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Abstract 

We give an alternative proof of a result due to Sibirskii on the polynomial invariants 
of S0(2,C) (or S0(2,R)) acting on M(2,C) (or M(2,R)) by conjugation. We show that 
the invariants are given in terms of traces and Pfaffians, and we find a minimal basis 
which is a minimal complete set of invariants in the real case. 

The polynomial invariants of 0(2,C) (or 0(2, R)) acting on M(2, c) (or M(2, R)) by con­

jugation has been studied by Sibirskii [8]. In this paper we study the invariants when 

restricting to S0(2, C) (or S0(2, R)). After submitting a first version of this paper, we 

were informed by Professor Sibirskii that this case had already been studied by him. The 

results in this paper are equivalent to results in [10, pp. 126-127], but our approach is 

different. We essentially follow the approach in [8], instead of using the results of [9]. 

Let {/i} be a set of invariants. We will call {/i} a ba~is if any invariant can be expressed 

polynomially in the fi-s. We will call {/;} a functional basis if any invariant can be ex­

pressed as a function (not necessarily a polynomial) in the f;-s. We will call {/i} a complete 

set of invariants if they separate orbits (i. e. conjugacy classes). 

The starting point is the following result from [8], which was later proved independently 

by Procesi [5]. 

Theorem 1 Let {A;} be a set of complex (or real) n x n matrices. The invariants of the 

form trP(A;,AD, where Pis a monomial in the A; and AL form a basis for the O(n,C) 

(or 0( n, R)) invariants of the A;. In the real case the invariants also form a complete set 

of O(n, R) invariants. 
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The fact that they form a basis was proved for the case of one matrix by Gurevich [2], 

while the fact that they form a complete set of invariants is due to Pearcy [4]. 

The problem is now to reduce these trace expressions and find a finite basis. In the 2 x 2 

case, Sibirskii proved the following. 

Theorem 2 Let {~} be a Jet of complex (or real) 2 x 2 matrices. 

1. The invariantJ 

tr A;, tr A;Ai (i $ j), tr ~A} (i $ j), tr A;AiA} (if j), 
tr A!AiAk, tr A;A}Ak, tr A;AiAL (i < j < k) 

form a minimal basi" for the 0(2, c) (or 0(2, R)) invariant" of the Ai. The invariantJ 

tr ~AjAk (i < j < k) can replace any of the laJt three types of invariants. 

£. The invariantJ 

tr A;, tr ~Ai (i $ j), tr A;Aj (i $ j), tr A;AiAj (if j), 
tr ~ Ai Ak ( i < j < k) 

form a minimal functional baJiJ of 0{2, C) invariants of the ~- In the real case they 

alJo form a minimal complete set of 0(2,R) invariant" of the A;. 

In the complex case the invariants do not separate orbits, as the following example from 

[8] shows. Set 

( 2 i ) A= i 0 . 
k ( k + 1 ki ) Then A = ki . 1 _ k , 

so tr Ak = 2. Hence the invariants do not separate A and 12 • The reasonfor this is essentially 

that 0(2, C) is non-compact. 

It is well known from classical invariant theory that when considering S0(2) invariants 

we must include certain determinants. We will first observe that these determinants can 

be expressed in terms of traces and Pfaffians of the ~. We define the Pfaffian of a (not 

necessarily skew-symmetric) 2 x 2 matrix by 

It is easy to show that 

pf(lAg) = detgpf A, 

so the Pfaffian is an S0(2) invariant but not an 0(2) invariant. 

\Ve want to show 
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Theorem 3 Let {A.i} be a 3et of complex (or real) 2 x 2 matrice3. 

1. The invariant" of the form trP(A;,AD and pf P(A;,A!), where Pi" a monomial in 

the A.: and AL form a ba"i" for the S0(2, C) (or S0(2, R)} invarianl$ of the A;. In 

the ral ca3e they al3o form a complete 3et of S0(2, R) invariant" of the A;. 

2. The invariant3 

tr A.;, tr A~, tr A.;A; (i < j), pf A.; and pf A.;A.; (i < j) 

form a minimal ba3i3 (and a minimal functional ba"i-') for the S0(2,C) invarianl$ of 

the A;. In the real ca3e they al3o form a minimal complete 3et of S0(2, R) invarianl$ 

of the -4.· 

Part 1 will follow from classical invariant theory, using an approach similar to Procesi's [5). 

