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ABSTRACf 

Given a Dirichlet form t( ·, ·) on the unit sphere S in 

R" (n ~ 2) associated to a connnuous, symmetric convolution 

semigroup of measures on a group G of isometries on S and 

given a ( G - invariant) Markov process X1 on the open unit. 

ball B, it is shown that for any real function u E L 2(S) with 

t(u,u) < oo the X1-harmonic extension u has limit ~6) along 

a.a. paths X1 conditioned to exit from B at 6, for quasi-all 

6 E S, where ~ is a quasi-continuous version of u. 

This extends in several ways classical results due to Beurling 

and Broman about the existence of radial limits quasi-everywhere 

for a harmonic function in the open unit disc in the plane with a fm­

ite Dirichlet integral. 

- 1 -

L 
i 

I 



1. Introduction. In 1940 A. Beurling [1] proved the following: 

(1.1) H h is a harmonic function in the open unit disc D in the plane R 2 

such that h has a finite Dirichlet integral, i.e. 

(where dx denotes Lebesgue measure), then 

lim h(rei8). 
r-1 . 

exists for quasi-all 8, i.e. for all 8 E iJD\F where F is some set iil iJD with 

cap F = 0 (cap denotes logarithmic capacity). 

The following extension of Beurling's theorem was obtained by Carleson in 

1967 ([3], Theorem V. 3): 

(1.2) Let f be continuous in D with partial derivatives a.e. in. D and 

such that e ... f(rei8) is absolutely continuous for a. a. r and r .... f(rei8) is 

absolutely continuous for a.a. e. Suppose 

(z = x + iy) 

for some a, 0 :sa< 1. Then 

,,, . 

exists C u quasi-everywhere, where C u is the capacity defined by \lsing the ker-

nel lxl-u if a> 0 and the kernel log lllxl if a = 0 (thus Co has the same 

null sets as logarithmic capacity). In the special case when f is harmonic in D 
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this result was obtained by A. Broman in 1947 [2]. 

In this paper, which was inspired by an approach used by Fukushima (11] to 

quasi-everywhere convergence of Fourier series on aD, we prove a stochastic 

result of this type. The convergence along radial lines I non-tangential conver­

gence is replaced by convergence along the paths of certain Markov processes X, 

(e.g. Brownian motion) in the unit ball 8 in R" for n ~ 2 conditioned to exit 

at specified boundary points and the functions we consider are Xrharmonic 

extensions of boundary functions with fmite norm wrt a Dirichlet form on the 

boundary. In the special case when n = 2 and X, is Brownian motion we get 
' 

Broman's result by choosing the Dirichlet form on aD appropriately. 

More precisely, let m denote the normalized Lebesgue measure on the unit 

sphere S of R" and let t(·,·) be the Dirichlet form on L2(m) associated to a 
\.__ 0. 'a""'t "' ·~ ~..-....s...+r.:....s -..) 

continuous, symmetric convolution semigroup of probability measures onYs. . 

(See Fukushima (10].) Let Cap denote the capacity associated to 

!1(·,-) = !(·,-) + (·,-) where (·,-) is the usual inner product in L2(m). By 

"Cap quasi-everywhere" we mean "except on a set F with Cap F = 0". Let X, 

be a Markov process in 8 satisfying a certain 'G-invariance' requirement. For 

f E L 1(m) let j denote the x,-harmonic extension of / to 8. (H x, is 

Brownian motion B 1 then j coincide with the classical harmonic extension of 

f.) Then our main result is the following (Theorem 1): 

(1.3) H u is a real function on S such that t(u,u) < oo the~ 

lim ii(X?) = ~e) a.s. 
1-+T 

for quasi-all 8 E S, where ~ is a quasi-continuous version of u and xf is the 
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process X, amditioned to exit from B at 8. 

2. Quasi-everywhere boundary convergence. Let {v,},0\!:0 be a amtinuous 

symmetric convolution semigroup of probability measures v1 on a group G of 

isometries on S, i.e. 

(i) v1 * V 1 = Vt+s , t,s > 0 

(ii) JG f('y) dv1(-y) ;= JG f('Y-1) dv,(-y) for all bounded Borel fp.nctions f 

onG 

(ill) lim v, = 8 
t....O 

where * denotes convolution and 8 is the Dirac measure at 1 E G. 

