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Abstract

The Riemann problem for a nonlinear class of systems of first order
hyperbolic conservation laws 1s studied. In the system the matrix which
1s the derivative of the flux function, is lower triangular. In the
class there 1s both strictly and non-strictly hyperbolicy. There is no
assumptions on genuine nonlinearity. Existence and uniqueness are
proved except 1n an area with measure zero where there 1s multiple
solution. An example show that the solution does not depend continuously
on the data. Numerical methods are discussed.
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1 INTRODUCTION

In this paper we study the Riemann problem for the system of
differential equation

(1.1) uit + fi(u1.....ui)x = 0. 1=1,2,...,n

0 f.

. . 1 . . .
where f is continuous and f and 3 o where defined, 1s plecewlse

monotone with a finite number of 1ntervals where the functions are
monotone. In the Riemann problem the initial condition 1is
u. for x < 0
i,- )

(1.2) ui(x.U) = . for x > O i=1,2,....n.

In order to classify the problem we study the matrix
3, ‘
{

}. .

) uj i,3

. In problem (1.1) this matrix is lower triangular. The eigenvalues to
the problem are the diagonal elements. The problem is therefore
hyperbolic. We will name the problem a lower triangular hyperbolic
system. There is no assumption that the eigenvalues are distinct.
Therefore the class contains both strictly and non-strictly hyperbolicy.
Genulne nonlinearity in this case reduces to that
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does not vanish for any values of u. This assumption is not done in
this paper.

For n=1, i.e. the scalar problem, existence and uniqueness are well-
known. See e.g. Oleinik [9] and [10] and Smoller [11]. For systems most
of the published papers are either for n=2 see e.g. Smoller [12].,
Keyfitz and Kranzer [5] and [6] or for the strictly hyperbolic case see
e.g. Lax [7].

The Riemann problem is a particular physical problem where it is
possible to find an analytic solution. In addition it is used as
building blocks in the Cauchy problem with general initial data. In
fact, the Riemann problem is used both for existence and uniqueness
theorems and as a numerical method. It is used in both ways in the
celebrated paper by Glimm [1] and in a paper by Holden, Holden and
Heegh-Krohn [3]. Godunov [2] uses the Riemann problem in a numerical
method.

It is two main reasons to study a lower triangular hyperbolic
system.

By restricting us to lower triangular systems we are able to solve a
general nxn system, and therefore find some. caracteristics for the




. general problem.

It 1s possible to approximate the solution of some physical problems
with the solution of (1.1).

There exist no smooth solution of (1.1) and (1.2), no matter how
smooth the flux function 1s. Therefore we are interested in weak
solutions. There are several smooth solutions to the problem. We use an
entropy criteria in order to find the relevant solution. The origin for
the entropy criteria 1s that the §olution 1s the laimiting solution when
a second order term vanish. A unique solution must be on the form

ulx.t) = vix-st).
Substituted into the equation

u, + flu) = € u
t X XX
we get

- s v ' o+ (flv)) = ev'’
Scaling the equation and integrating gives
vi(t) = f(vit)) - s vit) - C.

Thuse the following entropy criteria for a shock with speed s
between v_ and v, 1s used 1n the paper. There exist an integral curve

vilt) = flvit)) - s vit) - ( flvy) - s v,)

and vit) =+ v, when t + e,

We name thils integral curve an entropy curve 1in order to separate it
from other integral curves.

The solution of the Riemann problem consist of several shocks
satisfying the entropy condition and smooth solution satisfying the
equation following each other with increasing speed s. Smooth solutions
are in this connection called rarefaction waves.

In order to allways get a solution we have to accept shocks
following each other and have the same speed. This 1s necessary also in
the scalar equation.

In the following chapter we prove existence of a solution of (1.1)
and (1.2) for all initial values and uniqueness almost everywhere. Some
characteristics of the solution are discussed in chapter 3. We show that
the Lax shock inequalities are not valid for non-strictly hyperbolic
systems. An example show that the solution does not depend continuously
on the initial function. Finally some numerical methods are discussed.
The general solution depends on the entropy curves. This slow down the
numerical method. When the eigenvalues are in distinct intervals and f
is piliecwise linear, it 1s possible to find the solution only with
convex/concave envelopes.

2 EXISTENCE AND UNIQUENESS

(1.1) and (1.2) 1s solved by one equdtion at a time. The first is a
scalar equation and exlstence and uniqueness is well-known. This 1s
stated as the first theorem




Theorem 2.1
The scalar Riemann problem

ut + f(u)x =0

where f 1s locally Lipchitz continuous with inital value

u for x > 0
+

ulx,0) = for x < O

has a unique solution which may be described uniquely by a function u{s!

