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Chapter 1

Introduction

The twentieth century marked a period of enormous growth in the field of particle physics.

Throughout the century, newer and more exotic particles were discovered, which naturally led

to the question of how they interact. A complete and well-established quantum field theory de-

scribing particles and their interactions emerged: the Standard Model of particle physics.

However, particle physics is at a turning point today. On the one hand, the Standard Model

(SM) is presently the best description of particle phenomenology, but on the other hand, the Stan-

dard Model is not considered a complete theory and that has lead to the necessity of Physics

Beyond the Standard Model (BSM), often also referred to as "New Physics", which the model

can not explain. A proof of its incompleteness comes from the inability to provide an explana-

tion for the dark matter, the fermion masses hierarchy and the quantitative asymmetry between

matter and antimatter of the universe, among others.

The start of the LHC opened an exciting time for particle physics culminating with the dis-

covery of a new particle consistent with the predicted Higgs boson. The results so far achieved are

just the beginning of a new exciting time during which we expect to improve our understanding

of fundamental matter and find answers to the open questions of particle physics.

Today, indirect search for signs of new physics is done at the LHCb experiment, which is

1



2 1. Introduction

one of the four large experiments at the LHC, by making high precision measurements. The

LHCb collaboration investigates observables such as the decay-time-dependent Charge-Parity

(CP) asymmetry ACP(f ; t) defined as [1]

(1.1) ACP(f ; t) =
Γ(P (t)→ f)− Γ(P̄ (t)→ f̄)

Γ(P (t)→ f) + Γ(P̄ (t)→ f̄)

where ACP quantifies the difference between matter and antimatter for the decay of a particle P

to a final state f .

The main topic of this thesis are the studies of CP violation in the charm sector, and in partic-

ular the non-leptonic decayment of D0 mesons to K+K− and π+π−. Generally, the magnitudes

of CP asymmetries in decays to these final states are expected to be small in SM, with predic-

tions of up to O(10−3) [2]. However, recent studies have shown that larger asymmetries may

be expected in the SM [3, 4]. Namely, it was surprising when in 2012 the LHCb collaboration

announced the following result

∆ACP ≡ ACP(D0 → K+K−)−ACP(D0 → π+π−)

= [−0.82± 0.21(stat.)± 0.11(sys.)]%(1.2)

giving a 3.5 σ signal of CP violation; a sample of 600 pb−1 of data taken during 2011 at
√
s = 7

TeV was used [5]. Precise measurements to date of the time-integrated CP asymmetries in

D0 → K+K− and D0 → π+π− were made by the CDF, BaBar and Belle collaborations and the

results are summarized as

Experiment ∆ACP Reference

CDF (2012) [−0.62± 0.21(stat.)± 0.10(sys.)]% [6]
BaBar (2008) [+0.24± 0.62(stat.)± 0.26(sys.)]% [7]
Belle (2012) [−0.87± 0.41(stat.)± 0.06(sys.)]% [8]

Table 1.1. Previous experimental results on ACP.
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New measurements, based on a pp collision data collected during 2011 at
√
s = 7 TeV,

corresponding to an integrated luminosity of 1 fb−1 , was recently presented in 2013 by the

LHCb collaboration [9, 10]

∆ACP = [−0.34± 0.15(stat.)± 0.10(sys.)]%(1.3)

∆ACP = [+0.49± 0.30(stat.)± 0.14(sys.)]%1(1.4)

A comparison of the different measurements of ∆ACP are presented in Figure 1.1.

Figure 1.1. Comparison of different measurements of ∆ACP. The previous LHCb result is

shown as the shaded grey point. A naive world average is shown as the yellow band 2.

1D0 mesons are produced in semileptonic B̄ → D0µ−ν̄µX and the charge of the muon is used to tag the flavor of the D0

meson [10].
2Taken from http://lhcb-public.web.cern.ch/lhcb-public/Images2013/DeltaAcp.png
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As shown in the Figure 1.1, the two new LHCb results are consistent with each other and

with the previous ones showed in in Table 1.1 at the 2σ level, but do not confirm the previous

evidence of CP violation in the charm sector that had previously been reported.

In this thesis we considered for CP violation in the Cabbibo suppressed decays D0 → K+K−

and D0 → π+π−. In Chapter 2, a brief overview of the Standard Model, C, P, and T symmetries

and the Cabbibo-Kobayashi-Maskawa mixing-matrix is presented. The theory of CP violation is

presented in Chapter 3. The Weak decays of D mesons and charm quark physics are described

in Chapter 4. In chapter 5, the analysis for CP violation in the SM for singly Cabbibo sup-

pressed processes is presented, including QCD and Penguin contributions. New physics in the

neutral meson D0 system is treated in Chapter 6, that is based in the work by Altmannshofer,

Primulando, Yu and Yu [11]. Finally in Chapter 7 the conclusions are presented.



Chapter 2

Theoretical overview

1. The Standard Model

The main goal in particle physics is to understand the structure of the universe, its fundamen-

tal constituents and the laws governing its behavior. There is a theory that fits this prescription,

and describes with high precision the laws governing the fundamental particles, the Standard

Model of particle physics.

The Standard Model of particle physics is the most successful explanation of the fundamental

structure of matter that exists today. Formulated as a Lorentz-covariant quantum field theory,

combining Quantum Chromodynamics (QCD) with the Electroweak theory (EW) developed by

Glashow, Weinberg and Salam [12, 13, 14]. It is invariant under transformations of the group

(2.1) SU(3)color ⊗ SU(2)L ⊗U(1)Y

where the three symmetries are known as Color,Weak Isospin andWeak Hypercharge respectively

[15]. It describes three of the four fundamental interactions, the electromagnetic, weak and strong

ones among different fundamental particles, providing for the most part an elegant and coherent

theoretical framework and a set of precise and well-tested predictions.

5



6 2. Theoretical overview

1.1. Fundamental constituents. In the Standard Model the fermions, spin-1
2 particles, are

divided into two classes, leptons and quarks. Leptons and quarks are grouped into three gener-

ations of doublets, where each generation is identical in all quantum numbers differing only by

the masses of these ones (see Figure 2.1). Each generation consists of a pair of leptons, whose

interactions are governed by the electroweak forces, and a quark doublet, which are subject to

both electroweak and strong forces. In analogy with fermions, there exists a class of particles with

integer spin called bosons. The gauge bosons in the Standard Model are particles that mediate

the interactions between fundamental particles.

 νe

e−

 νµ

µ−

 ντ

τ−


 u

d′

 c

s′

 t

b′


Figure 2.1. Electroweak doublets. In units of electric charge, e−, µ− and τ− has charge 1,

while neutrinos has neutral electrical charge. For the case of quarks, u-type quarks (u, s, t) and

d-type quarks (d, c, b) has charge +2/3 and −1/3 respectively. The primes on the d, s, b quarks

refers to the fact that the mass and weak interactions eigenstates are not necessarily the same,

as will be explain in section 3.

1.2. Fundamental interactions. When two matter particles interact through a fundamental

force, in the Standard Model, the proccess are described by the exchange or emission of "force

particles" called gauge bosons and comprises three interactions: the electromagnetic, weak and

strong.

Electroweak interaction. All the particles with electric charge, all quarks and the three

charged leptons (e−, µ−, τ−), interact through the electromagnetic force being this force the

responsible to binds atoms and molecules together.
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The weak force acts on particles with weak charge, all leptons and quarks, and accounts for

some of the spontaneous transformation of particles into others with lower mass (i.e., the β-decay

of a radioactive nucleus). It is due of the weak force that all the massive particles created at the

origin of the universe, have decayed to the less massive particles that compose the universe we

can see today.

The weak and electromagnetic interactions can be unified and described by a SU(2)L⊗SU(1)Y

gauge symmetry, in what is commonly known as Electroweak interaction. It involves four gauge

bosons: W+ and W− which are responsible for flavor changing charged current interaction, Z0

which leads to flavor conserving weak neutral currents and the γ (photon) that mediates the

electromagnetic interaction between charged particles.

The Lagrangian for the Electroweak interactions is made up of a charged current and a neutral

current.

(2.2) L EW
int = LCC + LNC = − g√

2
[J+
µW

+µ + J−µW
−µ]− eJemµ Aµ − g

cos θW
[J0
µZ

µ]

The neutral current part of the Lagrangian is made up of the neutral electromagnetic Jemµ

and weak currents J0
µ, which are given in terms of the electric charge and isospin of the fermions,

with Jemµ = Qf f̄γµf and J0
µ = f̄γµ[(Ifz − 2Qf sin2 θW ) − Ifz γ5]f summing over all flavors. The

charged current in the quark sector is given by

J+
µ = (ū, c̄, t̄)LγµVCKM


d

s

b


L

where the L subscript represents the left-handed projector 1
2(1 − γ5) which reflects the vector -

axial-vector (V - A) structure of the weak interaction. VCKM is the Cabbibo-Kobayashi-Maskawa

matrix (see section 3).
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Strong interaction. While leptons are detected as discrete particles in nature, quarks can not

be found free in nature. Quarks, which are massive and have fractional electric charge, are further

characterized by a quantum number known as color charge, there are 3 color charges commonly

red, green and blue. The strong interaction is described by quantum chromodynamics (QCD)

which is based on the non-abelian gauge group SU(3)color gauge theory. There are eight gauge

bosons, corresponding to eight generators of the SU(3)color group, called gluons g which mediate

the strong force between particles with color charge and is responsible for the confinement of

the quarks to form SU(3)color-singlet bound-states called hadrons, and on a larger scale, for

the binding of the hadrons in a nucleus. Hadrons must be color neutrals and are found in two

classes; baryons, which contain three quarks (or three anti-quarks) and mesons, which contain

a quark and an anti-quark. Mesons have integer spin (bosons), while baryons have half integer

spin (fermions). The Lagrangian of QCD can be written as

LQCD = Q̄α(i(γµDµ)αβ −mδαβ)Qβ −
1

4
GaµνG

a,µν(2.3)

Here Gaµν is the field strength tensor and defined as

Gaµν = ∂µ∂
a
ν − ∂ν∂aµ + gsf

abcAaµA
a
ν(2.4)

and iDµ = i∂µ−gsT aAaµ, where Aaµ is the vector field representing the gluon and gs is the strong

coupling constant. Qα is a column vector of six quark fields which correspond to the six flavors,

the quark fields are color triplets, so that the indices α and β run over the colors. The T a are

the generators of the group SU(3)C . The sum over repeated indices is understood. An extensive

treatment of QED and QCD can be found in the books by Peskin and Schroeder, and Mandl

and Shaw [16, 17].

