Abstract

Let V be a linear system on a curve C. In Part 1 we constructed a method for studying the secant varieties V_{d}^{r} locally. The varieties $\mathrm{V}_{\mathrm{d}}^{\mathrm{r}}$ are contained in the d-fold symmetric product ${ }_{C}^{(d)}$.

In this paper (Part 2) we apply the methods from Part 1. We give a formula for local tangent space dimensions of the varieties V_{d}^{1} valid in all characteristics. (Theorem 2.4.)

Assume rank $V=n+1$, and char $K=0$. In $\S 3$ and $\S 4$ we describe in detail the projectivized tangent cones of the varieties V_{n}^{1} for a large class of points. The description is a generalization of earlier work on trisecants for a space curve.

In $\S 5$ we study the curve in $C^{(2)}$ consisting of divisors D such that $2 \mathrm{D} \in \mathrm{V}_{4}^{1}$. We give multiplicity formulas for all points on this curve in $C^{(2)}$ in terms of local geometrical invariants of C. We assume char $K=0$.

At last we use our set-up to reproduce two well-known formulas; one for the δ-invariant of a plane cusp, and one for the weights of Weierstra β points of a linear system.

§1. Introduction

Let C be a non-singular curve over a field K, and let $V \subset H^{0}(C, L)$ be a linear system on C, where L is a line bundle. Denote by $C^{(d)}$ the $d^{\prime} t h$ symmetric product of C. The subschemes V_{d}^{r} of $C^{(d)}$ consist of those divisors that impose at most $d-r$ independent conditions on V. The V_{d}^{r} are secant varieties.

As an example consider the case where rank $V=4$ and V is very ample. Then V defines an embedding of C into P^{3}. The variety V_{3}^{1} parametrizes those divisors of degree 3 that consist of

3 collinear poins on C in P^{3}. Roughly speaking: V_{3}^{1} parametrizes the 3 -secant lines of the embedded curve.

It is a well-known fact that the V_{d}^{r} can be defined schemetheoretically as the zero schemes

$$
z\left(\begin{array}{c}
d-r+1 \\
\Lambda
\end{array} \sigma\right), \quad \text { for } r=1, \ldots, d
$$

where σ is a canonical $C^{(d)}$-bundle map

$$
\sigma: V \otimes C^{(d)} \rightarrow E_{L^{\prime}}
$$

and E_{L} is a vector bundle of rank d on $C^{(d)}$ obtained from L by a socalled symmetrization process.

In Part 1 we constructed a computational device for studying the map σ and the varieties V_{d}^{r} locally. Our main results were given in Theorem 4.2 and Proposition 4.4 of Part 1. We constructed a local matrix description of σ and described the formal completion $\hat{O}_{V_{d}^{r}, D}$ of the local ring of V_{d}^{r} at a point (divisor) D. Such a local descripton is often trivial when D consists of d distinct points. The main purpose with our results is to study the V_{d}^{r} at points on the diagonal in $c^{(d)}$.

Part 1 is inspired by the papers [Ma] and [Ma-Ma]. In Part 2 we will use the results of Part 1 to give some geometrical results.

In $\S 2$ we give a formula for the tangent space dimension of the variety V_{d}^{1} at a point D. The formula is valid in any characteristic.

In $\S 3$ we study a large class of points on the variety V_{n}^{1}, where rank $V=n+1$. We describe the tangent cones of V_{n}^{1} at such
points, and in particular we give a formula for the multiplicity of V_{n}^{1} at these points.

In §4 we find further properties of the tangent cones described in §3. We will indicate when the projectivized tangent cones are singular. This is a generalization of a result in [J] concerning 3-secant lines for a space curve.

In $\S 5$ we study stationary bisecants for a non-singular space curve. A stationary bisecant is a bisecant line, where the curve tangents at the points of secancy meet, or a tangent line at a point where the osculating plane of the curve is hyperosculating. We define a curve in $C^{(2)}$ which parametrizes these situations, and we describe the local structure of this curve. We find out how the tangent cone of the curve in $C^{(2)}$ at a secant divisor is determined by the local geometry of C a the points of secancy.

In the two last sections we give some further applications of our local methods. These sections contain no essentially new results.

In $\S 6$ we study singularities of plane curves. We reproduce a well-known formula for the δ-invariant of a cusp.

In §7 we reproduce a well-known formula for the weights of Weierstra β points on C with respect to an arbitrary linear system.

First we recall the main results from Part 1.

The main results from Part 1.
Let X_{0}, \ldots, X_{n} be independent sections spanning a linear system V and set

$$
D=\sum_{i=1}^{k} d_{i} P_{i}, \text { where } \sum_{i=1}^{k} d_{i}=d
$$

and the P_{i} are distinct points on the curve C. Choose t_{i} as a local parameter for C at P_{i}, for $i=1, \ldots, k$, and let

$$
\sum_{j=0}^{\infty} a_{r, i, j}{ }^{t_{i}^{j}}
$$

be a local parametrization of X_{r} at P_{i}, for $i=1, \ldots, k$, and $r=0, \cdots, n$.

Regard $\left\{s_{1,1}, \cdots, s_{1, d_{1}}, \cdots, s_{k, 1}, \ldots, s_{k, d_{k}}\right\} \quad$ as a set of (formail) algebraically independent variables. Let $s_{i, \ell}=0$, when $\ell>d_{i}$, and set

$$
W_{j}\left(\underline{s}^{(i)}\right)=\left|\begin{array}{cccc}
s_{i, 1} s_{i, 2} & \cdots & s_{i, j} \tag{1.1}\\
1 & s_{i, 1} & \cdots & s_{i, j-1} \\
0 & \cdots & \cdots & \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdot & 0 & 1 \\
s_{i, 1}
\end{array}\right|
$$

when $j \in N$, set $W_{0}\left(\underline{s}^{(i)}\right)=1$, and $W_{j}\left(\underline{s}^{(i)}\right)=0$, when $j<0$ for $i=1, \cdots, k$. Denote by M the following matrix:
(1.2)

Theorem 1.1.

$$
\hat{o}_{\mathrm{V}_{\mathrm{d}, \mathrm{D}}^{\mathrm{r}}}=\mathrm{K}\left[\left[\mathrm{~s}_{1,1}, \ldots, s_{k, d_{k}}\right]\right] / \mathrm{J}
$$

where J is generated by the

Remark 1.2. If $d_{i}=1$, for $i=1, \ldots, d$, then the entries of M are simply the local parametrizations of the sections spanning V.

Denote by BN the following (Brill-Noether) matrix consisting of the "constant terms" of M :

Corollary 1.3.
$D \in V_{d}^{r}$ if and only if all $d-r+1$ minors of $B N$ vanish. The following remarks will be useful:

Remark 1.4.
Regard S_{1}, \ldots, S_{d} as the d elementary symmetric functions in d variables T_{1}, \ldots, T_{d}, and let $W_{j}(\underline{S})$ be as in Formula (1.1). Then

$$
\mathrm{W}_{j}\left(\mathrm{~S}_{1}\left(\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{\mathrm{d}}\right), \ldots, \mathrm{S}_{\mathrm{d}}\left(\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{\mathrm{d}}\right)\right)
$$

is the sum of all monic monomials of degree j in T_{1}, \ldots, T_{d}.

Remark 1.5.

$$
W_{j}\left(s_{1}, \ldots, s_{d}\right)=\sum s_{1}^{i_{1}} \cdot \ldots \cdot s_{d}^{i_{d}} \cdot(-1)^{\sum_{j=1}^{d} i_{j}(j-1)} \cdot \frac{\left(i_{1}+\cdots \cdot i_{d}\right)!}{i_{1}!\cdots i_{d}!}
$$

where the first sum is taken over those (i,...,id $)$ such that $\sum_{j=1}^{d} j \cdot i_{j}=d$.
§2. The tangent space dimension of V^{1} at $D \in C^{(d)}$.
The varieties V_{d}^{l} are interesting since they parametrize divisors that are "special" with respect to the linear systems V.

Let $D=\sum_{i=1}^{k} d_{i} P_{i}$, where $D \in V_{d}^{1}$, and the P_{i} are distinct points on C. We will use Theorem l.l. to compute the tangent space dimension of V_{d}^{l} at D. The Brill-Noether matrix $B N$ (Formula (1.3)) consists of k groups of concecutive rows, where the i'th group (consisting of d_{i} rows) corresponds to the point P_{i}, for $i=1, \ldots, k$.

Definition 2.1.
l_{i} is the maximal integer $s \in\left\{0, \ldots, d_{i}-1\right\}$ such that the matrix consisting of all rows of $B N$ except the $s+1$ 'th row in the i^{\prime} th group, has rank $d-1$. If no such integer exists, set $\ell_{i}=-1$.

Explanation. Assume for simplicity that V is base-point free and thus maps C into some P^{n}. For a chosen set of local parameters of C at the P_{i} we can talk about derivative vectors of C at the P_{i}. Call the point P_{i} itself the O 'th derivative vector of C at P_{i}. Then ℓ_{i} is the maximal integer $s \in\left\{0, \ldots, d_{i}^{-1}\right\}$ such that the union of the $0^{\prime} t h, \ldots, \hat{s}^{\prime} t h, \ldots, d_{i}{ }^{-1}$ 'th derivative vectors of C at P_{i} and the O^{\prime} th $, \ldots, d_{j}-1$ 'th derivative vectors at P_{j}, for $j \neq i$, span a $d-2$ plane in P^{n}. If no such s exists, then $l_{i}=-1$.

Observation 2.2.

$$
D \in V_{d}^{2} \Leftrightarrow l_{i}=-1, \text { for } i=1, \ldots, k
$$

Definition 2.3.

Assume $D^{\prime} \in C^{\left(d^{\prime}\right)}$, for some $d^{\prime} \in N$. Denote by $V\left(-D^{\prime}\right)$ the
linear system $V \cap H^{0}\left(C, L\left(-D^{\prime}\right)\right)$.
We now give the main result of this section:

Theorem 2.4.
The tangent space dimension of V_{d}^{1} at D is

$$
\min \left(d, r k V\left(-\sum_{i=1}^{k}\left(d_{i}+l_{i}+1\right) P_{i}\right)+2 d-n-2\right) \text { where } r k V=n+1 .
$$

Proof.