X . . . . .
where s = t uls) 1s piecewise continuous and there is a s and a s*

such that uls) is constant for s<s _and s>s,. There exist a unique
integral curve w(E) except for a shift in E, such that
w (E) = f(u(E)) - s ulE) - (f(u(s’)) - s u(s*).

w(E) 1s monotone
and wi(E) =+ uls,) when £ + ? =

In a discontinuity of uls) the left and rigth value on each side of
the discontinuity is denoted u_and u, respectively.

It 1s not proved earlier that ths solution may be described as above.
The proof is however straigthforward.

The general problem 1s solved by induction on the number of
equations. Assume that the problem i1s solved for n equations. We will
then prove it for n+1 equations. The n+1 equation problem may be written
as
(2.1) Ve * g(u,v)x = 0
and

v, for x > 0

(2.2) vix,0) = v for x < 0

X . . ) . . . ,
uls), s==-, 1s a known plecewlse ‘continuous n dimensional function

t' .
which is constant for s>s_and s<s+'f0r som s _and s, - Where uls) 1s

discontinuous, there exist a piecewise monotone entropy curve

(2.3) w (E) = f(ulE)) - s ulE) - (f(u(s*)) - s u(s+)

and wilE) =+ ulsy) when £ 4+ !}

Similarly the solution v may be described by a function v(s) and for
each discontinuity 1in v{(s) there 1s an entropy curve y(t).

Assume g 1s continuous and g and gv where defined, 1s piecewise
monotone. ‘

In the argument belove we assume there 1s a fixed left value vL for v.




We use vL instead of v in order to separate it from left values 1in

single shocks. Similarly vp 18 used. Then the values for Ve which 1is

pdss1ble to connect to vL only using speed less than a speed s 1s found.

When this maximum speed 1s large enough, 1t 1s possible to connect the
fixed vL to all possible vR values. In describing the vR values which

may be connected to v the function hs(v) 1s used 1n addition to the

‘:fuhction g(u(s).v). The values which 1is possible to connect to v, with

~speed less than or equal s, 1s the v values where hs(v) = gluls),v). The

fhs(v),function has the following properties:
: -vnstv) = glul{s),v) in a finite number of intervals. An interval

‘ fmay consist of one point. There 1s at least one 1interval.
.~ Between these intervals hs(v) 1s linear with slope s.

:‘m’Theré exist a v_ such that for v > Vo

~ either Ons(v) = gluls),v),

or hs(v) < gluls),v).
- There exist a Vo such that for v < Vo

:either hs(v) = gluls),v),

or hs(v) > glu(s),v).

<Sée figure 2.1 for a typical hs(v) and gluls),v).

. The argument hs made a litle more complicated because there is not

'~ always a unique entropy curve. When the entropy curve is not unique the

solution v(s) 1s stil unique, but we get problems in the induction. When
there are several entropy curves w(t) in the u variable between the same

'fu and u . there| 1s not a unique solution in general. Luckily this does

not happen often. There is only for (vL,v ) in an area with measure

R

',zero,-whére there is a shock with not unique entropy curves. Therefore
using induction pn the number of equations, the solution is unigue

o . . 2n
except for (u ..U ,u ,....un ) 1n an area of measure zero in R .

1 ' n 1

- - + +

We may then start with the proofs.

Progosition 2.2
The vR values|that are possible to connect to a fixed vL value with

speed less than or equal s, may be described as stated above by a

function hs(v) with the properties listed above, and the function

gluls),v). Where|there is a shock the entropy curve is unique except

that for each vL

entropy curve 1s

there is a finite number of vR values for which the

not unique.

Comment to Progs¢tion 2.2

We will prove

that the entropy curve is unique for convergence to




points where hs(v)=g(u*,v) and gv> s. These polints are important because

the solution v(s) pass these points for vR in an interval. See figure

2.2 where s=0 and ul(s) 1s constant for s>0. We see that v(0)=c for all

vRe(a.c). When gvtuo.v0)<s, (uo.vo) 1s only passed for at most one

single Ve value. Therefore the proposition 1s correct when there only

is non-unique entropy curve for a finite number of points where gv<s.

Before this proposition 1s proved, some lemmas must be proved.

Lemma 2.3
Proposition 2.2 1s correct for s(s0 1f uls) = u_ for s(so.

Proof of Lemma 2.3

When ul(s) 1s constant (2.1) and (2.2) 1is equivalent with the scalar
problem. The solution 1s then well-known. If v_ 1s smaler than v, the

solution 1s described by the convex envelope from v_ to v, and 1f v_ 1s
larger than v, the solution 1s described by the concave envelope

from v_ to v, It is easily seen that Proposition 2.2 is satisfied. See
figure 2.3 for a typcal hs(v) when uls) 1s constant. The entropy curve

1s always unique.®

Lemma 2.4 u continuous

Assume that Proposition 2.2 is satisfied for s=5 and that ul(s) is

continuous for 55[50.51]. Then Proposition 2.2 is satisfied for s=s1.