The γ (photon) and gluons are massless, while the W± and Z0 boson are massive. Each

of these fermions and gauge bosons has a corresponding antiparticle which has the same mass

but the opposite electric charge. The neutral gauge bosons, photons, gluons and Z0 are their
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own antiparticles. The electromagnetic and the strong interaction conserve quark and lepton

flavor while in the weak interaction is not. The Higgs boson is the last particle, predicted by

the Standard Model, confirmed by experiments. The Higgs boson is a special bosonic particle,

because it explains why the gauge bosons and fermions are massive, through their interaction

with the Higgs boson. Figure 2.2 shows the fundamental particles of the Standard Model and

summarize some of their physical properties measured so far as masses, charges and spin.

Figure 2.2. Fundamental particles of the Standard Model: quarks, leptons and force carriers3.

In the standard model, during a weak decay a fermion (lepton or quark) transforms into its

doublet partner by emission of a charged weak boson W±. The W± can then either materialize

a fermion-anti-fermion pair belonging to the same doublet, or couple to another fermion and

transform it in its doublet partner (see Figure 2.3). A weak decay can therefore be represented as

the interaction of two fermion currents (either leptonic or hadronic), mediated by a charged W±

3Figure taken from Wikipedia: http://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
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bosonic current. Since only transitions between doublet partners are posible, the weak current

mediating the decay process is always charged. Obviously, a weak decay can take place only if it

is energetically possible, i.e. if the parent fermion has a larger mass than the daughter fermion.

For this reason the quark u and the lepton e−, being the lowest mass quark and lepton, do not

decay.

f̄1

f1

W±

f̄2

f2

Figure 2.3. Schematic representation of a weak decay. Either (f1, f̄1) and (f2, f̄2) are

fermions that belong to the same electroweak doublet.

Even though the Standard Model is not a complete theory. It does not take into account some

experimental evidences, such as the presence of dark matter, the fermion masses hierarchy and

the quantitative asymmetry between matter and antimatter of the universe. Current experiments

are designed to measure even more accurately the parameters of the model in an effort to search

for Physics Beyond the Standard Model (BSM), often also referred to as "New Physics", which

the model can not explain.

2. C, P and T Symmetry

Symmetries are very important in physics, since they play an important role with respect to

the laws of nature. A symmetry in a physical system is any type of transformation applied to

the Lagrangian L which does not change under the transformation, in other words it leaves it

invariant. Noether’s Theorem [18] states that for a system descried by a Lagrangian L , any

symmetry which leaves the action invariant implies the existence of a conservation law. There
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are many types of symmetries that can be seen in nature. For example gauge symmetries, and

the discrete symmetries of parity, charged conjugation, and time-reversal.

The Standard Model is based on SU(3)color ⊗ SU(2)L ⊗ U(1)Y gauge symmetries. The U(1)

group is a one-dimensional phase rotation. SU(2)L ⊗ U(1)Y are the symmetry groups govern-

ing the electroweak interactions, known as the Glashow-Weinberg-Salam model [12, 13, 14].

SU(3)color is the symmetry group of the strong interaction, or quantum chromodynamics (QCD).

The Lagrangian for this theory is then the sum of the strong interactions term LQCD and the

term for electroweak interactions LEW .

The discrete symmetries of charged conjugation (C), parity (P), and time-reversal (T) are very

important symmetries in the Standard Model, and play an important role in particle physics.

On a state, described by a four 4-vector (x0,x), operations are define as:

Charge conjugation C: the particle is transformed into its antiparticle;

Parity P: P(x0,x) = (x0,−x), the space coordinates are reversed (reverses all momenta,

but leaves spin unchanged);

Time-Reversal T: T (x0,x) = (−x0,x), the time coordinates are reversed (reverses

both momenta and spin).

Those symmetries can be combined, for example the transformation CP changes a particle

in its antiparticle and then inverts its momentum and helicity. While it is possible to predict

violations of individual symmetries, the combined transformation CPT is always symmetric in

the Standard Model [19] and up to now, it is confirmed to be conserved by all experimental

searches.

There is no experimental evidence that interactions governed by the strong and electromag-

netic forces violate C, P or T separately, while weak interactions violate both, C and P [20]. This

is due to the vector - axial-vector (V - A) structure of the weak coupling. However, CP violation

of the weak interactions was observed for first time, in the neutral kaon system KL → π+π−, by
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Cronin and Fitch in 1964 [21]. Since then, CP violation has been one of the most interesting and

active fields in particle physics. Recently CP violation was also observed in the and D0 meson

decay systems (CDF [6], BaBar [7] and Belle [8]).

3. The CKM matrix

The transformation between the quark mass eigenstates d, s, b and the weak interaction eigen-

states d′, s′, b′ is given by a 3 × 3 unitary matrix, usually referred to as the VCKM (Cabibbo-

Kobayashi-Maskawa) quark mixing matrix [22, 23], and can be written as


d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




d

s

b

 = VCKM


d

s

b


where Vq1q2 is the coupling related to the transition q1 → q2. Many parametrizations exist in

the literature, but the most used are the standard parametrization [24], and the Wolfenstein

parametrization [25].

In the standard parametrization, also used by the Particle Data Group [26], the CKM matrix

is written as

VCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13


where cij = cosθij and sij = sinθij with θij the mixing angles between the different families

and δ as the CP violating phase. The standard choice for the four independent parameters, due

to s13 and s23 are small and of the order of O(10−3) and O(10−2), is s12 = |Vus|, s13 ∼ |Vub|,

s23 ∼ |Vcb| and δ.
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The single complex phase enters because of the three-generations nature of the CKM matrix.

A mass-mixing matrix involving only two quark generations would be parametrizable solely in

terms of real rotations while more quark generations would lead to a more complex parametriza-

tion involving multiple phases. The fact that δ is non-zero allows for the Standard Model mech-

anism of CP violation in weak decays. Since |Vub| ∼ sin θ13 multiplies every term in the CKM

matrix carrying that phase, the Standard Model mechanism for CP violations requires |Vub| to

be non-zero.

The square of the magnitude of |Vij | is the relative probability for a weak transition between

quarks of flavor i and j. The fact that the off-diagonal elements of CKM matrix are not zero

has a number of phenomenological implications, including that the possibility for flavor-changing

transitions between quarks of different generations are allowed in weak charged-current interac-

tions.

Another frequently used parameterization of the CKM matrix is the so-called Wolfenstein

parametrization. Starting from the consideration that the mixing angles are small, the Wolfen-

stein parametrization [25] emphasizes in the magnitudes of the VCKM elements. The parameters

on the diagonal elements are ≈ 1, while off-diagonal elements are small. Transitions within the

same quark generation are the most likely, while cross-generation transitions are suppressed. In

the Wolfenstein parametrization, the matrix elements are the result of a power series expansion

in terms of a small parameter λ = |Vus| = sinθC ≈ 0.22, where θC is called the Cabibbo angle

[22]. To the order O(λ3), it is expressed as

VCKM =


1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4)

where the four independent parameters are in this case λ, A, ρ and η, with η as the CP violating

phase. Those parameters are defined as
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s12 = λ, s23 = Aλ2, s13e
−iδ = Aλ3(ρ− iη)

Leaving the strong CP violation aside, the only source remaining for CP violation in the

SM is the CKM matrix. Therefore, investigation of the magnitude of CP violation in the weak

interaction is a well suited area in search for Physics BSM.



Chapter 3

Theory of CP violation

After a chapter which mostly contained a basic theoretical overview of particle physics, we

now explore CP violation. One distinguishes direct and indirect CP violation. At last, we discuss

the observable ∆ACP and how the different kinds of CP violation contribute to it. This chapter

is mostly based on the text books by Branco, Lavoura and Silva, and Bigi and Sanda [27, 28] .

CP violation in D decay processes has been observed and is highly suppressed in the Standard

Model. Therefore, in general, observation of an appreciable CP violating effect in the charm

system would be a signature of new physics contributions. The measurement of asymmetries

between a decay and its CP conjugate is a way to investigate the magnitude of this CP violation

and study if it exceeds the Standard Model prediction, giving hints towards New Physics. The

advantage of measuring asymmetries is that due to their definition many systematical effects

cancel. That way high precision can be achieved.

CP violation in decay appears on the amplitude level. The general form of the time integrated

CP asymmetry is given by Equation 1.1

ACP(f ; t) =
Γ(P → f)− Γ(P̄ → f̄)

Γ(P → f) + Γ(P̄ → f̄)
(3.1)

15
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where Γ(P → f) is the decay rate of the particle P to the final state f . The decay rates take

following form

Γ(P → f) = Γ̃f |M(P → f)|2, Γ(P̄ → f̄) = Γ̃f |M(P̄ → f̄)|2(3.2)

whereM(P → f) is the decay amplitude for the decay of a particle P to a final state f and Γ̃f

is a phase space factor.

The time integrated CP asymmetry receives contributions from

Am CP violation in mixing.

Ai CP violation in interference between decays with and without mixing.

Adf CP violation in decay.

The “indirect” CP asymmetries Am and Ai are approximately independent of the final state and

depends only on D0−D̄0 mixing parameters. The “direct” CP asymmetry Adf is instead sensitive

to the final state.

1. Direct CP violation (CP Violation in Decay).

We obtain the general definition of a direct CP asymmetry as

ACP (f) = adirCP ≡
1−

∣∣∣M(P̄→f̄)
M(P→f)

∣∣∣2
1 +

∣∣∣M(P̄→f̄)
M(P→f)

∣∣∣2(3.3)

what gives the defining condition for direct CP violation as∣∣∣∣M(P̄ → f̄)

M(P → f)

∣∣∣∣ 6= 1(3.4)

Direct CP violation occurs if two different amplitudes contribute to a single decay, i.e. a tree

and a higher order process, such that the interference of these two contributing amplitudes leads
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to a different decay rate for the CP -conjugated process. To show this we assume that the final

state is a CP eigenstate such that CPA(P → f) = ηfCPA(P → f), where ηfCP = ± for f being

an even/odd CP eigenstate. Furthermore, the amplitudes, which represent the decay of P and

its CP -conjugate P̄ to the final state f , can be parametrized in the following way [1]

Af = ATf

(
1 + rfe

i(δf+φf )
)

(3.5)

Āf = ηfCPA
T
f

(
1 + rfe

i(δf−φf )
)

(3.6)

where ATf is the dominant tree level amplitude, and rf the subleading penguin amplitudes. The

penguin amplitudes have a weak phase φf and a strong phase δf . Under the assumption that rf

is small, the direct CP asymmetry becomes

Adf = 2rf sin δf sinφf(3.7)

2. Indirect CP violation

In contrast to direct CP violation, which is possible for neutral and charged meson decays,

indirect CP violation is only possible in the decays of neutral mesons, because they can transform

into their antiparticle.

