Abstract

Let V Dbe a linear system on a curve C. In Part 1 we constructed a

. . . r . s
method for studying the secant varieties V locally. The varieties

d
V; are contained in the d-fold symmetric product C(d).

In this paper (Part 2) we apply the methods from Part 1. We
give a formula for local tangent space dimensions of the varieties

Vé valid in all characteristics. (Theorem 2.4.)

Assume rank V = n+l, and char K = 0. In §3 and §4 we describe

. . . . . 1
in detail the projectivized tangent cones of the varieties Vn for

a large class of points. The description is a generalization of

earlier work on trisecants for a space curve.

o(2)

In §5 we study the curve in consisting of divisors D

such that 2D ¢ VL. We give multiplicity formulas for all points on

. . (2)
this curve in C

in terms of local geometrical invariants of C.
We assume char K = 0.
At last we use our set-up to reproduce two well-known formulas;

one for the 6-invariant of a plane cusp, and one for the weights of

WeierstraB points of a linear system.

§1. Introduction

Let C be a non-singular curve over a field K, and let

vV < HO(C,L) be a linear system on C, where L 1is a line bundle.

(d)

Denote by C the d'th symmetric product of C. The subschemes

V§ of C(d) consist of those divisors that impose at most d-r

. P r . .
independent conditions on V. The Vd are secant varieties.

As an example consider the case where rank V=4 and V is
very ample. Then V defines an embedding of C into P3. The

variety V; parametrizes those divisors of degree 3 that consist of




1

3 collinear poins on C in P3. Roughly speaking: V3 parametrizes

the 3-secant lines of the embedded curve.

r
It is a well-known fact that the V can be defined scheme-

d

theoretically as the zero schemes

Cd-r+1

z( A o), for r=1,...,d

. . (a)
where o¢ 1is a canonical C -bundle map

d
o V ® C( ) > EL'
d

and E is a vector bundle of rank d on C( ) obtained from L

L
by a socalled symmetrization process.

In Part 1 we constructed a computational device for studying

. . r .
the map o and the varieties Vd locally. Our main results were

given in Theorem 4.2 and Proposition 4.4 of Part 1. We constructed a

local matrix description of o and described the formal completion

A
0 of the local ring of V;

Vg,D

local descripton is often trivial when D consists of d distinct

at a point (divisor) D. Such a

points. The main purpose with our results is to study the Vg at
points on the diagonal in C(d).
Part 1 is inspired by the papers [Ma] and [Ma-Ma]. In Part 2

we will use the results of Part 1 to give some geometrical results.
In §2 we yive a formula for the tangent space dimension of the
variety V; at a point D. The formula is valid in any character-
istic.
In §3 we study a large class of points on the variety V;,

where rank V = n+l. We describe the tangent cones of Vl at such




points, and in particular we give a formula for the multiplicity of
Vl at these points.

In §4 we find further properties of the tangent cones described
in §3. We will indicate when the projectivized tangent cones are
singular. This is a generalization of a result in [J] concerning
3-secant lines for a space curve.

In §5 we study stationary bisecants for a non-singular space
curve. A stationary bisecant is a bisecant line, where the curve
tangents at the points of secancy meet, or a tangent line at a point
where the osculating plane of the curve is hyperosculating. We define

c(2)

a curve in which parametrizes these situations, and we

describe the local structure of this curve. We find out how the

C(z) at a secant divisor is determi-

tangent cone of the curve in
ned by the local geometry of C a the points of secancy.

In the two last sections we give some further applications of
our local methods. These sections contain no essentially new results.

In §6 we study singularities of plane curves. We reproduce a
well-known formula for the é-invariant of a cusp.

In §7 we reproduce a well-known formula for the weights of

Weierstrap points on C with respect to an arbitrary linear system.

First we recall the main results from Part 1.

The main results from Part 1.

Let XO,...,Xn be independent sections spanning a linear sys-

tem V and set

and the Pi are distinct points on the curve C. Choose t as a

local parameter for C at Pi' for i=1,...,k, and let




Ja_ . .tJ
oo TridTd

be a local parametrization of Xr at Pi’ for i=1,...,k, and

r=0,°*°°*,n.

Regard s «eesS PP PP -
g { 1.1 1,4, Sk,] Sk,dk} as a set of (for
mal) algebraically independent variables. Let S, o = 0, when
’
L > di, and set
$i,1%i,2 ° %i,3
(1), _ A
(1.1) Wj(g ) = 1 Si1 85,541
o " . :
0O+ « O 1 s,
i,l1

when Jj€EN, set Wo(g(l))=1, and Wj(g_ =0, when j<0 for i=1, -, k.

Denote by M the following matrix:

"’1‘
a01133§ an']tjj_ )
(1) « v e (1)
Eao,1,j j—d]+1(§ ) ¢ Zan,1,j j-d]+1(§ )
(1.2) o :
ZaO,k,jWJ(E(k)) . . . [ Xan'kljwj(g(k))
(x) ’ (k)
an,k,jwj—dk+1(§ ) e e e zan,k,jwj—dk+1(§ )
Theorem 1.1.
0 K[ [ 11/3
= s s ese,S
VE'D 1,1 k, dy

where J 1is generated by the d-r+l-minors of M.




Remark 1.2. If di= 1, for i =1,...,d, then the entries of M

are simply the local parametrizations of the sections spanning V.

Denote by BN the following (Brill-Noether) matrix consisting

of the "constant terms" of M:

- =
%0,1,0 T T %a0
%0,1,4,-1 ¢ 0t %n,1.4,-1
(1.3) y
%0,%,0 A 0
“okea -1 T T Pnx,a -

Corollary 1.3.

D ¢ Vg if and only if all d-r+1 minors of BN vanish.

The following remarks will be useful:

Remark 1.4.

Regard S],...,Sd as the d elementary symmetric functions in
d variables T]""'Td' and let Wj(§) be as in Formula (1.1).

Then

Wj(s1(T1'""Td)""'sd(T1'""Td))

is the sum of all monic monomials of degree Jj in T]""’Td'

Remark 1.5.

d
i i L 1503-1) (1 +eeobi )1

W. (s L8q) =1 s e eee o5 9 (-1)3=T .

J -l,oo

[eee T
l_l. ld.

where the first sum is taken over those (i]""’id) such that

j e i, = d.
E]J '3

J




§2. The tangent space dimension of V! at D ¢ C(d).
T Qa

The varieties Vé are interesting since they parametrize divi-

sors that are "special" with respect to the linear systems V.

k
Let D= ) d,P., where D ¢€ Vé, and the P. are distinct
i=1 *
points on C. We will use Theorem 1.1. to compute the tangent space
dimension of Vé at D. The Brill-Noether matrix BN (Formula
(1.3)) consists of k groups of concecutive rows, where the i'th

group (consisting of di rows) corresponds to the point Pi' for

i=],ooo,ko

Definition 2.1.

ki is the maximal integer s ¢ {0,...,di—1} such that the

matrix consisting of all rows of BN except the s+1'th row in the

i'th group, has rank d-1. If no such integer exists, set ki = -1.

Explanation. Assume for simplicity that V 1is base-point free and

. n
thus maps C into some P . For a chosen set of local parameters of

C at the Pi we can talk about derivative vectors of C at the
Pi' Call the point Pi itself the O0'th derivative vector of C at
P.. Then 1, is the maximal integer sE{O,...,di—1} such that the
union of the O'th,...,s'th,...,di—]'th derivative vectors of C

i

at P. and the O'th,...,dj—l'th derivative vectors at Pj' for

j*¥i, span a d-2 plane in P". If no such s exists, then £i= -1.

Observation 2.2.

D EVé <=> li= "'], fO]’.‘ i= 1,000,k0

Definition 2.3.