Let (x,,n,P.r) be a strong Markov process in B with amtinuous paths and a 

(possibly infinite) lifetime T. We assume that no killing of X1 occurs. inside B 

and that X1 satisfies the following amditions (2.1), (a) - (c), (2.2): (Note that 

these conditions are satisfied for Brownian motion B 1 ) 

(2.1) XT = lim X1 E S exists a.s. p:r ,....., 

for all x E B. Moreover, if we define the X1-harmonic measure ~:r by 

then ~:r is absolutely continu~us wrt m. and ·'· 

~:r 
dm = K(x,e) 

where 
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(a) K(x,8) > 0 for all x E B, 8 E S 

(b) K(x,e) - 0 as x- E E S\{8} 

(c) 8- K(x,8) is uniformly oontinuous for x E H, if H C B is compact. 

(2.2) (G-invariance.) For any isometry -y E G we have that x, with pro­

bability law px has the same finite-dimensional distributions as -yX1 with proba­

bility law p-yx. 

In particular, this implies that 

(i) K(x,e) = K(-yx, -y8) 

and 

(ii) K(O,e) = 1 . 

For j E L1(m) we define its. X1-hannonic extension j by 

(2.3) 

Now define 

(2.4) p1(EJ) = fa !("'IE) dv,(-y), E E S, ! E C(S). 

1hen p1( ·, ·) is a strongly continuous Markovian transition function. Moreover, 

p1 is m-symmetric in the sense that 

~ u(E)p,(E,v) dm(E) = ~ v(1J)p1(1J,u) dm(1J) 

for all u,v E C(S). 
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... 

This is because 

f u(E)p,(E,v) dm(E) = J f u(E)v('YE) dv,('Y) dm(E) 

= f f u(E)v('Y-1E) dv,('Y) dm(E) = f f u('YE)v(E) dv1('Y) dm{E) , 

using (ii) and that m is isometry invariant on S. 

Let t be the regular Dirichlet form on L 2(m) associated with Pt (see 

[10], p. 29-30). Put 1 = D(t) {the domain of definition of t) and let A be 

the non-positive defmite self-adjoint operator given by 

(2.5) t(u,v) = - (u,Av), D(A) = 1 

where (·,-) denotes the usual mner product in L2(m). As in Fukushima [11] we 

now define 

(2.6) V = (I - A)-112 • 

lhen we have: 

LEMMA 1. (See Fukushima [11}, p. 131-132.) 

(a) (VJ)(~) = fo~ if-rrs e-' (pJ)(E) ds; f E L2(m). 

(b) Vf is quasi-continuous for each f E L 2(m). 

(c) 1 = {Vf;f E L 2(m)}. 
,1,. 

(d) t 1(Vf,Vg) = (/,g) for f,g E L2{m), where £1(·,-) = t(·,-) + (·,-) . 
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,, ,, 

(e) H u E 1 and ; denotes a quasi-continuous venion of u then 

" 1 Cap{8;lu(8)1 > ~} s )J el(u,u) . 

Here Cap denotes the capacity wrt £, i.e. 

(2.7) Cap(U) = inf{£1(u,u); u E 1, u c:!: 1 a.e. on U} 

if U is open and 

Cap(H) = inf{Cap(U); U open, u, :J H} 

for general H. 

We say that g is quasi-continuous (wrt Cap) if for all E > 0 we can fmd a 

set H . with ·J~ap(H) < E· such that g I S\H is continuous .. 

Combining (a) from Lemma 1 with the defmition (2.5) of p1 'we obtain: 

LEMMA 2. Iff E L2(m) then 

(2.8) 

where J.L is tlu! measure on G defined by 

F C G. 

H g is a function on B we cat:l for each r E (0,1) . associate a function g, 

on S by 

(2.9) (g,) (E) = g(rE) , E E S . 
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With this notation we have: .· 

LEMMA 3. ut f E L2{m) and let j tkno~ the X,-harmonic utemion of 

f, given by (2 .2). 

Then 

Proof. 