Proof of Lemma 2.4

wWhen uls) is continuous, we will prove that the solution of (2.1) -
(2.3) is a combination of smooth rarefaction waves in all the v variables
combined with shocks only in the v variable. Since the shocks are only
in the v variable, they appear in the same manner as shocks 1in the
scalar equation.

When ul(s) 1s continuous, the equation is

vt + g(u(s).v)x = 0.

Since the solution is on the form vis), s=E. the equation may be
rewritten as

- s vs + gu(u,v) us + gv(u,v) vs =0
or equivalent

Vv =
S s -

When gv(u.v) = s, the equation may be treated as the scalar




equation with rarefactions waves where s=gV and shocks from (u ,v ) to

(u ,v ) with speed s,
+ +

glu_,v_) - g(u’,v*)

Vv - v
0 +

There 1s a rarefaction wave starting in every point v0 where
h (v ) = g(u(so).v

) and gv¢ S The rarefaction wave 1s defined by the

0 0 ’
s0 0
integral curve
(2.4) v(so) = vy
9
(2.5) v (s) = —
S s - gv

These curves—are well-defined as far as gV # s. Two curves can not

pass each other, 1.e. 1if v1(s1) < v2(51). then v1(s) < vz(s) for all s.

In (v,g) plane the curves (v(s),gluls),v(s))) are parallel with slope

ol u_ o+ Y v (s-g ) + v
s gu s 9y s s Sy 9y s .
v v v -

s [ s

Even when gv = s, the curves (v(s),glul(s),v(s)) are parallel with

slope s in the (v,g) plane.
The entropy curves are unique exactly as in the scalar case. Points
with multiple entropy curves and gv<s is transformed to other points

where gv<s. It is then trivial to see that Proposition 2.2 1is

satisfied.o®

Then we are left with the most difficult case where there is a shock
in u. Assume u(s) 1s discontinuous 1in So with the left and right

values u_ and u, respectively. We assume that Proposition 2.2 1s

satisfied for s , where s_ 1s speed s0 but before the shock. s, 1s
defined correspondingly. Assume also that there exist a piecewise

monotone integral curve w(t) such that

wilt) » u, when t + ! o=,
We use the notation h (v) and h*(v) instead of hs (v) and hS (v).
- +
First we will prove that there starts and ends integral curves from
almost all points on h (v).

Lemma 2.5

Assume that g is continuous and glw(t),v) - s v 1s strictly monotone
in the v variable and monotone in t for t smal and for the v variable in
a neighbourhood to a v_ and that w(t) 1s plecewise monotone and




converges to u_ when t + - =,
Then there exist a piecewise monotone integral curve such that
(2.6) vilt) = glwlt),vit)) - s v(t) - (glu ,v ) - s v )
and vit) »+ v when t * - =,
If glu,v) - s v 1s strictly decreasing in a neighbourhood to (u_,v ),

then the curve 1s unique.
Correspondingly when t + e, there exist an integral curve where v(t)
converges to v, - Then there 1s uniqueness when g{u,v) - s v is

strictly increasing in v.

Proof of Lemma 2.5

We will only pove the lemma when t + -«., We may assume s=0. By the
assumption there exist a N and a unique monotone curve al(t) such that
g(w(t),alt)) = glu_,v_) for t < - N.

A curve v(t) 1s uniquely defined by (2.6) and v(a) = b for a fixed a and
b. We divide into to cases depending on g 1s increasing or decreasing in
V.

g increasing 1in v

We may assume g increasing in u and u_ > w(tz) > W(t1). Then a(t) is
increasing. See figure 2.4. v(t) 1s defined by
1 .
v(to) =3 (a(to) + a(t041)) for an arbitrary tD < - N - 1.
Then v(t) 2 al(t) > v_, v'(t) > 0 and
vi(t) » glu ,vit)) - glu_,v ) when t + - =.

The convergence 1is monotonically.

g decreasing in v

We may assume g increaéing in u and u_ < wlt,) < w(t1). Then alt) 1s

2
increasing. See figure 2.5. We will prove existence of v(t) by defining
a sequence {vi(t)} for 1 > N which converge towards v(t). Define vi(t)

by
vo(-i) = Y ov - at-i0).
1 2 -

Let us first prove that v_ < Vi(t) < aft) for -1 <t < -N. From the

definition vi(-i) is between v_ and a(t). The interval (v _,a(t))
increases with t. While v_ <« vi(t) <alt), vi(t) > 0. But v.(t) does not
pass af{t) since 1f vi(t)=a(t) then vi(t)=g(w(t),a(t))=0.

