
E[f(Zt) . X{t>81}] = E[f(Yt—BT) ° X{t>et}]
t‘BT Xr
= E[f(X’L’) . X{t?BT}] + E[ é (Af)(Yu )ydu - X{t>81:}]
t XT
1120 = B < g 1 0 o] RO Jen

T
T

By Ito's formula we get

T
E[f(Xr)'X{ }]sE[f(X)°x{ ]+E[é(Vf)T(XS)V(s,w)dBS'

38 t>8_} X{t>6t}]

(1.27)

T
df T d2f

+ E[é{z ug(s,w) ezt X )+ ] (vv )ij(s,w)'ax_ax.

1 1 i,] 1 J

so by adding (1.26) and (1.27) we obtain

a AT
t

B[£(z,)] = £(x) + B[ é (Vf)T(XS)V(s,w)dBS]

€ AT o
df T ' 0¢f
+ E[é {; ui(s,w)..g;-i-(xs)+i§j(vv )ij(s'w)°axiaxj(xs)}ds

X

t T
(1.28) + E[é (Af)(YV_BI

T

)dV . X{t)BT}]‘

Since @, A T 1s a stopping time the second term on the right of

(1.28) is O and by (A) the third term is the same as



- 14 -

aTA‘c oct
B[ é (A£) (X_)cls,w)ds]=E[ é (Af)(Xs)c(s,w)ds-X{t<Br}]
T
t Br
(1.29) = E[é(Af)(Xar)dr . X{t<sf}] + E[ é(Af)(Xar)dr . X{t>BT}]
(Note that
T aBT
(1.30) f(Af)(X Jo(s,w)ds = f (Af)(X )ec(s,w)ds,
) S 0 S
since c(s,w) =0 for a.a. s € (7, og )) .

T
Substituting (1.29) in (1.28) and comparing with (1.24) we conclude

that

t
é[f(zt)] = f(x) + E[I(Af)(zs)ds].
0

Thus we have obtained (1.11) and the rest of the proof of (i) =>

(ii) follows the proof of (II) => (III) in Theorem 1.

(B) => (A): We reverse the argument just given. If Zt is a Markov

process with generator A we get by the Dynkin formula

t
E(f(zt)] = £(x) + E[f(Af)(zs)ds]
0

tAB
T t
=£(x)+E[ [ (Af)(z_)as] + E[ [ (af)(z )dv]
0 S tAB _
tABT +
=f(x)+E[ é (Af)(Xar)dr] + E[(Bf(Af)(Zv)dV)x{t>8r}]
T
at/\r + X‘t
(1.31) =f(x)+E] é (Af)(Xs)c(s,w)d%+E[(£ (Af)(Yv_BT)dv)-x{t>BT}]

T

Comparing (1.28) and (1.31) we conclude that



- 15 -

at/\'c at/\‘t
E[ [ ul(s,w)g(X )ds] = E[ [ DX _ )cl(s,w)g(X )ds]
5 s 3 s s
and
o AT oa. AT

& T £ T
E[ [ (vv )(s,w)g(x )ds] = E[ | (oo ) (X )els,w)g(X)ds]
0 0

for all bounded functions g.

This proves the first identity in (A). To obtain the second identity
we proceed as in theproof of (III) => (I) in Theorem 1: Let 7ﬁt
denote the o-algebra generated by {ZS; s<t}. Then by the strong
Markov property we have for all t,w

1 1 “
(1.32) iig = E[f(2t+h)—f(zt)|w“t]=ii§ o E [f(Zh)-f(ZO)]=(Af)(Zt)

On the other hand, from the general calculation in (1.28) we get

lim % E[f(zt+h) - f(zt)lvit] =

h-0
a AT
t+h .