2.1. CP violation in mixing. CP violation in mixing occurs if a neutral particle P 0 cannot

decay into a final state f̄ but its CP -conjugate P̄ 0 can. Consequently, P 0 needs first to oscillate

to the antiparticle state before decaying into the given final state f̄ . As example we have the

semileptonic decays

P 0 → P̄ 0 → l+ +X− 6← P 0(3.8)

P̄ 0 → P 0 → l− +X+ 6← P̄ 0(3.9)

where f = l− +X+ and f̄ = l+ +X−.
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2.2. CP violation in interference between decays with and without mixing. If mixing

followed by decay and direct decay interfere this creates an additional form of CP violation. The

final state must be common to P 0 and P̄ 0. An example for this kind of CP violation are the

decays D0 → K+K−, D̄0 → K+K−, D0 → π+π− and D̄0 → π+π−.

3. CP violation in D0 decays

In this section we are going to explore the structure of ∆ACP and which of the three types

of CP violation contribute to ∆ACP .

The direct CP asymmetry is dependent on the final state, since it is dependent on the decay

amplitude which is different for every final state. The indirect CP violation is universal for all

final states to a good approximation, since aindCP is a function of the mixing parameters only. The

effective decay time is also dependent on the final state this is because different decay processes

have smaller/larger phase spaces and therefore are less/more likely to occur after a certain time.

3.1. ∆ACP . For D0 → K+K− and D0 → π+π−, the difference ∆ACP can then be written

as

∆ACP = ACP (K+K−)−ACP (π+π−)(3.10)

= ∆adirCP + aindCP
∆〈t〉
τD

(3.11)

where ∆adirCP is defined by ∆adirCP = adirCP (K+K−)− adirCP (π+π−), in the same way ∆〈t〉 is defined

as ∆〈t〉 = 〈tKK〉 − 〈tππ〉. The value for adirCP and aindCP can be taken from HFAG [29]

adirCP = (−0.333± 0.120)%(3.12)

aindCP = (0.015± 0.052)%(3.13)

and the values for ∆〈t〉
τ can be read of from the following table
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Experiment ∆〈t〉
τ

〈t〉
τ Reference

CDF 0.25 2.58 [6]

LHCb 0.11 2.10 [9]

Table 3.1. Experimental values for ∆〈t〉
τ

.

Due to the small value for aindCP , it is a good approximation to take

∆ACP ≈ ∆adirCP(3.14)

We can then say that ∆ACP mainly consists of the difference of direct CP asymmetries. The

collected world data with uncertainties are summarized in Figure 3.1.

4Taken from http://www.slac.stanford.edu/xorg/hfag/charm/CHARM13/DCPV/direct_indirect_cpv.html
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Figure 3.1. The combination plot shows the measurements listed in the Table above for

∆ACP , where the bands represent ±1σ intervals. The point of no CP violation (0,0) is shown

as a filled circle, and two-dimensional 68% CL, 95% CL, and 99.7% CL regions are plotted as

ellipses with the best fit value as a cross. The measurements of ∆ACP can be used to write

∆adirCP as function of aindCP as in Equation 3.11. The plot was taken from HFAG [29]. From the

fit, the change in χ2 from the minimum value is consistent with no CP violation at 2.0% CL 4.



Chapter 4

Weak decays of D meson

In the previous chapter, we established that ∆ACP is the difference of the two direct asym-

metries, we also found that direct asymmetries are generated by the interference of at least two

different processes that contribute to one decay. Yet, we did not discuss the decay processes

themselves, we will take up this task in this chapter. In principle, the decay amplitudes can be

derived from the SM Lagrangian, nevertheless, this involves some complications. Corrections of

the strong interaction “QCD corrections” make the analysis difficult because not all QCD correc-

tions can be computed from first principles. This also hinders us from making precise predictions

for ∆ACP as we will see in the third section of this chapter.

1. Charm quark physics

Since the discovery of the J/ψ, forty years ago (1974) [30, 31], charm physics has been an

interesting and active area of investigation. The charm quark is the lightest of the heavy quarks

(mc ≈ 1.275GeV/c2) and provides an intermediate state extending the knowledge from lighter

flavors to heavy quark physics. Also since many more hadrons are produced containing a charm

quark than heavier flavors, it is easier and more accessible to study experimentally than other

heavy quarks.

21
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1.1. Charmed mesons decays. There are three types of decays of the D meson, categorized

according to the final state particles produced. Firstly there are the leptonic decays, such as

D+ → l+νl and semi-leptonic decays such as D0 → K−e+νe. Finally, and most important in the

context of this work, there are the fully hadronic, a.k.a. non-leptonic decays, i.e. D0 → K+K−

and D0 → π+π−.

The study of charmed meson decays are important for improving our knowledge of the SM. In

particular, the study of leptonic and semileptonic decays allow us to measure the CKM matrix

elements Vcs and Vcd to a high level of precision. Leptonic and semileptonic decays are also used

to test theoretical predictions describing the strong interaction (QCD) in heavy quark systems.

In the SM, the charm quark, and hence mesons containing valence c quark, decays through

the weak charge current into a light quark with charge −1
3 ; i.e. the strange (s) or down (d) quark.

The coupling constant is proportional to the element Vcq of the CKM mixing matrix and the

decay rate is proportional to |Vcq|2. The W+ boson emmited by the charm quark may decay

leptonically, to a lepton - neutrino (l, νl) pair, or hadronically, to a quark - anti-quark (q1, q̄2)

pair, which then hadronize into a daughter meson (K or π). Therefore, when the weak interaction

is responsible for the decay of charmed particles, strong interactions play an important role in the

hadronization process which determines the final state. The lowest order diagram (i.e. neglecting

gluon emission) through which the decay can proceed are shown in Figure 4.1 (for the case of a

charm meson D0 = (cū)).

1.2. Non-leptonic weak decays for particles with charm. Non-leptonic decays can be

described as two hadronic charged currents coupled by the exchange of W+ gauge bosons. The

final state are only hadrons and the lowest order interaction is written as

Leff = −4
GF√

2
JµJ†µ + h.c.(4.1)
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c

s, d

W+

l, q1

νl, q̄2

ū

ū

D0

K−, π−

Figure 4.1. Charmed quarks decay under the weak interaction into s or d quarks. The W+

boson produced may decay leptonically [to a (l, νl) pair] or hadronically [to a (q1, q̄2) pair].

where GF is the Fermi coupling constant.

In charm decays, considering only the first two generations of quarks, the CKM matrix can

be approximated by a 2× 2 unitary matrix with one real angle

VC =

 cos θc sin θc

− sin θc cos θc


where θc ≈ 13◦ is the Cabbibo angle and determines the level of mixing between the two gener-

ations and hence the decay rate. The mass eigenstates of the d and s quarks can be expressed

as

 d′

s′

 = VC

 d

s


d′ ≡ d cos θc + s sin θc

s′ ≡ −d sin θc + s cos θc

In this approximation c → s and u → d transitions, proportional to cos θc (probability

∼ cos2 θc ≈ 0.95), are favored with respect to c → d and s → u transitions, proportional to
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sin θc (probability ∼ sin2 θc ≈ 0.05). These two types of transitions are called Cabbibo-favored

(CF) and singly-Cabbibo-suppressed (SCS), respectively.

In the spectator decay Figure 4.2, the light anti-quark ū does not take part in the weak inter-

action. It is a spectator to the charm decay process and afterwards combines with the daughter

quark, either from the c-quark decay or W -boson decay, to form another daughter meson. In the

spectator mechanism, the dacay rate into any q− q̄ pair is favor by a factor of three over the decay

rate into l − νl pair, because there are three color degrees of freedom. In the same way, in the

external spectator, a.k.a. “color allowed ” or “factorizable”, color is automatically conserved,

while in the internal spectator, a.k.a. “color suppressed ” or “non-factorizable”, amplitude color

is suppressed since the color of the quarks from the virtualW most match the color of the quarks

from the parent meson. ζ = 1
Nc

= 1
3 .

c

s, d

W±

u

q̄

ū

ū

a) External spectator.

c

s, d

W±

u

q̄

ū ū

b) Internal spectator.

Figure 4.2. Spectator decay for charm quark. A) External spectator. B) Internal spectator.

2. Low-Energy Effective Lagrangian

In order to describe non-leptonic decays we have to take into account corrections of the strong

interaction to the weak interaction. The strong interaction acts on the quark constituents of the

hadrons and is the most difficult part in the evaluation of decay amplitudes.
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In this section we will give the final Lagrangian which describes weak decays, where the weak

and strong interaction are combined in effective operators Qi, by making use of the Operator

product expansion (OPE). The idea of Low-Energy Effective Lagrangian (LEEL) is to divide in

short and long-distance interactions. The short-distance interactions describe the contributions

of the heavy degrees of freedom such as the top and bottom quark and the W boson. They can

be evaluated and will be encoded into the Wilson coefficients. The long-distance effects, will be

discussed a little bit further.

2.1. Operator Product Expansion (OPE). Since we want to describe D meson decays in

which CP violation appears we consider the charged current Lagrangian LCC . The basic tree-

level for SCS decays has the generic flavor structure c→ quq̄ for q = s, d, and gives the amplitude

M

M =
ig2
w

2(q2 −M2
W )

VcqV
∗
uq 〈M1M2| (q̄γµLc) (ūγνLq) |D0〉(4.2)

where MW is the mass of the W boson, gw is the weak coupling constant, Vcq and Vuq are CKM

factors and L = 1−γ5

2 the left-handed spinor in the Dirac space.

In the limit where |q2| = M2
D � M2

W (MD ∼ 2 GeV, MW = 80.4 GeV), the propagator of

the boson line become simply gµν
M2
W
, and the matrix element simplifies to Equation 4.3 where the

identity GF√
2

= g2
w

8M2
W

was used

M = −i4GF√
2
VcqV

∗
uq 〈M1M2|(q̄γµLc)(ūγµLq)|D0〉(4.3)

This amplitude could also have been obtained from the following effective Lagrangian

Leff = 4
GF√

2
VcqV

∗
uq(q̄γ

µLc)(ūγµLq)(4.4)

which is valid in the low energy limit where the quark interactions with the W boson can be ap-

proximated to be point-like. The lowest order diagram for c→ quq̄ transition is shown in Figure

4.3. The same figure also shows the approximated weak vertex as a pointlike interaction. Higher
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order corrections, which correspond to operators of higher dimension can usually be neglected,

we will neglect all higher order corrections in this thesis.

c q

q u

W

c q

q u

×

Figure 4.3. Tree-level diagram for c → quq̄ transitions. The figure on right shows the

approximated weak vertex as a pointlike interaction.