. 1
Assume D' € C(d ), for some d' € N. Denote by V(-D') the




linear system V N HO(C,L(—D')).

We now give the main result of this section:

Theorem 2.4.

The tangent space dimension of Vé at D is

k
min(d,rk V(- ) (4,42, +1)P )+2d-n-2) where rk V = n+1.
i=1

Proof.

It is enough to study the constant and linear parts of the
matrix M in Formula (1.2). Since rk BN < d-1, we may assume that
only the d-1 first columns of BN are non-zero. Since we will
only study the linear parts of the d-minors, we may assume that the
entries in the d-1 first columns are constant. Assume first D=4P.

We may drop the index i in M, and we have:

- d- ol
Qoo+ Cyge EllawiaSy . L—l) AndSd

‘ 2
= ,
’ 4 * *
v . L3 L4

d-

. . j=1
Here we used that the linear part of Wj(s1""’sd) is (—1)J Sj’
for j=1,...,d. See Formula (1.1) or Remark 1.5. Let Dj—] be the

d-1 minor formed by the d-1 first columns of M (or BN) minus
the Jj'th row. We see that & 1is the largest integer Jj such that
Dj¢ 0 if such an integer exists (See Definition 2.1.).

The linear parts of the n+2-d relations cutting out V! are

d
(up to signs):’

e Lt 4 &2 -
Ao, a1 (I)i ad.(,,LS&.v-(-l)ad.,,MSd . (—f) ah.&&lﬂ*’&ﬁam 5y

d .
Codt’** Cizdt O d S+l QgapSy -+ AnaSit ‘*,'H)Gn,zblsd

a——

|




( )

D )s - (a. D + a. D s + oo +
3;,a%%a-2" i,a01% i,a0-1%a-241
2
(=107 (a; q4gPg*ee ta; 4Pp)sq
for i=d—],...,n.
The coefficient matrix of these relations in s1,...,sd is
easily seen to have the same rank as
‘ra . . * ‘T
da-1,d d-1,d+2
N = 0 .
a L] L[] L[] a
n,d n,d+2
b B
Hence the tangent space dimension of’ Vé at D is d-rk N if
230 and d otherwise. Assume first 220. Let us find
rk V(-(2+d4+1)P).
Since 23>0, Observation 2.2. gives that the matrix BN has rank
exactly d-1, and therefore a section contained in V(-dP) must be
. of the form
+ e + ' . ' d
cd_]Xd_] chn where the cj € K, an

where

Xj is the section corresponding to the

j+1'th column of M.

The conditions that such a section should be contained in

V(-(2+4d+1)P)

are:
4+ o o o 4 =
%a-1,4%-1 2h,a% = °
9 4
L) [
+ = .
2a-1,d+42%a-1 *an,a+2% = °
These equations in the variables Cqo1’ 1%, give rise to a

coefficient matrix, which is the transpose of N.

Hence rk V(-(2+d+1)P) n-d+2 - rk N, and we deduce that the

tangent space dimension of vl

at D 1is




d - rk N = 2d-n-2 + rk V(-(2+d+1)P)

Since rk V(-(&2+4+1)P) < rk V(-dP) = n-d+2, our tangent space dimen-
sion is at most

(2d-n-2) + (n-d+2) = d. Hence the theorem holds when D = 4P,
and 23>0. -

When D=dP and 2=-1, the tangent space dimension is d since

all the Dj are zero. On the other hand:

2d-n-2 + rk V(-(2+4+1)P) 2d-n-2 + rk V(-d4pr)

= (2d-n-2) + (n+1-rk BN) > d+1 , since rk BN < 4d-2.

Hence d is the minimum of d and 24-n-2 + rk V(-(2+4+1)P).

Our proof is now complete in the case D=dP. The dgeneral case fol-

lows easily using the same argument for each group of di rows of M.

§3. A local study of V!, where rk V = n+l > 4
Ll )

In [J], Theorem 2.3.1., we gave a multiplicity formula for
trisecant lines to a space curve. In this section we will generalize

this formula.

(n)

Let D ¢ C be a point of Vi, where rk V = n+1 > 4.

Assume:

1.) For each D' € C(n_]), such that D' < D, we have D' ¢ V;_

1

for i=1,...,k

k
2.) If D = 2 n.P. (all n.>0), then D+P. ¢ V2 _,
-, 11 i i n+1

3.) Char K = 0, and K = K.

Proposition 3.1.

Under Assumptions 1.), 2.), 3.) we have:




- 10 -

a) The tangent space dimension of V; at D is rk V(-2D) + n-2,

where rk V(-2D) is 0 or 1.

im O = n-2
b) dim vl,D n

c) The multiplicity of V; at D 1is the largest integer s such

that rk V(-sD) > 1. (with equality if V; is singular at D).

Proof: Let Ri, for i=1,...,k, be the integers described in Defi-

nition 2.1. Assumption 1.) gives ki =n, - 1 for all i. The tan-

gent space dimension formula in Part a) is then a special case of

Theorem 2.4., and it holds also when char K > 0.

Assumption 2.) gives that rk V(-2D) is O or 1, because if

n+1
2n

i e {1,...,x}. Hence a) holds.

rk V(-2D) > 2, then 2D € V, ', and then D + P, € v2 for all

n+1

By general facts about determinantial varieties we have

dim O > n-2.

vl,D

n ‘

If rk V(-2D) = 0, then the tangent space dimension of V! at
n

A
D 1is n-2 Dby a). Hence dim Ovl D < n-2, and b) follows. Further-
nl

more V; is non-singular at D in this case. Hence the multipli-

city of v; at D is 1. Since rk V(-2D)=0, and rk V(-1+D) > 2 > 1,

the number given in c¢) is also 1. Hence c) follows when rk V(-2D)=0.
It remains to prove b) and c) when rk V(-2D)=1. Let V De

generated by the sections {X .,Xn}.

NAE
rk V(-D) » 2 since D ¢ Vi' and rk V(-D) < 2 since D ¢ Vi
by Assumption 1.).

Hence rk V(-D) = 2, and we may assume that Xn ]

and X
n
generate V(-D). This means that the entries in the 2 last columns

of the BN-matrix (Formula (1.3)) are =zero.




We may assume that Xn generates V(-2D) since rk V(-2D)=1.
We will also assume that D = nP. The proof of the general case is a-

slight generalization of this special case, essentially only invol-

ving more indices. At the end of the proof we will add a few words

about how this generalization can be made. When D=nP, the matrix M

is of the following form:
o ! i
Qo Aot -~ H) At St~ aiﬂ;'mnWmv\' T

3 ‘ ” s

L] o

-l
Lao.mi" At~ an-l,hsi"'""”'H]an-t.ln-(sn*”“ a'n:"‘ﬂW -VH'?W”
-

where m = max{s|rk V(-sD)=1} > 2, and W= wj(g) as in Formula
(1.1).

To set up the column to the right (corresponding to Xn) we
have used

= = o o o = = 0
an,O an,1 an,mn—]

which is true since Xn € V(-mD). In particular this column contains
no linear terms in {s}.

In the n'th column (corresponding to Xn ) we have listed all

-1

linear terms in {s}. Observe that a + 0, because a =0
- n-1,n n-1,n
implies (n+1)P ¢ Vﬁ+], which contradicts Assumption 2.).

Summing up we see that there is at most one n-minor of M that
contains linear terms, namely the one obtained by disregarding the
column corresponding to Xn.

Denote by Rj(s],...,sn) the n-minor of M obtained by dis-

regarding the column corresponding to X,, for 3j=0,...,n.