Secocndly we prove that for 1,3 > N, Ivi(t) - vj(t)l decreases with t
for t < -N. If Vi(t) < vj(t). then vi(t) > vs(t) since g is decreasing

in v. _
Ther 1t 1s easy to see that vi(-N) converge when 1 + e. Assume J>1.




Then Ivi(—N) - vj(—N)l < |Vi(-1) - Vj(-1)| ¢ |v_ - al-i)] » 0, when

1+ « and vi(it) may be defined by (2.6) and v(-N) = 1lim v (-N).
. 1 * 1
Since v« vl(t) < alt) for -1 < t ¢ -N, we have v. < v(t) < a(t) for

t < -N. Then v(t) = v_.

Since also v'(t) > 0 for t ¢ -N, the convergence 1s monotocne. It is
easy to see that 1t 1s plecewise monotone. Finally uniqueness must be
proved. Assume that there 1s two integral curves v1(t) and vz(t) which

both satisfies the conditions. In order to converge towards v, both
must be between v_ and a(t). But since |v1(t) - vz(t)l increases, when

t 4 -, it 1s not possible that both converges towards v , except when
vi(t) = vz(t) for all t.e

Comment to Lemma 2.5

For smooth g, gl(u,v) - s v not strictly monotone means gv= S.
When gv(u_.v_) = s, there may exist integral curves which converges
to v _, and there may not. In the first of the following examples there

1s continuum of integral curves, 1n the next example there 1s no such
curves. |

Example 2.1

glu,v) = u + v2 (u ,v ) = (0,0) and w(t) = - % for t<O0.

All curves defined by
vi(t) = glwl(t),v(t)) and v{(0) = a for a>0

converge towards v . See figure 2.6.
Example 2.2
2 1
glu,v) = uj+ v (u ,v_) and wit) = i for t«<O.

All curves 1s at the form

v;(t) = glw(t),v(t)) and va(-1)=a
Then 4 -4 '
|va(—w)-va(-5)| b i Ival dx > i Ifl dx = e,

thus all integrﬁl curves diverges. See figure 2.7.

Lemma 2.6

Assume that there is two entropy curves v1(t) and vz(t). which

converges towards respectively v1 _and v2 _ with v1 < v2 _ . Assume
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further that h_(v1 )= g(u,v1 ) and h_(v2 ) o= g(u,v2 _). Then

v1(t) < vz(t) for all t.

Proof of Lemma 2.6

We may assume s=0. Assume there 1s a to such that v1(t0) > vz(t).

Then there must be a t1 such that v1(t1) = vz(t1) and v1(t1) > v2(t1).

But since h_ (v) 1s nonincreasing, glu_,v ) > glu_,v, ). Then

1, - 2,

v1(t1) = g(w(t).v1(t1)) - g(u_.v1'_)

Cglwlt), v (t 1)) - g(u_,vz'_)

= vz(t1).0

Then we are ready for the lemma which handles uls) discontinuous,
i.e. there is a shock in one of the equation higher up in the
equation system.

Lemma 2.7 uls) discontinuous

Assume ul(s) 1s discontinuous for s=s0 and that Proposition 2.2 1is

correct for s . Then Proposition 2.2 is correct for s, -

Proof of Lemma 2.7

Let us start the argument with h_(v). Using this function we find
out where it is possible to end using a speed less than or equal So
but not passed the shock in the u variable. Everywhere where
glu ,vl)=h (v) and glw(t),v) - s v 1s strictly monotone 1in v and

monotone 1in t, there is an integral curve which converges this point.
By the assumption on g and w(t) the function 1is always monotone in t for

t smal. Where glu,v) - Sg V is not strictly monotone in v it 1s possible

to make a shock with speed s0

with speed s0 in the u variable.

only i1n the v variable before the shock

Let us follow an integral curve which starts in (v_,h (v_)). The
integral curve (v(t), h (v ) + so(v(t)—v_) ) describes a straight line.

When t + o, the curve either diverges to « or -«, or it converges to
a point where the straight line crosses g(u_.v). Lemma 2.6 tells

that two integral curves does not pass each other. Following the end

points of all the integral curves starting at h_{v) having slope s we

0"
find some parts of g(u+,v) which may be connected to each other by

straight lines with slope s See figure 2.8. If Proposition 2.2 is

0
satisfied after the shock, this musp be the new h+(v). It remains to
prove that it satisfies the conditions on hs(v). It 1s easy to prove

that this hs(v) satisfies the conditions when»lvl is large. It left to
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further that h_(v1 )= g(u,v1 _) and h_(v2 ) = glu,v, ). Then

v1(t) < vz(t) for all t.

Proof of Lemma 2.6

We may assume s=0. Assume there 1s a t0 such that v1(t ) > vz(t).