2.2. Low-Energy Effective Lagrangian (LEEL) for SCS decays. In SCS decays the

quark level transition has the form c → pup̄ with p = d, s, b so that penguin diagrams as in

Figure 4.4 do contribute. In Figure 4.4, the gluon creates an additional quark pair, this type of

diagram is called a QCD penguin.

c
W±

u

q q

g

p p

Figure 4.4. Penguin diagram.
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Because of their flavor structure penguin diagrams contribute only to SCS decays. If QCD

corrections and penguin interactions additional to the basic tree interaction are taken into account

of the order αs, the total effective non-leptonic quark level Lagrangian at a scale µ for SCS charm

decay is given by [4, 32]

Leff = −4
GF√

2

∑
q=s,d

VuqV
∗
cq(C1Q

q
1 + C2Q

q
2)− VubV ∗cb

6∑
n=3

CnQn + C8gQ8g

+ h.c.(4.5)

where Ci are the Wilson coefficients containing loop effects from scales above µ. The current-

current operators Q1,2 are defined as

Qq1 = (q̄αqβ)V−A(ūβcα)V−A Qq2 = (q̄c)V−A(ūq)V−A(4.6)

and the so-called “penguin” operators Q3−6 are given as

Q3 = (ūc)V−A
∑
q

(q̄q)V−A Q4 = (ūαcβ)V−A
∑
q

(q̄βqα)V−A(4.7)

Q5 = (ūc)V−A
∑
q

(q̄q)V+A Q6 = ūαcβ)V−A
∑
q

(q̄βqα)V+A

where summation over color indices α, β understood and p = d, s.

Since the quark pairs in the penguins couple to a gluon V −A and V +A currents contribute,

yet it is common to write these contributions separately. At last there is the magnetic penguin

operator which arises through the mass of the charm quark

Q8g = − gs
8π2

mcūσµν(1 + γ5)Gµνc(4.8)

Evaluated at the charm quark mass µ ≈ mc the Wilson coefficients take the following numer-

ical values at next-to-leading order (NLO) [4]

C1 = −0.41, C2 = 1.21, C3 = 0.02, C4 = −0.04(4.9)

C5 = 0.01, C6 = −0.05, C8g = −0.06
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The Qi denote the relevant local operators which govern the particular decay in question and

can be considered as effective point-like vertices while the Wilson coefficients are then seen as

“coupling constants” of these effective vertices, summarizing the contributions from physics at

scales higher than µ.

With the Lagrangian in Equation 4.5 we can describe all decays of a D meson into two light

pseudoscalars. The problem of the LEEL is that the matrix elements 〈Qi〉 cannot be computed

a posteriori. Yet, in some cases they can be extracted from experiment, how this can be done is

presented in the next section.

3. Factorization

In this section, we will introduce the “naive factorization” to give an approximate value to the

hadronic matrix elements. In order to do this we need to define some non-perturbative quantities,

which can be extracted from leptonic and semileptonic decays.

3.1. Naive Factorization. To evaluate the hadronic matrix elements of the operators in the

effective Lagrangian that is relevant for SCS decays, we introduce the “naive factorization” [33].

For two-body non-leptonic decays of D0 → M1M2, the major difficulty involves the evaluation

of the hadronic matrix elements

〈M1M2|Leff |D0〉(4.10)

It results very convenient to separate the full matrix element into a product of matrix elements

of two quark currents. Then for the basic-tree transition of c→ quq̄ we have

〈M1M2|(q̄γµLc)(ūγµLq)|D0〉 −→ 〈M1|(q̄γµLc)|D0〉〈M2|(ūγµLq)|0〉(4.11)

The first product represents the transition matrix element between the D0 meson and one of

the final state mesons, and the second is the matrix element of the other final state meson being

“created” from the vacuum.
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3.2. Non-perturbative quantities. As said before, in order to give an approximate value

to the hadronic matrix elements we need to define some non-perturbative quanties, which can

be extracted from leptonic and semileptonic decays. This subsection is based and adapted from

[34].

W±
l+

νl

D+

a) Leptonic decay.

W±

l+

νl

D0 K−

b) Semileptonic decay.

Figure 4.5. Feynman diagrams. a) Leptonic decay. b) Semileptonic decay.

Leptonic decays. The simplest example of a leptonic decay for a D meson is given D+ → l+νl,

as depicted in Figure 6.1 a). From the corresponding Feynman diagram, the decay amplitude for

this process can be written as

M = i
g2
w

2
V ∗cd [ūνlγ

µLvl]
gµν

q2 −M2
W

〈0|s̄γνLc|D+〉(4.12)

where MW is the mass of the W boson, gw is the weak coupling constant, V ∗cd the corresponding

element of the CKMmatrix and L = 1−γ5

2 the left-handed spinor in the Dirac space. Here again, in

the limit where the four-momentum q that is carried by the W boson satisfies |q2| ∼M2
D �M2

W

(MD ∼ 2 GeV, MW = 80.4 GeV), the propagator of the boson line become simply gµν
M2
W
, and the

matrix element simplifies to

M = −i4 GF√
2
V ∗cd [ūνlγ

µLvl] 〈0|s̄γµLc|D+〉(4.13)
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where the identity GF√
2

= g2
w

8M2
W

was used. Ignoring the higher order terms, all the hadronic physics

are enclosed in the hadronic matrix element 〈0|s̄γµLc|D+〉 which describes the decay of a D+

meson. Since D+ is a pseudoscalar particle, the part 〈0|s̄γµc|D+〉 of the hadronic matrix element

must be zero 〈0|s̄γµc|D+〉 = 0, so we can write

〈0|s̄γµγ5c|D+(P )〉 = ifD+PD
+

µ(4.14)

where fD+ is the D+ meson decay constant.

Semileptonic decays. For semileptonic decays we can take the example D0 → K−l+νl, which

is illustrated in 6.1 b). The amplitude of the decay D0 → K−l+νl can be written as

M = −i4 GF√
2
V ∗cs [ūνlγ

µLvl] 〈K−|s̄γµLc|D+〉(4.15)

where as above q2 ∼ M2
D � M2

W was used. Here again, all the hadronic physics are enclosed

in the hadronic matrix element 〈K−|s̄γµLc|D+〉. Since K− and D+ are pseudoscalars, we have

〈K−|s̄γµγ5c|D+〉 = 0, so we can write

〈K−|s̄γµc|D+〉 = f+(q2)(PD + PK)µ + f−(q2) qµ(4.16)

= f+(q2)

[
(PD + PK)µ −

M2
D −M2

K

q2
qµ

]
+ f0(q2)

M2
D −M2

K

q2
qµ(4.17)

where f0(q2) ≡ f+(q2) + f−(q2) q2

M2
D−M

2
K

and q ≡ PD − PK , with P 2
D = M2

D, P
2
K = M2

K and q2 is

the invariant mass of the dilepton pair (l+, νl). In Equation 4.17 f+(q2) and f0(q2) are the form

factors of the D0 → K−transitions.



Chapter 5

The Standard Approach

to SCS decays

In this chapter, the singly Cabbibo suppressed processes are going to be presented but up to

now we have just considered c → quq̄ processes in general. So now, we take a look in the two

meson decays governed by D0 → K+K− and D0 → π+π−, not including the contributions for

the final states with η and π0 mesons.

Using the OPE, we examine the decays at tree level, followed by one-loop order QCD correc-

tions to the products of quark currents, where gluons are exchanged between the weak interaction

vertices in all possible ways. Following the same general strategy as used by Grinstein et al. [35].

1. The decays at tree level.

The amplitude at tree-level for Cabibbo suppressed processes c → sus̄ and c → dud̄ can be

written as Equation 4.2

MK+K− = −i4GF√
2
VcsV

∗
us〈K+K−|(s̄γµLc)(ūγµLs)|D0〉(5.1)

Mπ+π− = −i4GF√
2
VcdV

∗
ud〈π+π−|(d̄γµLc)(ūγµLd)|D0〉(5.2)

31
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and the effective Lagrangian as Equation 4.4

L weak
eff = −G̃θ[(s̄γµLc)(ūγµLs)− (d̄γµLc)(ūγµLd)](5.3)

= −G̃θQ2(5.4)

with G̃θ ≡ 4GF√
2

cos θc sin θc, and

Q2 ≡ (s̄γµLc)(ūγµLs)− (d̄γµLc)(ūγµLd)(5.5)

= Qs2 −Qd2(5.6)

These give contributions to D0 → K+K− and D0 → π+π− where CP violation has been seen.

Utilizing the naive factorization previously presented, the matrix elements can be separated into

a product of matrix elements.

〈K+K−|Qs2 |D0〉 = 〈K−| s̄γµLc |D0〉〈K+| ūγµLs |0〉(5.7)

〈π+π−|Qd2 |D0〉 = 〈π−| d̄γµLc |D0〉〈π+| ūγµLd |0〉(5.8)

The first of the products is the transition matrix element between the D0 meson and K−

(π−) meson, and the second is the matrix element of the K+ (π+) meson being “created” from

the vacuum via the axial current, proportional to the kaon (pion) decay constant fK (fπ). For

the K+ we have

〈K+| ūγµLs |0〉 = −1

2
〈K+| ūγµγ5s |0〉(5.9)

= −1

2
(ifKP

K
µ )(5.10)

and, for the case of π+

〈π+| ūγµLd |0〉 = −1

2
〈π+| ūγµγ5d |0〉(5.11)

= −1

2
(ifπP

π
µ )(5.12)
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The hadronic current between the D0 meson and K− meson is related to

〈K−| s̄γµLc |D0〉 =
1

2
〈K−| s̄γµc |D0〉(5.13)

=
1

2
[f+(PD + PK)µ + f−(PD − PK)µ](5.14)

and for π−

〈π−| d̄γµLc |D0〉 =
1

2
〈π−| d̄γµc |D0〉(5.15)

=
1

2
[f+(PD + Pπ)µ + f−(PD − Pπ)µ](5.16)

with f± relatively well known. Equations 5.14 and 5.16 can also be written in terms of the decay

factors f+ and f0 as Equation 4.17.

In the next section QCD corrections to one-loop order are going to be considered. So defining

a new the local operator Qc2, which represents the QCD correction to Q2, as

Qc2 ≡ (q̄iT
a
ijγ

µLcj)(ūkT
a
klγµLql)

with T a as color matrices with color indices i, j, k, l. The product of color matrices is given by

T aijT
a
kl = 1

2

(
δilδkj − 1

Nc
δijδkl

)
(see Appendix C, Equation C.7), so

Qc2 = (q̄iγ
µLck)(ūkγµLqi)−

1

Nc
(q̄iγ

µLci)(ūkγµLqk)(5.17)

the second term, is equivalent to Q2 suppressed by a factor 1
Nc

, where Nc is the number of colors.