It is enough to study the constant and linear parts of the matrix M in Formula (1.2). Since $r k B N \leqslant d-1$, we may assume that only the $d-1$ first columns of $B N$ are nonzero. Since we will only study the linear parts of the d-minors, we may assume that the entries in the $\mathrm{d}-1$ first columns are constant. Assume first $\mathrm{D}=\mathrm{dP}$. We may drop the index i in M, and we have:

Here we used that the linear part of $W_{j}\left(s_{1}, \ldots, s_{d}\right)$ is $(-1)^{j-1} s_{j}$, for $j=1, \ldots, d$. See Formula (1.1) or Remark 1.5. Let D_{j-1} be the $d-1$ minor formed by the $d-1$ first columns of M (or BN) minus the j'th row. We see that ℓ is the largest integer j such that $D_{j} \neq 0$ if such an integer exists (See Definition 2.1.). The linear parts of the $n+2-d$ relations cutting out V_{d}^{l} are (up to signs):

$$
\begin{aligned}
& \left(a_{i, d_{l}}^{D_{\ell}}\right)_{d-\ell}-\left(a_{i, d+1} D_{\ell}+a_{i, d^{D}}{ }_{\ell-1}\right) s_{d-\ell+1}+\cdots+ \\
& (-1)^{\ell}\left(a_{i, d+\ell} D_{\ell}+\cdots+a_{i, d^{D}}\right) s_{d}
\end{aligned}
$$

for $i=d-1, \ldots, n$.
The coefficient matrix of these relations in s_{1}, \ldots, s_{d} is easily seen to have the same rank as

$$
N=\left[\begin{array}{llll}
a_{d-1, d} & \cdot & \cdot & \cdot \\
a_{d-1, d+l} \\
\vdots & & & \\
\vdots & & & \\
a_{n, d} & & \cdot & a_{n, d+l}
\end{array}\right]
$$

Hence the tangent space dimension of V_{d}^{l} at D is $d-r k N$ if $\ell \geqslant 0$ and d otherwise. Assume first $\ell \geqslant 0$. Let us find

$$
r k V(-(\ell+d+1) P) .
$$

Since $\ell \geqslant 0$, Observation 2.2. gives that the matrix $B N$ has rank exactly $d-1$, and therefore a section contained in $V(-d P)$ must be of the form

$$
c_{d-1} x_{d-1}+\cdots+c_{n} x_{n} \text {, where the } c_{j} \in K \text {, and }
$$

where X_{j} is the section corresponding to the $j+1$ 'th column of M. The conditions that such a section should be contained in $\mathrm{V}(-(\ell+d+1) \mathrm{P})$ are:

$$
\begin{aligned}
& a_{d-1,} d_{d-1}^{c}+\cdots \cdot+a_{n, d_{n}}=0 \\
& a_{d-1, d+l^{c} c_{d-1}}+\cdots \cdot+a_{n, d+l^{c}}=0
\end{aligned}
$$

These equations in the variables c_{d-1}, \ldots, c_{n} give rise to a coefficient matrix, which is the transpose of N.

Hence $r k V(-(\ell+d+1) P)=n-d+2-r k N$, and we deduce that the tangent space dimension of V_{d}^{1} at D is

$$
d-r k N=2 d-n-2+r k V(-(\ell+d+1) P)
$$

Since $r k V(-(\ell+d+1) P) \leqslant r k V(-d P)=n-d+2$, our tangent space dimension is at most
$(2 d-n-2)+(n-d+2)=d$. Hence the theorem holds when $D=d P$, and $\ell \geqslant 0$.

When $D=d P$ and $\ell=-1$, the tangent space dimension is d since all the D_{j} are zero. On the other hand:

$$
\begin{aligned}
& 2 d-n-2+r k V(-(\ell+d+1) P)=2 d-n-2+r k V(-d P) \\
& =(2 d-n-2)+(n+1-r k B N) \geqslant d+1 \quad, \text { since } r k B N \leqslant d-2 .
\end{aligned}
$$

Hence d is the minimum of d and $2 d-n-2+r k V(-(\ell+d+1) P)$. Our proof is now complete in the case $D=d P$. The general case follows easily using the same argument for each group of d_{i} rows of M.
§3. A local study of V_{n}^{l}, where $r k V=n+1 \geqslant 4$
In [Jj, Theorem 2.3.1., we gave a multiplicity formula for trisecant lines to a space curve. In this section we will generalize this formula.

Let $D \in C^{(n)}$ be a point of V_{n}^{1}, where $r k V=n+1 \geqslant 4$. Assume:
1.) For each $D^{\prime} \in C^{(n-1)}$, such that $D^{\prime} \leqslant D$, we have $D^{\prime} \notin V_{n-1}^{l}$
2.) If $D=\sum_{i=1}^{k} n_{i} P_{i} \quad\left(\right.$ all $\left.n_{i}>0\right)$, then $\quad D+P_{i} \notin V_{n+1}^{2}$, for $i=1, \ldots, k$
3.) Char $K=0$, and $K=\bar{K}$.

Proposition 3.1.
Under Assumptions 1.), 2.), 3.) we have:
a) The tangent space dimension of V_{n}^{l} at D is $r k V(-2 D)+n-2$, where $\mathrm{rk} \mathrm{V}(-2 \mathrm{D})$ is 0 or 1 .
b) $\operatorname{dim} \mathrm{O}_{\mathrm{V}_{\mathrm{n}}, \mathrm{D}}=\mathrm{n}-2$
c) The multiplicity of V_{n}^{1} at D is the largest integer s such that $r k V(-s D) \geqslant 1$. (with equality if V_{n}^{1} is singular at D).

Proof: Let ℓ_{i}, for $i=1, \ldots, k$, be the integers described in Definition 2.1. Assumption 1.) gives $l_{i}=n_{i}-1$ for all i. The tangent space dimension formula in Part a) is then a special case of Theorem 2.4., and it holds also when char $K>0$.

Assumption 2.) gives that $r k(-2 D)$ is 0 or 1 , because if $r k V(-2 D) \geqslant 2$, then $2 D \in V_{2 n}^{n+1}$, and then $D+P_{i} \in V_{n+1}^{2}$ for all i $\in\{1, \ldots, k\}$. Hence a) holds.

By general facts about determinantial varieties we have $\operatorname{dim} O_{V_{n}, D} \geqslant \mathrm{n}-2$.

If $r k V(-2 D)=0$, then the tangent space dimension of V_{n}^{l} at D is $n-2$ by a). Hence $\operatorname{dim} \hat{O}_{V_{n}^{\prime}, D} \leqslant n-2$, and b) follows. Furthermore V_{n}^{l} is non-singular at D in this case. Hence the multiplicity of V_{n}^{l} at D is 1 . Since $r k ~ V(-2 D)=0$, and $r k V(-1 \cdot D) \geqslant 2 \geqslant 1$, the number given in c) is also 1. Hence c) follows when $\mathrm{rk} \mathrm{V}(-2 \mathrm{D})=0$. It remains to prove b) and c) when $r k(-2 D)=1$. Let V be generated by the sections $\left\{\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$.

$$
r k V(-D) \geqslant 2 \text { since } D \in V_{n}^{1} \text {, and } r k V(-D) \leqslant 2 \text { since } D \notin V_{n}^{2}
$$ by Assumption 1.).

Hence $r k V(-D)=2$, and we may assume that X_{n-1} and X_{n} generate $\mathrm{V}(-\mathrm{D})$. This means that the entries in the 2 last columns of the BN-matrix (Formula (1.3)) are zero.

We may assume that X_{n} generates $V(-2 D)$ since $r k(-2 D)=1$. We will also assume that $D=n P$. The proof of the general case is a slight generalization of this special case, essentially only involving more indices. At the end of the proof we will add a few words about how this generalization can be made. When $D=n P$, the matrix M is of the following form:
$\left[\begin{array}{cccc}a_{0,0}+\cdots & a_{n-2,0}+\cdots & (-1)^{n-1} a_{n-1, n} s_{n}+\cdots & \\ \cdot & \cdot & \cdot & a_{n, m n} W_{m n}+\cdots \cdots \\ \cdot & \cdot & \cdot & \cdot \\ a_{0, n-1}+\cdots & a_{n-2,1}+\cdots & a_{n-1, n} S_{1}+\cdots+(1)^{n-1} a_{n-1,2 n-1} S_{n}+\cdots & a_{n, m n} W_{m n-n+1}+\cdots\end{array}\right]$
where $m=\max \{s \mid r k V(-s D)=1\} \geqslant 2$, and $W_{j}=W_{j}(\underline{s})$ as in Formula (1.1).

To set up the column to the right (corresponding to X_{n}) we have used

$$
a_{n, 0}=a_{n, 1}=\cdots \cdot=a_{n, m n-1}=0
$$

which is true since $X_{n} \in V(-m D)$. In particular this column contains no linear terms in $\{\underline{s}\}$.

In the n 'th column (corresponding to X_{n-1}) we have listed all linear terms in $\{\underline{s}\}$. Observe that $a_{n-1, n} \neq 0$, because $a_{n-1, n}=0$ implies $(n+1) P \in V_{n+1}^{2}$, which contradicts Assumption 2.).

Summing up we see that there is at most one n-minor of M that contains linear terms, namely the one obtained by disregarding the column corresponding to X_{n}.

Denote by $R_{j}\left(s_{1}, \ldots, s_{n}\right)$ the n-minor of M obtained by disregarding the column corresponding to X_{j}, for $j=0, \ldots, n$.

By Assumption 1.) the $n-1$-minor obtained from the $n-1$ first columns of the BN-matrix minus the bottom row is non-zero. This observation together with the fact that $a_{n-1, n}$ is non-zero enables us to use the relation $R_{n}\left(s_{1}, \ldots, s_{n}\right)$ to express s_{1} as a function

$$
f\left(s_{2}, \ldots, s_{n}\right)
$$

We see that:

$$
\hat{O}_{V}^{l}, D \stackrel{\sim}{=} k\left[\left[s_{2}, \ldots, s_{n}\right]\right] /\left(\bar{R}_{0}, \ldots, \bar{R}_{n-1}\right)
$$

where $\bar{R}_{j}=R_{j}\left(f\left(s_{2}, \ldots, s_{n}\right), s_{2}, \ldots, s_{n}\right)$ for $j=0, \ldots, n-1$. Denote by \underline{M} the maximal ideal of the last ring. The dimension of \hat{O}_{V}^{l}, D is $\mathrm{n}-2$ if there is a relation between the images of s_{2}, \ldots, s_{n} modulo M^{r} for some r. Then the multiplicity m^{\prime} of V_{n}^{l} at D is the smallest integer r such that there is such a relation. We will show

$$
m^{\prime}=m=\max \{s \mid r k V(-s D)=1\}
$$

Using Remark 1.5. one sees that the entries in the column corresponding to X_{n} contain no terms of degree less than m in s_{1}, \ldots, s_{n}.

Hence the relations $\bar{R}_{1}, \ldots, \bar{R}_{n-2}$ contain no terms of degree less than $m+1$ in s_{2}, \ldots, s_{n} since all the constant terms in the column corresponding to X_{n-1} are zero.

We also see that the relation \bar{R}_{n-1} contains no terms of degree less than m.

To show b) and c) it is therefore enough to show that the homogeneous part of degree m of \bar{R}_{n-1} does not vanish identically. Denote by D_{j} the $n-1$ minor obtained from the $n-1$ first columns of the BN-matrix while disregarding the $j+1$ 'th row, for $j=0, \ldots, n-1$.

