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Abstract. We study qualitative features of the initial value problem Zt + F(z):r = O,z(x, 0) = 
zo,x E R, where z(x,t) E R2 , with Riemann inital data, viz. zo(x) = Z/ if x < 0 and 
zo(x) = Zr if x > 0. In particular we are interested in the case when the system changes 
type. It is proved that if both Zl and Zr are in the hyperbolic region, then the solution will 
not enter the elliptic region. If z1 and Zr are in the elliptic region, and the elliptic region is 
convex, then part of the solution has to be outside the elliptic region. 
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1. Introduction. In this note we analyze certain qualitative properties of the 2 x 2 
system of partial differential equations in one dimension on the form 

(1.1) a (u) a (f(u, v)) 0 
ot v +ox g(u,v) = 

with u = u(x,t), v = v(x,t), x E R. In pariticular we are interested in the initial value 
problem with initial data, i.e. 

(1.2) ( u(x, t)) = { (::), for x < 0 

v(x, t) (:;), for x > 0 

where ur, ur, vr, Vr are constants. 
The system (1.1 ),(1.2) arises as a model for a diverse range of physical phenomena from 

traffic flow [2] to three-phase flow in porous media [18]. Common for these applications 
is that one obtains from very general assumptions from a physical point of view a system 
of mixed type, i.e. there is a region E C R2 of phase space where the 2 x 2 matrix 

(1.3) dF = (!u(u, v) fv(u, v)) 
9u(u,v) 9v(u,v) 

has no real eigenvalues. The system is then called elliptic in E. 
Consider e.g. the case of three-phase flow in porous media where the unknov.'Il functions 

u and v denote saturations, i.e. relative volume fractions of two of the phases, e.g. oil 
and water respectivly. A recent numerical study [1] gave as a result with realistic physical 
data that there in fact is a small compact region E in phase space, quite surprisingly 
the Riemann problem (1.1),(1.2) turned out to be rather well-behaved numerically in this 
situation. 

Subsequent mathematical analysis (17],[7],[10],[11] showed that one in general has to 
expect mixed type behaviour in this case. Also in applications to elastic bars and Van der 
Waal fluids [8],[19],[13],[14],[15],[9] there is mixed type behaviour. 

Parallel to this development there has been a detailed study of certain model problems 
with very simple flux functions (!,g) with elliptic behaviour in a compact region E which 
has revealed a very complicated structure of the solution to the Riemann problem (5),[6]. 
In general one must expect nonuniqueness of the solution for Riemann problems, see [3]. 

·vle prove two theorems. In the first theorem we prove that the H ugoniot locus of a 
point in a convex elliptic region E does not intersect that component of E. In the second 
theorem we prove that if the initial data is outside E, then the solution will remain outside 
E. 

2. Qualitative properties. We write (1.1) as 

(2.1) Zt + F(z)x = 0 

where z = (~) and F = (~), with Riemann initial data 

(2.2) z(x,O) = { 
zr, 

Zr, 

2 

for x < 0 

for x > 0. 
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We assume that f and g are real differentiable functions such that the Jacobian dF has 
real eigenvelues exept in components of R2 , each of which are convex. Let 

(2.3) 

A shock solution is a solution of the form 

(2.4) z(x, t) = { 
Zl, 

Zr, 

for x < st 

for x >st. 

where the shock speeds must satisfy the Rankine-Hugoniot relation 

(2.5) 

The H ugoniot locus of Zl is the set of points satisfying 

(2.6) Hz, = { z E R2 13s E R, s(z1- z) = F(z1)- F(z) }· 

The other basic ingredient in the solution of the Riemann problem is rarefaction waves. 
These are smooth solutions of the form z = z(sft) that satisfy (2.1). The value z(~) must 
be an integral curve of r;, j = 1, 2 where r; is a right eigenvector of dF corresponding to 
)..; . ~ is the speed of the wave; ~ = )..; ( z( x ft)), therefore Aj has to increase with ~ as z 
moves from left to right in the solution of the Riemann problem. Note that no rarefaction 
wave can intersect E since the eigenvectors are not defined there. 