Let K denote R or C. We can first reduce the problems to finding the multihomogeneous 

invariants of order ( d~, ... , dk ), and then reduce further to studying multilinear invariants 

of (K2 ® J\.""l{~d, d = L:7=t di. We will use the correspondence 

u ® v--+ uvt 

between M(2, K) and K 2 ® K 2 and we can assume that A; = u; ® v;. The invariants of 

. (K2 ® K 2)®d are generated by inner products and determinants, i.e. invariants of the form 

</J( X1 '3 ' ' ' ® Xu) =< X;l 'X;l > ' ' ' < X;ll-1 'X;ll > [x;21+1 'X;21+2] ••. [x;2d-1, X;2d] 

where < x;, xi >= x~xi (1) 
and [x;, xi]= det (x;, xi)· 

·Here (x;,xi) denotes the matrix with columns x; and Xj. Now we observe that 

< X;, Xj >= X~Xj = tr X; X} = tq:; ® Xj 

[x;, xi]= det (x;, xi)= pf x;x} = pf x; 0 Xj, 
(2) 

and we claim that all invariants of type (1) can be written in terms of traces and Pfaffians 

of the A;. Consider < Wt' w~ > < w2' w~ > ... < w,' w~ > where W; is either Uj or Vj and 

, _ { Uj if W; = Vj 
W;- . 

Vj tf W; = Uj. 

Then (w~ 0 u•1 )(w~ 0 w2) · · · (w~ 0 w,) = w~~~w~w~ · · · w~w{ =< w1, w~ > · · · 
< w1_ 17 w/ > w~ w:. Taking the trace we get 
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If we instead take the Pfaffian and use (2), we get 

< Wt, w; > · · · < w,_~, w; > [w;, w,] = pf((w; ® Wt)(w; ® w2) · · · (w; ® w1)]. 

Since the products involving an even number of determinants is 0(2) invariant, and hence 

expressible in terms of traces, we need only consider invariants of type ( 1) with one deter­

minant factor. Since w: ® Wj = Ai or Aj, we see that the traces and Pfaffians of P(Ai, A!) 

generate the ring of S0(2) invariants. 

We will now prove that the invariants separate orbits in the real case. Assume that 

the traces and Pfaffians agree on two sets of matrices, ~ and Bi. Since the traces sep­

arate 0(2) orbits, there must be a g in 0(2) with gAig-1 = Bi· We want to show 

that g is in S0(2). If at least one of the Ai is non-symmetric, i. e. pf Ai =f 0, it 

follows from pf Bi = pf(gAig-1 ) = det g pf ~ = det g pf Bi that det g = 1, so g is 

actually in 50(2). Assume then that the Ai are all symmetric. If there is at least 

one pair, ~ and Aj, which do not commute, then AiAj is not symmetric, and hence 

pf BiBi = pf (g~A3g-1 ) = det g pf ~A3 = det g pf BiBj, which implies that g is in S0(2). 

If they all commute, then they are simultaneously diagonalizable by conjugation with g in 

0(2), but since diagonal matrices commute, we can assure that g is in S0(2) by multiplying 

g with the diagonal matrix diag(1,-1). It then follows that the~ are S0(2) conjugate and 

hence the invariants separate S0(2) orbits. This completes the proof of the first part of 

the Theorem. 

\Ve will say that pf P(Ai, A!) is reducible if it can be expressed in terms of traces and 

Pfaffians of products of fewer matrices. We will write 

pf F(~,AD = pfG(~,AD 
if pf(F- G) is reducible. In order to prove the second part of the theorem, we first need 

to reduce e>.."'])ressions of the form pf P(Ai, AD. Let us first state some basic properties of 

the Pfaffian of 2 x 2 matrices which follow from a simple calculation. 

Lemma 1 

Hence 

pf xt - -pf x 
pf Y X - pf X trY + tr X pf Y - pf XY 

pf xyt - pf XY- tr XpfY 

pfYX _ -pfXY 

pfXYt pfXY 
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We see that (3) and (4) are more complicated than the corresponding formulas for the 

trace, but (5) is a big simplification which will allow us to carry the reduction further than 

in the case of the trace. 