0

Then there must be a t1 such that v1(t1) = vz(t1) and v1(t1) > v2(t1).

) > glu_,v_, ). Then

But since h_(v) 1s ncnincreasing, glu_,v 2

1,-

v1(t1) g(w(t).v1(t1)) - g(u_,v1'_)

< g(w(t),vz(t1)) - g(u_,vzl_)

= vz(t1).0

Then we are ready for the lemma which handles uls) discontinuous,
1.e. there 1is a shock 1n one of the equation higher up 1n the
equation system.

Lemma 2.7 uls) discontinuous

Assume ul(s) 1s discontinuous for s=sD and that Proposition 2.2 1is

correct for s . Then Proposition 2.2 1s correct for S, -

Proof of Lemma 2.7

Let us start the argument with h_(v). Using this function we find

out where it 1s possible to end using a speed less than or equal sU
but not passed the shock in the u variable. Everywhere where

glu_,vl=h (v) and g(w(t),v) - s v 1s strictly monotone 1in v and

monotone 1in t, there 1s an integral curve which converges this point.
By the assumption on g and w(t) the function 1s always monotone in t for

t smal. Where glu,v) - Sg V 1s not strictly monotone in v it 1s possible
to make a shock with speed s0 only 1n the v variable before the shock
with speed So in the u variable.

Let us follow an integral curve which starts in (v_.h_(v_)). The

integral curve (v(t),h (v ) + so(v(t)—v_) ) describes a straight line.

When t + o, the curve either diverges to = or -«, or it converges to
a point where the straight line crosses g(u_,v). Lemma 2.6 tells

that two integral curves does not pass each other. Following the end

points of all the integral curves starting at h (v) having slope Sgr we

find some parts of g(u*.v) which may be connected to each other by

straight lines with slope s See figure 2.8. If Proposition 2.2 is

0
satisfied after the shock, this must be the new h*(v). It remains to
prove that it satisfies the conditions on hs(v). It 1s easy to prove

that this hs(v) satisfies the conditions when |v| is large. It left to
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prove that all points where h’(v) = g(u‘,v) 1s possible to reach with
speed s, - The difficulty 1s to prove that where h*(v) 1s a straight
line and crosses g(u*.v) there 1s an 1ntegral curve which converges to

this point.

In order to make the notation easy assume gv 1s defined everywhere.
Let us consider all integral curves

vc(t) = g(w(t),vc(t)) - C

for a constant c. One of these integral curves 1s defined uniquely by

VC(U) = a. When t + -e, Vc(t) diverges to -« or = or converges to a

"v_ value where g(u_,v_) = c. Correspondingly when t =+ =, vc(t)

diverges to -~ or « or converges to a v _value where g(u+,v4) = c.
There 1s a uniqﬁe curve which converges to a point where gv(u_,v_3 < s0
and a unique cu$ve which converges to a point where gv(u+.v+) > 50. Let
us consider whiéh values of a and ¢ where the curve vC(U) = a converges

to h (v). According to Lemma 2.6 two integral curves which both
converges to h_kv) does not pass each other. Using this fact 1t 1s easy

to prove that there is a continuous function c = y(a) in the (a,c) plane
such that for ¢ = y(a) the curve defined by vC(O) = a converges to h (v])

where h (v) = c. See figure 2.9. Y(a) 1s decreasing where the
corresponding h _(v) 1is decreasing and y{a) 1s constant, where the
corresponding h (v) 1s constant. Where y(a) 1s constant there are

several 1integral curves which converges to h (v) and where yla) 1is

decreasing there 1s only one such curve.
Correspondingly we may study which (a,c) values which the curve
vC(O) = a converges to h+(v). For convergence to h*(v) the properties

are changed; there is a single (a,c) value for which VC(U) = a converges
to a point where gv(u+,v) > s, and an 1nterval with a values for each c
value for which vc(O) = a converges to a point where gv(u+,v) > s. See

figure 2.10 where the different curves for convergence to points where
gv(u*,v) > s 1s showed.

Since ¢ = yla) is continuous 1t crosses the curves in the (a,c) plane
for convergence to g(u*,v) where gv> s. Therfore there 1s always an

integral curve from h (v) to h’(v) where h+(v) 1s as indicated in the

first part of this proof.
Where ¢ = yla) 1is constant, 1.e. where h 1s constant, there usually

are several curves converging from h to h+. If there are several curves

h has in this point slope 50 and h* has slope less than or eqgual 50.

