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Abstract

A numerical method for first order nonlinear scalar hyperbolic
conservation laws in one dimension 1is presented, using an idea by
Dafermos. In this paper it 1is proved that i1t may be used as a numerical
method for a general flux function and a general inpitial value. It is
possible to give explicit error estimates for the numerical method. The
error in the method is far smaller than i1n any other method. The
numerical method is illustrated in an example.
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1 INTRODUCTION

In this paper we suggest a numerical method for the Cauchy problem

(1.1) ' u, + flu) =0
- X

t
where f is locally Lipschitz continuous, with initial condition

(1.2) ulix,0) = uo(x)

assumed to be bounded and of locally bounded variation in R. Using the
convergence of the method it 1s easy to prove existence, uniqueness and
other well-known properties of the solution of the Cauchy problem.

It is well-known that there exist a unique weak solution of (1.1) and
(1.2), see e.g. 0Oleinik [4#) and [5], Vol'pert [9] and Kruzkov [2]. The
usual approach to the equation is by finite differences. This was first
done by Lax [3].

The method presented in this paper was first mentioned by Dafermos [1]
as a new method to study the initial value problem. Using the method he
proved some properties of the solution. He stated that it may be used as
a numerical method for f convex or f concave. Unaware of Corollary 2.3
in this paper it is reasonable to believe that the numerical algorithm
contains an infinite number of steps when f is not convex or concave.
Lucier [6] proved that the method may be used as a numerical scheme for
a special f and initial value and that the method has optimal )
convergence. LeVeque [4] used the method and for each timestep projected
the solution back on a grid. Most other numerical methods for (1.1) and
(1.2) are not optimal, see Lucier [5].

Dafermos’' obervation is that with f piecewise linear and the initial
value pilecewise constant, then the solution 1s piecewise constant. There
are no rarefaction waves, only shocks. The solution u(.,t) is piecewise
constant for all t and the solution 1is found by solving Riemann problems
and following the shocks.

The method is to approximate f by a piecewise linear function and the
initial value by a piecewise constant function. Solving the perturbed
problem, we get an approximation to the solution of the original
problem.

This may be used as a numerical scheme if there is a finite number of
constant states. Of course this 1s only possible if the initial value
has a finite number of constant states. In this paper we prove that
there 1is only a finite number of constant states even in infinite time.
Therefore it is possible with a finite algorithm to approximate the
solution in infinite time. Usually a numerical method is only finite in
finite time. Thus we may describe the method as superfast.

In chapter 5 the numerical method is illustrated in a simple ‘example.




2 THE NUMERICAL METHOD

We will first describe the well-known solution to the Riemann
problem. In the following we assume f to be piecewlise linear and the
initial value to be piecewise constant since this is the only case
needed in the paper. This is the simplest problem in the form (1.1) and
(1.2).

u_ when x <0

u0 : u, when x > 0.

First we need some not.tion. Assume u_ < u,. We define
fc to be the convex envelope of f relative to the interval (u_,u’).
Since f 1s continuous and piecewise linear, fc also 1s continuous and

piecewise linear. We define ui, i=t, 2,...,N by

u,= u , u = u and u.< u.
1 - N + 1 1+1

and
f 1is linear in the interval (u.,u. ).
c 1 141

Then the exact solution of the Riemann problem is

ulx,t) = u. for ¢t f'(u. _+) =t f'(u.-) <= x ¢ t f' (u.+) t £ (u. _+)
1 c 1-1 c 1 c 1 c 1+1

where

fc(uo+) fc(lJ‘-) = - e

and
fc(uN+) = fc(uN+1-, = e,

See Figure 2.1. If u_ > u,. the solution is found by substituting x
with -x and f with -f.

Observe that we do not encounter rarefaction waves with our
assumptions on f. As we have seen it is easy to solve the Riemann
problem exactly and represent it numerically with our restriction on
f. This 1s the cornerstone of the numerical method.

Given arbitrary u and f, we may approximate u with a pilecewise
constant function and f with a continuous and piecewise linear
function. Then the solution of the Riemann problem on each
discontinuity in u is used. It is then possible to solve (1.1) and
(1.2) until two discontinuity lines collide. u(.,t) is still piecewise
constant and it 1s possible to start over again. See Figure 2.2 for a
typical solution u(x,t).

To prove that this is a well-defined procedure it is necessary to
prove that if u0 has a finite number of jumps, then u(x,t) is constant

on a finite number of domains for t < T. In fact we are going to prove
that u({x,t) is constant on a finite number of domains for all t.