Using Formula (1.2) and Remark 1.5. we see that $R_{n-1}\left(s_{1}, \ldots, s_{n}\right)$ is (up to a possible shift of sign):

$$
\begin{aligned}
& s_{n}^{m}\left(D_{0} \cdot a_{n, m n}+D_{1} \cdot a_{n, m n+1}+\cdots+D_{n-1} \cdot a_{n, m n+n-1}\right) \\
& -s_{n}^{m-1} s_{n-1}\left(\quad D_{1} \cdot a_{n, m n}+\cdots+D_{n-1} \cdot a_{n, m n+n-2}\right) \cdot m \\
& \text { - } \\
& +(-1)^{n-1} s_{n}^{m-1} s_{1}(\\
& \left.D_{n-1} \cdot a_{n, m n}\right) \cdot m \\
& +(-1)^{n-1} s_{n}^{m-2} s_{n-1} s_{2}\left(\quad D_{n-1} \cdot a_{n, n m}\right) \cdot m(m-1) \\
& + \text { other terms of degree } m+\text { terms of degree } m+1 \text { or more. }
\end{aligned}
$$

There is no $s_{n}^{m-2} s_{n-1} s_{1}$-term by Remark 1.5. The relation \bar{R}_{n-1} is obtained by substituting $s_{1}=f\left(s_{2}, \ldots, s_{n}\right)$ in the above relation. If the homogeneous part of degree m vanishes, it implies in particular that the terms involving

$$
s_{n}^{m}, s_{n}^{m-1} s_{n-1}, \cdots, s_{n}^{m-1} s_{2}, s_{n}^{m-2} s_{n-1} s_{2}
$$

vanish. This gives the following coefficient matrix in the "variables" $a_{n, m n}, \ldots, a_{n, m n+n-1}$:

The stars depend on $f\left(s_{2}, \ldots, s_{n}\right)$

Assumption 1.) implies $D_{n-1} \neq 0$. Hence $\operatorname{det} N \neq 0$ when Char $K=0$. Hence the homogeneous part of \bar{R}_{n-1} of degree m vanishes identically only if

$$
a_{n, m n}=\cdot \cdot \cdot=a_{n, m n+n-1}=0
$$

But this implies rk $V(-(m+1) D)=1$ which contradicts the definition of m. This completes the proof of b) and c) when $D=n P$. We see that the proof does not work if $n=2$, since we need $s_{n}^{m-2} s_{n-1} s_{2}$ to be different from $s_{n}^{m-1} s_{1}$.

In the general case $D=\sum_{i=1}^{k} n_{i} P_{i}$ essentially the same argument works when $n=\sum_{i=1}^{k} n_{i} \geqslant 3$. We always get one and only one relation between the $s_{i, j}$ modulo (\underline{s}^{2}, and we use this relation to express one of the $s_{i, 1}$, say $s_{1,1}$, as a linear function in the other $s_{i, j}$ modulo $(\underline{s})^{2}$. This will follow from Assumption 2.). One can always assume $n_{1}=\max _{\mathrm{i}}\left\{\mathrm{n}_{\mathrm{i}}\right\}$. Then one splits into 3 cases; $\mathrm{n}_{1} \geqslant 3, \mathrm{n}_{1}=2, \mathrm{n}_{1}=1$. In each case one ends up with a skew-triangular coefficient matrix analogous to N, with $D_{i, n_{i}-1}$'s on the skew diagonal. All $D_{i, n_{i}-1}$ are non-zero by Assumption 1.), and one gets a contradiction the same way as in the case $D=n P$. Hence b) and c) hold in general.

Definition 3.2.
For a variety X and a point P in X the tangent cone $J_{P}(X)$ of X at P is

$$
\operatorname{Spec}\left(\underset{i=0}{\infty} m^{i} / m^{i+1}\right)
$$

where m is the maximal ideal of the local ring $O_{X, P}$.
The projectivized tangent cone $P \mathcal{J}_{P}(X)$ of X at P is

$$
\operatorname{Proj}\left(\underset{i=0}{\infty} m^{i} / m^{i+1}\right)
$$

Corollary 3.3.
Under Assumptions 1.), 2.), 3.) the projectived tangent cone $P \mathcal{J}_{D}\left(V_{n}^{l}\right)$ is a hypersurface of degree m in P^{n-2}, where

$$
m=\max \{s \mid r k v(-s D) \geqslant 1\} .
$$

Proof. Corollary 3.3. follows from the proof of Proposition 3.1.
§4. The tangent cone $\mathcal{J}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{n}}{ }^{1}\right)$, where $\mathrm{rk} \mathrm{V}=\mathrm{n}+1 \geqslant 4$.
In this section we will not always prove our assertions. Our goal is to give a geometrical interpretation of $\mathcal{J}_{D}\left(V_{n}^{l}\right)$ (or $\left.P \mathcal{T}_{D}\left(V_{n}^{l}\right)\right)$ described at the end of $\S 3$.

In §3 we studied a point D in V_{n}^{1}, where $r k V=n+1 \geqslant 4$. Under Assumptions 1.), 2.), 3.) of $\S 3$ we gave a description of the dimension, embedding dimension and multiplicity of V_{n}^{l} at D.

A question which then arises naturally is: When is the projectivized tangent cone $P \mathcal{J}_{D}\left(V_{n}^{l}\right)$ singular? If $n=3$ and V_{n}^{l} is a curve, then $P \mathcal{T}_{D}\left(V_{n}^{l}\right)$ is singular if V_{n}^{1} does not have normal crossings at D; we also say that V_{n}^{l} possesses a non-ordinary singularity at D in this case. In [J] we gave necessary and sufficient local conditions on C for determining whether the trisecant curve (essentially $V_{3}{ }^{1}$) possesses non-ordinary singularities or not. We want to generalize these conditions to apply to any $V_{n}^{1}, n \geqslant 3$, where $r k V=n+1$.

In order to do this we assume:
2:). V is base-point free and $D+P \notin V_{n+1}^{2}$ for any point $P \in C$.

Assumption 2:) is of course a strengthening of Assumption 2.) of §3; but this strengthening is of no importance for the local geometry of
V_{n}^{l} at D. Whatever local result we prove for V_{n}^{l} at D under Assumptions 1.), 2!), 3.) will also hold under Assumptions 1.), 2.), 3.). This is true because the matrix M (Formula (1.2)) is only dependent on the behaviour of V at the points P_{1}, \ldots, P_{k}, and because any base point of V is outside $\left\{P_{1}, \ldots, P_{k}\right\}$ by Assumption 1.).

Under Assumption 2!.) V defines a map $\phi: C \rightarrow \bar{C} \subset P^{n}$. Let $G=$ $G(n-2, n)$ be the Grassmannian, which parametrizes the $n-2$ planes in P^{n}.

For a $n-2$ plane H denote by [H] the corresponding point in G. Denote by F the incidence variety

$$
\left\{([H], P) \in G \times P^{n} \mid P \in H\right\} .
$$

Consider the following diagram:

Here p and q are the natural projection maps from F to p^{n} and G respectively, and $\boldsymbol{C}_{F}=p^{-1}(\overline{\mathrm{c}})$.

Let Sec be the subvariety of G cut out by the sheaf of O_{G}^{-} ideals:

$$
F^{n-1}\left(q_{\star} O_{P}\right)_{F}^{\prime}
$$

that is the sheaf of $n-1$ 'th fitting ideals of the $O_{G}-$ sheaf $q_{\star} O_{F}$ Then Sec parametrizes $n-2$ planes that are n-secant to C. This definition of $S e c$ is taken from [GP], where the case $n=3$ is treated.

Assume $D \in V_{n}^{l}$, and that Assumptions 1.), 2!), 3.) hold. Then D spans a unique $n-2$ plane; that is P_{1}, \ldots, P_{k} and the $d_{i}-1$ first derivative vectors of \bar{C} at P_{i}, for $i=1, \ldots, k, \operatorname{span}$ a unique $\mathrm{n}-2$ plane H .

We make the following claim:
(4.1) $\quad \mathcal{J}_{D}\left(V_{n}^{l}\right) \simeq \mathcal{J}_{[H]}(\sec)$.

In fact we strongly believe:

$$
\begin{equation*}
\hat{O}_{V_{n}^{1}, D} \simeq \hat{\mathrm{O}}_{\mathrm{Sec},[\mathrm{H}]} \tag{4.2}
\end{equation*}
$$

We have not made any attempts to prove (4.2), but we have proved (4.1) when D consists of n distinct points.

To find $J_{D}\left(V_{n}^{l}\right)$ one simply calculates the leading forms of the relations $R_{n-1}(\underline{s})$ and $R_{n}(\underline{s})$ described in the proof of Proposition 3.1. In $[J]$ an explicit description of $\mathcal{J}_{[H]}(\operatorname{Sec})$ is given in the case where $n=3$, whether D consists of 3 distinct points or not.

It is easy, but a little painstaking, to generalize this explicit description to arbitrary $n \geqslant 3$, when the n points of D are distinct. Comparing the 2 tangent cones one sees that they are isomorphic.

We omit the very technical calculations here. In principle the same method should work when the n points are not distinct.

We will assume that Formula (4.1) is always true under Assumptions 1.), 2'.), 3).

Definition 4.1.
For a curve C and and a hypersurface M in P^{n}, denote by $I(P, C \cap M)$ the usual intersection number between C and M at P.

From Formula (4.1) and Proposition 3.1., a) we see: Sec is singular at $[H] \Leftrightarrow V_{n}^{l}$ is singular at $D \Leftrightarrow$ There exists a unique hyperplane ${ }^{7}$ in p^{n} with

$$
I\left(P_{i}, \overline{\mathrm{C}} \cap \nmid l\right) \geqslant 2 n_{i}, \text { for } i=1, \ldots, k
$$

We have $S e c \subset G \subset P^{S}$ for some large S. Making explicit calculations analogous to those in [GP] and [J] one finds that the embedded (compactified) tangent space in P^{S} to Sec at [H] is

$$
\mathcal{H}_{\mathscr{L}} \subset \mathrm{G} \subset \mathrm{P}^{\mathrm{S}}
$$

where \mathscr{H} is the $n-1$ plane in G, which parametrizes the $n-2$ planes in the hyperplane $\mathcal{H} \subset \mathrm{p}^{\mathrm{n}}$.

Hence the embedded tangent cone in P^{S} to Sec at $[H]$ is a union of an $n-3$ dimensional family of lines in He Each point of the projectivized tangent cone $P \mathcal{J}_{[H]}(S e c)$ or $P J_{D}\left(V_{n}^{l}\right)$ corresponds to one such line.

A line L in \mathscr{H}^{V} through $[H]$ is a nesting of a l-dimensional family of $n-2$ planes in \mathcal{H} containing a fixed $n-3$ plane h_{L} contained in H.

Hence each point of $P \mathcal{J}_{[H]}(S e c)$ and $P \mathcal{J}_{D}\left(V_{n}^{l}\right)$ corresponds to an $n-3$ plane h_{L} in the $n-2-p l a n e \quad H$. Denote by $[h]$ the point in H
corresponding to an $n-3-p l a n e$, where $\underset{H}{V}$ is the $n-2$ plane which parametrizes the $n-3$ planes in H.

By Corollary 3.3. $P \mathcal{J}_{D}\left(V_{n}^{l}\right)$ is a hypersurface of degree $\operatorname{m}=\max \{s \mid r k V(-s D) \geqslant 1\} \quad$ in P^{n-2}. From the above discussion it is clear that a natural geometrical interpretation of this p^{n-2} is $\stackrel{V}{H}$, and that
$P \mathcal{J}_{D}\left(V_{n}^{l}\right) \stackrel{\approx}{=}\left[h_{L}\right] \mid L$ is a line in \mathcal{H} through $[H]$, such that L is contained in the embedded tangent cone to sec at [H]\}.

Two problems now arise in a natural way:
(i) Find those $n-3$ planes h in H such that $[h] \in P_{[H]} \mathcal{J}_{[\mathrm{H}}$ (Sec).
(ii) Find those $n-3$ planes h in H such that $[h]$ is a singular point of $P \mathcal{J}_{[H]}(\mathrm{Sec})$.

We state without proofs the solutions to problems (i) and (ii) (Results 4.2. and 4.3. respectively). Result 4.2. is a generalization of Theorem 2.3.2. of [J], and Result 4.3. is a generalization of Theorem 2.3.3. in [J].