See example in the following chapter for a typical example with multiple
integral curves. There is a finite number of intervals where h 1s

0
values for which the entropy curve is not unique.

linear with slope s_. Then for each vL i1t 1s only a finite number of Vo
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Proof of Proposition 2.2

uls) 1s piecewise continuous and constant for s small and s large. In
Lemma 2.3 we have proved that the proposition 1s correct for s small.
Lemma 2.4 gives that 1f ul(s) 1s continuous in an 1interval and
Proposition 2.2 1s correct in the beginning of the 1interval then it 1is
correct 1n the end of the interval. Lemma 2.7 states that i1f uls) is
discontinuous for the s value to the left of the discontinuity, then it
1s correct to the right of the discontinuity. Then the proposition is

correct for any s.@

In order to prove existence for every initial values the following
lemma 1s needed.

Lemma 2.8

There 1is a s, such that for s > S, hs(v) = g(u*,v).

The poof is trivial.

We may then state the theorem of existence and uniqueness of the system
(2.1) - (2.3). This theorem 1s used in the induction step for proving

exlstence and uniqueness for the general system (1.1) and (1.2).

Theorem 2.9

Given v , Ve glu,v), u(s) and w(t) where uls) 1s discontinuous with

L
the properties listed in the beginning of this chapter. Then there exist

a unique solution to the Riemann problem

vV + g(u.v)x =0
Y for x < 0
vix,0) = t
' Vo for x > 0.

There exist also integral curves in the shocks in v. These integral
curves are unique except for a (v_.v+) in an area with measure 0 in

) .
R .

The theorem follow easily from Proposition 2.2 and Lemma 2.8.

Then finally, we may state the existence and uniqueness proof for the
system (1.1) and (1.2).

Theorem 2.10

There exist a solution to the Riemann problem (1.1) and (1.2)
and the solution 1s unique except for some inital values u and u . The
2n

area where there exist several solutions has measure 0 in R For

n=1 and n=2 there 1is always uniqueness.
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Proof of TheoreL 2.10

The theorem 1is
known. This 1s u
the induction st

proved by using 1induction. For n=1 the result is well-
sed as the induction hypothesis. Theorem 2.9 1is used as
ep. For n=2 there may be an 1initial value 1n an area

with measure 0O %here there are several entropy curves, but the

solution 1s sti*

|

3 SOME CHARACT%

In this chapt
of lower triangd
entropy 1nequali
solution does nag

For genuinly

inequalities
)\k(u+
and Ak—1(

where Ak are the

[7T] for local so

the eigenvalues

i
A" . Assume there
Then a shock wit

solution in equa
i=1,....k-1. For

l.e. A;(u+) € s
less than s acco

situations where

unique. For n>2 this may lead to several solutions.®

RISTICS OF THE SOLUTION

er we study some of the characteristics of the soclution
lar hyperbolic systems. First we show that the Lax

ties are not satisfied. Afterwards we prove that the

t depend continuously on. the data.

nonlinear and strictly hyperbolic systems the following

) < s < Ak+1(u+)

ul) <s« Ak(u‘)

ordered eigenvalues to the system, was proved by Lax

lutions. In lower triangular hyperbolic systems
| 9 f.

are the derivatives 3 Let us name this eigenvalue

is a simple rarefaction solution in equation 1,...,k-1.
h speed s 1n equation k. This shock influences the

tion k+1,...,n. Then Al= s on both side of the shock for
i=k the eigenvalues appear as in the scalar equation
< Al(u_). For 1 > k usually Al(u#), Al(u_) are both

rding to the proof of lemma 2.7. But we may also have

the sclution 1s
1 ‘ 1
Alu ) ='s. A
exclude. We see
non-strict hyper
assumec that the
Winther [4] have
non-strictly hyp

The solution

see Lucier [8] a
equation the fol

Thecrem 3.1

Al(u+) > s and where Al(u_) ? s. When Al(u ) ¥ s,

Eo; unique. In one or two of the possible solutions
\

*) # s 1s an ordinary sitation which is not possible to

that the Lax shock inequality is not correct for general
olic systems. In the argument above it is not

}system 1s not genulnely nonlinear. Johansen and

come to the same conclusion by a study of a particular

erbolic system.

in the scalar equation depend continuously on the data,
nd Holden, Holden and Heegh-Krohn [3]. For the scalar
lowing theorem 1s valid.
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If £ and g are Lipschitz continuous functions, uD and voe BV(R) and

‘u_and v are the solutions of

ut + f(u)x =0 for xeR and t>0
i ulx,0) = u_(x) for xeR
A 0
and
Ve + g(v)x = 0 for xeR and t>0
vix,0) = vo(x) for xeR

then for any t>0

flul.. t)-v ..t)||L1 < ||u0(x)-v0(x)llL1 +

LH-a bl mintluglay ry  Volgyiry!

where we have defined

Ilgllup = 59 | 9.(;;);9‘}:_” .