First we need a proposition.




Proposition 1

Assume that us is a step function with a finite number of jumps and

that £ 1s continuous and piecewlise linear with a finite number of
breakpoints. Then for fixed t ul(x,t) is a step function and

uix,t) € {uo(x); x€R} U {u; f' 1is discontinuous at u}.

Proof

New values only arise in the Riemann problems. In the Riemann
problems with the assumption on f, the only values that may arise are
the values where f' is discontinuous.®

We now need some definitions. Using Proposition 2.1 we let

< <...«<
Wit Y2 "M
be the values u can take.
A curve of discontinuity for u is called a shock front. A point
where two or more shock fronts collide is called a shock collision. A
shock front where u has the value wi on one side and wj on the other

side is said to contain |[i-J| shock lines. The total number of shock
lines in u(.,t) is a measure of the total variation of uf(.,t).

Iheorem 2.2

Let N be the number of intervals where f is linear, let L(t) be the
number of shock lines in u(.,t) and F(t) be the number of shock fronts
in u(.,t). Then the function

G(t) = LIt)*N + F(¢t)

is strictly decreasing for every shock collision for t > 0.

Proof

Assume u u_ are the values of u(x,t) which meet in a

- R ¢
shock collision. Then K-1 shock fronts meet in the collision. We
distinguish two cases. In the first case at least one of u_,.

.U
not between u1~and uK, and the second case all uz,...,uK_1zare K-1

between u1 and uK.

is

In the first case we obtain after the shock collision at most N shock
fronts and the value to the left of the left shock front is u1 and the

value to the right'of the right shock front is uK. If there are more

than one shock front after the collision, then the values between the
shock fronts form a monotone sequence. Thus the values which were not
between u1 and uK have disappeared. Then the number of shock lines has

decreased and the number of shock fronts has at most increased with N-2.
Thus G(t) has decreased.

In the second case we can disregard the values that make the sequence
{ui} non monotone. For a monotone sequence {ui} it is easy to prove

that after the shock collision all the K-1 shock fronts are united into
one shock front. Then the number of shock fronts decreases and the
number of shock line§ does not increase, thus G(t) decreases.®




or .
I1f uo has a finite number of jumps and f is linear on a finite number
of intervals, then h(x.t) 1s constant on a finite number of domains.

Assume |f'|<C. Then the maximum speed of a shock front in a Riemann

problem is C and therefore the numerical solution in (xo.t) is

independent of uo(x) for x <« xo - Ct and for x » xof C t. Therefore it

is possible to use this method even when u0 has a infinite number of

constant‘states. We only need to care about the number of states in an
interval which depend on the interval where we want the solution and C.

In ordinary numerical methods it is necessary to bound the timestep
compared to the spacestep in order to keep the numerical method stable.
This 1s related to the demand that neighbouring Riemann problem should
not interact in the same timestep. In the method presented in this paper,
this 1s not any problem. In fact the numerical method only considers
interactions between neighbouring Riemann problems. Therefore we may say
that this method has longer timestep than other methods. The last
timestep 1s infinite. Thus this method is faster than other numerical
methods. However an optimal implementation in regard to computer time,
uses more storage than most other methods.

In the next chapter we will prove that the error in this method is
far smaller than in any other numerical method for this problem. The
error estimate is also very precise and simple.

3 ERROR ESTIMATES

In Lucier [6] the following theorem is proved
Theorem 3.1
If f and g are Lipschitz continuous functions, u_. and voeBV(R)

0
and u and v are solutions of

ut + f(u)x =0 for xeR and t>0
ulx,0) = u_I(x) for xeR
(]
and
= 0 for xeR and t>0

vt + q(v)x

vix,0) = vD(x) for xeR,
then for any t>0
||U("t)-V("t)IIL;(R) < Iluo(.)-vot.)llL1(R) +
LEE-gll jpmintluglay gy Volgy(r)
where we have defined
9(x)-gly)

sl g, = gyp|Eeiy




Since the numerical method is the exact solution of a perturbed
problem, this theorem may be used as an error estimate. Let g be a
piecewise linear approximation to f and v0 a plecewlise constant
approximation to ub. Then Theorem 3.1 gives an error estimate. It 1is
well-known that if g is a piecewise linear interpolant of f with
breakpoints in 1ih, for ieZ, then

h o
=gl € 21101

p L.(R)'

for sufficiently smooth f. Therefore Theorem 3.1 proves optimal
asymptotic convergence.

