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Abstract 

In this paper we are going to discuss various 

stochastic integrals over a 2-parameter Wiener 

process. Our main interest is the relationship 

between Brownian motion and analytic functions, 

and we want to demonstrate how complex notation 

may be used to study these objects. 



- 2 -

Introduction 

A two parameter Wiener process admits a theory of stochastic line 

and surface integrals. When the stochastic line-integrals are 

defined, it is natural to ask what processes have line-integrals 

independent of the particular path joining the end points. 

In the case of a real valued Wiener process B , Cairoli & Walsh 
st 

[1 ], proved the following. 

Theorem (Cairoli'& Walsh 1974) 

The line integral J,aB is independent of the path joining the end 
r 

CD CD n 
points if and only if 'st = L an H (B t's•t) with L a2 t < CD V't I 

n=O n s n=O n liT 

where Hn(x,t) is the n-th Hermite polynomial. 

I think the proof of this is very fascinating . Cairoli & Walsh 

introduced a whole new theory of stochastic calculus. They proved a 

stochastic version of Green's theorem connecting line integrals with 

surface integrals, and used a ma~tingale representation theorem 

together with a theory of quadratic variation to prove their 

result. 

At the time the connection between Brownian motion and analytic 

functions was already very apparent, and Yor [2 ] observed a complex 

version of the theorem. 

Theorem (Yor 1977) 

When W is a ~-valued 2-parameter Wiener process, the line 
st 

integral J waw is independent of the path if and only if 
r 

-
wst- = l a (W t) n 

n=O n s 

Cl) 

with l I an I 2n 1 t n < "" V't . 
n=O 
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To prove this theorem Yor studied the integrals as real objects and 

managed to match the real and imaginary part to prove the theorem. 

The proof of this was efficient and fair enough, but I believe it 

has some interest to see how this theorem can be proved from a 

purely complex point of view. In this paper I will explain how to 

build up the complex objects, and we will see that the proof in the 

Cairoli & Walsh paper can be carried out directly in this setting. 
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Some basic definitions and notation 

Let Blz and a2z denote two independent real-valued 2-parameter 

Wiener processes on a probability-space (C,~,P) and put 

W = B + iB2z z lz 
!-imaginary unit, z = (s,t) E R2 

+ 

We have the order relations 

(s,t) < (s',t') iff s < s' t < t' 

(s,t) << (s',t') iff s < s' t < t' 

(s,t) " (s' ,t') iff s < S 1 t ) t' 
1\ 

(s,t) "(s 1 ,t') iff s < S 1 t > t' 

We let ~ denote the a-algebra generated by {w z 1 < z} and we z z' 
also have the a-algebras 

~l=s=-z SCD =V sv 
v 

~2 
z =Vvt 

v 

We say that a stochastic process X is a martingale if 
z 

E [x , I g:r ] = X whenever z < z 1 

z z z 

For a rectangle R with corners z 1z 2z 3 and z4 as below, we define 

t. 

~z 
4 

is a 2-parameter process. 

s 
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fi.R ... Area of R and R denotes the set {z 1 E lR 2 z 1 <z}. For each z + 
z << Z 1 let (Z,Z 1 ] denote the rectangle (s,s 1 ]x(t,t 1 ]. We say 

that an adapted integrable process X 
st 

is 

a weak martingale iff E[fl.(z,z']xltzJ = 0 Vz << z' 

ani-martingale iff E[fl.( ']xl9:'il = 0 V z << z' i = 1,2 z,z z 

It is convenient to observe that a martingale is both a 1- and a 2-

martingale , see cairoli '& Walsh [1 ] p. 115. 