In lower triangular hyperbolic systems the solution does not depend
continuously on| the data. The problem arises in connection to where the
solution 1is not| unique. Using the second part of the proof of Lemma 2.7
we see that the|solution when 1t 1s not unique 1s a member in a one
parameter family where the parameter 1s in an interval. This interval 1is
‘either bounded in both ends or bounded belove or above. In the following
example we apprpach a point where the solution 1is not unique along:
different curves where the solution i1s unique. Then we find the
endpoints 1n the parameter interval and see that the solution does not
depend continuously on the inital data.

In the example n=3. We take one equafion at a time.

2
f1(u1) R
-1 for x <0
and 00.1(X) B 1 for x > 0.

The solufion is easily found

1 for x < O

upbxat) = 1 for x > 0.

See figure 3.1. fz is defined a litle more complicated

gt(uz) for u, < -1
1
fz(u1.u2) = 5 (1—u1) 91(u2) + 5 (1*u1) 92(u2) for 1 < u1 <1
92(u2) i for u1 >
where
fu]  for u < 1
91(U) : 2 - u for u > 1
d ( = - u.
an 9, u) ;1

See figure 3.2 for the definition of f,_ . We use two different initial

2
values 1in the Riemann problem which is arbitrary near each other. The
initial values are
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- 1 for

X
,k<’ for x
-1t

AN A
o o

+
uo(x)
respectively

Wx) = 1 for x < 0
0 ¥ for x < 0.

L~
The + and - sign just after a number indicate a litle larger
respectively a litle lower value. The exact solution are

-1 for E < -1
0 for - 1 < X < 0-
+ t
u3(x,t) = x
2+ for 0- < E < 0
X
~ f < -
A1t or 0 i
and
-1 for E < -1
ujix.t) s 0 for - 1 < { < 0
47 4% for 0 < )t_(

See figure 3.3 and 3.4. We see that when the right value approaches &
then these two solution becomes equal. But the entropy curves with speed
0 does not approach each other. This becomes evident when we add the

third equation with

93(U3) for u, <0
1
{3(u2.u3) = 3 (2—u2) 93(u3) + uzg‘(ua) for 0 < u2< 4
g‘(ua) for u2 > 2
where
93(u) = Jul p/f/
and g, lu) = ful.+2

- See figure 3.5. The initial value 15§

-1 for x < O

Vg 30 = 1 for x < 0.
The solution depend on the initial value for u2.
CX
-1 for - < -1
© t
X
- 2- . f -1 C -« -
‘ for t 0
Tix.t) = 0 for 0- < 2 < 0
U, X, = (o} i
X
2 for 0 < - ¢ 1
° t
X
1 1 z
for < H

and
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X

-1 for - ¢ -1
t

Tix,t) = 0 £ 1 ¢ 1
usix, = or - <3<

X
1 for 1 < -
t

See figure 3.6 and figure 3.7. When the right hand initial value for u2

1s & there 1s a continuum with entropy curves between the two entropy
curves we get when the inital value appraches & from both sides. The

1s changing from u‘ to u_. The sector with

corresponding solution for u3 3 3

value 0 1s increasing and finally ends up as in u;.

& NUMERICAL METHODS FOR LOWER TRIANGULAR HYPERBOLIC SYSTEMS

There 1s a lot of different numerical methods for the scalar
equation. It is possible to generalize most of these to lower triangular
hyperbolic systems. Here we will use a method which follow the proofs in
chapter 2, except that the entropy curves are found by a numerical
method for the integral curve.

If one want to solve one Riemann problem or several problems but with

different vL and vR then 1t 1s to cumbersome to handle the whole hs(v)

function. Instead a shooting method i1s valueable. The system is solved
by one equation at a time. Then a shooting method runs as follows:

Try to connect the v_ value to any v, value. This 1s done by

following the curve uls). When uls) 1s constant, convex or concave
envelops are used. The integral curve (2.4) and (2.5) is used when uls)
is constinuous but not constant. Use an ordinary numerical method for
(2.4) and (2.5). It 1s a litle more difficult when uls) is discontinuous
since there 1s no initial value for the integral curve. Numerically,

this 15 solved by setting v(to) = g(w(to),v_) for t0 smal. Following

the ul{s) curve we finally reaches a v_ value which probably is to low or

R
to high. This scheme 1s monotone, i.e. when following the uls) curve if
we move a litle shorter in v variable for a specific s value, the Ve

value that we end up with 1s smaler than the original Ve value

independently of what is done for larger s values. Then it is easy to

approximate any Ve value.

If we assume that the eigenvalues of (1.1) are in distinct intervals,
it 1s easy to find the solutions for shocks in u(s). In this case it is
not necessary to use the entropy curves since the shocks are uniquely
defined by the equation

g(u*,v+).r g(u;bv_)

(4.1) s = " S—
+ E -

1f fi' i=1,2,....,n are approximated by piecewise linear functions the
solution only consist of shocks and therefore 1s plecwise constant.
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Thuse 1f fi, 1=1,2,...,n are plecewise linear and the eigenvalues are

1n distinct intervals 1t 1s no need to use any integral curves. Then it
1s possible to solve the problem exactly only using convex and concave
envelopes and shock with speed defined by (4.1).