By Assumption 1.) the n-l-minor obtained from the n-1 first
columns of the BN-matrix minus the bottom row is non-zero. This ob-
servation together with the fact that a _1.n is non-zero enables us

-1

to use the relation Rn(s],...,sn) to express s, as a function

f(sz,...,sn)

We see that:

I

V;,D K[[sz,...,sn]]/(ﬁo,...,ﬁn_])

where R, = R, (f(s_,...,s ), s_,...,s ) for 3j=0,...,n-1. Denote by
Jj j 2 n 2 n

A
M the maximal ideal of the last ring. The dimension of Ovl D
nl

is
n-2 1if there is a relation between the images of 52,...,sn modulo

r e s s .
M" for some r. Then the multiplicity m' of Vé at D 1is the

smallest integer r such that there is such a relation. We will show
m' = m = max{s|rkv(-sD) = 1}.

Using Remark 1.5. one sees that the entries in the column corre-
sponding to X contain no terms of degree less than m in
n

S_I,...,Sn.

Hence the relations R],...,ﬁn_z contain no terms of degree

less than m+1 in sz,...,sn since all the constant terms in the

column corresponding to X 1 are zero.

We also see that the relation ﬁn—] contains no terms of
degree less than m.

To show b) and c) it is therefore enough to show that the homo-
geneous part of degree m of ﬁn-] does not vanish identically.
Denote by Dj the n-1 minor obtained from the n-1 first columns

of the BN-matrix while disregarding the j+1'th row, for

j=0, ...,n"].




Using Formula (1.2) and Remark 1.5. we see that Rn 1(s],..{,sn)

is (up to a possible shift of sign):

m )
Sn(DO. an,mn+D1. an,mn+1+ tee t Dn—]' an,mn+n—1)
mls (0 Dye $oees 4D e ) +m
sn sn-] 1 an,mn n-1 n, mn+n-2
n-1 m-1
+ (=1 Sn s]( Dn—I. an,mn) tm
n-1 m-2
+ (-1) Sn Sn—lsz( Dhtt an,nm) * m(m-1)

+

other terms of degree m + terms of degree m+l1 or more.

There is no 52—2sn_]s1—term by Remark 1.5. The relation ﬁn—] is
obtained by substituting s] = f(sz,...,sn) in the above relation.
If the homogeneous part of degree m vanishes, it implies in

particular that the terms involving

vanish. This gives the following coefficient matrix in the

variables an,mn""'an,mn+n—1:
- 7
3 D e e e e e D D
1 n-2 n-1
* — s o e o o _mD
sz m n-1
N = o
m-2 .
- (-1)" " “mp, _, (:)
(-1) m(m-l)Dn_]
L

The stars depend on f(sz,...,sn)




Assumption 1.) implies Dn_]# 0. Hence det N #0 when Char K = 0.

Hence the homogeneous part of ﬁn—] of degree m vanishes

identically only if

But this implies rk V(-(m+1)D) = 1 which contradicts the definition

of m. This completes the proof of b) and c¢) when D=nP. We see that

the proof does not work if n=2, since we need srr‘:—zsn_]s2 to be
m-1

different from sn s].

In the general case D =
i

il 1R

niPi essentially the same argument works
1

k
when n = z ni > 3. We always get one and only one relation between
i=1

the s, 3 modulo (s)2, and we use this relation to express one of
7

the s, , say s , as a linear function in the other s, . modulo
i,1 1,1 1,3

(§)2. This will follow from Assumption 2.). One can always assume

n, = max{ni}. Then one splits into 3 cases; n, > 3, n,= 2, n, = 1.
i

In each case one ends up with a skew-triangular coefficient matrix

analogous to N, with Di 's on the skew diagonal. All D,

,ni—l 1,ni—1
are non-zero by Assumption 1.), and one gets a contradiction the same

way as in the case D=nP. Hence b) and c) hold in general.

Definition 3.2.

For a variety X and a point P in X the tangent cone r];(X)

of X at P is

Spec( @ ml/ml+1)
i=0

where m is the maximal ideal of the local ring OX p*
7

The projectivized tangent cone PU;(X) of X at P is
Proj( @"ml/ml+]
i=0

).




Corollary 3.3.

Under Assumptions 1.), 2.), 3.) the projectived tangent cone

Pﬂb(vé) is a hypersurface of degree m in Pn_z, where

m = max{s|rk V(-sD)>1}.

Proof. Corollary 3.3. follows from the proof of Proposition 3.1.

§4. The tangent cone ﬂ];(vé), where rk V = n+l1 > 4.

In this section we will not always prove our assertions. Our
goal is to give a geometrical interpretation of 'jg(VQ) (or
P?b(vé)) described at the end of §3.

In §3 we studied a point D in V;, where rk V = n+l1 > 4.
Under Assumptions 1.), 2.), 3.) of §3 we gave a description of the
dimension, embedding dimension and multiplicity of V; at D.

A question which then arises naturally is: When is the projecti-
vized tangent cone Pﬂb(vé) singular? If n=3 .and V; is a curve,
then Pﬂb(vi) is singular if Vé does not have normal crossings at
D; we also say that V; possesses a non-ordinary singularity at D
in this case. In [J] we gave necessary and sufficient local conditi-
ons on C for determining whether the trisecant curve (essentially
Vé) possesses non-ordinary singularities or not. We want to
generalize these conditions to apply to any Vé, n>3, where

rk V = n+l.
In order to do this we assume:

2.). V 1is base-point free and D+P ¢ Vi+ for any point Pe€C.

1

Assumption 2.) is of course a strengthening of Assumption 2.) of §3;

but this strengthening is of no importance for the local geometry of




Vé at D. Whatever local result we prove for V; at D under Ass-
umptions 1.), 2{), 3.) will also hold under Assumptions 1.), 2.),
3.). This is true because the matrix M (Formula (1.2)) is only de-

pendent on the behaviour of V at the points P P and because

]I' kl

any base point of V 1is outside {P P by Assump-

1'°° k}

tion 1.).

' ) n

Under Assumption 2.) V defines a map ¢: C » C<c P . Let G =
G(n-2,n) be the Grassmannian, which parametrizes the n-2 planes in
n
P .

For a n-2 plane H denote by [H] the corresponding point in

G. Denote by F the incidence variety
{([H], P) € oxp"|pPeH]}.

Consider the following diagram:

. . n
Here p and q are the natural projection maps from F to P and

G respectively, and f%= p_1(5).




Let Sec Dbe the subvariety of G cut out by the sheaf of OG—
ideals:
n-1
F (quQ)F,

that is the sheaf of n-1'th Fitting ideals of the OG—sheaf q*qs
F

Then Sec parametrizes n-2 planes that are n-secant to C. This

definition of Sec is taken from [GP], where the case n=3 1is trea-

ted.

Assume D ¢ Vé, and that Assumptions 1.), 2!), 3.) hold.
Then D spans a unique n-2 plane; that is P]""'Pk and the di-l
first derivative vectors of C at Pi, for i=1,...,k, span a unique

n-2 plane H.

We make the following claim:

(a.1)  Toevhy = Tpyq(see).

In fact we strongly believe:
A
(4.2) o

We have not made any attempts to prove (4.2), but we have proved
(4.1) when D consists of n distinct points.

To find f];(vé) one simply calculates the leading forms of the
relations Rn_](i) and Rn(g) described in the proof of Proposition
3.1. In [J] an explicit description of fjhtﬁSec) is given in the
case where n=3, whether D consists of 3 distinct points or not.

It is easy, but a little painstaking, to generalize this expli—
cit description to arbitrary n»3, when the n points of D are
distinct. Comparing the 2 tangent cones one sees that they are iso-

morphic.




We omit the very technical calculations here. In principle the
same method should work when the n points are not distinct.

We will assume that Formula (4.1) is always true under Assump-

tions 1.), 2), 3).

