
ON ACTIONS OF AMENABLE GROUPS ON II 1- FACTORS. 

by Erik Bedos. 

Abstract: Given a II 1-factor M with separable predual and a a 

free action of a countable amenable discrete group G on M, we 

show that the crossed product M x G has property a r (resp. is 

McDuff) when M itself has property r (resp. is McDuff}. 
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1. Introduction 

Let M denote a II1 -factor with separable predual and normalized 

trace 1:. As usual, the Hilbert norm II •11 2 on M given by ,; is 

defined by llxll 2=,;(x*x}~, xEM. Recall that M is said to have 

property r (of Murray and von Neumann [14]) when for any 

x 1 , •.. ,xnEM, e:>O, there exists a unitary uEM such that ,;(u)=O 

and u[xi,u]n 2 <e:, i=l, ... ,n. Property r plays an important role 

in the theory of II1 -factors and has been characterized in many ways. 

As a sample we refer to [4], [6] and [a]. Now, let a::G-+Aut(M) 

denote an action of a countable discrete group G on M which is 

free, i.e. each a: 
g 

is outer, Then consider the resulting 

crossed product M X G, 
a: 

which is well known to be a II1-factor. The 

main purpose of this note is to etablish the following result, 

believed to be true by Popa (cf.[l9:p.32] or [20;3.3.2]). 

Theor.em A: If G is amenable and M has property r, 

has also property r. 

then M x Q. 
a: 

Theorem A has previously been obtained for G finite [3;th.l] 

and for G=Z. [19;p.32]. On the other hand, it is elementary to 

produce examples of free actions of nonamenable groups on II 1-factors 

with property r such that the resulting crossed products also have 

property r. For an example of a free action of ~ on a II1-factor 

without property r such that the crossed product has property r 

we refer to. [17;prop. 4.3]. For other connected results, see [12] 

and [13]. 

Another interesting property for II 1-factors, which is stronger than 

property r, is that of being McDuff (see for example [ 5], [ 6] and 

[9]). Recall that M is called McDuff if M is *-isomorphic to 

M • R, where R denotes the hyp~rfinite II1 -factor. In order to 
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prove theorem A, we first present a proof of the following theorem, 

which in essence may be attributed to Ocneanu: 

Theorem B: If G is amenable and M is McDuff, then 

McDuff too. 

M x G 
a is 

When G is finite, theorem B is a consequence of [18~prop. 1 .11 

ii)]. Examples of free actions of nonamenable groups on McDuff II 1 -

factors such that the resulting crossed products are McDuff are easy 

to construct. For an example of a free action of ~ on a non McDuff 

II 1-factor (with property r) such that the crossed product is 

McDuff, we refer to [11 ]. Further, we show that the remaining part of 

theorem A, modulo theorem B, is true: 

Theorem C: If G is amenable and M has property r without being 

McDuff, then M xa: G has property r. 

We begin this paper with a section ( § 2} devoted to a review of some 

facts about cocycle crossed actions and regular extensions <[2], 

[16], [23] and [24]). Our main interest lies in a folklore result 

about decomposition of crossed products, which we need explicitely in 

§3 where theorem B and C are proved. Our proof of theorem B relies 
I 

heavily on two deep results of Ocneanu [16;th. 1.1 and th. 1.2], 

which themselves rely on techniques and results developed by Ornstein 

and Weiss, McDuff, Jones and Connes among others. We.note that theo-

rem B may also be deduced from an assertion stated without proof by 

Ocneanu (see [ 16; p. 6, the assertion following th. 1 . 2]} ·. However, we 

propose a slightly different approach, which-we hope is of indepen-

dent interest. On the other hand, the main idea in the proof of theo

.rem C is to invoke in a suitable way a result of Schmidt [22;th.2.4], 

which itself is an outgrowth of the Connes-Feldman-Weiss theorem. 
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We follow standard notation and terminology, as may be found for 

example in [13]. Otherwise, the reader may consult [7] and [16]. We 

quote here som notation. 

Suppose we are given a von Neumann algebra N acting on a Hilbert 

space lt and a discrete group H. Then 

Aut(N) = the group of *-automorphisms of N, 

U(N) 

~ B(')(.) 