We call a c-valued process increasing iff both components are 

increasing. The joint quadratic variation <x,y>st is any 

difference of increasing processes s.t. xstYst- <x,y>st is at 

least a weak martingale. We also write <x,x> = <x> • A process 
st st 

~ is said to be adapted measurable whenever 
•St 

(i) ~st is 

(ii) (s,t, w) -+-

o/ . - measurable 
st 
~ ( w) 
st 

is Cl:'xu "0 
J ~ measurable, where JD 

class of Borel sets on IR2 
+" 

is the 
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Part 1 - Line integrals 

Fixing one parameter in a two parameter process gives a one 

parameter process. If the process is adapted and reasonably nice, 

stochastic integrals along straight line segments parallel to the 

coordinate-axes can be 
t 

( 1 ) 
r 

so to sltO 

s 

In case (1) we define 

I ~ow 
r 

defined in the obvious way. 
t 

r (2) 

so to sltO 

where d w means integration w.r.t the Brownian motion 
u ut0 

This is well defined as an Ito-integral if is adapted 

measurable with Ej~st 12 bounded on compact sets. 
0 

In case (2) we define 

I ~ow 
r 

= -I ~ow 
-r 

The integrals on vertical paths are defined similarly, and the 

integral extends immediately to rectangular paths by linearity. It 

is not hard to see that for a large class of processes, the 

integrals can be defined along any sufficiently smooth path by 

approximating the path with rectangular paths. This, however, will 

be of little importance to us, and we will choose to ignore it, at 

least for the time being. Our main interest will be with the paths 

below, which we denote by 
t 

Hst (s,t) 

s 

v 
st 

and H 
st 
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Definition 

We call a process ~st weakly holomorphic if there exists an 

adapted measurable process ~·st with Ej~'stl 2 bounded on compact 
sets in R 2 and s.t. 

+ 

~st = ~ + 1 ~· ~ = ~ + 0 0 
vst 

for each (s,t) E JR 2 
+ 

We call ~· a derivative of st ~st' and write 

It follows by linearity that ~ = ~ + J ~·ew 
st 0 r 

~st E H • 

where r is any 

rectangular path joining (s,t) to (0,0). If ~ has derivatives 
st 

up to order 

~st 

~1 
st 

n-1 
~st 

= 

n, we 

0 
~0 + 

= ~1 + 
0 

say that ~ E Hn 
st i.e. ~ E Hn iff 

st 

1 ~1 ew 
r 

1 ~2 ew 
r 

Before we go on to study the holomorphic processes, we observe that 

the usual Ito-formula and Ito-isometry applies to each 

line-segment. i.e. 

s 
f(Z } = f(Z } + 0} ~; (Zut}duZut 

st Ot 

s 
+ J ef(Z t}d zut o oz .u u 

s 1 e2£ 
+ f 2 -(Z t)d Z td Z t 

0 Oz 2 u u u u u 

s 2 
+ J -L.L..cz }d z a z 

O Ozez ut u ut u ut 

s 
+ J l 02f(z }dz dz 

0 2 oz2 ut ut ut 
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where we have the formal relations 

- - -d w d w = d w d w = 0 
u ut u ut u ut u ut 

d W d W = 2tdu 
u ut u ut 

The Ito-isometry applies in the same way, so 

s s 
E If ~ d W I 2 = 2t f E I~ l 2du 

0 ut u ut 0 ut 

We first note some easy consequences of the Ito-formula. 

Proposition 1.1. 

(W )n 
CD 

If ~st = then ~stE H and st 

~st = f nwn-l ow 
r 

f 
n-2 

~· = n{n-1 )W oW st r 

n-1 f nl oW ~ = 
st r 
n 

~st = nl 

~n+l= 
st 0 

Proof 

By the Ito-formula on f(z) n 
= z , t fixed 

n~- 1 ow 

Since d W td W t = 0. The same relation with s fixed gives u u u u 

t 
= f n~- 1 d W 

0 su u su 

so the derivative of is 

= f n~- 1 ow 
vst 

n-1 
nwst 

D 
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Lemma 1. 2 

[ n -m ] n 
E Wstwst = 6nm •nl • (2st) 

Proof 

By Ito's formula on f(z) n-m = z z t fixed 

so 

s 
+ 2t J Wn-1 .-.IIl-1 d 

n t mwt u 
0 u u 

[_.n .:-...m ] sf [ n-1 .:-.m-1 ] 
E wstwst = 2t•m•n0 E wut wut du 

and the lemma follows by iteration. 