For a system of non-strictly hyperbolic conservation laws, the Riemann problem does 
not in general posess a unique solution, and by making the entropy condition- sufficiently 
lax in order to obtain existence of a solution, one risks losing uniqueness. However it is 
believed that the correct entropy condition which singles out the correct physical solution 
is that the solution should be the limit as € --+ 0 of the solution of the associated parabolic 
equation 

(2.7) € > 0. 

We then say that the shock has a viscous profile, see however [4]. Let now z1, Zr be two 
states that can be connected with a shock of speeds. We seek solutions of the form 

(2.8) 

and then obtain 

(2.9) 
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which can be integrated to give 

(2.10) 

where A is a constant of integration. H zE(e) converges to the correct solution we must 
have 

(2.11) 

(provided the derivatives converge sufficiently fast) which implies 

(2.12) ~zt = (F(zE)- F(z,))- s(zE- z1) = 'Y(zE). 

We see that z1 and Zr are fixpoints for this field, and if it admits an orbit from z1 to Zr we 
say that the shock has a viscous profile. The associated eigenvalues of this field are 

(2.13) -\;(z)- s j = 1, 2. 

We can now classify the various possibilities for a shock,as in Table 1, according to what 
kind of fixpoints Zl and Zr are. 

Hz, is a sink or Zr is a source we cannot have any orbit from z, to Zr, which leaves only 
four possibilities. Assume z E E and that E has convex components, let Ez denote the 
component of E that contains z. Then we have 

THEOREM 1. Hz, E E, then 

(2.14) 

and if Zr E £, then 

(2.15) 

PROOF: We will show (2.14), (2.15) will follow by symmetry. Let Zr E Ez, we will show 
that s( Zr - Zl) = F( Zr) - F( Zl) cannot be satisfied. Let 

(2.16). a(t) = tzr + (1- t)z1 t E (0, 1) 

be the straight line between Zr and Zl which is contained in Ez, by convexity. Let 

(2.17) f3(t) = F(a(t)). 

By the mean value theorem we must have atE (0, 1) such that 

(2.18) 

but 

(2.19) 

r'(f) = k('Y(1)- r(O)) = k(F(zr)- F(z1)) = k(zr- zi), 

r'(t) = dF(a(t))a'(t) = dF(a(t))(zr- Zl)· 

Thus dF has a real eigenvalue at the point a(t), and therefore this point cannot be in E. 
Therefore the Hugoniot relation cannot be satisfied for the pair z1, Zr. I 

This implies that if z1 E E and { z1, Zr} are the initial values of a Riemann problem, 
then, the state immediatly adjacent to z1 ( Zr) in the solution will be outside of Ez, ( E:.r ). 
This is so since this state must either be a p~int on a rarefaction or a shock. Rarefaction 
curves do not enter E, and we have just shown that neither does the Hugoniot locus. 
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THEOREM 2. Consider a solution z = z(x, t) of (2.1) with Riemann initial data (2.2). 

(1) If zt, Zr ¢ E, then also z(x, t) ¢ E for all x and t. 
(2) If Zl E E or Zr E E and z(i, x) E E for some (t, x) then z(t, x) E { Zl, Zr}. 

PROOF: ( 1) Assume z = z( t, x) E E for some ( t, x ). Then z is the right (left) state of 
an admissible shock with speeds, (sr) and left (right) state z, (zr)· In E the eigenvalues 
constitute a pair of complex conjugates and z is a source (sink) if Re(.X;(i)) - St > 0 
(Re(..\;(z))- sr < 0). Hence we obtain 

(2.20) 

which contradicts the fact that Zr is to the right of z,. (2) is similar to (1). I 
These two theorems state that if the initial values in a Riemann problem is inside a 

component of a convex elliptic region, then the solution will contain values outside this 
region if the entropy condition is based on the "vanishing viscosity" approach. Furthermore 
if the initial values are outside the elliptic region, then the solution will not enter this 
region. H one then has an initial function with sufficiently small total variation taking 
values outside E, then the function F can be redefined in E and the random choice method 
can be used to prove existence of a weak solution as in the purely hyperbolic case. This 
also implies that initial values in E will disappear after some time when using numerical 
schemes that are based on solving Riemann problems, such as random choice methods or 
front tracking methods. It is the authors belief that, if a solution exists, this is also the 
case for this solution. 
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