Definition 4.1.

For a curve C and and a hypersurface M in Pn, denote by

I(P,CNM) the usual intersection number between C and M at P.

From Formula (4.1) and Proposition 3.1., a) we see:

Sec is singular at [H] <=> V! is singular at D <=> There exists a
n

unique hyperplane 2{ in P° with
1(P,,CNY) > 2n,, for i=1,...,k.

s . . .
We have Secc Gc P for some large S. Making explicit calcu-

lations analogous to those in [GP] and [J] one finds that the embed-

ded (compactified) tangent space in P° to Sec at [H] is

\A S
Q{cz Gc P,

where g{ is the n-1 plane in G, which parametrizes the n-2
planes in the hyperplane Ee = p".

Hence the embedded tangent cone in 5 to Sec at [H] is a
union of an n-3 dimensional family of lines in g%. Each point of
the projectivized tangent cone PﬂEH](Sec) or PJB(V&) " corresponds
to one such line.

A line L 1in qi through [H] 4is a nesting of a 1-dimensional
family of n-2 planes in ' containing a fixed n-3 plane hL
contained in H.

Hence each point of P7J. _.(Sec) and POB(Vi) corresponds to an

(H]

n-3 plane hL in the n-2-plane H. Denote by [h] the point in ;i




. VAR .
corresponding to an n-3-plane h, where H 1is the n-2 plane
which parametrizes the n-3 planes in H.

By Corollary 3.3. Pﬂg(vé) is a hypersurface of degree

. n-2 . . . .
m=max{s|rk V(—sD)>1} in P . From the above discussion it is clear

. . . . n-2 . V.
that a natural geometrical interpretation of this P is H, and

that

e

Pﬂ;)(vrll)

is contained in the embedded tangent cone to Sec at [H]}.

{[hL]|L is a line in g{ through [H], such that L

Two problems now arise in a natural way:
(1) Find those n-3 planes h in H such that [h] € PﬂEH](Sec).
(ii) Find those n-3 planes h in H such that [h] is a singular

point of PGTH](Sec).

We state without proofs the solutions to problems (i) and (ii)
(Results 4.2. and 4.3. respectively). Result 4.2. is a generalization
of Theorem 2.3.2. of [J], and Result 4.3. is a generalization of
Theorem 2.3.3. in [J].

We have proved Results 4.2. and 4.3. in the case where D con-
sists of n distinct points, but we omit the technical details

here.

Result 4.2.

Under Assumptions 1.), 25), 3) we have [h] € PgEH](Sec) if

. . n
and only if there exists a hypersurface M in P such that

a) deg M=m+1, and M has a singularity of multiplicity at least m

at all points of h.

b) I(Py, MNC) > (m+1)n; , for all P, € HNC

m

c) meHcMN , i.e. I(M) < (I@) + 1(©)"), and H i Sing (M)

d) The equation defining M in p?  is equal to the equation of a
cone of degree m+l1 with h contained in its vertex set, modulo

the square of the ideal defining H.




Remark: M can be taken to be a union of a 1-dimensional family of
n-2 planes containing H. Thus M gives rise to a curve [ in G.

The tangent line to [ at [H] is L, where h = hL.

Result 4.3.

Under Assumptions 1.), 2.), 3.) we have: [h] 1is a singular
point of PCEH}(Sec) if and only if there exists a hypersurface N

n
in P such that:

a) N 1is a cone of degree m, and h 1is contained in the vertex
set of N.
b) I(Pi,EnN) > (m+1)n, , for i=1,...,k

c) H f_ir Sing(N)

Corollary 4.4.

Under Assumptions 1.), 2.), 3.) we have: Pj;(vl) is singular if
n
and only if there exists a cone N and an n-3 plane h as descri-

bed in Result 4.3., a), b), c).

§5. Stationary bisecants for a space curve.

In §5 we assume char K= 0, and K = K. Let C be a

non-singular curve in P3, and let P] and P2 be points on C. The

line P1P2 is usually called a stationary bisecant if the tangents

to C at P]and P2 meet. In general there is a 1-dimensional

family of stationary bisecants for a space curve. We will define a

(2)

scheme in C , which essentially parametrizes divisors P] + P

2

2
Some divisors 2P may also occur as points on this scheme in

with P] and P as described.

o(2)

since tangent lines are in some sense bisecants.
Let C Dbe mapped into P3 by evaluating sections of some

linear system V of rank 4. Consider the map:
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(5.1) i: C > C , where 1(D) = 2D
for divisors D in C .

Definition 5.1.

The scheme of stationary bisecants for C with respect to V

is i7(v).
Remark 5.2.
-1
Clearly D € i (vi) <=> 2D € V}L. If P, % P,, then
-1
P] + P2 € i (Vi) <=> the tangent lines to C at P] and P2 meet.

We also have:

-1 .
2P € i (Vi) < => P 1is a flex on C, or the osculating plane
of C at P 1is hyperosculating.

It will follow from the proofs of Propositions 5.3. and 5.6.

that i_](Vi) is either a curve or empty.

We will use Theorem 1.1. to determine the multiplicity of

C(z)) in terms of the local

i_](Vi) at an arbitrary point D (in
geometry of C at the secant points in P3. The cases D=2P and

D = P1 + P2 (P]#Pz) will be treated separately. As before we denote
by I(Q,CNF) the intersection multiplicity between a curve C and a

surface F at a point Q in P3.

N =1
The multiplicity of i (Vi) at D=2P

Let L Dbe the tangent line to C at the point P. Set m, =

2=2

max{lllPEV }, or equivalently: m, = I(P,CnH) for a general member

2 2
H of the pencil of planes containing L. If P 1is not a flex on C,
then m_= 2. Set m_ = max{lllP€V2-3}, or equivalently:

2 3 L

m_= max{I(P,CNH}. Clearly m, > m_, + 1.
3 3 2
HoL

We now give our main result in the case D=2P:
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Proposition 5.3.

The multiplicity of the curve i—](Vi) at 2P is [—2—7——] - 2,

where [x] means the integral part of the real number x.

Proof:
Let t Dbe a local parameter for C at P. Without loss of

generality we may assume that C 1is parametrized locally at P as:

X0 = 1
X] =t .
— J
X, = .z ajt , am2¢ 0
Jjsm, _
- J
X3 - g B]t 1 Bm3¢ 0
J mq
4
Let s], 52’ s3, s4 be local parameters for C( ) at 4P, where the
s, are the k'th elementary functions in t], t2, t3, t4; 4 replicas
of t.
By Theorem 1.1., we have
o = K[| 11/(a
vi,ap T TLLS118208308, /(detM),
where
r; s Ya W, (s) YB.W. (s)
1 3 JJ - i J 3
0 1 Za W (s) ZB.W. (s)
5 1'= : -1
M = i JJ 3 J 3]
0 0 a W, s W s
Ja Wi _p(s) I8 W, ,(s)
J J
0 0 a W, s W s
Jo s 5(s)  IBW4_5(s)
J J
— —

We see that

(5:2) detM =.Z a,wj_z(g) . ) B.W. 5(8) - ) oaW, _(s)e ) W, ,(8)
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(2)

Let S and 82 be local parameters of C at 2P, where

1
the Sk are the k'th symmetric functions in T], T2; 2 formal

replicas of t.

The map (5.1) induces a map

i%s K[[s,/5,:85:5,1] » K[[5,,5,]].

A ~ )
Clearly O = K[[S,,S.]]/(R) where R 1is the power
1,1 1'°2
i (V4),2P

*
series obtained by substituting i i for Sy in (5.2), for

-1
k=1,2,3,4. The multiplicity multzp(i (Vi)) is the lowest value
e. e

1 72

L X . '
is,. Let Sy = sk(t],t2 3,t4), that is: Regard S, as the k'th

elementary symmetric function in 4 replicas of t, for k=1,...,4.