For n = 2 the Cayley-Hamilton Theorem says that 

X 2 - X tr X+ 1/2I[(tr X)2 - tr X 2 ] = 0 (6) 

or in its polarized version 

XY + Y X - X trY - Y tr X + J[tr X trY - tr XY] = 0. (7) 

This equation is the fundamental tool for reducing Pfaffian expressions, just as in the case 

of trace expressions. In fact it is even more powerful in the case of the Pfaffian, since if we 

take the trace in (6) or (7) everything cancels. In order to get a non-trivial relation, we 

must first multiply the equations with a matrix =f I before taking the trace. This is not 

necessary if we take the Pfaffian. In particular, ( 4) follows from taking the Pfaffian of ( 7), 

and taking the Pfaffian of (6) we get that pf X 2 is reducible. By comparison, tr X 2 is not 

reducible, but if we first multiply (6) by X and then take the trace, we see that tr X 3 is 

reducible. 

It is well known (see for example [1] or [3]) that the polarized Cayley-Hamilton Theorem 

implies that any product of three 2 x 2 matrices is reducible. That is, XY Z can be written 

as a linear combination of matrix products with fewer factors and coefficients expressible 

in terms of traces. Writing 

we have 

tr(X, Y) = tr XY- tr X trY, 

2XYZ = X(YZ + ZY) + (XY + Y X)Z ~ [Y(X Z) +(X Z)Y] = 
XYtrZ +XZtrY+ Xtr(Y,Z) +XZtrY + YZtrX +Ztr(X,Y) 

-XZtrY- Ytr(XZ)- Itr(XZ,Y) = XYtrZ + XZtrY 
+ YZtr X+ Xtr(Y,Z)- Ytr(XZ) + Ztr(X, Y)- Itr(XZ, Y). 

(8) 

More generally, it follows from the work of Procesi [5] and Razmyslov [7] that the product 

of n2 - 1 matrices of order n is reducible. For 3 x 3 matrices the product of 6 matrices is 

reducible [1]. 

Consider an irreducible expression of the form pf P( Ai, AD where P is a monomial. It 

follows from (8) that P can have at most 2 factors and (6) shows that there can be no 

squares. Using (4) and (5) we can assume that there are no A:-s and that the ~-s are in 
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the order of increasing i-s. This leaves us with pf ~ and pf A;Aj (i < j). 

This implies that the traces listed in part 1 of Theorem 2 together with pf ~ and pf ~ Aj( i < 
j) form a basis for the S0(2) invariants. This basis is not minimal, however, since by mul­

tiplying two Pfaffians we get an 0(2) invariant which is expressible in terms of the traces. 

A simple argument gives the following relations. 

Lemma 2 

pf X pf Y - tr XYt - tr XY 

pf XYpf Z - - tr XYZ + tr xyzt 

·we will also use the following relation from [8]. 

trXYZ = trXYzt + trXYtz + trxtyz 
- tr X trY zt - trY tr ZX' - tr Z tr XY' + tr X trY tr Z. 

Combining (10) and (11) we get 

2trXYZ = trXtrYzt +trYtrZX' +trZtrXYt · 
- pf X pf Y Z- pf Ypf ZX- pf Z pf XY- tr X trY tr Z. 

(9) 

(10) 

(11) 

(12) 

Assume now that we kno~ tr A;, tr A~, tr A; Aj ( i < j ), pf ~ and pf A; Aj ( i < j). We can 

then determine tr A;Aj from (9), tr ~AjAk (i < j < k) from (12), tr A~AiAk, tr A;AjAk, 

trA;AiAi, (i<j<k) from (10), and setting Ak = Ai in (10) we get tr~AiAj (i -=fj). This 

proves that the above traces and Pfa.ffians form a basis. 

V..7e will now prove that this basis is minimal. We will do tliis by giving examples of sets 

of matrices, {A;} and {B;}, for which only one of the types of invariants differ. This will 

imply that this basis is also a minimal functional basis and a minimal complete set of 

invariants in the real case. The number of matrices in these examples is not significant. 
' 'Ve can always add more matrices by setting A; = B; = / 2 or 0. 

1. 