.1 = df T 32 f ~
lim — B[ | [T u. (s,w)ezm—=(X_)+] (vv'), . (s,0) i (X_)}ds|m, ]
0 B ay At ;i ox; s 33 ij axiaxj s M

1 t+h Xr

lim — E[ (Af) (Y ydv oy n (1.33)
o £ v-B {t>ﬁr}|WWt]
Applying this to the function f(x1,...,xn) = Xixj' we get by com-
bining (1.32) and (1.33):

T  _Eh o -~
(GG )ij(Zt) = llm ﬁ E[ f (VV )ij(s'w)ds ° X{t<8 }lqnt]

h-+0 @, T
. t¥h B

+ lim = E[[ (o0;.)(Z_)dv « % | ]

o BTy i3’ % {t>p_} t

T . ~ T ~
= (vv )ij(at,m)atE[X{t>Br}Iynt] + (oo )ij(Zt) . E[x{t>st}lwnt],

by the same argument as in the proof of (1.19).



Hence
T ‘ o = T - A
(1.34) (o0 )ij(zt)E[X{t<BT}|[wt] (vv )ij“tE[X{t>BT}l’“t]

Put B = {w: t<51} and let

Ay = {w: E[xBIWﬁt] = 0} ewit,

Then
= e d = d =O’
P(BNA,) £ Xg © 4P i Elxg |, ]ap
0 0
SO
N > 0 .S.
E[xB[Wnt] a.s on B

Therefore we can conclude from (1.34) that for all >0

<va>ij(at,w) = C(at'w)(GcT)ij(Xat)

for a.a. w s.t. t < Bt(w).

Thus we obtain the same conclusion (I) as in Theorem 1, except that
it is only valid for a.a. t,w such that t < Br(w). That conple-

tes the proof of Theorem 2.

Corollary 1. Suppose

u(t,w) = clt,0)b(X,) and (v )(t,0) = clt,w)(oo ) (X,)

for a.a. t,w sucht that t < Br'

Then Xt is a time change of Yt' with time change rate c(t,w).

Theorem 2 allows us to extend the characterization of Markovian
path-preserving functions given in Csink and @ksendal [1] to the

case when the time change is not necessarily strictly increas-

Be

ing:



Th 3. Let ds,k6 = S )dt + dB nd 4y, = b(Y )dt +
eorem e . al t) y(St) R c ( t)
c(Yt)dBt be Ito diffusions on open sets G < RP and U < R", res-
pectively. Denote the generators of St and Yt by A and A,
respectively. Let ¢: G > U be a C? function. Then the following

are equivalent:

(1) There exists a continuous function A>0 on G such that
(1.35) A[foo] = MA[f] o ¢ for all £ € C2(U)

(2) For each open set D with Dc G the stochastic integral

¢(St), t <ot is a time change of Xt’ with time change rate
D

x(st) (in the sense of (1.23)-(1.24)).

Proof. By the Ito formula we have that Xt= ¢(St), t<T satisfies

(k) _ T _
ax, = (A¢k)(St)dt + V¢k(St)Y(St)dBt, k=1,...,m ,

k . :
where Xé ) is component no. k of X, . Therefore by Theorem 2 (2)

holds if and only if

(1.36) E, AT[A¢k(st)|x] = bk(X)Ea Ar[x(st)|x]
t t
and
(1.37) (To2vy 70,)(8,) = M(s ) (oo ), (X)) & 1<k, 2<m,

for a.a. t,w such that t < B . Letting t+0 we se that equation
T T

(1.37) is equivalent to

(1.38) V¢§YYTV¢X(X) = k(x)(ccT)kl(¢(x)), 1<k, 2<m
for all x€G.

Similarly we claim that (1.36) is equivalent to



(1.39) A@k(x) = k(x)bk(Q(x)) : 1 < k < m, Xx€G.