1 72

e +e for any term S. S occuring in R. We will first find the

,t

We define

q)k(T]sz) = (T T, T IT2)'

3" I A

Clearly ¢k(T ,T2) is symmetric in T T for k=1,...,k.

1 1’ 2!
Hence there are unique functions ¢k(s1’82) such that
0 (8, (T4 Ty), 8, (T,,T,)) = ¢ (T,,T,) for i=1,...,k.

Lk
One sees that i Sk(s1'82)_ ¢k(S1,Sz) for all k.

We then obtain:

= 29 ] = g2
i s] 291, i 52 b] + 482
i = 2S5_S i's = s?
1S3 1°2 4 2"

We have:

(5.3)
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*

where i*W = Wl(i*s .1 s4) for all 2A.

2 1'°°
*
The next task is to describe the i WR' First we remark that
each of the rings K[[s],sz,s3,s4]] and K[[S],Sz]] is graded in 2
ways:

We define:

deg 1, deg_s

s
1k 2k

Il
o
'—h
0
R
o

1l
—
NS

deg]Sk =1, degzsk = k, for k=1,2.

x
One sees that the Wj(s],sz,s3,s4) and the i Wj(S]'Sz) are homo-

geneous in the sense that:

*
degzwj(S],Sz,S3,S4) = degzi Wj(S],Sz) = j.

: *
This follows from Remark 1.4. combined with the fact that the map 1

is degz—preserving.

Definition.

Let cj for 3j=0,1,2,... Dbe the unique integers such that

J
‘*w(s S.) = 52 d s h I
i 5(81/8,) = cj 5 mo ; When j is even,
i1
i (s.,S.) = c.s.s 2 mod S2 when j is odd
31217720 T S5%1°2 1 J :
i1
i/ 2 2

Clearly the terms cjsg/ or ch]S2 are the leading forms of the
*
i Wj(S],Sz) with respect to the deg]—grading if the cj are non-
zZero.

We now give a useful technical lemma.
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a) ¢cg=1, ¢; =2, and I—%igl > 3 for all 3j»0. In particular
c.¥0 for j>0.
b The c and c¢ are positive integers, and the
) 4n 4n+1 P J c4n+2 and
c, c,
Cyn+3 are negative integers, and |—%¢Z| > l-%;él < 4 for all
j j+1
non-negative odd integers j.
Proof of Lemma 5.4.
C 1 = 1.
learly c0
Consider the formula:
8 =]
S, S, * * sj
Mylqrmeensyd = 1 sy =0 8y
0. . .
0---- 0 1 s
- T _J

where sj = 0 for j>5. We expand the matrix along the first row and

obtain the recursion formula:

(s) - s,W. ,(s)

WJ(E) = s.le__I (E) - s Wj_z(i) + S3wj_ 4" 9-4"—

Using the map i* we get
* * *
i = i -_ 2 i
1W(8) = 25,17W,_(8) - (s§+48,)i W, ,(8)

(S)-

12 2

+ 2S.S.i'W. _(s) - 82i*w
j-3'2 T Yy-a

for all integers j>1.

In particular we obtain:

when j 1is even

(5.4)

3 j—1 -2 -3 -4’ when j is odd.
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For r=0,1,2,... denote by P(r) the following assertion:

All statements in Lemma 5.4 hold for all cj with j=4r, 4r+1,
4r+2, 4r+3.

It is enough to prove P(r) for all r by induction. The case
r=0 1is verified by direct calculation. The induction step follows

easily using Formula (5.4).

We now return to the proof of Proposition 5.3, and we split into

4 cases:

Case 1. m2 odd, m3 even.

We will find the leading form of the relation R (Formula (5.3))

with respect to the deg]-grading. The first 2 terms of R are:

B (1w .i'w iYW .i'w )
o - .
m2 m3 m2—2 m3-3 m2—3 m3—2
The other terms are of the form
i "W, ei™W_, wh k+2 > m. + 4
ah Bj i X i I where m2 m3 .
m_+m_-3
We conclude that deg]M(S],Sz) > ——— for all monomials M(S],Sz)
*
arising from these terms. This 1is true since degzi Wj = j for all
degzM(S],S2)
j, and since deg]M(S],Sz) > 5 .

The same conclusion also holds for all monomials arising from

the term i W W i
. m2-2 m3—3

By Lemma 5.4. a) the leading form of the product

* .
-a Bm i*w _3i Wﬁ Y and hence of R, is:
2 M3 M 3
m2+ m3—5

a_ B_c c 'S 2

m, m3 m2—3 m3—3 2
where ¢ , C - (and of course a« , B ) are non-zero.

m2-3 m3—2 m,, mgy
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Hence the multiplicity of i-](Vi) at 2P is m = Sp-—" =
m2+ m, } m
[———5———] - 2, and the leading form of R is §, (up to a

multiplicative constant).

Case 2. m even, m odd.

2 3

Same proof and conclusion as in Case 1, except that the leading form
a B c 2c 382 arises from the term a B i*w 2i*W 3"
m, My My=2 M- m, m, m,= mg-

Case 3. m2 and m3 even.

In a similar way as in Case 1 we see that the leading form of R

with respect to the deg]—grading is: -

+
i M T
2
a B (c _,c_ _,-—c_ _.,c_ _,)S,S
m,"mg " Tm, 2 my 3 m, 3 my 277172
m,,+my _,
2

+ (a_ B -« B J)c_ _,c_ .S
m2 m3+1 m2+1 m3 m2 2 m3 272

provided this form does not vanish identically. It is enough to show

that cm _2cm _3¢ Cn _3cm -2 since @ and Bm are non-zero.
2 3 2 3 2 3
We have
c c
- -3
2 M3
e _, ¢ _al =l _,c o ¢ (] [o oo o 1)
m2 2 m3 3 m2 2 m2 3 fe -3 cm _
2 3
and
c , cm3_2
le. 3. ol = leg _3e o1 * (] |o oo o] 1)
m2 3 m3 2 m2 3 m2 2 cmz__2 cm3_4
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By Lemma 5.4. b. the first value is strictly larger than the last

value.

Hence the multiplicity of i_](vi) at 2P is m = _ELTT__ - 2

and the leading form of R is

m2+ m3

5 -3

(5.5) (S]+k82) . 82

up to a non-zero multiplicative constant, where k 1is another

constant.

. d
Case 4 m2 and m3 od

This case is treated in essentially the same way as Case 3, and

the conclusion is the same.

Corollary 5.5.

If P is not a flex on C, then the multiplicity of i_](Vi)

at 2P is

[5—] - 1, where

m3 = I(P,CnH), for the osculating plane H of C at P.

The multiplicity of the curve i (V%) at D = P]+ P2.

Assume P]# P2, and let L Dbe the line P1P2. Set

n, = I(Pi,CnH), for i=1,2, where H is a general member of the

172
Let r Dbe the maximal integer such that there exists a plane

pencil of planes containing L. We may assume n,?2>n,.
with
I(P,,CNH) > n, + r, for 1i=1,2.
i 1

Let r2 be the maximal integer such that there exists a plane H

containing L with

I(Pz,CﬂHZ) = n2+ r2.

H
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Proposition 5.6. -

-1 .
The multiplicity of the curve i (Vi) at P] + P2 is:

+r-2, 2n_.+r_.-1)

m1n(n1+n 51T,

2

Proof:

Choose coordinates XO, X], X2, X3 for P3, and let ti be a

local parameter at Pi' for 1i=1,2. Without loss of generality we

choose
X0 = 1
X. =t, + Kk
1 i i
- ]
X, = ] o, 5t1
j»n.
l .
J
X, = ) B. .t:
3 jon,+r ted ot

as local parametrizations at Pi' for i=1,2.