The first term, after Fierz transformation is apply can be define as a new local operator Q1 as

Q1 ≡ (s̄γµLs)(ūγµLc)− (d̄γµLd)(ūγµLc)(5.18)

Q1 gives contributions to η and π0 in final state, and it is related to the Figure 4.2 b), which

corresponds to a color suppressed transition, even though Q1 is generated by “loop” contributions

via Qc2 (see section 2).
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2. One loop QCD corrections

To obtain QCD corrections at one-loop order for c → quq̄ process. We must calculate the

contribution to the Lagrangians for each of the diagrams in Figure 5.1, utilizing HQET (Heavy

Quark Effective Theory) in the energy range mc > µ. The charm quark mass is taken to be infin-

ity and its four-velocity fixed, so we can replace the quark field c to a reduced heavy quark field

c → h
(c)
v . The feynman diagrams in Figure 5.1 show the lowest order QCD loop contributions

for Q2. Once we calculate the 4 diagrams we sum these to find the total contribution [36, 37].

h
(c)
v

q

q u

+k

−k

a)

h
(c)
v

q

q u

+k

−k

b)

h
(c)
v

q

q u

+k

+k

c)

h
(c)
v

q

q u

+k

+k

d)

Figure 5.1. QCD corrections at one-loop order.

2.1. Diagram a) contribution. In the Table A.1 and A.2 are listed the Feynman rules

necessaries to write the mathematical terms for these diagrams. The diagram 5.1 a) can be
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written in a mathematical way as

Γa = i

∫
d4p

(2π)4

[
q̄(−igsγνT a)

i(γσpσ +mq)

p2 −m2
q + iε

−igw√
2
γµLVcqc

]
× igνλ
p2 + iε

igµκ
p2 −M2

W + iε
×
[
ū(−igsγλT a)

i(−γρpρ +mu)

p2 −m2
u + iε

−igw√
2
γκLVuqq

]
(5.19)

where all external momenta corrections are negligible compared to M2
W , as |p2

ext| ∼M2
D �M2

W .

Rearrenging all the terms we get

Γa = i4
GF√

2
VcqV

∗
uqg

2
s

∫
d4p

(2π)4

1

p2 + iε

M2
W

p2 −M2
W + iε[

q̄T aγν
γσpσ +mq

p2 −m2
q + iε

γµLh(c)
v

] [
ūT aγν

−γρpρ +mu

p2 −m2
u + iε

γµLq

]
(5.20)

neglecting the mass of the u-quark, q-quark in the numerator, and with the following relation

[16, 17] ∫
d4p

(2π)4
pσpρ f(p2) =

δσρ

4

∫
d4p

(2π)4
p2 f(p2)(5.21)

the integral simplifies to

Γa = −iGF√
2
VcqV

∗
uq g

2
s

∫
d4p

(2π)4

1

p2 + iε

M2
W

p2 −M2
W + iε

1

p2 −m2
q + iε[

q̄T aγνγσγµLh(c)
v

]
[ūT aγνγργµLq](5.22)

Introducing µ as the low energy cutoff, and replacing mq with µ. The integral is explicitly

calculated in Apendix B, using the Feynman parametrization, and Wick rotation, resulting on

the following

Γa =
GF√

2
VcqV

∗
uq

g2
s

(4π)2
Log

[
M2
W

µ2

]
(q̄T aγνγσγµLh(c)

v )(ūT aγνγργµLq)(5.23)

the fine coupling constant is given by g2
s = 4παs, and with g2

s
(4π)2Log

[
M2
W
µ2

]
] being contained in

the Wilson coefficients showed in Equation 4.9.
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The products of Dirac bilinear (q̄T aγνγσγµLh
(c)
v )(ūT aγνγργµLq) can be simplified using γ-

matrices identites, such as C.3. The results are shown in Apendix C, introducing them the whole

term simplifies to

Γa = 2
GF√

2
VcqV

∗
uq

αs
π
Log

[
M2
W

µ2

] [
(q̄γµLq)(ūγµLh

(c)
v )− 1

Nc
(q̄γµLh(c)

v )(ūγµLq)

]
(5.24)

= 2
GF√

2
VcqV

∗
uq

αs
π
Log

[
M2
W

µ2

](
Q1 −

1

Nc
Q2

)
(5.25)

= 4
GF√

2
VcqV

∗
uq

αs
π
Log

[
M2
W

µ2

]
Qc2(5.26)

with Qc2, corrections to the local operator Q2, is (see Appendix C)

Qc2 = (q̄T aγµLh(c)
v )(ūT aγµLq) =

1

2

(
Q1 −

1

Nc
Q2

)
.(5.27)

2.2. Diagrams b) and c) contribution. The diagram 5.1 b) can be written in a mathemat-

ical way as

Γb = i4
GF√

2
VcqV

∗
uqg

2
s

∫
d4p

(2π)4

1

p2 + iε

M2
W

p2 −M2
W + iε

1

v · p+ iε[
q̄T aγνLvµh(c)

v

] [
ūγνL

−γρpρ +mu

p2 −m2
u + iε

γµT
aq

]
(5.28)

and for the diagram 5.1 c)

Γc = i4
GF√

2
VcqV

∗
uqg

2
s

∫
d4p

(2π)4

1

p2 + iε

M2
W

p2 −M2
W + iε

1

v · p+ iε[
q̄T aγνLvµh(c)

v

] [
ūγµL

γρp
ρ +mu

p2 −m2
u + iε

γνT
aq

]
(5.29)

p

The integral of the kind

Iρ =

∫
d4p

(2π)4

M2
W pρ

(p2 + iε)(p2 −M2
W + iε)(v · p+ iε)(p2 −m2

u + iε)
(5.30)

= I0v
ρ(5.31)
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with I0 given by B.34.

y

Introducing 5.31 in the Equations 5.28 and 5.29 is evidently that they differ only by a sign,

for that reason both terms cancel each other.

Γb = −Γc(5.32)

2.3. Diagram d) contribution. The diagram 5.1 d) can be written in a mathematical way

as

Γd = i
GF√

2
VcqV

∗
uqg

2
s

∫
d4p

(2π)4

1

p2 + iε

M2
W

p2 −M2
W + iε

1

p2 −m2
q + iε[

q̄T aγνγσγµLh(c)
v

]
[ūγµLγσγνT

aq](5.33)

here again external momenta corrections are negligible compared to M2
W . Replacing mq with µ

and using B.34 and C.12, Γd simplifies to

Γd =
GF

2
√

2
VcqV

∗
uq

αs
π
Log

[
M2
W

µ2

] [
(q̄γµLq)(ūγµLh

(c)
v )− 1

Nc
(q̄γµLh(c)

v )(ūγµLq)

]
(5.34)

=
GF

2
√

2
VcqV

∗
uq

αs
π
Log

[
M2
W

µ2

](
Q1 −

1

Nc
Q2

)
(5.35)

=
GF√

2
VcqV

∗
uq

αs
π
Log

[
M2
W

µ2

]
Qc2(5.36)

so, it is easy to see that

Γd = −1

4
Γa(5.37)

2.4. Total contribution. Now, we have evaluated each individual diagram, so to know the

total QCD contribution at one-loop level, we just need to sum all those individual contributions
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given by Equations 5.26, 5.32 and 5.37 we get

Γ = −4
GF√

2
VcqV

∗
uq

(
3αs
4π

Log

[
M2
W

µ2

])
Qc2(5.38)

3. D0 → K+K− and D0 → π+π− decays

The effective Lagrangian at tree level for processes with these final states can be expresses as

Equation 4.5

Leff = −4
GF√

2
VcqV

∗
uq [C1Q1 + C2Q2]

where the local operators Q1 and Q2 were defined as

Q1 = (s̄γµLs)(ūγµLc)− (d̄γµLd)(ūγµLc)

Q2 = (s̄γµLc)(ūγµLs)− (d̄γµLc)(ūγµLd)

Using the color matrix identity C.7 and the Fierz transformation, the Lagrangian can be

expressed as

Leff = −4
GF√

2
VcqV

∗
uq

[(
C2 +

1

Nc
C1

)
Q2 + 2C1(q̄γµT aLc)(ūγµT

aLq)

]
(5.39)

Inserting the hadronic states between the currents we get

MK+K− = −i4GF√
2
VcsV

∗
us

[(
C2 +

1

Nc
C1

)
〈K−| s̄γµLc |D0〉〈K+| ūγµLs |0〉

+2C1〈K+K−|(s̄γµT aLc)(ūγµT aLs)|D0〉
]

(5.40)

and

Mπ+π− = −i4GF√
2
VcdV

∗
ud

[(
C2 +

1

Nc
C1

)
〈π−| d̄γµLc |D0〉〈π+| ūγµLd |0〉

+2C1〈π+π−|(d̄γµT aLc)(ūγµT aLd)|D0〉
]

(5.41)
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where the term proportional to 2C1 with color matrices inside the matrix elements are the

genuinely non-factorizable contribution to the process. In the D0 → K+K− and D0 → π+π−

processes the decay products of the W+ boson hadronize without mixing, corresponding to the

external spectator or “color allow” diagram, while color suppressed processes corresponding to

final states with π0 and η mesons were not considered.

The contributions to the purely non-factorizable term can be calculated with either the Lattice

gauge or quark models such as the heavy-light chiral quark model (HLχQM) and the large energy

light chiral quark model (LELχQM) which has been widely used for the study of B meson decays

[38, 39, 40]. For the purpose of this work such contributions are not going to be calculated.

Then 5.40 and 5.41 simplifies to

MK+K− = −i4GF√
2
VcsV

∗
us

(
C2 +

1

Nc
C1

)
〈K−| s̄γµLc |D0〉〈K+| ūγµLs |0〉(5.42)

= −GF√
2

cos θc sin θcCAfKf
D→K
0 (M2

K)(M2
D −M2

K)(5.43)

and

Mπ+π− = −i4GF√
2
VcdV

∗
ud

(
C2 +

1

Nc
C1

)
〈π−| d̄γµLc |D0〉〈π+| ūγµLd |0〉(5.44)

= +
GF√

2
cos θc sin θcCAfπf

D→π
0 (M2

π)(M2
D −M2

π)(5.45)

where CA =
(
C2 + 1

Nc
C1

)
≈ 1 .