We have proved Results 4.2. and 4.3. in the case where D consists of n distinct points, but we omit the technical details here.

Result 4.2.
Under Assumptions 1.), 2'.), 3) we have $[h] \in P \mathcal{J}_{[H]}(\operatorname{Sec})$ if and only if there exists a hypersurface M in P^{n} such that
a) deg $M=m+1$, and M has a singularity of multiplicity at least m at all points of h.
b) $\quad I\left(P_{i}, M \cap \bar{C}\right) \geqslant(m+1) n_{i}$, for all $P_{i} \in H \cap C$
c) $m \cdot H \subseteq M \cap$, i.e. $I(M) \subseteq\left(I(\not \subset)+I(H)^{m}\right)$, and $H \neq \operatorname{Sing}(M)$
d) The equation defining M in P^{n} is equal to the equation of a cone of degree $m+1$ with h contained in its vertex set, modulo the square of the ideal defining H.

Remark: M can be taken to be a union of a l-dimensional family of n-2 planes containing H. Thus M gives rise to a curve $[$ in G. The tangent line to $\left[\right.$ at $[H]$ is L, where $h=h_{L}$.

Result 4.3.

Under Assumptions 1.), 2'.), 3.) we have: [h] is a singular point of $P \mathcal{J}_{[H]}(S e c)$ if and only if there exists a hypersurface N in P^{n} such that:
a) N is a cone of degree m, and h is contained in the vertex set of N.
b) $I\left(P_{i}, \overline{\mathrm{C}} \cap N\right) \geqslant(m+1) n_{i}$, for $i=1, \ldots, k$
c) $\quad \mathrm{H} \not \ddagger \operatorname{sing}(\mathrm{N})$

Corollary 4.4.
Under Assumptions 1.), 2.), 3.) we have: $P J_{D}\left(V_{n}^{l}\right)$ is singular if and only if there exists a cone N and an $n-3$ plane h as described in Result 4.3., a), b), c).
§5. Stationary bisecants for a space curve.
In $§ 5$ we assume char $K=0$, and $K=\bar{K}$. Let C be a non-singular curve in P^{3}, and let P_{1} and P_{2} be points on C. The line $\overline{\mathrm{P}_{1} \overline{\mathrm{P}}_{2}}$ is usually called a stationary bisecant if the tangents to C at P_{1} and P_{2} meet. In general there is a l-dimensional family of stationary bisecants for a space curve. We will define a scheme in $C(2)$, which essentially parametrizes divisors $P_{1}+P_{2}$ with P_{1} and P_{2} as described.

Some divisors 2 P may also occur as points on this scheme in $C^{(2)}$
since tangent lines are in some sense bisecants.
Let C be mapped into P^{3} by evaluating sections of some linear system V of rank 4. Consider the map:
(5.1) i: $C^{(2)} \rightarrow C^{(4)}$, where $i(D)=2 D$
for divisors D in $C^{(2)}$.

Definition 5.1.
The scheme of stationary bisecants for C with respect to V is $i^{-1}\left(V_{4}^{1}\right)$.

Remark 5.2.

Clearly $D \in i^{-1}\left(V_{4}^{1}\right) \Leftrightarrow 2 D \in V_{4}^{1}$. If $P_{1} \neq P_{2}$, then $\mathrm{P}_{1}+\mathrm{P}_{2} \in \mathrm{i}^{-1}\left(\mathrm{~V}_{4}^{1}\right) \Leftrightarrow$ the tangent lines to C at P_{1} and P_{2} meet.

We also have:
$2 P \in i^{-1}\left(V_{4}^{1}\right)<\Rightarrow P$ is a flex on C, or the osculating plane of C at P is hyperosculating.

It will follow from the proofs of Propositions 5.3. and 5.6. that $i^{-1}\left(V_{4}^{1}\right)$ is either a curve or empty.

We will use Theorem 1.1. to determine the multiplicity of $i^{-1}\left(V_{4}^{1}\right)$ at an arbitrary point $D\left(i n C^{(2)}\right.$) in terms of the local geometry of C at the secant points in P^{3}. The cases $D=2 P$ and $D=P_{1}+P_{2}\left(P_{1} \neq P_{2}\right)$ will be treated separately. As before we denote by $I(Q, C \cap F)$ the intersection multiplicity between a curve C and a surface F at a point Q in P^{3}.

The multiplicity of $i^{-1}\left(V_{4}^{1}\right)$ at $D=2 P$
Let L be the tangent line to C at the point P. Set $m_{2}=$ $\max \left\{\ell \mid \ell P \in V_{l}^{\ell-2}\right\}$, or equivalently: $m_{2}=I(P, C \cap H)$ for a general member H of the pencil of planes containing L. If P is not a flex on C, then $m_{2}=2$. Set $m_{3}=\max \left\{\ell \mid \ell P \in V_{\ell}^{\ell-3}\right\}$, or equivalently: $m_{3}=\max _{\mathrm{H} \supseteq \mathrm{L}}\left\{I(\mathrm{P}, \mathrm{C} \cap \mathrm{H}\}\right.$. Clearly $\mathrm{m}_{3} \geqslant \mathrm{~m}_{2}+1$.

We now give our main result in the case $\mathrm{D}=2 \mathrm{P}$:

Proposition 5.3.

The multiplicity of the curve $i^{-1}\left(\mathrm{~V}_{4}^{1}\right)$ at 2 P is $\left[\frac{\mathrm{m}_{2}^{+} \mathrm{m}_{3}}{2}\right]-2$, where $[x]$ means the integral part of the real number x.

Proof:

Let t be a local parameter for C at P. Without loss of generality we may assume that C is parametrized locally at P as:

$$
\begin{array}{ll}
x_{0}=1 \\
x_{1}=t \\
x_{2}=\sum_{j \geqslant m_{2}} \alpha_{j} t^{j} & , \alpha_{m_{2}} \neq 0 \\
x_{3}=\sum_{j \geqslant m_{3}} \beta_{j} t^{j} \quad, \beta_{m_{3}} \neq 0 .
\end{array}
$$

Let $s_{1}, s_{2}, s_{3}, s_{4}$ be local parameters for $C^{(4)}$ at 4 P , where the s_{k} are the k 'th elementary functions in $t_{1}, t_{2}, t_{3}, t_{4} ; 4$ replicas of t.

By Theorem 1.1., we have

$$
\hat{o}_{\mathrm{V}_{4}^{1}, 4 \mathrm{P}}=\mathrm{K}\left[\left[\mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}\right]\right] /(\operatorname{det} \mathrm{M}),
$$

where

$$
M=\left[\begin{array}{llll}
1 & s_{1} & \sum_{j} \alpha_{j} W_{j}(\underline{s}) & \sum_{j} \beta_{j} W_{j}(s) \\
0 & 1 & \sum_{j} \alpha_{j} W_{j-1}(\underline{s}) & \sum_{j} \beta_{j} W_{j-1}(s) \\
0 & 0 & \sum_{j} \alpha_{j} W_{j-2}(\underline{s}) & \sum_{j} \beta_{j} W_{j-2}(s) \\
0 & 0 & \sum_{j} \alpha_{j} W_{j-3}(\underline{s}) & \sum_{j} \beta_{j} W_{j-3}(s)
\end{array}\right]
$$

We see that
(5.2) $\operatorname{det} M=\sum_{j \geqslant m_{2}} \alpha_{j} W_{j-2}(\underline{s}) \cdot \sum_{j \geqslant m_{3}} \beta_{j} W_{j-3}(\underline{s})-\sum_{j \geqslant m_{2}} \alpha_{j} W_{j-3}(\underline{s}) \cdot \sum_{j \geqslant m_{3}} W_{j-2}(\underline{s})$

Let S_{1} and S_{2} be local parameters of $C(2)$ at $2 P$, where the S_{k} are the k 'th symmetric functions in $T_{1}, T_{2} ; 2$ formal replicas of t.

The map (5.1) induces a map

$$
i^{\star}: K\left[\left[s_{1}, s_{2}, s_{3}, s_{4}\right]\right] \rightarrow K\left[\left[s_{1}, s_{2}\right]\right] .
$$

Clearly $\hat{O}_{i^{-1}\left(V_{4}^{1}\right), 2 \mathrm{P}} \stackrel{\simeq}{=}\left[\left[S_{1}, S_{2}\right]\right] /(R) \quad$ where $R \quad$ is the power
series obtained by substituting $i^{\star} S_{k}$ for S_{k} in (5.2), for $\mathrm{k}=1,2,3,4$. The multiplicity $\operatorname{mult}_{2 \mathrm{P}}\left(\mathrm{i}^{-1}\left(\mathrm{~V}_{4}^{l}\right)\right)$ is the lowest value $e_{1}+e_{2}$ for any term $S_{1}{ }^{1_{S}} \mathrm{~S}_{2}{ }_{2}$ occuring in R. We will first find the $i^{\star} s_{k}$. Let $s_{k}=s_{k}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$; that is: Regard s_{k} as the k 'th elementary symmetric function in 4 replicas of t, for $k=1, \ldots, 4$.

We define

$$
\psi_{\mathrm{k}}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)=\mathrm{s}_{\mathrm{k}}\left(\mathrm{~T}_{1}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{2}\right)
$$

Clearly $\psi_{k}\left(T_{1}, T_{2}\right)$ is symmetric in T_{1}, T_{2}, for $k=1, \ldots, k$. Hence there are unique functions $\phi_{k}\left(S_{1}, S_{2}\right)$ such that $\phi_{k}\left(S_{1}\left(T_{1}, T_{2}\right), S_{2}\left(T_{1}, T_{2}\right)=\psi_{k}\left(T_{1}, T_{2}\right)\right.$ for $i=1, \ldots, k$. One sees that $i^{*} S_{k}\left(S_{1}, S_{2}\right)=\phi_{k}\left(S_{1}, S_{2}\right)$ for all k. We then obtain:

$$
\begin{array}{ll}
i^{\star} s_{1}=2 S_{1}, & i^{\star} s_{2}=S_{1}^{2}+4 S_{2} \\
i^{\star} s_{3}=2 S_{1} S_{2} & i^{\star} s_{4}=S_{2}^{2} .
\end{array}
$$

We have:
(5.3)

$$
R=\sum_{j \geqslant m_{2}} \alpha_{j}\left(i^{\star} W_{j-2}\right) \cdot \sum_{j \geqslant m_{3}} \beta_{j}\left(i^{\star} W_{j-3}\right)
$$

$$
\begin{equation*}
-\sum_{j \geqslant m_{2}} \alpha_{j}\left(i^{*} W_{j-3}\right) \cdot \sum_{j \geqslant m_{3}} \beta_{j}\left(i^{\star} W_{j-2}\right), \tag{3.3}
\end{equation*}
$$

where $i^{*} W_{\ell}=W_{\ell}\left(i^{*} s_{1}, \ldots, i^{*} s_{4}\right)$ for all ℓ.
The next task is to describe the $i^{*} W_{l}$. First we remark that each of the rings $K\left[\left[s_{1}, s_{2}, s_{3}, s_{4}\right]\right]$ and $K\left[\left[S_{1}, S_{2}\right]\right]$ is graded in 2 ways:

We define:

$$
\begin{aligned}
& \operatorname{deg}_{1} s_{k}=1, \operatorname{deg}_{2} s_{k}=k, \quad \text { for } k=1, \ldots, 4 . \\
& \operatorname{deg}_{1} s_{k}=1, \operatorname{deg}_{2} s_{k}=k, \quad \text { for } k=1,2 .
\end{aligned}
$$

One sees that the $W_{j}\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$ and the $i{ }^{*} W_{j}\left(S_{1}, s_{2}\right)$ are homogeneous in the sense that:

$$
\operatorname{deg}_{2} W_{j}\left(S_{1}, S_{2}, S_{3}, S_{4}\right)=\operatorname{deg}_{2} i^{\star} W_{j}\left(S_{1}, S_{2}\right)=j .
$$

This follows from Remark 1.4. combined with the fact that the map i^{*} is deg_{2}-preserving.