By the definitions of n n and r, we may assume that «

1" 72! i,n
and a2'n2 are non-zero, and that B],n]+r or Bz,n2+r 1s non-zero.
We see that the line L = P]P2 has equations X2 = X3 = 0, and
that Pi = (l,ki,0,0) for i=1,2, with k]# k2.
The unique plane (if any) which intersects C a least n, + 1
times at Pi' for 1i=1,2, has equation X3 = 0. This is also the equ-

ation of H2.

By Theorem 1.1., we have:

A

Ovi,2p +2p, = KLIsy qv 89,50 85,40 55 511/ (det M),

2

where

1.

e e e
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1 k.+ s }ooa. LW.(s, .,s; .) L By W.(s, .,s. .)
17 =1, jom, 1,575 71,11, 2 Jom 4r 1, 1,1'°1,2
0 1 Y oa. W, (s ) ) B. W. (s , S )
AR TS B £ R P R jom e 1,5 -1 1,1""°1,2
" ) )
1 k. + s a W.(s .S ) B W.(s ,S )
2 72,1 550, v3 03 °2,1"72,2 jomybr 2303 2,1772,2
0 1 a, .W. . (s s W. . (s s
jgnz 2,579-1'%2,1" 2,2) j>22+r52,3 j-1'72,1" 2,2
b .
P
o (2) , (4) o .
The map i: C > C , where i(D) = 2D induces a map
i*: 0 o
i > .
(4) (2)
Cc '2P1+2P2 C ,P]+P2.
Now
6 () =8 (2 © 6 (2)
C , 2P _+2P C 2P, K C , 2P
1 2 1 2
= Kllsy 40 8y,20 3,10 8,010
where the s, 3 can be regarded as formal, algebraically independent,
’
variables.
s,Q ., can also be regarded as the j'th elementary function in 2
+]
replicas tx 1’ tl 2 of the local parameter t of C at P _, for
! ’

L L
2=1,2, j=1,2. ’

Furthermore:

6 o K[[t,,t,]]
~ N , ,
C(2)' P]+P2 - C,P C, P, — 1 2

,
Hence we regard i as a map

. * .
i K[[s]’], Sy 20 Sy q 52'2]] > K[[t1,t2]].

R
ee,1 S

A *
We have: O 1 ~ K[[t],tz]]/detM(i s ).
i (v}l),P]+P2

1,17 2,2

» * . v
Clearly i sl,j = Sx,j(tl'tl)' 2=1,2, j=1,2. From Remark 1.4. We then

obtain:
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Lk _ ,x X ’ _ ]
i Wj(tx) = Wj(l Sg,1r 1 51'2) = (j+1)t1
This implies that
A
° 4 ~ K[t/ t,11/(R)
i (V4), P +P,

where R 1is the determinant of the matrix obtained from M by sub-

stituting Wj(s ) Dby (j+1)tg for 2=1,2, j>0.

2,1' Sg,2
Calculation gives that the leading form of R is:

(5.6)
n.-1 n.-1

r r 1 2
(kl_kZ)[nl(n2+r)a1,n]ﬁ2,n2+rt2 - n2(n1+r)a2,n251,n]+rt It ty
or

2n_+r_-1

2 72
(5.7) raa B L4 t
2 2,n2 2,n2+r2 2

or the sum of these forms.

One must check that neither of the forms vanishes identically as a

polynomial in t t and that the forms do not cancel each other.

1" 727
Clearly (5.7) does not vanish. (5.7) cancels (5.6) only if n1=1, but
then n2=1 also, and the forms have different degrees. Hence they do

not cancel each other. For the form (5.6) we have 2 cases:

a) r=0. Then the form vanishes iff

a B - B =0
l,n] 2,n2 2,n." 1

But the last expression is zero if and only if there is a plane
H, with I(P,,CNH) > ni + 1, for i=1,2. This would contradict the
i

definition of r, so the form does not vanish.

b) r>0. The form does not vanish since
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(i) k. % k (ii) « and « are non-zero
1 2 1,n] 2,n2

(iii) B or B is non-zero.
1,n]+r 2,n2+r

. =1 .
Hence the multiplicity of i (Vi) at P]+ P2 is equal to the

degree of the leading form of R:

m1n(n1+n2—2+r, 2n2+r -1)

2

This gives the proposition.

Corollary 5.7.

the points P

is

where H 1is the plane spanned by the tangent lines to C at P

If a stationary secant P]P2

then the multiplicity of i-](Vi) at P] + P2

is not a tangent to C at any of

4

17 27

r = min(I(P],CﬂH), I(P2,CﬂH)) -1

and P,.

2
Comment : Assume
a) No plane intersects C more than 4 times at any point.
b) C has no bitangents.
c) C has no flexes.
d) No plane is osculating at more than one point of C.
e) For each tangential trisecant line to C tangent to C at say

P1 and intersecting C transversally at say P2, the osculating

plane at P] does not contain the tangent to C at Pz.

Then it follows from Propositions 5.3. and 5.6. that the curve

i-]

(Vi) is non-singular.




A non-singular space curve has only finitely many tangential trise-
cants, flexes, bitangents, and hyperosculating or biosculating

planes.

. =1 .
Hence it follows that the curve (scheme) i (Vi) is always

reduced.
This curve might however be reducible. As an example of this,
take C as the complete intersection of two quadric surfaces. Then C
is contained in 4 quadric cones, and each generatrix of each such
cone is a stationary bisecant line. Hence i-1(Vi) has (at least) 4

components in this case.

=1
A geometrical interpretation of the tangent cone CT;(l (vl)

In Definition 3.2. we described the (projectivized) tangent
cone of a variety at a point. The tangent cone of the curve i—l(Vi)
at a point D 1is determined by the leading form of the relation R
as given in Formula (5.3) in the case D=2P, or as in Formula (5.6)
and (5.7) where the leading form is given explicitly in the case
D = P]+ P2, P]# P2.

In both cases the tangent cone is determined by a homogeneous
polynomial of degree m in 2 variables, where m is the multipli-
city of i-1(Vé) at D. This polynomial splits into m 1linear fac-
tors. It turns out that in many cases each linear factor in the lead-
ing form corresponds to a point on the secant line L with a certain
geometrical significance. Clearly each linear factor corresponds to a
point of the projectivized tangent cone Pgb(i—1(vi)). Hence we have
an analogy to Result 4.2. in these cases. We would like to explain
this more closely.

As usual we denote by A&(L) the point in the Grassmannian

G=G(1,3) corresponding to a line L. Set
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B = {X(L)IL satisfies a) or b) below}

a) LncC

{P],Pz}, and L is not a tangent line to C.

b) LnC = {P}, and L 1is a tangent, but not a flex tangent line to
CcC at P.

By the Trisecant lemma the closure B 1is a surface in G. It is a

o (2)

standard fact that B is locally isomorphic to at points of

B under the map that sends the secant (tangent) line 2(L) to the

divisor P] + P2(2P). Moreover B is non-singular at points of B.

Let S be the subcurve of B corresponding to stationary bi-
secants in the sense described earlier. Then S 1is locally isomor-
phic to i—](Vi) at points of SnNB.

Consider the Pliicker embedding G < P°. It is a well-known
fact; see for example [G-P], p. 16, that the points of SNB are
exactly those points of B such that the embedded tangent planes to
B in P® are globally contained in G (in fact as B-planes). For a
point 2(L) on SNB, this tangent plane is ¥, where H is the
stationary plane in P3 spanned by the divisor 2D on C.