Using the convergence of the numerical method it is possible to
improve this estimate. First we need two definitions.

Definition 3.1
Assume that the step function u(.,t) satisfies

ulx,t) = u. for xela.,a. ) i=1,2,....,M
i i1t

for a fixed t. Then we define uc(..t) by

u. for xela.,a. ,-€)
i 1' 1+1
u (x,t) =
c (x-a. _+€)
1+1
u. + ————— (u. _-u.) for xela. ,-€,a. )
1 € 1+1 1 1+1 1+1
where
€ = ! min( a - a ).
3 1 1+1 i

uc(x.t) is a continuous piecewise linear function. See Figure 3.1.
finition
T.v.x(f(u(x))) 1s the total variation of f when xeR, i.e.
N

T.V. (flulx))) = sup L[ |flulx ))-fFlulx ))|
X {xi} i=1 i+1 i

where {xi} is a finite set of real numbers. Here it is essential that u

is continuous.

We may then state the theorem

Iheorem 3.2
If f is an absolutely continuous function with |f'| bounded by C,
uoeBV(R) and u 1s the solution of

u, + f(u)x 0 for xeR and t>0

t
ulx,0) = uo(x) for xeR

and g is a continuous piecewise linear function with |g’'| bounded by C,

v0 is piecewise constant with a finite number of constant states and v

is the solution of
v, + g(v)x

t
V(F,U)

0 for xeR and t>0

vo(x) for xeR,




then for any t>0

b-C t
I lulx,t) - vix,t)ldx <=
a+C t
b
iluo(x) - vo(x)ldx +
t T'v'xe[a,b](f(vo,c(X)) - g (VO.C(X)))

where a < b.

This theorem differs from Theorem 3.1 1n two ways.
First the Theorem 3.2 emphasizes the local behaviour of the solution.
Second the increase in the L1 norm 1is sharper in Theorem 3.2 since

T.V.xe[a'b]f(x) < IIfIILip(b—al.

4 SOME PROPERTIES OF THE SOLUTION OF INITIAL VALUE PROBLEM

Dafermos[1] presented his idea as a new method to study the initial
value problem. Many of the well-known properties to the initial value
problem can easily be proved by this method. We will list some of these
properties. Dafermos notices some of them, but his proofs are possible
to simplify using corollay 2.3 in this paper.

Exsistence and uniqueness for the initial value problem are well-
known. These properties are easy to prove using convergence of the
numerical method, since the number of constant states 1s finite.

Dafermos proved that if the initial value is bounded then the solution
of the initial value problem is bounded by the same bounds as the inital
value. This is easily seen from the numerical method.

The local behaviour of the solution follow directly from the local
behaviour of the numerical method.

The stability Theorems 3.1 and 3.2 are easily proved using the
convergence of the numerical method.

Dafermos proved in a special case that the total variation of the
solution is not increasing in time. This follows in the general case
from Theorem 2.2. The function L(t) is equivalent to the total
variation. The total variation is decreasing in every shock collision
when the middle value(s) is not between the the values on each side. The
total variation is constant in shock collisions when the middle valuel(s)
is between the values on each side. In this latter case the number of
shock fronts decrease.

Since the number of shock collision is finite in the numerical method,
there is for each pair of f and initial value a time T for which there
is no shock collisions for t>T. This means that all shocks to the left
of one shock A has lower speed than the shock A. This gives some
indication on the behaviour of the solution when t increase to infinity.

S5 A NUMERICAL EXAMPLE

In this chapter the numerical method is shown in an example. The flux




function 1is a pilecewise linear interpolant to

Flu) = Cu-a) +ob.

The flux function is shown in figure 5.1. For simplicity we take the
initial function to be piecewise constant, see figure 5.2. Then this
problem with the perturbed flux function is solved exactly. Figure 5.3,
and enlarged for small t in figure 5.4, shows the plecewlse constant
solution in the (x,t) plane. Figure 5.4 shows that for t small the
solutions from the individual Riemann problems do not 1teract. For t
large there 1s however only one shock in this example. Figures 5.5 -
5.10 show the solution for different t values. We see that the solution
is pilecewise constant 2lso where the exact solution of original problem
is a rarefaction solution. With the natural approximation to the flux
function the exact soiution crosses the numerical solution between the
endpolints in each interval where the numerical solution 1s constant. By
improving the approximation to the {lux function, the solution will of
course converge to the exact solution.
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