Definition.

Let c_{j} for $j=0,1,2, \ldots$ be the unique integers such that $i^{*}{ }_{W_{j}}\left(S_{1}, S_{2}\right) \equiv c_{j} S_{2}^{\frac{j}{2}} \quad \bmod S_{1}$ when j is even, $i^{*} W_{j}\left(S_{1}, S_{2}\right) \equiv c_{j} S_{1} S_{2}^{\frac{j-1}{2}} \quad$ mod S_{1}^{2} when j is odd.

Clearly the terms $\mathrm{c}_{j} \mathrm{~S}_{2}^{\mathrm{j} / 2}$ or $\mathrm{c}_{j} \mathrm{~S}_{1} \mathrm{~S}_{2}^{\frac{j-1}{2}}$ are the leading forms of the $i^{*} W_{j}\left(S_{1}, S_{2}\right)$ with respect to the deg $_{1}$-grading if the c_{j} are nonzero.

We now give a useful technical lemma.

Lemma 5.4.
a) $c_{0}=1, c_{1}=2$, and $\left|\frac{c_{j}+2}{c}\right|>3$ for all $j \geqslant 0$. In particular $c_{j} \neq 0$ for $j \geqslant 0$.
b) The $C_{4 n}$ and $c_{4 n+1}$ are positive integers, and the $c_{4 n+2}$ and $c_{4 n+3}$ are negative integers, and $\left|\frac{C_{j+2}}{C_{j}}\right|>\left|\frac{c_{j+3}}{C_{j+1}}\right|<4$ for all non-negative odd integers j.

Proof of Lemma 5.4.

Clearly $\quad c_{0}=1$.
Consider the formula:

$$
W_{j}\left(s_{1}, \ldots, s_{4}\right)=\left[\begin{array}{cccccc}
s_{1} & s_{2} & \cdot & \ddots & \cdot & s_{j} \\
1 & s_{1} & s_{1} & . & . & s_{j-1} \\
0 & \ddots & \ddots & & & \vdots \\
\vdots & \ddots & \ddots & \ddots & & \vdots \\
0 & \cdots & \cdots & 1 & & s_{1}
\end{array}\right]
$$

where $s_{j}=0$ for $j \geqslant 5$. We expand the matrix along the first row and obtain the recursion formula:

$$
W_{j}(\underline{s})=s_{1} W_{j-1}(\underline{s})-s_{2} W_{j-2}(\underline{s})+s_{3} W_{j-3}(\underline{s})-s_{4} W_{j-4}(\underline{s})
$$

Using the map i^{\star} we get

$$
\begin{aligned}
i^{\star} W_{j}(\underline{S}) & =2 S_{1} i^{\star} W_{j-1}(\underline{S})-\left(S_{1}^{2}+4 S_{2}\right) i^{\star} W_{j-2}(\underline{S}) \\
& +2 S_{1} S_{2} i^{\star} W_{j-3}(\underline{S})-S_{2}^{2} i^{\star} W_{j-4}(\underline{S})
\end{aligned}
$$

for all integers $j \geqslant 1$.
In particular we obtain:
(5.4)

$$
c_{j}=-4 c_{j-2}-c_{j-4}, \quad \text { when } j \text { is even }
$$

$$
c_{j}=2 c_{j-1}-4 c_{j-2}+2 c_{j-3}-c_{j-4} \text {, when } j \text { is odd. }
$$

For $r=0,1,2, \ldots$ denote by $P(r)$ the following assertion:
All statements in Lemma 5.4 hold for all c_{j} with $j=4 r, 4 r+1$, $4 \mathrm{r}+2$, $4 \mathrm{r}+3$.

It is enough to prove $P(r)$ for all r by induction. The case $r=0$ is verified by direct calculation. The induction step follows easily using Formula (5.4).

We now return to the proof of Proposition 5.3, and we split into 4 cases:

Case 1. m_{2} odd, m_{3} even. We will find the leading form of the relation R (Formula (5.3)) with respect to the deg_{1}-grading. The first 2 terms of R are:

$$
\alpha_{m_{2}}{ }^{\beta} m_{3}\left(i^{\star} W_{m_{2}}-2^{i *} W_{m_{3}}-3^{-} i^{\star} W_{m_{2}}-3^{i *} W_{m_{3}-2}\right) .
$$

The other terms are of the form

$$
\alpha_{h} \cdot \beta_{j} i^{\star} W_{k} \cdot i^{\star} W_{\ell}, \text { where } k+\ell \geqslant m_{2}+m_{3}-4 .
$$

We conclude that $\operatorname{deg}_{1} M\left(S_{1}, S_{2}\right) \geqslant \frac{\mathrm{m}_{2}+\mathrm{m}_{3}-3}{2}$ for all monomials $\mathrm{M}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ arising from these terms. This is true since $\operatorname{deg}_{2} i^{\star} W_{j}=j$ for all j, and since $\operatorname{deg}_{1} \mathrm{M}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right) \geqslant \frac{\operatorname{deg}_{2} \mathrm{M}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)}{2}$.

The same conclusion also holds for all monomials arising from the term $i^{*} W_{m_{2}-2^{i}}{ }^{\star} W_{m_{3}-3}$.

By Lemma 5.4. a) the leading form of the product
$-\alpha_{m_{2}} \beta_{m_{3}} i^{\star} W_{m_{2}-3^{i}}{ }^{\star} W_{m_{3}}-2$, and hence of R, is:

$$
\frac{m_{2}+m_{3}-5}{2}
$$

$$
-\alpha_{m_{2}}{ }^{\beta} m_{3}{ }^{C} m_{2}-3^{C} m_{3}-3^{S}
$$

where $c_{m_{2}-3}, c_{m_{3}-2}$ (and of course $\alpha_{m_{2}}, \beta_{m_{3}}$) are non-zero.

Hence the multiplicity of $i^{-1}\left(\mathrm{~V}_{4}^{1}\right)$ at 2 P is $\mathrm{m}=\frac{\mathrm{m}_{2}+\mathrm{m}_{3}-5}{2}=$ $\left[\frac{m_{2}+m_{3}}{2}\right]-2$, and the leading form of R is S_{2}^{m} (up to a multiplicative constant).

Case 2. m_{2} even, m_{3} odd.
Same proof and conclusion as in Case l, except that the leading form

Case 3. m_{2} and m_{3} even.
In a similar way as in Case 1 we see that the leading form of R with respect to the deg, -grading is:

$$
\begin{gathered}
\alpha_{m_{2}} \beta_{m_{3}}\left(c_{m_{2}-2} c_{m_{3}}-3^{-c_{m_{2}}-3^{c} m_{3}-2}\right) S_{1} S_{2} \frac{m_{2}+m_{3}}{2}-3 \\
+\left(\alpha_{m_{2}} \beta_{m_{3}+1}-\alpha_{m_{2}+1} \beta_{m_{3}}\right) c_{m_{2}-2^{c} m_{3}-2} S_{2} \frac{m_{2}+m_{3}}{2}-2
\end{gathered}
$$

provided this form does not vanish identically. It is enough to show that $\quad c_{m_{2}}-2^{c} m_{3}-3^{\neq c_{m_{2}}-3 c_{m_{3}}-2}$ since $\alpha_{m_{2}}$ and $\beta_{m_{3}}$ are non-zero.

We have

$$
\left|c_{m_{2}-2} c_{m_{3}-3}\right|=\left|c_{m_{2}-2}{ }^{c_{m_{2}}-3}\right| \cdot\left(\left|\frac{{ }^{c_{m}-1}}{c_{m_{2}-3}}\right| \cdot \cdots \cdot\left|\frac{{ }^{c_{m_{3}}-3}}{c_{m_{3}-5}}\right|\right)
$$

and

$$
\left|c_{m_{2}-3}{ }^{c_{m}-2}\right|=\left|c_{m_{2}-3} c_{m_{2}-2}\right| \cdot\left(\left|\frac{c_{m_{2}}}{c_{m_{2}-2}}\right| \cdot \cdots \cdot\left|\frac{c_{m_{3}-2}}{c_{m_{3}-4}}\right|\right)
$$

By Lemma 5.4. b. the first value is strictly larger than the last value.

Hence the multiplicity of $i^{-1}\left(V_{4}^{1}\right)$ at $2 P$ is $m=\frac{m_{2}+m_{3}}{2}-2$ and the leading form of R is

up to a non-zero multiplicative constant, where k is another constant.

Case 4. m_{2} and m_{3} odd
This case is treated in essentially the same way as Case 3, and the conclusion is the same.

Corollary 5.5.

If P is not a flex on C, then the multiplicity of $i^{-1}\left(V_{4}^{1}\right)$ at 2 P is

$$
\left[\frac{m_{3}}{2}\right]-1, \text { where }
$$

$m_{3}=I(P, C \cap H)$, for the osculating plane H of C at P.

The multiplicity of the curve $i^{-1}\left(V_{4}^{1}\right)$ at $\quad D=P 1+P_{2}$.
Assume $P_{1} \neq P_{2}$, and let L be the line $\overline{P_{1} P_{2}}$. Set $n_{i}=I\left(P_{i}, C \cap H\right)$, for $i=1,2$, where H is a general member of the pencil of planes containing L. We may assume $n_{1} \geqslant n_{2}$.

Let r be the maximal integer such that there exists a plane H with

$$
I\left(P_{i}, C \cap H\right) \geqslant n_{i}+r, \text { for } i=1,2
$$

Let r_{2} be the maximal integer such that there exists a plane H_{2} containing L with

$$
\mathrm{I}\left(\mathrm{P}_{2}, \mathrm{C} \cap \mathrm{H}_{2}\right)=\mathrm{n}_{2}+\mathrm{r}_{2}
$$

Proposition 5.6.

The multiplicity of the curve $i^{-1}\left(\mathrm{~V}_{4}^{1}\right)$ at $\mathrm{P}_{1}+\mathrm{P}_{2}$ is:

$$
\min \left(n_{1}+n_{2}+r-2, \quad 2 n_{2}+r_{2}-1\right)
$$

Proof:
Choose coordinates $X_{0}, X_{1}, X_{2}, X_{3}$ for P^{3}, and let t_{i} be a local parameter at P_{i}, for $i=1,2$. Without loss of generality we choose

$$
\begin{aligned}
& x_{0}=1 \\
& x_{1}=t_{i}+k_{i} \\
& x_{2}=\sum_{j \geqslant n_{i}} \alpha_{i, j} t_{i}^{j} \\
& x_{3}=\sum_{j \geqslant n_{i}+r} \beta_{i, j} t_{i}^{j}
\end{aligned}
$$

as local parametrizations at P_{i}, for $i=1,2$.
By the definitions of n_{1}, n_{2}, and r, we may assume that $\alpha_{i, n_{1}}$, and $\alpha_{2, n_{2}}$ are non-zero, and that $\beta_{1, n_{1}+r}$ or $\beta_{2, n_{2}+r}$ is non-zero.