= the group of unitaries in N, 

= the bounded linear operators acting on It, 
2 

..t ( H,)t.) = the Hilbert space of all i't.-valued functions 

~ on H such that } Ul;(h)ll 2 < + =, 
h~H 

2 2 
.l (H) = ..t (H,'C), 

Aut(H) = the group of automorphisms of H. 

When uE U(B(~)) is such that uNu*=N, ad(u) denotes the 

*-automorphism of N implemented by u. Finally, when a:H+Aut(H) 

denotes an action of H on N with resulting crossed product 

N X H, 
a 

we sometimes identify N with its canonical copy in 

2. Cocycle crossed actions and regular extensions. 

N X H. 
a 

Let N denote a von Neumann algebra acting on a Hilbert space )t . 

A cocycle crossed action of a discrete group K on N is a pair 

(~,u), where ~:K+Aut(N) and u:KxK+U(N) satisfy for k,.l,m E K 

~k~ ..t = ad(u(k, ..t) )~k..t' 

u(k,..t) u(k..t,m) = ~k(u(..t,m)) u(k,..tm),• 

u(l,..t) = u(k,l) = 1. 

'
I 



- 4 -

The regular extension of N by K, say N x(~,u) K, 

defined as the von Neumann algebra acting on ~2 (K,~) 

is then 

generated by 

1t~(N) 

of N 

and where is the faithful normal representation 

on defined by 

while, for each k E K, A (k) is the unitary operator on ~ 2 (K,X) 
u 

defined by 

2 (xEN, I;E~ {K,')(.), ~EK). 

Accordingly, when u:l, i.e. when ~ is an action of K on N, the 

regular extension amounts to the ordinary crossed product N x~ K. 

One checks easily that the covariance formula 

1t~(~k(x)) = ad(Au(k)) (1t~(x)) 

holds for all kEK, ~EN, and also that 

Au(k)Au(~) = 1t~(u(k, ~)) Au(k~) 

holds for all k,~EK. 

Further, one may proceed as in [25~prop. 3.4] (cf.[2:Th.S]} to verify 

the following proposition, which assures that the algebraic structure 

of is independent of the Hilbert space )t . 

Proposition 1: Suppose S:N~P is a *-iso~orphism between two von 

Neumann algebras N and P, and that (~,u) is a cocycle crossed 

action of a discrete group K on N. Define ~k = e ~k e-l EAut(P) 

and u(k,~) = S(u(k,~}) E U(P) for all k,~EK. Then (~,u) is a 

cocycle crossed action of K on P, and there exists a 
.... 

*-isomorphism e : N: x(~,u) K ~ p 
x(~,u) K such that 

1t (S(x)) = e (1t~(x)) ( xEN), 
~ 

.... 
A (k) = e (Au(k)) (kEK) . -u 
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Now, given a map v: K~U(N) with v 1=1, the perturbation of (~,u) 

,.,. ,.,. 
by v is by definition the pair (~,u) obtained by setting 

(k I J. E K) • 

"' ,.,. 
One readily verifies that (~,u) is a cocycle crossed action of K 

"' on N. We say that (~,u) is a coboundary (of v) when u:1. 

The next proposition is well known; indeed it is merely a restatement 

of a part of [24;prop. 5.1 .2.]. 

Proposition 2: If (~,~) is a perturbation (by v) of a cocycle 

crossed action (~,u) of a discrete group K on a von Neumann algebra 

N, then 

N x(~,~) K is *-isomorphic to N x(~,u) K. 

Our main interest in this section is to show how cocycle crossed 

actions and regular extensions naturally appear when decomposing 

crossed products. For group von Neumann algebras, this has been 

treated in [24;prop. 3.17] (and in [2;th. 11 ]}. When the acting 

group in a given crossed product may be -decomposed as a semi-direct 

product, the expected decomposition of the crossed product as a 

"double" crossed product has ~een pointed out in [1 ;th. 4.3] and 

[ 21 ;th. 2. 4]. As we have not been able to find a suitable reference 

in the literature fqr the general situation, and we need an explicit 

version in the next section, we now sketch a proof of such a result. 

It generalizes slightly [15;th. 3]. 