3.1. CP violation. The tree level decays D0 → K+K− and D0 → π+π− only involve the first

two quark generations, it means, that it does not have the CP violating Kobayashi - Maskawa

(KM) phase. The CP violation does appears in the SM in the CKM matrix when we consider 3

quark generations. It does enter by the so-called “penguin" diagrams for SCS decays of neutral

D mesons that thus can provide both the required weak and strong phase difference relative to

the leading SM tree amplitude.
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The difference between the time-integrated CP asymmetries inD0 → K+K− andD0 → π+π−

measured by LHCb is given by [5]

∆ACP = AdK+K− −A
d
π+π− +

∆〈t〉
τ

(
Am +Ai

)
(5.46)

In the limit where ∆〈t〉 vanishes, ∆ACP is equal to the difference in the direct CP asymmetry

between the two decays. However, if the time acceptance is different for K+K− and π+π− final

states, then a contribution from indirect CP violation remains. Given the dependence of ∆ACP

on the direct and indirect CP asymmetries, and the measured value for ∆〈t〉
τ showed in Table

3.1, the contribution from indirect CP violation is suppressed and ∆ACP is primary sensitive

to direct CP violation [5]. Even though, the contribution of penguin diagram corrections to CP

violation is small for c→ sus̄ and c→ dud̄ decays, but not entirely negligible.

3.2. Penguin contributions. To calculate the contributions from penguins to CP violation,

first we must evalute the penguin diagram showed in Figure 5.2 a).

c
W±

u

q q

g

p p

a) Penguin diagram

×c u

q q

g

b) Point-like interaction.

×
×

c u

q q

c) After Fierz transformation.

Figure 5.2. Penguin diagram evolution. a) Original penguin diagram, when W is integrated

out, it turns to a point-like interaction b), and finally after Fierz transformation c).
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So, evaluating the diagram and rearreanging terms

Mpen = i4
GF√

2
g2
sVcpV

∗
up

∫
d4p̃

(2π)4

1

k2 + iε
·

M2
W

p2
W −M2

W + iε

[
ūγµL

γ · pp2 +mp

p2
p2
−m2

p + iε
(5.47)

γκT a
γ · pp1 +mp

p2
p1
−m2

p + iε
γµLc

]
(q̄γκT

aq)(5.48)

with pW = p̃− k− pu and pp1,2 = p̃± k. Using C.7, and the fact that the last term is just vector

so γκ = γκ(R+ L)

Mpen = i4
GF√

2
g2
sVcpV

∗
up

∫
d4p̃

(2π)4

1

k2 + iε
·

M2
W

p2
W −M2

W + iε

[
ūγµL

γ · pp2 +mp

p2
p2
−m2

p + iε
(5.49)

γκ
γ · pp1 +mp

p2
p1
−m2

p + iε
γµLc

]
(q̄γκq)

(
δilδkj −

1

Nc
δijδkl

)
.(5.50)

the product of hadronic currents is proportional to

[ūiγ
µLcj ][q̄kγµ(R+ L)ql]

(
δilδkj −

1

Nc
δijδkl

)
(5.51)

[ūiγ
µLck][q̄kγµ(R+ L)qi]−

1

Nc
[ūiγ

µLci][q̄kγµ(R+ L)qk](5.52)

applying the Fierz transformation in the first term, we get

[ūiγ
µLqi][q̄kγµ(R+ L)ck]−

1

Nc
[ūiγ

µLci][q̄kγµ(R+ L)qk](5.53)

from here we can get the four local operators, which were previously defined

Q3 = [ūγµLc][q̄γµLq] Q4 = [ūγµLq][q̄γµLc](5.54)

Q5 = [ūγµLc][q̄γµRq] Q6 = [ūγµLq][q̄γµRc](5.55)

4. Renormalization Group Equation (RGE)

The perturbative correction to the decay amplitude goes αsLog
[
M2
W
µ

]
, which is of order 1.

Thus, we should include higher-order corrections, corresponding to more gluons exchanged. The
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renormalization group method can be adapted for this, letting us sum over leading logarithmic

terms to all orders of αs.

For the one-loop QCD corrections we have

Q2 =⇒ Q2 +
αs
4π
Log

[
M2
W

µ2

](
Q1 −

1

Nc
Q2

)
︸ ︷︷ ︸

QCD corrections

,(5.56)

We then improve our results with an adoption of RGE and scaling following the same proce-

dure as [41]. The new coefficients for RGE are defined as

c±(µ) =

[
αs(M)

αs(µ)

] 2d±
b0

c±(M)(5.57)

with d± is a constant obtained from γ± = d±
αs(µ)
π , and b0 = 11NC − 2

3Nf comes from the first

term of the QCD beta function, where NC is the number of quark colors, and Nf the number of

quark flavors at energy µ.

Changing to the Q± basis, with Q± = 1
2 (Q2 ±Q1) Q+

Q−

 =⇒

1 +
αs
2π
Log

M2
W

µ2

 1 0

0 −2

 Q+

Q−

 ,(5.58)

Inserting the new c± values into the equation and calculating the first order in αs/π, we get

γ+ = µ
d

dµ
Log

[
1 +

(
αs
2π
Log

M2
W

µ

)]
≈ −αs

2π
,(5.59)

γ− = µ
d

dµ
Log

[
1− 2

(
αs
2π
Log

M2
W

µ

)]
≈ +

αs
π

(5.60)
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giving d+ = −1
2 , d− = 1. With the charm quark integrated out Nf = 3, then b0 = 27

3 . For the

M2
W integrated out d± → 2d±, Nf = 4, and b0 = 25

3 . With this, the coefficients c± are given by

c+ =

(
αs(mc)

αs(µ)

)− 3
27
(
αs(MW )

αs(mc)

)−6
25

(5.61)

c− =

(
αs(mc)

αs(µ)

) 6
27
(
αs(MW )

αs(mc)

) 12
25

(5.62)

and then we can write the coefficients for the operator Q2 as,

c2(µ) =
1

2
[c+(µ) + c−(µ)](5.63)

=
1

2

[(
αs(mc)

αs(µ)

)− 3
27
(
αs(MW )

αs(mc)

)− 6
25

+

(
αs(mc)

αs(µ)

) 6
27
(
αs(MW )

αs(mc)

) 12
25

]
(5.64)

for the scaling in the region mc > µ.

5. Partial conclusions

As it was said before, tree level diagrams for charm quark decays do not contain CP violation

as, in a good approximation, it can be explain with 2 quark generations. So if CP wants to

be explained, we need to introduce high order contributions, such as penguin diagrams, as CP

appears in form of the Kobayashi - Maskawa phase when we consider 3 quark generations.

However, it seems that even considering penguin contribution it is not enough to explain the

results obtained by the LHCb experiment [5, 9, 10]. The contribution due to penguin diagrams

is small, and loop suppressed, so this leads to the necessity of new models, including those ones

beyond the Standard Model.





Chapter 6

“New physics”

This chapter is based in the article “New physics model of direct CP violation in charm decays”

by Almannshofer et al. [11]. The wok of Altmannshofer et al. presents a comparative study of the

impact that NP degrees of freedom would have on the direct CP asymmetries in singly Cabbibo

suppressed D meson decays. All this motivated by the recent LHCb measurements of ∆ACP, the

difference between the time-integrated CP asymmetries in D0 → K+K− and D0 → π+π−.

Altmannshofer et al., consider models with new massive neutral gauge bosons that have flavor

changing tree level couplings to quarks, models with extended scalar sectors, and models where

the D0 → K+K− and D0 → π+π− decays are modified at the loop level by gluon penguins.

1. New Physics contributions at tree level.

In this section, we analyze a model proposed by Almannshofer et al. where one new field, a

color flavor changing scalar, is added to the SM. We will discuss extensions of the SM in which

a scalar octet φa8 leads to tree level contributions to the D0 → K+K− and D0 → π+π− decay

amplitudes.

The Lagrangian for this process can be written as (for q = s, d)

L = G(c→ u) (ūLT
aφacR +Xq q̄LT

aqRφ
a) .(6.1)
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c

u

φ

s, d

s̄, d̄

ū ū

c u

q q

Figure 6.1. Color suppressed transition for φa8 octet model.

If we evaluate the correspoding Feynman diagram, the effective Lagrangian can be written as

iL φ
eff = iG(c→ u)(ūLT

acR)

[
i

(−M2
φ)

]
(iXq q̄LT

aqR)(6.2)

L φ
eff =

G(c→ u)Xq

M2
φ

(ūLT
acR)(q̄LT

aqR)(6.3)

=
G(c→ u)Xq

M2
φ

(ūT aRc)(q̄T aRq)(6.4)

using the identity C.7 and defining Gφq ≡ G(c→u)Xq
M2
φ

, the effective Lagrangian can be rewritten

as

L φ
eff =

Gφq
2

[
(q̄iRqj)(ūkRcl)

(
δilδkj −

1

Nc
δijδkl

)]
(6.5)

=
Gφq

2

[
(q̄iRqk)(ūkRci)−

1

Nc
(q̄iRqi)(ūkRck)

]
(6.6)

then Fierz tranforming both terms in the previous effective Lagrangian an additional factor of 1
2

is gotten [42].

L φ
eff =

Gφq
4

[
(q̄iRci)(ūkRqk)−

1

Nc
(q̄iRck)(ūkRqi)

]
(6.7)

Inserting the hadronic states in the effective Lagrangian, the second term in the right-hand

side of the Lagrangian gives a factor ∝ δikδki
N2
c

where δikδki = Nc because the color of the quarks

in the currents must match, and using the naive factorization, we can write the hadronic matrix
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elements as

〈P+P−|L φ
eff |D

0〉 =
Gφq

4

[
〈P+| ūRq |0〉〈P−| q̄Rc |D0〉

(
1− 1

N2
c

)]
.(6.8)

1.1. Case 1: D0 → K+K−. For the D0 meson decay with K+K− in the final state, we can

rewrite Equation 6.8 with P = K and q = s.