At = ( ~ ~ ) , Bt = ( ~ ~ ) . 
Here tr At -=f tr Bt but the other invariants agree. 

2. 

At = ( ~ ~ ) , Bt = ( ~ ~ ) . 
Here tr A~ -=f tr Bi but the other invariants agree. 
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3. 

At = ( ~ ~), A2 = ( ~ ~ ) , Bt = ( ~1 ~ ) , B2 = A2. 

Here tr AtA2 =f tr BtB2 but the other invariants agree. 

4. H we pick two non-symmetric matrices which are conjugate in 0(2) but not in S0(2), 

we have that pf At =f pf Bt but the other invariants agree. As an example, take 

5. In general pf AtA2 =f pf A2A17 and if A2 is invertible, we can set B1 = A2A1A2" 1 , B2 = 

A2. Then pf B 1B 2 = pf A2A1 A2" 1 A2 = pf A2A1 =f pf A1A2 but the other invariants 

agree. As an example, take 

This completes the proof of part 2 of Theorem 3. 

'\\re would like to make some additional comments. ·Since S0(2) is a smaller group we get 

more invariants, but we can find a basis with a smaller number of invariants. The reason 

for this is simply that the Pfaffians give us more invariants of degree one and two, which 

simplifies the theory considerably. In particular, we see that none of the invariants in the 

basis for the S0(2) invariants involves more than 2 matrices, while in the orthogonal case 

we need the invariants tr AiAiAk (i < j < k). Hence the study of C(mM(2,C))50(2,c) (or 

R[mA1(2,R)]50(2·8 >) reduces to the study of C(2M(2,C)]50(2,c) (or R[2M(2,R)]50(2·8 >). 

Let us try to explain the reason for this difference. We were able to delete tr ~AiAk 

because of (12), but there is no similar formula expressing tr XY Z in terms of traces of 

one or two factors, as the following example from [8] shows: 

Here tr A1 A2A3 f tr B1B2B3 , but all traces involving one or two factors agree. If we take 

the trace in (8) everything cancels, and we must first multiply by U f I to see that the 

trace of four 2 x 2 matrices is expressible in terms of traces of three factors or less. The 

closest we can come to expressing tr XY Z in terms of traces of one or two factors is the 
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following equation from [8], which shows that tr XY Z satisfies a quadratic equation with 

coefficients e>..-pressible in terms of traces of one or two factors. 

4(tr XYZ?- 4a1 tr XYZ + ~2 = 0, 
a1 = {trXtrYZ} -trXtrYtrZ, 

a 2 = 2{tr XY(tr XY- tr X tr Y)(tr2 Z- tr Z 2 } + 4 tr XY tr YZ tr ZX 
+ 2 tr X 2 tr Y2 tr Z 2 + tr2 X tr2 Y tr2 Z - { tr X 2 tr Y2 tr2 Z}. 

(13) 

Here { } denotes the sum of the terms obtained by cyclic permutation of X, Y and Z. The 

equation is stated without proof in [8], but it follows from clever manipulations of (7). 

H we specialize to the case of m = 1, we get the 3 invariants tr A, tr A2 , and pf A. Since 

the orbit space M(2, R)/ S0(2) has dimension 3, this is the "right" number of invariants. 

H we consider m = 2, we get the 8 invariants tr A, tr A 2 , pf A, tr B, tr B 2 , pf B, tr AB and 

pf AB. The dimension of 2M(2,R)/S0(2) is 7, however, so we have too many invariants. It 

is important to bear in mind that when we say that a complete set of invariants is minimal, 

we only mean that by deleting any of the invariants, the set will no longer be complete. 

This does not rule out the possibility that there could be a different minimal complete set 

of invariants with a smaller set of invariants. The question as to whether it is possible to 

find a complete set of inVa.riants of 2M(2, R)/ S0(2) consisting of 7 invariants is thus open. 

H we add the restriction that 2 tr A2 + pf2 A- tr2 A ;:f 0, we can find such a set. We can 

use tr A, tr A2 , and pf A to determine A, and tr B, pf B, tr AB, and pf AB give a linear 

system of equations for the entries of B with determinant equal to 2 tr A2 + pf2 A - tr2 A, 

so we can determine B without using tr B 2 . 
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