- 6 -

Proposition 3: Let denote an exact sequence of 

discrete groups and a: G + Aut(M) an action of G on a von Neumann 

algebra r-1 acting on a Hilbert space )(, Identify H with its copy 

in G and set where H denotes the restriction 

of a to H on M. Then there exists a cocycle crossed action 

(~,u) of K on N such that 

M xa G is *-isomorphic to N x(~,u) K. 

Proof: For each k E K, k:j: l ' choose nk E G such that 1t{nk)=k, 

and n 1 =l . define + Aut(H) by crk(h) 
-1 

set Then cr: K = nk h nk (h EH) , 

and K X K + H by v(k, .t) 
-1 

(k, .tEK} . One verifie's v: = nkn ~ nk~ 

(cr,v) satisfies for k, ~.m E K 

Write y 

{1ty(x), 

crkcr~ = ad(v(k,~))crk~' 

v(k,~)v(k~,m) = crk(v(~,m)) v(k,~m), 

v (k' 1 ) = v ( l ' ~) = 1 . 

for a I H, so that N = M X y H. Then 

A. {h} : xEM, hEH} (resp. {1ta(x), ~ (g): 

~2(H,)l) the generators of N on (resp. M X G a 

Claim 1 : For each kEK, there exists ~kEAut(N) 

i) ~k('\(x)) = 1t (a (x)) (xEML 
y ~ 

ii) ~k(A.(h)) = A. ( crk (h)) (hEH). 

denote by 

xEM, gEG}) 

2 
on ~ (G,)t)). 

such that 

Assume first that a is implemented by a unitary representation 

g + a{g) of G on )t. 

Then define ~k E Aut(B(~e.t2 (H))) by 

(kEK) , 

where dk is the unitary operator on ~ 2 (H) defined by 

-1 2 
(dkl;)(h) = l;(crk (h)) (I;E~ (H), hEH). 

that 
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Identifying canonically }teJ_2(H) with .t2 (H,'t,.), one checks, 

essentially as in [21 ;lem. 2.3], that each ~k satisfies i) and ii) 

above. Hence the desired ~ IS 
k 

are obtained by restriction to N. 

If a 

a =~ g a 

is not implemented on It , then 
-1 

ag ~a (gEG) is implemented by 

a:G~Aut(~a(M)) defined by 

g~~(g) on .t2 (G,)t). 

Accordingly, there exists ~kE Aut(~a(M) xy H) satisfying the 

-analogues of i) and ii) for each kEK, where y denotes the 

restriction of a to H. Now, a straightforward application of 

proposition 1 (with P=~ (M), 9=~ 1 ~=y and u=1) a a gives the 

~k= a-1 ~k a> existence of the desired ~k's on N (by setting 

and claim 1 is etablished. 

Define u(k,J.) E U(N) by 

u(k 1 J.) = A(V(k,J.)) (k, J. E K) . 

With the help of claim 1 and the cocycle equations for (o,v), it is 

elementary to check that the induced pair ( ~ 1 u) is· a cocycle cross6(;; 

action of K on N. 

The regular extension N x(~,u).KI which acts on .t2 (KI .t2 (HI)(.)) is 

then clearly generated by 

{ ~ ~ ( ~ y ( X) ), ~ ~ ( A (h) ) I Au ( k) i X EM I h EH I k EK } . 

Define W: J_2 ( K, J_2 ( H,")(.)} ~ J. 2 ( G,)t,) by 

(W!;)(g) =[!;(~(g))] (n1t(g-1) g) (!; E .t 2 (K,J.2 (H~)t)), gEG). 

Plainly, w is a unitary operator and * 2 2 W d. (G 1)t) ~ J. (K, 

is given by 

* -1 [(w f) (k)] (h) = f(n _ 1 h) 
k 

2 
(fEJ. (G,l(J 1 kEK, hEH). 

Since G is generated by {h~ nk ; hEH, kEK}, the proof of the 

proposition is clearly achieved as soon as one etablishes the 

following: 
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* Claim 2: i} W 1t~(1ty(x))W = 1ta(x) (xEM) 

* ii} W1t~ (/..(h) )W = ~(h) (hEH} 

iii} w A. (k)W 
u 

* ~(nk) (kEK) = 

We leave the proof of ii) to the reader and prove i) and iii). 