〈K+K−|L φ
eff |D

0〉 =
Gφq

4

[
〈K+| ūRs |0〉〈K−| s̄Rc |D0〉

(
1− 1

N2
c

)]
(6.9)

The hadronic matrix elements can be obtain using primitive techniques as presented in the

following

p

For the first hadronic matrix element, K+ is a pseudoscalar particle, then the hadronic matrix

element simplifies to

〈K+| ūRs |0〉 =
1

2
〈K+| ūγ5s |0〉(6.10)

using the Dirac equation (iγµ∂µ −m)ψ, {γ5, γµ} = 0 and {∂µ, γµ} = 0

i∂µ (ūγµγ5s) = (i∂µ ū)γµγ5s+ ūγµγ5(i∂µ s)(6.11)

= (ms +mu) ūγ5s(6.12)

then

ūγ5s ∼
i∂µ (ūγµγ5s)

(ms +mu)
(6.13)
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so inserting the hadronic states into the currents, and using the decay constant found in Equation

4.14

〈K+| ūRs |0〉 =
1

2
〈K+| ūγ5s |0〉(6.14)

=
1

2

(
m2
KfK

ms +mu

)
=

1

2
XK .(6.15)

For the second hadronic matrix element the evaluation is a little bit more elaborated. As K−

and D0 are pseudoscalar particles, the hadronic matrix element simplifies to

〈K−| s̄Rc |D0〉 =
1

2
〈K−| s̄c |D0〉(6.16)

and using the Dirac equation and {∂µ, γµ} = 0

i∂µ (s̄γµc) = (i∂µ s̄)γ
µc+ s̄γµ(i∂µ c)(6.17)

= (mc −ms) s̄c(6.18)

then

s̄c ∼ 1

mc −ms
i∂(s̄γµc)(6.19)

inserting the hadronic states into the left-hand side term of Equation 6.17

i∂µ〈K−| s̄γµc |D0〉 = (Pc − Ps)µ〈K−| s̄γµc |D0〉(6.20)

and now evaluating 〈K−| s̄γµc |D0〉

〈K−| s̄γµc |D0〉 =
[
f+(q2)(Pc + Ps)

µ + f−(q2)(Pc − Ps)µ
]

(6.21)

= 2E(ζnµ + ζ1v
µ)(6.22)

where in the last equation the form factors in the Large Energy Effective Theroy (LEET) limit

were parametrized as [43, 44]. Pµc = MDv
µ and Pµs = Enµ wherems � E, with E andms as the



1. New Physics contributions at tree level. 49

energy and mass of the s quark. The four vectors v, n are given by v = (1;~0) and n = (1; 0, 0, 1)

in the rest frame of the decaying heavy meson. A peculiar feature of exclusive heavy-to-light

transitions is the large energy E given to the daughter by the parent hadron in almost the whole

physical phase space except the vicinity of the zero- recoil point [43], so 2E 'MD and ζD ∼ 2/3

[44], so

i∂µ〈K−| s̄γµc |D0〉 = (Pc − Ps)µ〈K−| s̄γµc |D0〉(6.23)

= 2E(MDv − En)µ(ζnµ + ζ1v
µ)(6.24)

= 2E(ζMD − Eζ1) ' 2EMDζ(6.25)

where v2 = 1, v · n = 1 and n2 ' 0 were used, then

i∂µ〈K−| s̄γµc |D0〉 = M2
DζD(6.26)

with ζ = ζD.

Inserting the hadronic states in the Equation 6.19 and using Equation 6.26 we get

〈K−| s̄c |D0〉 '
M2
D

mc
ζD(6.27)

for mc � ms. Then the right-hand side of Equation 6.16 simplifies to

〈K−| s̄Rc |D0〉 =
1

2
〈K−| s̄c |D0〉 ' 1

2

M2
D

mc
ζD(6.28)

y

Finally, the Equation 6.9 simplifies to

〈K+K−|L φ
eff |D

0〉 '
Gφq

4

1

2
XK

1

2

M2
D

mc
ζD

8

9
(6.29)

=
Gφq
18

XK
M2
D

mc
ζD(6.30)
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where the factor 8
9 came from the term (1− 1

N2
c
) with Nc = 3. Gqφ = G(c→u)Xs

M2
φ

, Xs = ζd
ms
v and

G(c→ u) = ζu
mc
v λe

iφK with eiφK as the weak phase.

〈K+K−|L φ
eff |D

0〉 =
1

18

1

M2
φ

ζu
mc

v
λeiφKζd

ms

v

m2
K

ms
fK

M2
D

mc
ζD(6.31)

=
1

18

ζuζd
M2
φ

λ
m2
KfKM

2
DζD

v2
eiφK(6.32)

with mu and CP violation in penguin diagrams neglected. According to Equation 3.5 in order

to account for CP violation, a strong phase eiδK must be explicitly contained in the amplitude,

which could be obtain via other contributions such as “Meson loops”.

Meson loops. Considering the work presented by Eeg, Fajfer and Prapotnik [38] were “Chiral

perturbative theories” (XPT) were used to study the non-leptonic decays of B → DD̄, we will

try to make an analogy to get information for the non-leptonic decays of D0 → K+K−.

In principle, we can make a rough approximation between the two decay modes,

B(MB) → D(MD)

MD → MK

and we could even consider Feynman diagrams beyond factorization such as,

×B K

D̄

D

×
D0 η

K−

K+

Figure 6.2. Meson loop diagrams. The figure on left shows the diagram for B → DD̄ decay

modes, in the right for D0 → K+K−.
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×
D0

η, π0

K−

K+

D0

K−

K+

×

Figure 6.3. Meson loop diagrams. The figure on left shows the diagram for D0 → K+K−

decay modes, in the right for resonance of D0 → K+K−. The Imaginary part of the propagator

of unstable resonance ∝ iMRΓR, from where the strong phase could be obtained.

Those diagrams give complex amplitudes, such that the Imaginary parts give phases that

can be related to the strong phase we need. Equation 3.7 gives the direct asymmetry when the

subleading penguin amplitude is small Adf = 2rf sin(δf ) sinφf , so either the weak and strong

phases are needed, and must be different from zero in order to get CP violation.

Considering the amplitude given in Equation 6.32 + the complex amplitudes from meson loops

and SM, we can include both the weak and strong phase, so we can write the total amplitude,

in general, as

ATot = ASM +ANP +AMeson(6.33)

which can be related to Equation 3.5.

ATotf = ATf

(
1 + rfe

i(δf+φf )
)

(6.34)

Standard Model matrix elements. Remembering the last chapter, the SM counterpart to

the hadronic matrix element is written as

〈K+K−|L SM
eff |D0〉 = −i4GF√

2
VcsV

∗
us︸ ︷︷ ︸

∼λ

〈K+K−|(s̄γµLc)(ūγµLs)|D0〉(6.35)
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〈K+K−|(s̄γµLc)(ūγµLs)|D0〉 = −1

4
〈K−|(s̄γµc)|D0〉〈K+|(ūγµγ5s)|0〉(6.36)

with 〈K−| s̄γµc |D0〉 = 2E(ζDn
µ + ζ1v

µ) and 〈K+| ūγµγ5s |0〉 = ifKP
µ
K where PµK = Eñµ, then

−1

4
〈K−| s̄γµc |D0〉〈K+| ūγµγ5s |0〉 = −i1

4
[2EζD n · ñ︸︷︷︸

∼2

EfK ] = −i1
4
fKM

2
DζD(6.37)

where ñ was defined as ñ = (1; 0, 0,−1) [44], then

〈K+K−|L SM
eff |D0〉 = −GF√

2
λfKM

2
DζD(6.38)

Subleading penguin amplitude rKK . To calculate rKKei∆ we just take the ratio of ampli-

tudes of the octed φa8 model and Standard Model.

rKKe
i∆ =

〈K+K−|L φ
eff |D

0〉
〈K+K−|L SM

eff |D0〉
' 1

18

ζuζd
M2
φ

m2
K

√
2

v2GF
· factor(6.39)

where CP violation in penguin diagrams was neglected. GF√
2

= g2
w

8M2
W
,MW = 1

2gv soM
2
W = 1

4g
2v2,

g2
w = 1

2g
2 then M2

W = 1
2g

2
wv

2, so we can rewrite GF√
2

= 1
4v2 .

rKKe
i∆ =

2

9

ζuζd
M2
φ

m2
K .(6.40)
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Conclusions

Recently, the LHCb collaboration presented the first evidence for CP violation in charm

quark decays [5]. In specific, the difference between the time-integrated CP asymmetries in

D0 → K+K− and D0 → π+π−

∆ACP = ACP(K+K−)−ACP(π+π−)

= [−0.34± 0.15(stat.)± 0.10(sys.)]%(7.1)

was reported. This measurement is consistent at about the 1σ level with previos measurements

from CDF [6], Babar [7] and Belle [8]. The interpretation of this measurements as a sign of NP

require a well-understood SM calculation of this observable.

As only the first two quark generations are necessary for the main contributions of the process

in the SM, it is therefore CP conserving. In other words, the Standard Model CP violation in

these decays is CKM suppressed.

The CP violation contribution to the c → quq̄ decays are both CKM and loop-suppressed

and, therefore, entirely negligible. Sizable direct CP asymmetries in the D0 → K+K− and

D0 → π+π− decays are only possible in the SM if the relevant hadronic matrix elements are

strongly enhanced.
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Precise SM calculations, however, are difficult to accomplish. Although tree level and loop

level SM contributions to the quark level processes c→ quq̄ are readily calculated, the evaluation

of the hadronic matrix elements is not easily performed.

In the simplest approach, naive factorization, the hadronic matrix elements are “factorized”

into the product of matrix elements, which is formally the leading term in the heavy charm

quark limit. As the charm mass is close to Λχ, chiral symmetry scale, where the perturbative

QCD breaks down, however, this approach suffers from large 1/mc power corrections. In particu-

lar, so-called anihilation diagrams are ignored, where quarks are pair-produced from the vacuum

to complete the K or π mesons in the final state, as are long-range QCD effects such as final

state rescattering, where constituent s-quarks of a D0 → K+K− decay rescatter into d-quarks

if a π+π− final state. Several recent papers have discussed improved estimates for ∆ACP in the

SM.

The charm sector has been considered an excellent way to prove new physics beyond the Stan-

dard Model, even since before the result of LHCb and interference between the two processes is

a key ingredient in CP violation that can be enhanced by the participation of new heavy parti-

cles in the penguin loop. Even when there is a large uncertainty in the SM value for ∆ACP, it is

nevertheless important and exciting to consider the possibility that in effect it is evindence of NP.
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Appendix A

Feynman rules for

one-loop corrections

Element Descripción

i
∫ d4p

(2π)4 Integral over internal momentum p

q̄ Outgoing q-quark

−igsγνT a qqg-vertex
i(γσpσ+mq)
p2−m2

q+iε
q-quark propagator

−igw√
2
γµLVcq qcW -vertex

c Incoming c-quark
igνλ
p2+iε

Gluon propagator in Feynman gauge
igµκ

p2−M2
W+iε

W propagator in Feynman gauge

q Incoming q-antiquark

Table A.1. Feynman rules for one-loop corrections.
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58 A. Feynman rules for one-loop corrections

Element Descripción

h
(c)
v Incoming reduced heavy quark with velocity v

h̄
(c)
v Ougoing reduced heavy quark with velocity v
i
v·p Reduced heavy quark with velocity v propagator

−igsT avµ Gluon - reduced heavy quark vertex

Table A.2. Feynman rules for one-loop corrections with heavy quark.