We see that the line $L=\overline{P_{1} P_{2}}$ has equations $X_{2}=X_{3}=0$, and that $P_{i}=\left(1, k_{i}, 0,0\right)$ for $i=1,2$, with $k_{1} \neq k_{2}$.

The unique plane (if any) which intersects C a least $n_{i}+1$ times at P_{i}, for $i=1,2$, has equation $X_{3}=0$. This is also the equation of H_{2}.

By Theorem 1.1., we have:

$$
\hat{\mathrm{O}}_{\mathrm{V}_{4}^{1}, 2 \mathrm{P}_{1}+2 \mathrm{P}_{2}} \cong \mathrm{~K}\left[\left[\mathrm{~s}_{1,1}, \mathrm{~s}_{1,2}, \mathrm{~s}_{2,1}, \mathrm{~s}_{2,2}\right]\right] /(\operatorname{det} \mathrm{M}) \ldots
$$

where

The map $i: C^{(2)} \rightarrow C^{(4)}$, where $i(D)=2 D$ induces a map

$$
i^{*}: \hat{o}_{C}(4), 2 P_{1}+2 P_{2} \hat{o}_{C}(2), P_{1}+P_{2}
$$

Now

$$
\begin{aligned}
& \hat{o}_{C}(4), 2 P_{1}+2 P_{2} \sim_{C} \hat{o}_{C}(2), 2 P_{1} \stackrel{O}{K}_{C} \hat{o}^{(2)}, 2 P_{2} \\
& \approx K\left[\left[s_{1,1}, s_{1,2}, s_{2,1}, s_{2,2}\right]\right],
\end{aligned}
$$

where the $s_{\ell, j}$ can be regarded as formal, algebraically independent, variables.
$s_{\ell, j}$ can also be regarded as the j 'th elementary function in 2 replicas $t_{\ell, 1}, t_{\ell, 2}$ of the local parameter t_{ℓ} of C at P_{ℓ}, for $\ell=1,2, j=1,2$.

Furthermore:

$$
\hat{o}_{C}(2), P_{1}+P_{2} \simeq \hat{o}_{C, P_{1}}{\underset{K}{O_{C, P}}}^{\hat{O}_{2}} K\left[\left[t_{1}, t_{2}\right]\right],
$$

Hence we regard i^{\star} as a map

$$
i^{*}: K\left[\left[s_{1,1}, s_{1,2}, s_{2,1}, s_{2,2}\right]\right] \rightarrow K\left[\left[t_{1}, t_{2}\right]\right] .
$$

We have: $\hat{o}_{i^{-1}\left(V_{4}^{1}\right), P_{1}+P_{2}} \simeq K\left[\left[t_{1}, t_{2}\right]\right] / \operatorname{detm}\left(i^{\star} s_{1}, 1, \ldots, i^{\star} s_{2,2}\right)$.
Clearly $i^{*} s_{\ell, j}=s_{\ell, j}\left(t_{\ell}, t_{\ell}\right), \ell=1,2, j=1,2$. From Remark 1.4. We then obtain:

$$
i^{\star} W_{j}\left(t_{\ell}\right)=W_{j}\left(i^{\star} s_{\ell, 1}, i^{\star} s_{\ell, 2}\right)=(j+1) t_{\ell}^{j}
$$

This implies that

$$
\hat{o}_{i^{-1}}\left(V_{4}^{1}\right), P_{1}+P_{2} \simeq K\left[\left[t_{1}, t_{2}\right]\right] /(R)
$$

where R is the determinant of the matrix obtained from M by substituting $W_{j}\left(s_{\ell, 1}, s_{\ell, 2}\right)$ by $(j+1) t_{\ell}^{j}$ for $\ell=1,2, j \geqslant 0$.

Calculation gives that the leading form of R is:
(5.6)
$\left(k_{1}-k_{2}\right)\left[n_{1}\left(n_{2}+r\right) \alpha_{1, n_{1}} \beta_{2, n_{2}}+r^{r} r_{2}-n_{2}\left(n_{1}+r\right) \alpha_{2, n_{2}}^{\beta} \beta_{1, n_{1}+r} t_{1}^{r_{1}}\right] \cdot t_{1}^{n_{1}-1} \cdot t_{2}^{n_{2}-1}$ or

$$
\begin{equation*}
r_{2} \alpha_{2, n_{2}}^{\beta} 2, n_{2}+r_{2} \cdot t_{2}^{2 n_{2}^{+r} r_{2}^{-1}} \tag{5.7}
\end{equation*}
$$

or the sum of these forms.

One must check that neither of the forms vanishes identically as a polynomial in t_{1}, t_{2}, and that the forms do not cancel each other. Clearly (5.7) does not vanish. (5.7) cancels (5.6) only if $n_{1}=1$, but then $n_{2}=1$ also, and the forms have different degrees. Hence they do not cancel each other. For the form (5.6) we have 2 cases:
a) $r=0$. Then the form vanishes iff

$$
{ }_{1, n_{1}}^{\beta}{ }_{2, n_{2}}-\quad \alpha_{2, n_{2}}^{\beta}{1, n_{1}}=0
$$

But the last expression is zero if and only if there is a plane H, with $I\left(P_{i}, C \cap H\right) \geqslant n_{i}+1$, for $i=1,2$. This would contradict the definition of r, so the form does not vanish.
b) $r>0$. The form does not vanish since
(i) $\mathrm{k}_{1} \neq \mathrm{k}_{2}$ (ii) $\alpha_{1, \mathrm{n}_{1}}$ and $\alpha_{2, \mathrm{n}_{2}}$ are non-zero
(iii) $\beta_{1, n_{1}+r}$ or $\beta_{2, n_{2}+r}$ is non-zero.

Hence the multiplicity of $i^{-1}\left(V_{4}^{1}\right)$ at $P_{1}+P_{2}$ is equal to the degree of the leading form of R :

$$
\min \left(n_{1}+n_{2}-2+r, \quad 2 n_{2}+r_{2}-1\right)
$$

This gives the proposition.

Corollary 5.7.

If a stationary secant $\overline{\mathrm{P}_{1} \mathrm{P}_{2}}$ is not a tangent to C at any of the points P_{1}, P_{2}, then the multiplicity of $i^{-1}\left(V_{4}^{1}\right)$ at $P_{1}+P_{2}$ is

$$
r=\min \left(I\left(P_{1}, C \cap H\right), I\left(P_{2}, C \cap H\right)\right)-1
$$

where H is the plane spanned by the tangent lines to C at P_{1} and P_{2}.

Comment: Assume
a) No plane intersects C more than 4 times at any point.
b) C has no bitangents.
c) C has no flexes.
d) No plane is osculating at more than one point of C.
e) For each tangential trisecant line to C tangent to C at say
P_{1} and intersecting C transversally at say P_{2}, the osculating plane at P_{1} does not contain the tangent to C at P_{2}.

Then it follows from Propositions 5.3. and 5.6. that the curve $i^{-1}\left(V_{4}^{1}\right)$ is non-singular.

A non-singular space curve has only finitely many tangential trisecants, flexes, bitangents, and hyperosculating or biosculating planes.

Hence it follows that the curve (scheme) $i^{-1}\left(V_{4}^{1}\right)$ is always reduced.

This curve might however be reducible. As an example of this, take C as the complete intersection of two quadric surfaces. Then C is contained in 4 quadric cones, and each generatrix of each such cone is a stationary bisecant line. Hence $i^{-1}\left(V_{4}^{1}\right)$ has (at least) 4 components in this case.

A geometrical interpretation of the tangent cone $\int_{\mathrm{D}}{\left(i^{-1}\left(V_{4}^{1}\right)\right.}_{(}$
In Definition 3.2. we described the (projectivized) tangent cone of a variety at a point. The tangent cone of the curve $i^{-1}\left(V_{4}^{l}\right)$ at a point D is determined by the leading form of the relation R as given in Formula (5.3) in the case $D=2 P$, or as in Formula (5.6) and (5.7) where the leading form is given explicitly in the case $D=P_{1}+P_{2}, P_{1} \neq P_{2}$.

In both cases the tangent cone is determined by a homogeneous polynomial of degree m in 2 variables, where m is the multiplicity of $i^{-1}\left(V_{4}^{l}\right)$ at D. This polynomial splits into m linear factors. It turns out that in many cases each linear factor in the leading form corresponds to a point on the secant line L with a certain geometrical significance. Clearly each linear factor corresponds to a point of the projectivized tangent cone $\mathrm{PJ}_{\mathrm{D}}\left(\mathrm{i}^{-1}\left(\mathrm{~V}_{4}^{1}\right)\right)$. Hence we have an analogy to Result 4.2. in these cases. We would like to explain this more closely.

As usual we denote by $\ell(L)$ the point in the Grassmannian $G=G(1,3)$ corresponding to a line L. Set

$$
B=\{\ell(L) \mid L \text { satisfies } a) \text { or } b) \text { below }\}
$$

a) $L \cap C=\left\{P_{1}, P_{2}\right\}$, and L is not a tangent line to C.
b) $L \cap C=\{P\}$, and L is a tangent, but not a flex tangent line to C at P.

By the Trisecant lemma the closure \bar{B} is a surface in G. It is a standard fact that \bar{B} is locally isomorphic to $C^{(2)}$ at points of B under the map that sends the secant (tangent) line $l(L)$ to the divisor $P_{1}+P_{2}(2 P)$. Moreover \bar{B} is non-singular at points of B. Let S be the subcurve of \bar{B} corresponding to stationary bisecants in the sense described earlier. Then S is locally isomorphic to $i^{-1}\left(V_{4}^{1}\right)$ at points of $S \cap B$.

Consider the Plücker embedding $G \subseteq P^{5}$. It is a well-known fact; see for example [G-P], p. 16, that the points of $S \cap B$ are exactly those points of B such that the embedded tangent planes to \bar{B} in P^{5} are globally contained in G (in fact as β-planes). For a point $\ell(L)$ on $S \cap B$, this tangent plane is H, where H is the stationary plane in P^{3} spanned by the divisor 2 D on C.

This information implies that if not C is contained in a cone consisting of stationary bisecant lines, then the family of stationary bisecant lines envelope another curve \mathcal{C} in P^{3}. The points of P are those where 2 concecutive stationary bisecants meet. Considering the stationary bisecants as dual lines, the same family envelopes a curve $\left[\right.$ in ${ }^{\mathrm{P}} 3$. The following is easily verified.

1) C is on a cone consisting of stationary bisecant lines < $\quad \mathrm{A}$ component of ℓ degenerates to a point $\Leftrightarrow A$ component of is plane.
2) ℓ and $[$ are dual to each other, that is [parametrizes the osculating planes of ℓ, and vice versa.
$3)$ [parametrizes the stationary bisecant planes of C.
Since $i^{-1}\left(V_{4}^{1}\right)$ is locally isomorphic to S at points of $S \cap B$, we can study the tangent cone to S at $l(L)$ instead of that of $i^{-1}\left(V_{4}^{1}\right)$ at D. Since the embedded tangent space of B at $\ell(L)$ is the dual plane $\stackrel{V}{H}$, we can embed $\mathcal{T}_{\ell(L)}(S)$ as a union of m lines in $\stackrel{V}{ }$ through the point $\ell(L)$. But a line in $\stackrel{V}{H} \subset G$ through $\ell(L)$ corresponds to a pencil of lines in $H \subset P^{3}$ through some point Q of L. Such a point Q of L corresponds to a point where L meets a concecutive stationary bisecant. Furthermore the points Q of L arising this way are exactly the points of $L \cap \ell$ arising from the local branch(es) of S.