Let xEM, kEK, gEG and ~E1 2 (G,)t), and set 1=1t(g)EK. Then 

* (W1ta(1t (x))W ~)(g) = 
1-' . y 

* = [1t (a {x)) W ~(1)] (n _1 g) 
Y n -1 1 

.t 

* = y (a (x)} [w ~(1}] -1 
{n -1 g) 

n 
1-1 

.t 

a _ 1 (x) -1 g) = ~ (n -1 n 
g .t 1-1 

= (1t (x) 
a 

~) (g) I 

which proves i}. 

Further 

* (W A. (k)W ~)(g) 
u 

-1 * -1 
= [u(1 ,k) W ~{k 1)] (n _ 1 g) 

1 

- I 

-1 -1 = ~(n -1 -1 n -1 °k g) 
(k .t) 1 k 

which proves iii}. 

QED. 

(n -1g} 
1 
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We note that crossed products by locally compact (separable) groups 

may be handled in the same way, with some minor modifications 

following [24], but we leave this to the reader. 

3. Proofs of theorem B and c. 

In this section, we suppose that we are given a II1 -factor M with 

separable predual and normalized trace ~. and a free action ~ of a 

countable discrete group G on M. 

We recall that eE Aut(M) is called centrally trivial, eE Ct(M}, 

if for any centralizing sequence (x ) in M, i.e. which is norm 
n 

bounded and satisfies that n[xn,y]n 2 + 0 (n++~) for any yEM, one 

has that 119(x ) -X 11 2 + 0 (n++~}, n n ( c f ~ [ 5 ] and [ 1 6] ) . Further, 

~ is called centrally trivial (resp. centrally free) on M when 

~ E Ct(M) (resp. ~ ~ Ct(M)) for each gEG, g*1· 
g g 

Lemma 4: Suppose that a is centrally trivial on M. Then 

a) each central sequence in M identifies with a central 

sequence in M X G. 
a 

b) M x G is McDuff when M is McDuff. 
a 

Proof: a) follows tmmediately from the covariance formula in 

and the assumption ·on a, while 

M X G 
a 

b) is a direct consequence of a) and McDuff•s theorem [9;th. 3]. 

QED. 

Lemma 5: If G is amenable, a is centally free on M and M is 

. McDuff, then M X G a is McDuff, 

Proof: By combining [16;th. 1 .2] and [25;Cor. 3.6], we have M X G 
a 

is *-isomorphic to (MiR) xaeidR G, the latter being clearly McDuff, 

·: 
I 

' 
' I-
I 

I 
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Theorem B: If G is amenable and M is McDuff, then M x G is 
a 

McDuff. 

Proof: Define H = {hEG I ahE Ct(M)}. Since Ct(M) is normal in 

Aut(M), H is a normal subgroup of G and we may define K = G/H. 

Since G is amenable, K is itself amenable (cf. [lO;th. 1 .2.4]). 

Let y denote the restriction of a to H on M. Trivially, y 

is a free action of H on M and by lemma 4b), N = M x G is 
y 

McDuff. Further, proposition 3 says that there exists a cocycle 

crossed action (~,u) of K on N such that M x G is a 

*-isomorphic to N x(~,u) K. We now claim that (~,u) is centrally 

free on N, i.e. ~k E Ct(N) for each kEK, k*l· 

Indeed, let kEK, k*l. From the proof of proposition 3, there exists 

~ E G, ~ ~ H, such that ~k(1ty(x)) = 1t (a (x)) for all xEM. 
Y nk 

By definition of H, a 
~ 

is centrally free on M, i.e. there exists 

a central sequence (x. ) in M such that II a (x. ) - xill2 f 0 
~ nk ~ 

( i ++c:o) • Then ( 1t ( x . ) ) 
y ~ 

is a central sequence in N (cf. lemma 4a)) 

IIQ (1t (x.)) 
'"'k y ~ 

such that - 1t (x.)ll 2 = 81t {a (x.)- 1t (x.) 11 2 y ~ y ~ ~ y ~ 

= II a (X, ) - X; 11 2 -f 0 ( i ++c:o) • 
nk ~ .... 

Hence ~k is centrally free on N. 

Now, by appealing to [16;th. 1.1 ], we have that (~,u) is a 
,.. 

coboundary; hence we may perturb (~,u) to a centrally free action ~ 

of K on N, and, by proposition 2, we have that N x(~,u) K is 

*-isomorphic to N X"" 
~ 

K. By lemma 5, N X"" K 
~ 

is McDuff. 