(V])r(~) = f(Vf) (cf»)K(rE,cf») dm(cf») 

. = JJf('Ycf»)K{rE,cf») dp.6) dm(cf») (by Lemma 2) 

= J/f(cf»)K(rE,'Y-1+) dp.('Y) dm(cf») (m isometry invariant) 

= JJf(cf»)K('Y(rE),cf») dp.('Y) dm(cf>) (by (2.l),d}) 

= J(/)r('YE) dp.('Y) = V(/)r(E) • · 

H g is a bounded Borel function on B we define 

(Vg) (x) = (Vgr) (e) where e = ~~ , r = ~~ . 

Note that by (2.8) and (2.9) we still have 
,1,. 

{2.10) (Vg) (x) = fa g('Yx) dp.('Y) for x E B . 

Next we explain Doob's concept of a conditioned X,-process (see Doob [7] 
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and [8] for details): 

Let h > 0 be an Xl-harmonic function, i.e. 

h(x) = E.r[h(Xp)] for all stopping times P < T • 

Then we put 

h _ T1(jh) (x) . 
(T1'J) (x) - h(x) , IE Co(B) 

(Co(B) = {f E C(8); I has compact support}) where (TJ) (~) = EX[f(XI)] is 

the transition function of X1• 

The semigroup {Tf'}1:1!:0 will .. be the tr,ansition function of a strong Markov 

process denoted by Xf with probability law P~, i.e. we have 

Ex [f(XIn] = 1 f(XIn tJPZ = EX[f(XI)h(XI)] 
h 1 J n 1 J h h(x) 

In particular, for a fixed 6 E S we have that 

(2.11) h(x) = K(x,6) is X1- harmonic in 8 . 

This can be seen as follows: 

By the strong Markov property we know that for all I E L 2(m) the func­

tion j(x) = E.r[f(XT)] is Xrharmonic in 8 (see e.g. [12], (7.17) inCh. Vll). 

Therefore 
·'· 

= /l(cf>)E.r[K(Xp,cf>)] dm(cf>), for all stopping times ~ < T. 
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Since this holds for all f E L 2(m) we conclude that 

E~[K(Xp,cf>)] = K(x,cf>) for a.a. cf> with respect to m . 

So by condition (2.1) (c) we obtain (2.11). 

From now on we will let x? denote the K(· ,e)-conditioned Xrprocess and 

we abbreviate Pk(·,&) to Pj. 

By condition (2.1) (b) we know that 

(2.12) 

where ,.e is the life time (i.e. the frrst exit time from B) of x?. 

The next result gives a crucial connection between the expectation involving 

the conditioned process and the conditional expectation of the original process: 

(We interpret X, as XT if t ~,. and similarly with x? in order tQ simplify the 

notation.) 

-
LEMMA 4. Let g be a bounded Borel function on B. Then 

E~[g(X,) 1 xT = e) = El[g(x?)J . 

Proof. We must show that 

·'· 

i.e. that 

(2.13) 
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for all bounded Borel functions f. 

The right hand side of (2.13) is 

where .MT is the a-algebra generated by {X11\T ; t ~ 0} and we have used the 

strong Markov property for XI (see e.g. (7.15), Ch. vn in [12]). 

LEMMA 5. Let g be a bounded Borel function on 8. Then, with 

E8 = EB, E = E0 

E8[(Vg) (X?)] = V(E8[g(X?)]), · 8 E S . 

Proof. 

,1,. 
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= V(E8(g(X?)]} . 

Then we see that M1 is a martingale wrt the a- algebras M1 generated by 

{X3 A.,..; s S t}: 

for all s > t, since i is X,-hm:monic. 

Moreover, 

So Lemma 6 follows from the martingale convergence theorem. (See e.g. [13).) 

We are now ready to prove the main result of this paper: 

1HEOREM 1. Let {v1} be a continuous symmetric convolution semigroup of 

measures on a group G of isometries on S and let X1 be arry Marlcov process in 

B satisfying the conditions (2.1), (2.2) above. 

Let u E T. Then for quasi-all 8_ E S we have that 

lim u(x?) = ~a) a.s. PB . 
1--T 

Proof. Write E8 = EB and E = E0• 
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For 0 s r < 1 put 

P = Pr = inf{t > 0 ; IX?I = r} 

T r = inf{t > 0 ; ·jx,j = r} . 