This means that the explicit calculations of the leading forms performed earlier in $\$ 5$ tell us how the points of $L \cap C$ are located in Cases a) and b).

Case a.
LnC $=\left\{P_{1}, P_{2}\right\}, L$ is not a tangent line. Set $r=\min \left(I\left(P_{1}, C \cap H\right), I\left(P_{2}, C \cap H\right)-1\right)$ for the stationary plane H. By Formula (5.6) the leading form in t_{1}, t_{2} is (up to a constant)

$$
\alpha_{1,1} \beta_{2, r+1} t_{2}^{r}-\alpha_{2,1} \beta_{1, r+1} t_{1}^{r}
$$

Hence the multiplicity m is r, and we get r distinct points of L \cap outside c unless either $\beta_{1, r+1}$ or $\beta_{2, r+1}$ is zero. If, say, $\beta_{1, r+1}=0$, which means $I\left(P_{1}, C \cap H\right) \geqslant r+1$, then all r points of $L \cap C$ collapse to one point. It turns out that this single point is P_{2}. See Result 5.8. below, or Remark 5.9.

Case b. $L \cap C=\{P\}, L$ is tangent to C at P, but P is not a flex. We recall the definition $m_{3}=I(P, C \cap H)$, where H is the osculating (stationary) plane of C at P.
$\frac{m_{3}-3}{2}$
We recall that the leading form in S_{1}, S_{2} is S_{2} when m_{3} is odd and $\left(S_{1}+k S_{2}\right) s^{\frac{m_{3}}{2}-2}$ when m_{3} is even.

It turns out that the factor S_{2} corresponds to the (secant) point P of $C \cap L$, while the factor $S_{1}+k S_{2}$ corresponds to a point outside P. "In general", when $m_{3}=4$, we get only the last factor. In cases a. and b. we have another description of the points of Lne arising from the local branch(es) of. S. Denote by m the multiplicity of S at $\ell(L)$.

Result 5.8.
$Q \in L$ is a point of $m+1$ with vertex at Q such that $\operatorname{Sing}(N) \nmid L$ and such that

Case a. $I\left(P_{i}, C \cap N\right) \geqslant m+2$, for $i=1,2$
Case b. $\quad I(P, C \cap N) \geqslant 2 m+4$.

Idea of proof: Let F be the surface in P^{3} swept out by the stationary bisecant lines. Let C^{\prime} be a dummy curve on F transversal to the ruling around L. Regard L as a singular tri-secant to $C U C^{\prime}$. The point $\ell(L)$ is contained in a non-reduced component of the trisecant curve in G. Then apply Result 4.3. in the case $n=3$.

Remark 5.9. Recall the local parametrizations of C introduced in the proof of Propositon 5.6. Referring to these parametrizations, Result 5.8 translates in Case a) to:

$$
\begin{gathered}
Q=(1, k, 0,0) \quad \text { is a point on } L \cap \text { iff } \\
\\
{ }^{\left(\frac{k_{2}-k}{k_{1}-k}\right)^{r}}=\frac{\beta_{1, r+1}}{\beta_{2, r+1}} \cdot \frac{\alpha_{2,1}^{r+1}}{\alpha_{1,1}^{r+1}} .
\end{gathered}
$$

A similar result can be obtained in Case b).

We might return to a more detailed study of the curves $\mathcal{C}, \mathrm{s},[$ in another paper. With the information we have now it is easy to compute the "expected" genera, degrees, and numbers of cusps of these curves.

§6. Singularities of plane curves.

Assume $r k V=3$, and that V is base point free. Thus V defines a map

$$
\phi: C \rightarrow \bar{C} \subseteq \mathrm{P}^{2}
$$

We can "measure" the singularities of \bar{C} by studying the scheme V_{2}^{l} in $C^{(2)}$. This scheme may consist of 2 kinds of points:

1) Divisors $\mathrm{P}_{1}+\mathrm{P}_{2}$, where $\mathrm{P}_{1} \neq \mathrm{P}_{2}$
2) Divisors 2P.

The first ones correspond to nodes of C; the latter ones to cusps. If V_{2}^{l} is finite, it is well known that its total length is

$$
\frac{1}{2}(d-1)(d-2)-g
$$

where $d=\operatorname{deg} \bar{C}=\operatorname{deg} L$, and $g=$ genus (C).

Tangent space dimensions of V_{2}^{1}.
Assume $D=P_{1}+P_{2} \in V_{2}^{l}$, where $P_{1} \neq P_{2}$. We see from Theorem
2.4. that the tangent space dimension of V_{2}^{l} at D is:

A least 1 iff the two branches of \bar{C} at $\phi\left(\mathrm{P}_{1}\right)=\phi\left(\mathrm{P}_{2}\right)$ have a common tangent line or $2 \mathrm{P}_{\mathrm{i}} \in \mathrm{V}_{2}^{1}$ for $\mathrm{i}=1$ or 2 .

2 iff both $2 \mathrm{P}_{1}$ and $2 \mathrm{P}_{2}$ are contained in V_{2}^{1}.

1

1

2.

Assume $D=2 \mathrm{P} \in \mathrm{V}_{2}^{1}$. We see from Theorem 2.4. that the tangent space dimension of V_{2}^{1} at D is:

At least 1 iff the unique tangent line L of \bar{C} at $\phi(P)$ intersects the branch of $\overline{\mathrm{C}}$ at least 4 times at $\phi(P)$.

2 iff $4 P \in V_{4}^{3}$; which means that the multiplicity of the branch of $\overline{\mathrm{C}}$ at $\phi(\mathrm{P})$ is at least 4 . \bar{c}

Tangent space dimension :

1

1

2

The multiplicity of V_{2}^{1} at $\mathrm{D}=2 \mathrm{P}$.
From now on we will concentrate on divisors of the type 2 P . We will not prove any thing essentially new, but we will show how our set-up fits in well with traditional results.

Detnote by Mult ${ }_{D} V_{2}^{1}$ the multiplicity or local length of V_{2}^{1} at a divisor D. Clearly the δ-invariant of \bar{C} at $Q \in P^{2}$ is $\sum M u l t_{D} V_{2}^{1}$, where the sum is taken over those divors $P_{1}+P_{2}$ and $2 P$ such that $\phi\left(P_{1}\right)=\phi\left(P_{2}\right)=Q$ and $\phi(P)=Q$. We will show how to find the Mult ${ }_{2 \mathrm{P}} \mathrm{V}_{2}$, when CharK $=0$, and $\mathrm{K}=\overline{\mathrm{K}}$.

Choose

$$
x_{r}=\sum_{j=0}^{\infty} \alpha_{r, j} t^{j} \quad, \text { for } r=0,1,2
$$

as local parametrizations at P of the sections spanning V. We may assume $X_{0} \equiv 1$. The matrix M from Formula (1.1) is:

$$
\left[\begin{array}{lll}
1 & \sum_{j \geqslant 0} \alpha_{1}, j{ }^{W_{j}}\left(s_{1}, s_{2}\right) & \sum_{j \geqslant 0} \alpha_{2, j} W_{j}\left(s_{1}, s_{2}\right) \\
0 & \sum_{j \geqslant 1} \alpha_{1, j}{ }^{W_{j-1}}\left(s_{1}, s_{2}\right) & \sum_{j \geqslant 1} \alpha_{2, j} W_{j-1}\left(s_{1}, s_{2}\right)
\end{array}\right]
$$

We assume $P=(1,0,0)$ and obtain

$$
\hat{o}_{V_{2}^{1}, 2 P}=K\left[\left[s_{1}, s_{2}\right]\right] / I
$$

where

$$
I=\left(\sum_{j \geqslant 2} \alpha_{1, j} W_{j-1}\left(s_{1}, s_{2}\right), \sum_{j \geqslant 2} \alpha_{2, j} W_{j-1}\left(s_{1}, s_{2}\right)\right)
$$

We have used that $\alpha_{1,1}=\alpha_{2,1}=0$ by assumption. When Char $K=0$, it is a standard fact that we may simplify our local parametrizations:

$$
x_{0}=1, x_{1}=t^{n}, x_{2}=\sum_{j \geqslant n+1} \alpha_{2, j} t^{j}
$$

where $n \geqslant 2$ is the multiplicity at $\phi(P)$ of the branch of \bar{C} in question. The ideal I reduces to

$$
\left(W_{n-1}\left(s_{1}, s_{2}\right), \sum_{j \geqslant n+1} \alpha_{2, j} W_{j-1}\left(s_{1}, s_{2}\right)\right)
$$

We see that $\operatorname{Mult}_{2 \mathrm{P}} \mathrm{V}_{2}^{l}=$ colength I is equal to the intersection number of 2 algebroid curves at the origin in the s_{1}, s_{2}-plane. We will compute this number (Result 6.1.).

Considering s_{1}, s_{2} as elementary symmetric functions in two formal replicas t_{1}, t_{2}, we have by Remark 1.4:

$$
W_{n-1}\left(s_{1}\left(t_{1}, t_{2}\right), s_{2}\left(t_{1}, t_{2}\right)\right)=\prod_{r=1}^{n-l}\left(t_{1}-\varepsilon_{n, r} t_{2}\right)
$$

where $\varepsilon_{n, r}=e^{\frac{2 \pi r i}{n}}$.
By standard arithmetic this gives:

$$
W_{n-1}\left(s_{1}, s_{2}\right)=\prod_{r=1}^{\frac{n-1}{2}}\left(s_{1}^{2}-k_{n, r} s_{2}\right), \text { when } n \text { is odd }
$$

$$
\begin{align*}
& W_{n-1}\left(s_{1}, s_{2}\right)=s_{1} \cdot \prod_{r=1}^{\frac{n-2}{2}}\left(s_{1}^{2}-k_{n, r} s_{2}\right), \text { when } n \quad \text { is even } \tag{6.1}\\
& \text { where } k_{n, r}=2+\varepsilon_{n, r}+\varepsilon_{n, r}^{-1}
\end{align*}
$$

In any case $M u l t_{2 P} V_{2}^{1}$ is the sum of the intersection numbers obained by intersecting the algebroid curve with equation

$$
\sum_{j \geqslant n+1} \alpha_{2, j} \mathrm{~W}_{j-1}\left(s_{1}, s_{2}\right) \quad \text { with each of the }
$$

curves corresponding to the factors of $W_{n-1}\left(s_{1}, s_{2}\right)$ (at the origin).
Formula (6.1) implies:
a) $\quad W_{j-1}\left(s_{1}, \frac{s_{1}^{2}}{k_{n, r}}\right) \equiv 0 \quad$ iff
$\varepsilon_{n, r}$ is a primitive m 'th root of unity for an m dividing j
b) $W_{j-1}\left(0, s_{2}\right) \equiv 0 \quad$ iff j is even.