It is clear that (1.39) implies (1.36). Conversely, if (1.36) holds

we consider two cases:

Case 1: x Dbelongs to the S-fine interior D of N = {z; A(z)=0}:
i.e. 71_ = inf{t>0; S _¢N} > 0 a.s. Since « = lim a, = 1_ we
N t 0" 40 N
then get from (1.36) that
. TAT
K(x) = E°[[ (no, ) (s )at] = 0 for all xe€D.
0

Applying the characteristic operator OU of St to the function K

we get (se [7], p.138)
0 = OLK(x) = (a0, )(x) for all xe€D,

so (1.39) holds in this case.

Case 2: TN = 0 a.s. Then we have g, = 0 a.s. and therefore from
(1.36)
atAr

A¢, (x) = lim — EX(f (A¢k)(Sr)dr]
0 .

t+0 Ex[atAr]

a, AT
t .
. 1 X
= lim ———— ¢ E7] A(S_)b, (6(s_))dAr] = r(x)b, (6(x)),
£+ 0 Ex[at/\r] é rox r K
as claimed.

We now note that (1.38) and (1.39) are equivalent to requiring that

Alfod] = AA[E] o o
for all polynomials

P = X, + .. X . X,
f(x], xn) g c Xy Y lJxlxJ

i, ]

of degree < 2, and hence that (1.35) holds for all f € Cc2(u).



Remark. It is natural to ask what happens if we allow a more gene-
ral time change rate c(t,w) (not necessarily of the form K(St))
which makes ¢(St) a time change of X . However, the argument

above gives that if such a c¢(t,w) exists, then as in (1.37)

(V¢£YYTV¢1)(St) = C(t,w)(dcT)kl(X ) for 1<k, 2<m,

t
and so
clt,w) = K(St)
with
T T
(Vo vy Vo,) (x)

A(x) = T .
(cckx)(¢(X))

i.e. we have a time change of the type discussed in Theorem 3.

§2. A TIME CHANGE FORMULA FOR ITO INTEGRALS

As an illustration we first use Theorem 1 to characterize the sto-
chastic integrals which are time changes df Brownian motion. If u=0
the corresponding result without time change (and with time change
if n=1) was first proved by McKean ([4], §2.9). The sufficiency of

condition (2.1) has been proved by F. Knight [3] (in a martingale

setting).

Corollary 2. Let Xt be the n-dimensional stochastic integral in
(1.2). Then there exists a time change @, as above with time

change rate c¢(t,w) » 0O such that

Xa ~ Bt (n-dimensional Brownian motion)
t

if and only if



(2.1) B, [ulX] = 0 for all t and (w')(t,w) = c(t,w)I_

for all a.a t20, a.a. weQ

where I is the nxn identity matrix.

Example 1. If Xt is a 2-dimensional process the form

dx = t, d
‘ vit,w) Bt

2% . . . . .
where v € R 2 and Bt is 2-dimensional Brownian motion, then Xt

is a conformal martingale if and only if
T .
(vwwi)(t,w) = n(t,w)12 for some n(t,w) > O.

(see [2]). Thus it follows from Corollary 2 that a conformal martin-
gale is a change of time of Brownian motion (in R?). This was proved
by Getoor and Sharpe ([2]), p. 292-293) and it follows from the

result by Knight in [3].

A special case of Corollary 2 is the following:

Corollary 3. Let c(t,w) » O Dbe given and let at correspond to

¢ as before. Put

t
X, = i Vcls,w)dB
0
where BS is n-dimensional Brownian motion. Then Xa is also an

t
n=-dimensional Brownian motion.

We now use this to prove that a time change of a stochastic integral

is again a stochastic integral, but driven by a different Brownian

~

motion Bt’ First we construct ﬁt:

Lemma 2. Suppose t »> a(t,w) 1is continuous, a(0,w) = 0 for a.a



w. Fix t»0. For k=1, 2,... put
5027K if j e 27 ¢
t L=
I |k if 3. 27K ¢
and choose r . such that « = t..
J r J

Suppose f(s,w) >» 0 is ’?s-adapted and satisfies

Ot
P [ £(s,w)?ds<=]
0

]
—

Then
e
(2.2) lim § f(a.,w)AB_ = [ f(s,w)dB a.s.,
koo 3 J 5 0 s
N 5 0

where a. = a_ , AB = B - B and the limit is in L<4(Q,P ).

j r. Q. . a .