Choose f E L2(m) such that u = Vf (Lemma 1 c)). 

Then for A > 0 we have 

Cap{& ; E8[sup lu(X?) - ~8)11 > A} 
t>p 

= Cap{& ; E8[sup l<v.n (X?) - (v.n (8)11 > A} 
t>p < 

= Cap{& ; E8[sup IV{f(x?) - /(8)}11 > A} (by Lemma 3) 
t>p 

s Cap{& ; V(E8[sup V(X?) - /(8)1]) > A} (because g s h ==}' Vg s Vh.. andby Lemma 5) 
t>p . 

1 s - t 1(V(Ee[sup ···]), V(E8[sup ···1)) (by Lenima 1 b), e)) 
A2 t>p t>p 

,1,. 

(by (2.1) c)) 

1 - ~ s 2 E[sup lf(X1) - /(XT)I J 
A t>T, 

(cond. exp. reduces L 2 norm) 
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(martingale inequality) 

.. 0 as r .. 1 by Lemma 6. 

So we have proved that for all ~ > 0 

Cap{8 ; lim inf (E8[sup lu(Xf) - ;,ce)l]) > ~} = 0 . 
r-1 t>p 

Hence 

Cap{ a ; lim inf (E8[sup lu(Xf) - ;,ce)l] > O} = 0. 
~ Pp , 

So for quasi-all 8 we have by monotone convergence 

Ee[lim (sup lu(Xf) - ;,ce)l)] = 0. · 
r-1 t>p 

Hence 

lim (sup lu(Xf) - ;,ce)l) = 0 a.s. PB 
r-1 t>p · 

i.e. 

lim u(Xf) = ;,ce) a.s. P9 
t--T 

for quasi-all 8 E S. That completes the proof. 

3. Examples. We now look at the special case when n = 2, i.e. B is the unit 
. ,1 •• 

disc D in the plane. Then it is known (see [10] p. 31) that there is a 1-1 

correspondence between the continuous symmetric convolution semigroups {v1}1~0 

and the set of all real sequences ~ = {~n} ~ao satisfying 
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(3.1) ~0 = 0, ~~~ = ~-~~ 

and 

(3.2) 

for any real sequence {p11} with fmite support. This correspondence is given by 

(3.3) f . 8 -t>.. v,(n) = e111 dv,(6) = e .. for all n , 

and the Dirichlet form corresponding to ~~~ is 

t(u,u) = l: lu(n)l2~11 • 

II 

Examples of sequences {~llr satisfying (3.1) and (3.2) are 

(3.4) ~~~ = lnll-a where -1 <a< 1 

and 

(3.5) ~~~ = log (1 + lnl) .. 