For each $m \geqslant 2$ we define

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{m}}=\min \left\{\ell \mid \mathrm{m} \text { does not divide } \ell, \text { and } \alpha_{2, \ell} \neq 0\right\} . \\
& r_{m}=\notin\left\{\text { primitive } m^{\prime} \text { th roots of unity }\right\},
\end{aligned}
$$

or recursively: $r_{m}=m-1-\sum r_{m_{i}}$, where the sum is taken over all m_{i} that divide m, except 1 and m. We then obtain:

Result 6.1.

$$
\operatorname{Mult}_{2 \mathrm{P}} \mathrm{~V}_{2}^{1}=\sum_{i=1}^{s} \frac{\mathrm{~m}_{\mathrm{i}}\left(\mathrm{~B}_{\mathrm{m}_{\mathrm{i}}}-1\right)}{2}
$$

where m_{1}, \ldots, m_{s} are the positive integers (except 1) dividing n.

§7 A note on Weierstrass points.

Let V be a linear system of rank $r+1$ and degree d on a curve C. We will use Theorem 1.1. to prove a well-known formula for the weight (multiplicity) of a rank $\ell+1$ Wronskian point of V, $0 \leqslant \ell \leqslant r$. A rank $r+1$ Wronskian point is a Weierstrass point. First we will define our terms, without making any assumptions on the characteristic of K.

Consider the map:

$$
\phi_{\ell}: C \rightarrow C^{(\ell+1)}
$$

where $\phi_{\ell}(P)=(\ell+1) P$, for $P \in C$.

Definition 7.1.
a) We say that V is classical if $\phi_{\ell}^{-1}\left(V_{\ell+1}^{1}\right)$ is a finite set for $0 \leqslant \ell \leqslant r$.
b) Assume V is classical. We define the (finite) rk $\ell+1$ Wronskian scheme of V as

$$
T_{\ell}=\phi_{\ell}^{-1}\left(V_{\ell+1}^{1}\right)
$$

c) We define the (finite) Weierstraß scheme of V as T_{r}. The points of T_{r} are denoted by Weierstrass points of V.

Let P be an arbitrary point of C, and let t be a local parameter of C at P. Then there are uniquely determined integers (not depending on the choice of t) $h_{0}<h_{1} \leqslant \cdots<h_{r}$ such that there are sections X_{0}, \ldots, X_{r} spanning V with local parametrizations

$$
x_{0}=\sum_{j \geqslant h_{0}} \alpha_{0, j} t^{j}, \ldots, x_{r}=\sum_{j \geqslant h_{r}} \alpha_{r, j} t^{j}
$$

with $\alpha_{i, h_{i}} \neq 0$, for $i=0, \ldots, r$. The integers h_{o}, \ldots, h_{r} are called the Hermite invariants of V at P. If V is classical, then $h_{i}=i$ for $i=0, \ldots, r$ for all but a finite set of points on C. We now give our result:

Proposition 7.2.

Assume charK $=0$ or $\operatorname{char} K \geqslant \ell+1$, and that V is classical.
Then the multiplicity of T_{ℓ} at P is $\sum_{i=0}^{\ell}\left(h_{i}-i\right)=\sum_{i=0}^{\ell} h_{i}-\frac{\ell(\ell+1)}{2}$.

Comment: This is essentially Theorem 15, ii of [L2]. In [L2], Theorem 15, i, one proves that if $\operatorname{CharK}=0$, or char $\geqslant d+1$, then V is classical.

Proof: By Theorem 1.l. we have

$$
\hat{o}_{V_{\ell+1}^{1},(\ell+1) P} \approx K\left[\left[s_{1}, \ldots, s_{\ell+1}\right]\right] / J
$$

where J is generated by the $\ell+1$-minors of

The map $\quad \phi_{\ell}: C \rightarrow C^{(\ell+1)}$ induces a map

$$
\phi_{\ell}^{\star}: \hat{o}_{C}(\ell+1),(\ell+1) P=K\left[\left[s_{1}, \ldots, s_{\ell+1}\right]\right] \rightarrow \hat{o}_{C, P} \simeq K[[t]]
$$

such that for $k=1, \ldots, \ell+1$, we have:

$$
\phi_{\ell}^{\star}\left(s_{k}\right)=s_{k}(t, \ldots, t) \text { where } s_{k} \text { is the } k \text { 'th elementary }
$$

symmetric function in $\ell+1$ variables. From Remark 1.4. we have

$$
\phi_{\ell}^{\star}\left(W_{j}(\underline{s})\right)=W_{j}\left(\phi_{l}^{\star} s_{1}, \cdots, \phi_{\ell}^{\star} s_{\ell+1}\right)=\binom{j+\ell}{\ell} \cdot t^{j} \text {, for all } j .
$$

This implies that

$$
\hat{\mathrm{O}}_{\mathrm{T}_{\ell}, \mathrm{P}} \simeq \mathrm{\sim}[[\mathrm{t}]] / \phi_{\ell}^{\star}(\mathrm{J})
$$

where $\phi_{\ell}^{\star}(J)$ is generated by the $\ell+1$-minors of the matrix:

The multiplicity of T_{ℓ} at P is the lowest number m such that there is a term t^{m} in one of the minors generating $\phi_{\ell}^{*}(J)$.

The $\ell+1$-minor consisting of the $\ell+1$ first columns of (7.1) can be written as

$$
\sum_{j \geqslant m} c_{j} t^{j},
$$

where $m=h_{0}+\left(h_{1}-1\right)+\cdots+\left(h_{\ell^{-l}}\right)=\sum_{i=0}^{\ell}\left(h_{i}-i\right)$. Clearly no terms t^{n}, with $n<m$, is contained in any of the generators of $\phi_{\ell}^{\star} J$. Hence we have proved the proposition if we can show that c_{m} is non-zero. We have

The proposition follows from the following lemma:

Lemma 7.3.

$$
\begin{aligned}
& \left.\left\lvert\, \begin{array}{cccc}
\binom{h_{0}+l}{\ell} & \cdots & \cdots & \binom{h_{l}+}{\ell} \\
\vdots \\
\binom{h_{0}}{\ell} & \cdots & \cdots & \vdots \\
h_{l} \\
\ell
\end{array}\right.\right) \mid
\end{aligned}
$$

Comment: In [L1], Lemma 9, one shows that the determinant to the right is $\prod_{0 \leqslant j<i \leqslant \ell}\left(h_{i}-h_{j}\right) \cdot \frac{1}{\prod_{i=1}^{\ell} i!}$, which is non-zero.

Proof of Lemma 7.3.:

In the first row set

$$
\binom{h_{j}+\ell}{\ell}=\binom{h_{j}+\ell-1}{\ell-1}+\binom{h_{j}^{+\ell-1}}{\ell} \quad \text { for } 0 \leqslant j \leqslant \ell
$$

Since the entries in the second row are $\binom{h_{j}^{+\ell-1}}{\ell}$, these terms can be deleted in the first row. In this way the entries in row $\mathrm{nr} . \mathrm{k}+1$ can be changed from $\binom{h_{j}+\ell-k}{\ell}$ to $\binom{h_{j}+\ell-k-1}{\ell-1}$ for $k=0, \ldots, \ell-1$ and $j=0, \ldots, \ell$.

Then start at the top again, and treat all but the 2 last rows the same way once more.

When the top row has been treated this way ℓ times, we end up with the desired determinant.

This completes the proof of Lemma 7.3. and also of Proposition 7.2.

Corollary 7.4.

Assume char $K=0$, or charK $\geqslant r+1$. Then the multiplicity of P as a Weierstra β point is

$$
\sum_{i=0}^{r}\left(h_{i}-i\right)
$$

Remark: It is a well known fact that the total length of T_{r}, that is the sum of the multiplicites of the Weierstra β points, is:

$$
((g-1) r+d)(r+1) \text {, where } g \text { is the genus of } C \text {. }
$$

This follows from $[A-C-G-H], p .345$ and $p .358$, when $K=\mathbf{c}$.

Non-classical linear systems.

What happens if we impose no restrictions on char K? This question has been answered in a very satisfactory way in [L2], and we would be happy to reproduce some of the results in [L2] using our set-up. It seems however that our methods are to crude when O < charK < d. Still we will add a few words about this case.

Let $h_{0, \ldots, h_{r}}$ be the Hermite invariants of V at a point P of C. On an open set of C the Hermite invariants are constant with values b_{0}, \ldots, b_{r}. When char $K=0$ or chark $>d$, we have $b_{i}=i$, for $i=0, \ldots, r$. When $2 \leqslant \operatorname{chark} \leqslant d$, we have $i \leqslant b_{i}<b_{i+1}$ for $0 \leqslant i \leqslant r-1$, and b_{i} might or might not be equal to i for all i. In this case we have:

$$
\phi_{\mathrm{b}_{\ell}}^{-1}\left(\mathrm{v}_{\mathrm{b}}^{\mathrm{b}} \ell_{\ell}^{-\ell+1}\right) \text { is a finite set, for } 0 \leqslant \ell \leqslant r \text {, }
$$

in analogy with Definition 7.1.a.

$$
\phi_{\mathrm{b}}^{-1}\left(\mathrm{~V}_{\mathrm{b}_{\ell}+1}^{\mathrm{b}}\right) \text { is also defined as a finite scheme, which we }
$$

denote by T_{ℓ}, and

$$
R=\hat{O}_{T_{\ell}, P} \simeq K[[t]] / \phi_{b_{\ell}}^{\star}(J)
$$

where $\phi_{b_{\ell}}^{\star}(J)$ is generated by the $\ell+1$ minors of the following $\left(b_{\ell}+1\right) \times(r+1)$ matrix:
(As usual $\binom{a}{b}=0$ if $b>a$).
The multiplicity of T_{ℓ} at P is the length of the ring R. One sees that $P \in T_{\ell} \quad \operatorname{iff} \alpha_{\ell, j}=0$ for $j \leqslant b_{\ell}$, that is iff $h_{s} \geqslant b_{s}+1$. Set-theoretically we have: P is a rank $\ell+1$ Wronskian point in the sense of [L2] iff $P \in \underset{k=0}{\ell} T_{k}$. In [L2], Example 1, p.64, one shows that it is possible that $P \notin T_{\ell}$, but $P \in T_{k}$ for some $k<\ell$. Hence the multiplicity we have described for a point of T_{ℓ} is different from the multiplicity described in [L2] for a rank $\ell+1$ Wronskian point.

Both multiplicities are however well defined.

References

$[A-C-G-H]-$ Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J., Geometry of Algebraic Curves, Volume I, Springer Verlag, 1985.
[G-P]-Gruson, L., Peskine, C., Courbes de l'Espace Projectif, variétés de sécantes. Enumerative Geometry and Classical Algebraic Geometry, Progress in Mathematics, Vol. 24, pp. 1-31, Birkhäuser, 1982.
[J] - Johnsen, T., The Singularities of the 3-secant Curve associated to a Space curve, Transactions of the American Mathematical Society, Vol. 295, Number 1, pp. 107-118.
[Ll] - Laksov, D., Weierstraß points on Curves, Astérisque, Vol. 8788, 1981, pp. 221-247.
[L2] - Laksov, D., Wronskians and Plücker Formulas for Linear Systems on Curves, Ann.scient., Ec.Norm.Sup., Series 4, t.17, 1984, pp. 45-66.
[Ma] - Mattuck, A., Secant Bundles on Symmetric Products, American Journal of Mathematics, Vol. 87, 1965, pp. 779-797.
[Ma-Ma] - Mattuck, A., Mayer, A., The Riemann-Roch Theorem for Algebraic Curves, Ann.Scuola Norm. Sup., Pisa, Serie III, Vol.XVII, Fasc.III, 1963, pp. 223-237.