Appendix B

Loop integrals and

Dimensional

Regularization

B.1. Feynman Parametrization

The Feynman parametrization is a way to write fractions with a product in the denominator

and was invented by Richard Feynman to calculate loop integrals. Starting from the generalized

Feynman parametrization for an arbitrary number of factors

1

A1A2...An
=

∫ 1

0
dx1...dxn δ

(∑
xi − 1

) (n− 1)!

[x1A1 + x2A2 + ...+ xnAn]n
(B.1)

and it is easy to prove B.1 directly by induction.

For our purpose we are gonna prove B.1 just for 3 factors∫ 1

0
dx1 dx2 dx3 δ(x1 + x2 + x3 − 1)

(3− 1)!

[x1A1 + x2A2 + x3A3]3
(B.2)

2

∫ 1

0
dx2

∫ 1−x2

0

dx3

[(1− x2 − x3)A1 + x2A2 + x3A3]3
(B.3)

59



60 B. Loop integrals and Dimensional Regularization

rearranging in terms of x2 and x3

2

∫ 1

0
dx2

∫ 1−x2

0

dx3

[A1 + x2(A2 −A1) + x3(A3 −A1)]3
(B.4)

p

To easily calculate the integral we can do a change of variable. Defining the new variables as

u = A1 + x2(A2 −A1) + x3(A3 −A1)(B.5)

du = (A3 −A1) dx3(B.6)

dx3 =
du

(A3 −A1)
(B.7)

y

so now the integral has the form

2

(A3 −A1)

∫ 1

0
dx2

∫ b

a

du

u3
(B.8)

with the new limits of integration given by a = A1 + x2(A2 −A1) and b = x2(A2 −A3) +A3.

1

(A3 −A1)

∫ 1

0
dx2

[
1

u2

]a
b

=
1

(A3 −A1)

∫ 1

0
dx2

[
1

[A1 + x2(A2 −A1)]2
− 1

[x2(A2 −A3) +A3]2

]

now, we can split the integral into the sum of integrals (or in our case the difference)

1

(A3 −A1)

∫ 1

0

dx2

[A1 + x2(A2 −A1)]2
− 1

(A3 −A1)

∫ 1

0

dx2

[x2(A2 −A3) +A3]2
(B.9)

The first integral can be calculated, as before, doing a change of variable

u = A1 + x2(A2 −A1)(B.10)

du = (A2 −A1) dx2(B.11)

dx2 =
du

(A2 −A1)
(B.12)
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so now the integral has the form

1

(A3 −A1)(A2 −A1)

∫ A2

A1

du

u2
(B.13)

1

(A3 −A1)(A2 −A1)

[
1

u

]A1

A2

(B.14)

1

(A3 −A1)(A2 −A1)

[
1

A1
− 1

A2

]
(B.15)

1

(A3 −A1)

[
1

A1A2

]
(B.16)

It is evident that the second integral is calculated as before, giving the result

1

(A3 −A1)

[
1

A3A2

]
(B.17)

the last thing to do is subtract B.17 to B.16, resulting

1

(A3 −A1)

[
1

A1A2
− 1

A3A2

]
=

1

(A3 −A1)

[
(A3 −A1)A2

(A1A2A3)A2

]
(B.18)

=
1

A1A2A3
(B.19)

So, the generalized Feynman parametrization for a product of 3 terms in the denominator

was proven.

1

A1A2A3
=

∫ 1

0
dx1 dx2 dx3 δ(x1 + x2 + x3 − 1)

(3− 1)!

[x1A1 + x2A2 + x3A3]3
(B.20)

B.2. Wick rotation

After Feynamn parametrization the loop integrals are typically on the form∫
d4p

(p2)α

(p2 −A+ iε)β
(B.21)
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The +iε term in the Equation B.21 places the poles slightly above the real line for Re(p0) < 0,

and slightly below the real axis for Re(p0) > 0. This allow us to rotate the contour of the p0

integration a quarter counterclockwise. With p0 restricted to the imaginary axis the Minkowski

metric becomes Euclidean: ip0 = p0
E ,p = pE, p

2 = −p2
E . Then Equation B.21 can be rewritten

and evaluated in the Euclidean space,∫
d4p

(p2)α

(p2 −A+ iε)β
= i

∫
d4pE

(−p2
E)α

(−p2
E −A)β

(B.22)

= i

∫ ∞
0

dpE

∫
dΩ(4)p3

E

(−p2
E)α

(−p2
E −A)β

(B.23)

= i
(−1)α−β

Aβ−α−2

∫
dΩ(4)

∫ ∞
0

dp̄E
p̄2α+3
E

(1 + p̄2
E)β

(B.24)

with p2
E = p̄2

EA. Using the Gamma function integral

p ∫ ∞
0

dx
xα

(1 + x2)β
=

Γ
[

1
2(1 + α)

]
Γ
[

1
2(2β − α− 1)

]
2Γ(β)

(B.25)

y

and the fact that
∫
dΩ(4) = 2π2, the Equation B.21 simplifies to∫
d4p

(p2)α

(p2 −A+ iε)β
=
iπ2(−1)α−β

Aβ−α−2

Γ(α+ 2)Γ(β − α− 2)

Γ(β)
(B.26)

B.3. Perturbative QCD integrals

The loop integral with two light quarks exchanging a gluon and a W boson,

I0 =

∫
d4p

(2π)4

M2
W

(p2 + iε)(p2 −M2
W + iε)(p2 − µ2 + iε)

(B.27)
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using Feynman parametrization, I0 takes the form

I0 =

∫
d4p

(2π)4

∫ 1

0
dx2

∫ 1−x2

0

2M2
W dx3

(1− x2 − x3)(p2 + iε) + x2(p2 −M2
W + iε) + x3(p2 − µ2 + iε)

=

∫
d4p

(2π)4

∫ 1

0
dx2

∫ 1−x2

0

2M2
W dx3

[p2 − [x2M2
W + x3µ2] + iε]3

= − i

(4π)2

∫ 1

0
dx2

∫ 1−x2

0

M2
W dx3

x2M2
W + x3µ2

the last line was simplified with using B.26.

To calculate I0 we change variables as

u = x2M
2
W + x3µ

2

du = µ2 dx3

dx3 =
du

µ2

then

I0 = − i

(4π)2

∫ 1

0
dx2

∫ 1−x2

0

M2
W dx3

x1M2
W + x2µ2

= − i

(4π)2

M2
W

µ2

∫ 1

0
dx2

∫ b

a

du

u
(B.28)

with a = x2M
2
W and b = x2(M2

W − µ2) + µ2.

= − i

(4π)2

M2
W

µ2

∫ 1

0
dx2

{
Log[x2(M2

W − µ2) + µ2]− Log[x2M
2
W ]
}

(B.29)

= − i

(4π)2

M2
W

µ2

∫ 1

0
dx2Log

[
1− µ2

M2
W

(
1− 1

x2

)]
(B.30)

p

The integral of the type :∫
Log

[
1− a

b

(
1− 1

x

)]
dx = xLog

[
1− a

b

(
1− 1

x

)]
+
aLog (a− ax+ bx)

b− a
(B.31)

y
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so

= − i

(4π)2

M2
W

µ2

∫ 1

0
dx2 Log

[
1− µ2

M2
W

(
1− 1

x2

)]
(B.32)

= − i

(4π)2

M2
W

µ2

[
x2 Log

[
1− µ2

M2
W

(
1− 1

x2

)]
+

µ2

M2
W

Log
[
(M2

W − µ2)x2 + µ2
]]1

0

(B.33)

the first term vanishes due to xln(x)→ 0 for x→ 0, so finally

I0 = − i

(4π)2
Log

(
M2
W

µ2

)
(B.34)



Appendix C

Detailed calculations

C.1. Product of Dirac bilinears

The contribution of loop diagrams with two light quarks exchanging a gluon and a W boson,

have terms related to products of Dirac bilinears on the form

(q̄T aγνγσγµLh(c)
v )(ūT aγνγσγµLq)(C.1)

(q̄T aγνγσγµLh(c)
v )(ūT aγνLγσγµq)(C.2)

C.1.1. Product of γ-matrices. C.1 and C.2 can be simplify using the γ-matrices identities

for the product of this ones.

γνγσγµ = gνσγµ + gσµγν − gνµγσ − iενσµβγβγ5(C.3)

so the bilinear products simplify to

(q̄T aγνγσγµLh(c)
v )(ūT aγνγσγµLq) = 16 (q̄T aγµLh(c)

v )(ūT aγµLq)(C.4)

(q̄T aγνγσγµLh(c)
v )(ūγµLγσγνT

aq) = 4 (q̄T aγµLh(c)
v )(ūT aγµLq)(C.5)
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with

Qc2 = (q̄T aγµLh(c)
v )(ūT aγµLq).(C.6)

where q and c→ h
(c)
v are the quark and reduced heavy quark field, T a a color matrix and L the

left-handed projector in Dirac space.

C.1.2. Color matrices T a. It is very helpful to use the relation for the product of two color

matrices T a of the group SU(3) and can be written as

T aijT
a
kl =

1

2

(
δilδkj −

1

Nc
δijδkl

)
(C.7)

where i, j, k, l are color indices = 1,2,3.

Introducing the term given by C.7 in the right side term of C.6,

1

2
(q̄iγ

µLh
(cj)
v )(ūkγµLql)×

(
δilδkj −

1

Nc
δijδkl

)
(C.8)

and rearranging the indices

1

2

[
(q̄iγ

µLh(ck)
v )(ūkγµLqi)−

1

Nc
(q̄iγ

µLh(ci)
v )(ūkγµLqk)

]
(C.9)

the Fierz transformation must be used in the first term,

p

Fierz transformation:

(q̄iγ
µLh(ck)

v )(ūkγµLqi) = (q̄iγ
µLqi)(ūkγµLh

(ck)
v )(C.10)

y

so finally C.1 and C.2 can be written as

8

[
(q̄γµLq)(ūγµLh

(c)
v )− 1

Nc
(q̄γµLh(c)

v )(ūγµLq)

]
(C.11)
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and

2

[
(q̄γµLq)(ūγµLh

(c)
v )− 1

Nc
(q̄γµLh(c)

v )(ūγµLq)

]
(C.12)

Qc2 defined in C.6, now can be expressed in terms of the quark operators Q1 and Q2

Qc2 =
1

2

(
Q1 −

1

Nc
Q2

)
(C.13)

with

Q1 = (q̄γµLq)(ūγµLh
(c)
v )(C.14)

Q2 = (q̄γµLh(c)
v )(ūγµLq)(C.15)
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