References

{1) 6limm, J., Solutions in the Large for Nonliear Hyperbolic Systems,
Comm. Pure. Appl. Math. 18 (1965) pp 697-715.

[2] Godunov, S.K., A Finite Difference Method for the Numerical
Ccmputation of Discontinuous Solutions of the Equations of Fluid
Dynamics, Mat. Sb. &7 (1959) pp 271-290.

[3]) Hciden, H., Holden, L. and Heegh-Krohn, R., A Numerical Method for
First Order Nonlinear Scalar Hyperbolic Conservation Laws in One
Dimension, to appear.

[4] Johansen, T. and Winther, R., The Solution of the Riemann Problem
For A Hyperbolic System of Conservation Laws Modelling Polymer
lcoding, to appear.

[5] Ke,f1itz, B. L. and Kranzer H. C., A System of Non-Strictly
Hyperbolic Conservations Laws Arising in Elasticity Theory, Arch.
Rat. Mech. Anal. 72 (1980) pp 219-241.

[6)] Ke,fitz, B. L. and Kranzer H. C., The Riemann Problem for a Class of
Hyrerbolic Conservation Laws Exhibiting a Parabolic Degeneracy, J.
Diff. Egn. &7 (1983) pp 35-65.

[7] La», P. D., Hyperbolic systems of conservations Laws II,
Comm. Pure Appl. Math. 19 (1957) pp 537-566.

[8] Lucier, L. J., A Moving Mesh Numerical Method for Hyperbolic
Conservation Laws, Math. Comp. 46 (1986) pp 59-69.

[9] Oleinik, 0. A., Discontinuous solutions of non-linear differential
eg.ations, Usp. mat. Nauk. (N.S.), 12 (1957) 3-73, English transl.
Amsr. Math. Soc. Trans. Ser. 2, 26 (1963) pp 95-112.

[10] CXeinik, 0. A., Uniqueness and a stability of the generalized
sc_ution of the Cauchy problem for a quasilinear equation, Usp. Mat.
Nauk. (N.S.), 14 (1958) 165-170, English transl. Amer. Math. Soc.
Trans. Ser. 2, 33 (1964) pp 285-290.

[11) S~oller, J., Shock Waves and Reaction-Diffusion Equations,
Sgringer-Verlag, Berlin-Heidelberg-New York, 18983.

[12] S~3sller, J.,




N
7
v
g(u,.)
hs(-) z/\
Figure 2.1. A typical g(u,.) and hs(.)
N
LA }
alb c %i v
g(u,.) '
b
s !
Figure 2.2a.
A ' 7
vi(s)

vi(s) C

|
|
* b

N

Figure 2.2c. v(s) for v

Figure 2.2b. v(s) for VRp= C-

R

b



g(u,.)

p e —

h, (.)

Figure 2.3. g(u,.) and hs(.) for u(s) constant, s<O0.

0\

9(W(t2), )

g(u_,v)

- a(tz) a(t1) v’

Figure 2.4. g(u,v) increasing in v.

glwlt ),v)

| | i s i

V. alt,) - a(t1) v

N

Figure 2.5. g(u,v) decreasing in v.




20

A\
/
//
g(u_,v) )
| //67‘% g (3w (t,) ,v)
N\
\\\\\\\\—:i;///// v 7
Figure 2.6. All integral curves converge to v_.
glwlt,),v glw(t,),v)
\
7
Figure 2.7. All integral curves diverges.
/N
&\\ g(uy'(_\
\./ h_(v)
A\ 9 (u,,v)
,\/h"'(v)‘x
: _ N
\\ v /

Figure 2.8. h_ and h_.




>

m(u_,v)

\\\“,//h_(v)

gl(u_,.)

h_(.) %

Figure 2.9. hs(v) and y (a) .

g(u+,v)

Figure 2.10.

N

A

convergence to
g(u_,.) where

gv <s.

c= vyl(a)

s=0 in figure.

.

T,

Convergence

convergence to
g(u,,.) where

> s.
gV

to g(u+lV)

\V




2

\
g
X
Figure 3.1. u, (x,t)
AN
7
42
Figure 3.2. f2(u1,u2)
4+ 4-
\ ‘ \
% 7 x 7
Figure 3.3 u;(x,t) " Figure 3.4. u;(x,t)




3

\ 4

Figure 3.5. f3(u2,u3)

Figure 3.6. ug(x,t) Figure 3.7. u;(x,t)