Altogether, this show that M X G is McDuff. 
a 

QED. 

,_ 
I 
I 
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We now turn to the proof of theorem C. We pick a free ultrafilter t(l 

on N and denote by 
w 

M the ultraproduct algebra of M (which is a. 

II1-factor) and by its canonical trace. Set (the 

Mw) relative commutant of the canonical copy of M in 
~ ~ 

and let 

a;: G + Aut ( Mw) denote the induced act ion defined "g ( ( xn)) = ( "g ( xn) ) , 

gEG. For more information on this, we refer to [4], [5], [9], [16] 

and [ 19]. 

Lemma 6: If G is finitely generated and amenable, and M has 

property r without being McDuff, then M xa; G has property r. 

Proof: Denote by g 1 , ••• ,gr the generators of G (r<+m). Since M 

has property r without being McDuff, we have that· Mw is non-trivial 

completely non-atomic abelian von Neumann algebra (cf. [4] and [9]). 
~ -If a; is not ergodic on M I w 

then let q be a a:-fixed non-scalar 

element in M . From the covariance formula in M x G, one obtain w a; 

easily that qE (M xa; G) I 
w 

n(M xa; G) . Since qf~ 1 this implies that 

M X G has property r (by [ 4]). a; 

Suppose next (for the sake of obtaining a contradiction) that a; is 
/ 

ergodic on M • w By [22;th. 2.4], is then not strongly ergodic on 

M , i.e. there exists a sequence of projections (p.) in M such that 
w ~ w 

,;w (pi) = ~ (iEN) and ll~g (pi) - pi11 2 + 0 (i++m) for all gEG. 

It should be noted that we here, in fact, apply [22;th. 2.4] on a 
..... 

countably generated a:-invariant completely non atomic von Neumann 

subalgebra of Mw' such as the one generated by {~g(a), gEG} for an 

aEM with infinite spectrum. 
w 

By taking a subsequence of (p.) and renaming, there exists a sequence 
~ 

(qn) in Mw- such that, given nEl\J, then 

< 
1 
n 

j=l , •.• , r. 
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Now we may represent each qn by a sequence of projections in M, 

q = (q ) I 

n n,m m 
with ,;{q ) = ~ for all n,m E tN (cf. [s] or [9]). 

n,m 

For each nE fW we may then choose 

Ua (q ) - qn,m g. n,m 
J n n 

-
m E~ such that 

n 

j=l, ... ,r, and 

k=l , ... , n, where (y ) is a 
k 

n·n 2-dense sequence in the unit ball of M fixed from the beginning, 

Let so From the above inequalities, one obtains 

.-J 

easily that q EM and a {q) = q, j=l, ... ,r. Futher, q is a 
w gj 
w 

projection with ,; (q) = ~. Hence q is a non-scalar element in 

Mw' which is a-fixed since g 1 , .•. ,gr generates G. This 

contradicts the assumption of ergodicity on a. 

QED. 

Theorem C: If G is amenable and M has property r without being 

McDuff, then M x G has property r~ 
a 

Proof: Since G is countable, we may write G = u G . , where ( G . } 
jElW J J 

is an increasing sequence of finitely generated·subgroups of G; by 

amenability of G, each G. 
) 

is amenable {cf. [lO;th. 1.2.5]). Set 

N. = M 
J 

j E \N. 

x IG G. (identified as a subfactor of 
a . J 

) 

By lemma 6, each N . has property 
J 

r. 

M x G) for each 
a 

Since (N.) is an 
J 

increasing sequence of subfactors of N such that 

II • U 
2 it follows from [19;th. 1 .4.1i)] that M xa G = u N. 

jENJ 

has property. r. 

. QED. 
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Our proof of lemma 6 is inspired by the proof of [19;th. 1 .4.1 iii)], 

where Popa shows that theorem A is valid when G =~. His idea is to 

apply the Rokhlin-type theorem of Connes to a in M . This 
(I) 

argument requires a to be centrally free on M, but one reduces 

easily to this case. 

Also, a more direct proof of theorem A in the same spirit would 

clearly be available if the analogue of Schmidt's result could be 

shown in the non-abelian case. 
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