D 

CD 

Proposition 1.1 may be extended to f(z) = I a zn 
n=O n 

whenever 

is adapted measurable with E If • (W ) 1 2 bounded on compact sets. 
st 

Since the first statement is trivial, we turn to the L 2-norm. By 

lemma 1.2 it is easy to see that 

CD 

If I lanl 2 •n1tn < CDYt, it will follow immediately that 
n=O 

CD 
I a ~t~ f(W ) in L 2 • The same applies to all the derivatives 

n=O n s st 

of f and we have the following. 

Theorem 1.3 (Yor) 

If 
CD 

f ( z) = I a zn 
n 

n=O 

CD 
with I Ia l 2 •n1tn < CDYt 

n 
n=O 
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(s, t) 
= f(O) + f f'(w)ew 

0 

where the line integral is independent of the path r joining the 

origin with (s,t). Since the same applies to all the derivatives, 

CD 

f(Wst) E H • 

CD 

We will now see how to prove the converse when the process ~stE H . 

The proof is a complex version of the proof presented in Cairoli & 

Walsh [1 ]. See also Nguyen [3] for local versions of these theorems. 

Proposition 1.4 

If ~ and 
st 

n+l 
,j, E H 
't'st then 

~ j-j (2st) j ( 2t)n+l sf sfn sfl [ n+l-n+l ] + =. L ~0 ~O • · 1 + --- E ~ ~ duds 
J=O J 0 0 0 ut ut 

Proof 

By Ito's formula on f(z,w) = zw we get 

0 0 s 1 1 
= ~ ~ + 2tfE[~ t~ t]du 0 0 0 u u 

as in lemma 1.2. Proposition 1.4 then follows by repeated use of 

this relation. 

[J 

Lemma 1 .s 
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Proof 

Define 

g ( s 1 t) = E I ~nt 12 n = 01 1 1 2 •.••. 
n 5 

By proposition 1.4 we have 

2 6 
g (s 1 t) = ~~~~ + 2tf gn+ 1 (u~t)du n 0 

Put f (x) = g (x 1 1) 1 then 
n n 

agn 
f~(x) = ~(x~ 1) = 2gn+ 1 (x, 1) = 2f 1 (X) 

n+ 

It follows that 

By Taylors formula 

f(x} 

n 
~ ( n) ( x-xo) f ( N+ 1 ) ( e) N+ 1 

= L f (xo> nl + (N+1}! (x-xo) 
j=O 

Since 

fN+1 <e) = 2N+l f ( 9} = 
N+l 

N+l 
2 gN+ 1 < e, 1 > 

we have 

Now f{2x0 ) = g0 (2x0 ,1) = Ej~2x01 1 2 <""·Then the series converges 

n 

for all lim f(n)(x )x0 = o 
0 n! 
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It is also true that 

I n 2 
It remains to observe that E ~stl = fn(s•t). 

Look at 

s 
9 {sit) = 9 + 2tf 9 (u~t) du 

n no 0 n 

and the symmetric relation 

t 
9 (s~t) = 9 0 + f 9 1 (s~u)du n n 0 n+ 

From these one easily sees that 

But then 

09 n s-= os 

E I ~n 12 = 9 ( s 1 t) = g ( s t 1 1 ) = f ( s • t} 
st n n n 

since only depends on (s,t) by their product. 

Corollary 1.6 

... 
If ~ E H then 

st 

Proof 

By proposition 1.4 
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Since 
... n+l 

~st E H ' ~st is a martingale, and El~~: 1 12 is bounded by 

El~n+ 1 12 . Then the integral term is bounded by 
st 

and this goes to zero by lemma 1.5 

Proposition 1.7 

If 
n+l 

~st E H 

Proof 

then 

n+l 
( 2st) E I ~n+1 12 

(n+1)1 st 

Put ~st = ~t proposition 1.4. By proposition 1.1 all terms 
n 

except ~n~n.( 2 st) = ~on•(2st)n vanish. 
0 0 n! 

Corollary 1.8 

If ~ E H.., with E(~ ·w n] = 0 
st st st 

for all n, then ~st - O. 

Proof 

By corollary 1.6 and proposition 1.7 

Theorem 1.10 (Yor) 

If 
.., 

~ E H 
st 

then ~st = f(Wst) where 

n 
.., ~0 

f(z) = I -
n=On! 

n z satisfies 

the conditions in theorem 1.3. 