J J j+1 J

Proof. For all k we hve

E[(Z f(aj,w)ABa.— ff(s,w)st)z]

J J
% 541
=T E[(] (fla,, ) - £(s,w))dB_)2]
SRS ’ °
]
i a.+] at
=7 E[ (f(aj,w) - f(s,w))2ds] = E[ f(f—fk)2ds],
] @ .
J 0

where fk(s,w) =7 f(t
J
mation to f£. (See [7], Ch. III). This implies (2.2) in the case

j'w)x[tj’tj+])(5) is the elementary approxi-

when £ is bounded and t » f(t,w) is continuous, for a.a. w.
The proof in the general case follows by approximation in the usual

way. (See Ch. III, Steps 1-3 in [7]).

The following result extends a l1-dimensional time change formula

proved by Mckean ([4], §2.8).



Theorem 4. (Time change formula for Ito integrals)

. . . . nxm
Let (BS,'?S) be m-dimensional Brownian motion and v(t,w) € R~

as before. Suppose o« satisfies the conditions in Lemma 2. Define

t

04
t
(2.3) B, = lim /c(aj,m)ABa = [ Yels,w)dBg
0

k-)co J :]
Then Et is an (m-dimensional) ?& -Brownian motion (i.e ét is a
t
Brownian motion and ét is a martingale wrt. '?a ) and
t
. .
t t . 0
(2.4) [ v(s,w)daB_ = [ v(a_, w):-/a! dB_, a.s. P .
0 s 0 r r r

where aé(w) is the derivative of @ wrt. r, so that

1

(2.5) aé(w) T
r'

for a.a 1r>0, weQ.

Proof. The existence of the limit in (2.3) and the second identity

in (2.3) follows by applying Lemma 2 to the function
f(slw) = VC(S,(D)-

Then by Corollary 2 we have that §t is an F& -Brownian motion. It
‘ t

remains to prove (2.4):

%
[ v(s,w)dB_ = lim } v(a, ,w)AB
0 S ke j ]
= lim | v(a. ,w)f vel(la. ,w
k> ' j
= lim ) v(a.,w) ! AB.
j cla.,w) j

k»e j



and the proof is complete.

We now apply Theorem 4 to the case when the stochastic integral X

is an Ito diffusion

(2.6) dx, = a(Xt)dt + Y(Xt)dB

t t

n n n nxm .
where a: R > R , y: R » R are continuous.

Corollary 4. Let Xt be the Ito diffusion given by (2.6) and let

t » alt,w) be absolutely continuous, «a(0,w) = 0 for a.a. w. Then
X is a Markov process wrt. MM if and only if there exists a

e %

function q: R » [0,=) such that

(2.7) clt,w) = q(Xt(w))
for a.a. t < a_, w€Q, and in that case

a(x ) y(X )

Ey Te &
2.8 da = ——— dt +
(2.8 ) T gy % T, 9B
t t
where ét is the ?; ~-Brownian motion from Theorem 4.
t

Proof. If (2.7) holds then (2.8) follows from Theorem 4. Hence X
%t
is a weak solution of the stochastic differential equation (2.8) and
therefore Xa is a Markov process. Conversely, if Xa is a Mar-
t t

kov process wrt.’m&a then by the proof of (III)=>(I)(ii) in Theo-
t

rem 1 we obtain
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(2.9) (yrT)(x,) = cbe,w)(o0”) (X,) for a.a. t<a_, we®
l.e.

c(t,w) = q(Xt)
with

(x) = ) (x)
(60™) (x)

Remark. The last part of this proof does not require that @ is

absolutely continuous.
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