This information implies that if not C 1is contained in a cone
consisting of stationary bisecant lines, then the family of statio-
nary bisecant lines envelope another curve 1? in P3. The points of

f? are those where 2 concecutive stationary bisecants meet.

Considering the stationary bisecants as dual lines, the same

family envelopes a curve [ in g3,

The following is easily verified.

1) C 1is on a cone consisting of stationary bisecant lines <=> A
. component of f degenerates to a point <=> A component of [

is plane.
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2) 12 and [ are dual to each other, that is [ parametrizes the
osculating planes of f , and vice versa.

3) | parametrizes the stationary bisecant planes of C.

Since i_](Vi) is locally isomorphic to S at points of SnNB,
we can study the tangent cone to S at 2&(L) instead of that of
i—l(Vi) at D. Since the embedded tangent space of B at A&(L) 1is
the dual plane ﬁ, we can embed R(L)(S) as a union of m 1lines in
ﬁ through the point 2(L). But a line in é < G through 2(L)
corresponds to a pencil of lines in H < P3 through some point Q
of L. Such a point Q of L corresponds to a point where L
meets a concecutive stationary bisecant. Furthermore the points Q
of L arising this way are exactly th-e points of L N € arising
from the local branch(es) of S.

This means that the explicit calculations of the leading forms

performed earlier in §5 tell us how the points of LN€ are located

in Cases a) and D).

Case a.
Lnc = {P],Pz}, L 1is not a tangent line. Set
r = min(I(P],CnH), I(P2,CnH)-1) for the stationary plane H. By

Formula (5.6) the leading form in t t is (up to a constant)

17 72

r r
%182, re1t2 7 92,18, r1

Hence the multiplicity m 1is r, and we get r distinct points of

LN outside C unless either i . If
e e B],r+1 or 62,r+1 S zero , say,

Bl 41 - 0, which means I(P],CﬂH) > r+1, then all r points of Lne
7

collapse to one point. It turns out that this single point is P2.
See Result 5.8. below, or Remark 5.9.
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Case b. LNC = {P}, L is tangent to C at P, but P 1is not a
flex. We recall the definition m3 = I(P,CNH), where H 1is the oscu-

lating (stationary) plane of C at P.

We recall that the leading form in S1, 52 is S2 when m,
m
3 _ 5
2

2)S when my is even.

It turns out that the factor 82 corresponds to the (secant)

is odd and (S]+kS

point P of CNL, while the factor S; + kS, corresponds to a point

outside P. "In general", when m, = 4, we get only the last factor.
In cases a. and b. we have another description of the points of
Lﬂfa arising from the local branch(es) of- S. Denote by m the mul-

tiplicity of S at 2A(L).

Result 5.8.

Q€L is a point of 1? iff there exists a cone N of degree

m+1 with vertex at Q such that Sing(N) $ L. and such that

Case a. I(Pi,CnN) > m+2, for i=1,2

Case b. I(P,CNN) > 2m + 4.

Idea of proof: Let F Dbe the surface in p3 swept out by the sta-

tionary bisecant lines. Let C' be a dummy curve on F transversal
to the ruling around L. Regard L as a singular tri-secant to
C U C'. The point 2&(L) is contained in a non-reduced component of

the trisecant curve in G. Then apply Result 4.3. in the case n=3.

Remark 5.9. Recall the local parametrizations of C introduced in

the proof of Propositon 5.6. Referring to these parametrizations,

Result 5.8 translates in Case a) to:




Q = (1,k,0,0) 1is a peint on LN iff

kKoo Rk Pirer 92,0

(=)
k -k

B2,r+] a
A similar result can be obtained in Case b).

We might return to a more detailed study of the curves 1?,3, [

in another paper. With the information we have now it is easy to

compute the "expected" genera, degrees, and numbers of cusps of these

curves.

§6. Singularities of plane curves.

Assume rk V = 3, and that V is base point free. Thus V defines a
map

¢: C > C < P?

We can "measure" the singularities of c by studying the scheme V1

2
in C(2). This scheme may consist of 2 kinds of points:

1) Divisors P] + P2, where P]# P2

2) Divisors 2P.

The first ones correspond to nodes of C; the latter ones to cusps.

If Vé is finite, it is well known that its total length is

%(d-1)(a-2) - g,

where d = deg C = deg L, and g = genus(C).

Tangent space dimensions of Vé.

Assume D = P] + P2 € Vl, where P]$ P2. We see from Theorem

2.4. that the tangent space dimension of Vé at D is:

A least 1 iff the two branches of C at ¢(P]) = ¢(P2) have a

common tangent line or 2Pi € Vé for i=1 or 2.

2 1ff both ZP] and 2P2 are contained in Vé.
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e N

Tangent space dimension : 1 1 2.

Assume D = 2P ¢ V%. We see from Theorem 2.4. that the tangent

space dimension of V% at D is:

At least 1 iff the unique tangent line L of C at o¢(P)
intersects the branch of C at least 4 times at ¢(P).

.2 1iff 4P ¢ VZ: which means that the multiplicity of the branch

of C at ¢(P) is at least 4.

- :;{ﬁ.m& =4 / A -f—

Tangent space dimension : 1 1 2

The multiplicity of Vé at D=2P.

From now on we will concentrate on divisors of the type 2P. We

will not prove any thing essentially new, but we will show how our
set-up fits in well with traditional results.

Detnote by Mult the multiplicity or local length of V! at

1
DV2 2

a divisor D. Clearly the 6-invariant of C at Q€P2 is IMult vl,

where the sum is taken over those divors P.,+ P and 2P such that

1 2

¢(P]) = ¢(P2) = Q and ¢(P) = Q. We will show how to find the
MultzPVé, when CharK = 0, and K = K.

Choose

as local parametrizations at P of the sections spanning V. We may

assume ’XO = 1. The matrix M from Formula (1.1) is:
1 Y oa. .W.(s,,s,.) Y oa, .W.(s,,s.)
350 1,3 31772 3§50 2,3 3 12
0 ) a. W, (s.,s_.) ) o, W. (s, ,s.))
EST P I £ R R N I s B B R
_——
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We assume P = (1,0,0) and obtain

A
v, 2p = Kllsyrsyll/1
where

I=()a W, (s.,s.), Yo W, (s ,s.))
§>2 1,3 j-1 1 2 352 2,3 j-1" 1" 2

We have used that = 0 Dby assumption. When

1,17 %2,1
Char K = 0, it is a standard fact that we may simplify our local
parametrizations:
n .
Xg =1, Xy =t , X, = ] a, 7,
j>n+1 +J

where n»2 1is the multiplicity at ¢(P) of the branch of 6‘ in
question. The ideal I reduces to

(W _,(s;s8,), j)§+]a2,jwj_1(s].sz))-

We see that MultZPV§ = colength I 1is equal to the intersection

number of 2 algebroid curves at the origin in the s s_-plane. We

1" 72
will compute this number (Result 6.1.).
Considering s], 52 as elementary symmetric functions in two
formal replicas t1, t2’ we have by Remark 1.4:
n-1
Mg (51 (8 £p)w syt 8500 = r£1(t1'en,rt2)
21ri
h _ n
where e . =e .
By standard arithmetic this gives:
n-1
2
Wn_](s],sz) = 1 (s%—kn’rsz), when n 1is odd
r=1
(6.1) n-1
" 2 )
Wn_](s],sz) = S].rg1(s]_ n,rsz)' when n 1is even
where k =2 + ¢ + e_]

r]II. n'r l’l,r
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In any case Mult2PVé is the sum of the intersection numbers

obained by intersecting the algebroid curve with equation

Loy, W

(s ,s2) with each of the
j>n+1

=1

curves corresponding to the factors of Wn—1(sl'52) (at the origin).