In particular, if we choose 

~~~ = lnl 

then the corresponding Dirichlet form C on L 2( aD) is given by 

·'· 

(3.6) 
' 00 

C(u,u) = 1r l: lu(n)l2 lnl , 
-oo 

where u(n) = 2
1 !,211 e-in& u(6) d6 is the n'th Fourier coefficient of 
11' 0 
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Moreover, we have 

(3.7) C(u,u) = D(u,u) , 

where u is the classical harmonice extension of u to D and [) denotes the 

classical Dirichlet form 

(3.8) 
1 

[)(J,g) = -1 vf ~ vg dx. 
2 v .· . 

(See [10], p. 12.) Therefore the (classical) harmonic functi~ h iri · D with 

bounded Dirichlet integral are exactly the harmonic extensions u of functions 

u E L 2(aD) with C(u,u) < oo. 

In fact, we have the following more general connection between Dirichlet 

forms on aD and in D: 

LEMMA 7. Let ea. ( ·, ·) be tlu! Dirichlet form on aD corresponding to 

~n = lnll-a. where -1 <a< 1 . 

Then we have 

(3.9) 

where z = x + iy. 
·'· 

Proof. We may assume u(8) = I:=o anein8• Then 

u(rei8) = ~ anrnein8 = ~ anzn' lvul2 = lu'(z)l2 = ll':nanzn-ll2 • 
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Hence 

fn I'Vul2(1- ~l)u dxdy = folfo2-rr ~ raman~rn+m-1ei8(n-m) (1 - r)u d6dr 
n,m . 

= ~ lanl2 n2 fo1 r2n-l (1 - r)u dr . 
n 

Now J0
1 r2n- 1(1 - r)u dr = B(2n, 1 + a) = f(2n)f(1 + a) 

f(2n + 1 +a) 

(2n + 1 + a)2n+l+u-112. e-2n:....1-u 

2n . (2n + 1 + )-1-u...., -1-u ( )
2n-112 

2n+1+a a " ' 

where a - b means that 1/c b s a s cb for some constant c. 

Therefore 

fv I'Vul2 (1 - ~l)u dxdy - ~ lanl2 lnl1-u , 
n . 

which proves Lemma 6. 

It remains to relate the capacity wrt ta, Cap a, to the classical capacities 

Ca.. The following result (as the preceding) is well known to experts, but it seems 

to be hard to find it in the literature. 

LEMMA 8. Let Cap a ~enote the capacity associated to the Dirichlet form 

ta. corresponding to 

~n = lnp-u ; 0 :S a < 1 . 
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Then 

(3.10) 

For completeness we sketch a proof: 

Put 'Yn = jnp-a + 1 and defme 

K(x) = f cos nx . 
-oo 'Yn 

Then 

K(x)- ~~-a, 

because ~2-rr x-a cos nx dx = Inia-l ~2-rrn u-a cos u du - li'Yn· 

The energy E[J.L] of a measure f1 wrt K is 

E[J.L] = J JK(x-y) dJ.L(x) dJ.L(y) = l": lfi.(n)l2 

n . 'Yn 

H u 2::: 1 on an open set U C aD and f1 is a positive measure on U we have 

Hence 
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... 

By taking the supremum of the right hand side over all f.l. with f.I.(U) = 1 we 

obtain 

Hence 

1 
Capa(U) ~A Ca(U) • 

.1 

To get the opposite inequality we ilse that if ~ is the posi~ve measure on U 

with P(U) = 1 which minimizes E[~], then 

v(x} = f K(x - y) d~(y) 

satisfies v(x) = E[~] a.e. on U (see Carleson [5], p. 17). 

Hence 

where A 2 is a constant. 

That completes the proof of Lemma 7. 

Combining Theorem 1 with Lemma 6 and 7 we obtain the following stochas­

tic analogue of Broman's theorem: 

COROLLARY 1. Let h be a harmonic function in D such that 
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for some a, 0 :sa< 1. Then 

lim h(B?) 
1-T 

exists a.s. PB for quasi-all 8 E aD wrt the capacity Ca.. 

A natural question is: Does convergence of a given harmonic function along 

a.a. conditional paths B? for a fixed 8 imply non-tangential convergence at 8? 

For n = 2 the answer is yes. This is a result essentially duet() Davis [6] and 

Burkholder, Gundy and Silverstein [3]. For a complete proof see Durrett [9]. 

Therefore, Corollary 1 implies the result by Broman stated earlier. 

In order to obtain similar results for the unit· ball B fu. R n for n > 2 one 

would have to investigate the continuous symmetric convolution semigroups of 

probability measures on the given group G of isometries on S and, then try to 

relate the capacity corresponding to the associated Dirchlet forms to the classical 

capacities. This topic will not be discussed here. 

Fmally we mention that the technique used above also applies to continuous 

symmetric convolution semigroups of probability measures on R n. Using the 

description of such semigroups given by the Uvy-Khinchin formula (see [10], p. 

29) one can proceed as above and obtain results about quasi-everywhere boun~ 

dary convergence of harmonic functions in the half-space Rn x[O,oo) along con-
·'·' 

ditional Brownian paths. This raises the question whether convergence of a given 

harmonic function in Rn x[O,oo) along (a.a.) conditional paths Bf for quasi-all 

x E R n (for example wrt Newtonian capacity in R n+l) implies non-tangential 
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convergence for quasi-all x. If one replaces quasi-all with almost all (Lebesgue 

measure) then the answer is known to be no, by an example due to Burkholder 

and Gundy [4). 
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