Formula (6.1) implies:

s2
1 ) =0 iff
a) (sy) =—) = i
j =171 kn,r
€ r is a primitive m'th root of unity for an m dividing j
7
b) Wj_1(0,s2) =0 iff j 1is even.

For each m>2 we define

B = min{2|m does not divide &, and o, x*o}.
r. =ﬂqprimitive m'th roots of unity},
or recursively: r. = m-1 - Zrm , where the sum is taken over all m,

i
that divide m, except 1 and m. We then obtain:

Result 6.1.

1 -
MultZPV2

where -/m_ are the positive integers (except 1) dividing n.

m.l,oo

§7 A note on Weierstrass points.

Let V be a linear system of rank r+1 and degree d on é
curve C. We will use Theorem 1.1. to prove a well-known formula for
the weight (multiplicity) of a rank 241 Wronskian point of V,
0<f<r. A rank r+1 Wronskian point is a Weierstrass point.

First we will define our terms, without making any assumptions
on the characteristic of K.

Consider the map:
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S C(JL+1)
where ¢£(P) = (+1)P, for PEeC.

Definition 7.1.

-1 . ..
a) We say that V is classical if oy (Vi+]) is a finite set for
0<2<r.
b) Assume V 1is classical. We define the (finite) rk 2+1 Wron-

skian scheme of V as

_ 1,1
Ty = 00 (Vi)

c) We define the (finite) Weierstrap scheme of V as Tr' The

points of Tr are denoted by Weierstrass points of V.
Let P Dbe an arbitrary point of C, and let t Dbe a local

parameter of C at P. Then there are uniquely determined integers

(not depending on the choice of t) ho < h] < eee < hr such that

there are sections XO,...,Xr spanning V with local parametriza-
tions
3 j
Xo= ) o .t7, oo, X_ = ) a_ .t”,
Oy, 03 o Td
with a, ¥+ 0, for i=0,...,r. The integers h ,...,h are called
1,hi o r

the Hermite invariants of V at P. If V is classical, then
hi= i, for i=0,...,r, for all but a finite set of points on C.

We now give our result:

Proposition 7.2.

Assume charK = 0 or charK > 2+1, and that V is classical.

0 i=o * 2 |

2
N 2(2+1)
. (h,-i) = _E h,- ————.

2
Then the multiplicity of T, at P is ¥
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Comment: This is essentially Theorem 15, ii of [L2]. In [L2], Theo-
rem 15, i, one proves that if CharK = 0, or charK > d+1, then V

is classical.

Proof: By Theorem 1.1. we have

= K[[s],

11/3

8 S g+1
£+],(2+1)P

where J 1is generated by the A&+1-minors of

P'
a. W.(s) e e e e e e e a W.(s)
th 0,3 3 — jzh r,j jJ
0 r
v [3
M = :
) (s) e e e e e e e ) o« W. (s)
j>h “0,3"5-1 J>h_ r.J -4
b —
The map ¢l:'C > C(£+]) induces a map
* A A
0,8 0 (241) ~ K[[s],...,sx+]]] > Oc,p ~ K[[t]]

, (R4+1)P

such that for k=1,...,2+1, we have:

* . '
¢l(sk) = sk(t,...,t) where s, 1is the k'th elementary
symmetric function in 2+1 variables. From Remark 1.4. we have
j+ L
(J

) o tJ , for all j.

* *
¢£(Wj(§)) = Wj(¢£s],---,¢£sl+])

This implies that

A - *
O, p = KLIEI/63(3)

where ¢;(J) is generated by the 2f+1-minors of the matrix:

ri g .(jI'Q)tJ e e e e e e e z @ .(j-u)t:l

j>h, '] j>h_ +J

¢ [

(7.1)
-2 3y, 32
t . . . . . . a 0 t
Zho 0, 3(*) jgh r,3'2)

i .
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The multiplicity of T/Q at P is the lowest number m such that

m . . *
there is a term t in one of the minors generating ¢1(J).

The A+1-minor consisting of the 2+1 first columns of (7.1)

can be written as

2 Cjtjl
j>m
] L
where m = hO + (h]—]) + eee 4+ (hl—l) = 3 (hi—i). Clearly no terms
i=0

n . . . . *
t , with n<m, is contained in any of the generators of ¢1J. Hence

we have proved the proposition if we can show that ¢ is non-zero.
m

We have
h +2 . h +2
0 2
L L
= * ... e . -1+ -1+
cm aO,h ak,h 0 1+ hx 1+4
0 2 9 9

Ly ()

The proposition follows from the following lemma:

: = (}110) (1119
B

Comment: In [L1], Lemma 9, one shows that the determinant to the
2

oy

right is "(hi_hj) e —— , which is non-zero.
il
0<j<i< inl

Proof of Lemma 7.3.:

In the first row set
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hj+ R hj+1—] hj+2—1
g = -1 + g for O<j<2.

h . +2-1
Since the entries in the second row are (,JR /k these terms can be

deleted in the first row. In this way the entries in row nr. k+1 can

.+HA-k H-k-1
be changed from Jl to Jk 1 for %k=0,...,2-1 and

J=0, e, 2.

Then start at the top again, and treat all but the 2 last rows
the same way once more.

When the top row has been treated this way 1 times, we end up
with the desired determinant.

This completes the proof of Lemma 7.3. and also of Proposition
7.2.

Corollary 7.4.

Assume <char K = 0, or charK > r+l. Then the multiplicity of P

as a Weierstraf point is

I
(h,-1)
i=0 *

Remark: It is a well known fact that the total length of Tr' that

is the sum of the multiplicites of the Weierstraf points, is:

((g-1)r+d)(r+1), where g 1is the genus of C.

This follows from [A-C-G-H], p. 345 and p. 358, when K = C.

Non-classical linear systems.

What happens if we impose no restrictions on char K? This
question has been answered in a very satisfactory way in [L2], and we
would be happy to reproduce some of the results in [L2] using our
set-up. It seems however that our methods are to crude when

O < charK < d. Still we will add a few words about this case.
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Let ho,...,hr be the Hermite invariants of V at a point P

of C. On an open set of C the Hermite invariants are constant with

values b.,...,b . When char K =0 or charK > 4, we have bDb.=i, for

0 r "1
i=0,...,r. When 2 < charK < 4, we have i<bi<bi+] for 0<i<r-1, and

bimight or might not be equal to i for all i. In this case we

have:
b1—1+1
) is a finite set, for O0<2<r,

b —-2+1
¢_](V A ) 1is also defined as a finite scheme, which we
b b +1
L 2
denote by Tl' and
A *
R =0 ~ K[[t]l/¢_ (J)
Tl'P bl

*
where ¢b (J) 1is generated by the 2+1 minors of the following

L
(b2+1)X(r+1) matrix: —
— j+bx 5 j+bx j
Z a. .( )t e e e e e e 2 A | 't
j5>n. 0:3° 4 j5n_ T *
0 r
[ 4 [ ]
* .  §-b ¢ . j-b
J L J 2
z a. (7))t e e e e e e 2 a  .(2 )t
33, 073 P4 33n_ Tr3 Py

(As usual (g)=0 if b>a).

The multiplicity of T at P 1is the length of the ring R.

2
One sees that PETl iff a1,j= 0 for j<b£, that is iff hs>bs+1.
Set-theoretically we have: P 1is a rank 241 Wronskian point
in the sense of [L2] iff P ¢ é Tk. In [L2], Example 1, p.64, one
k=0
shows that it is possible that P¢TR’ but PETk for some k«<A&.

Hence the multiplicity we have described for a point of Tl is

different from the multiplicity described in [L2] for a rank 2+1

Wronskian point.

Both multiplicities are however well defined.
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