Proof 

Put 

n 
CD ~t~o 

f(z) = I -zn 
n=Onl 

By corollary 1 • 6 

Then 
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i.e 

~st = f(Wst) satisfies the conditions in theorem 1.3. We have 
CD 

~st E H and ~n = ~n 
0 0 

for each 
CD 

n. Since ~ - ~ E H and 
st st 

n n 
- ~ • ( 2st) = 0 0 

for each n, wst- ~st- 0 by corollary 1.8 

( CD 

Now it only remains to prove that all weakly holomorphic processes 
CD 

are in fact H . To prove this we turn our attention to various 

stochastic integrals. 

Part 2- Stochastic integrals and Green's formula. 

We want to define the surface integral J wdW. To define this 
R 
st 

integral on simple functions, partition Rst into rectangles 

with lower left corners z .. 
l.J 

and let the values ~. . on these 
l.J 

rectangles be Qr -measurable. 
z .. 

l.J 
Then 

2 2 2 2 El I~ . . f:... ·WI =I El~· ·I Elt:-.· .wl =I El~· ·I •21:-.R· · . . l.J l.J . . l.J l.J . . l.J l.J l.,J l.,J l.,J 

R .. 
l.J 
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Once you have this isometry, the integral can be extended to adapted 

2 
measurable ~st with Ej~stl bounded on compact sets. This is 

exactly as in the theory of oneparameter Ito-integrals. If we 

multiply two such integrals, however, we end up with something new. 

i.e. let 

X = f ~dW 
st 

Rst 

y = f <jldW 
st 

Rst 

and look at 

L ~ . . A . . w • L <jlkl Akl w 
. . ~J l.J k 1 
~1] I 

i-1 j-1 
= I ( I <jlkl ~1 W ·~ij) Aij W 

i,j k,l 

k-1 1-1 
+ I ( I ~ .. A .. W •Qi •. ) ~l W 

k,l i,j l.J ~J l.J 

k-1 j-1 
+ I I ~ij <jlkl AijWAklW 

j, k i,l 

i-1 1-1 
+ I I ~ij <Vkl Aij W ~1 W 

i,l j, k 

+ remaing terms 

.. f Y~dW ( 1 ) 

Rst 

.. f X<jidW (2) 

Rst 

( 3) 

(4) 

In this particular case the L 2-norm of the remaining terms can be 

made uniformly small by choosing the partition fine enough. The 

terms (1) and (2) can be accounted for as ordinary surface 

integrals. We cannot, however, include any more terms in these sums 

as long as we only want to integrate adapted processes. The terms 

(3) and (4) represents roughly one half on the terms, so they 

cannot be ignored. At first sight these terms look pretty hopeless, 

but the particular positioning of the indices turn out to be very 

convenient. We actually have the following isometry. 
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If is - measurable, then 

(i,j)v(k,l) 

E I I a . . ,.. 1 6. .. w a 1 w 1 2 
• • lr 1 ~Jr.. ~J k 
~.),r.., 

1\ 
(i,j)A(k,l) 

The expression I 
i,j,k,l 

1\ 
(i,j)A(k,l} 

= I E I a. . I 22 t.R .. 2/:lR 
• • lr 1 ~Jkl ~J kl 
~,),,.,, 

1\ 
(i,j}A(k,l} 

defines the integral 

J a(~,~)dW~dW on simple four-parameter processes. The 
R XR ~ ~ 
st st 

isometry above then makes it possible to extend this integral to any 

four-parameter process a(~'~} with 

{i) a(~,~) ~~v~ - measurable 

(ii) a(~' TJ) 
1\ 

= 0 unless ~/\TJ 

bounded on compact set~ in 

To account for the term (3) just observe that 

k-1 j-1 
I I = I 

j,k i,j i,j,k,l 
1\ 

(i,j)A(k,l) 

approximate the term 

so that this will 

J 
R XR 
st st 

~q,dWdW. 
~ ~ ~ ~ 

The term (4) is accounted for in same way. 

4 
IR+ 

Tha same procedure can be used to define the integrals f 
R XR 
st st 

-adWdW, 

J adWdW and so on. These are the integrals we will be working 
RstxRst 

with. 

L2-martingales 

In their paper [4], Wong'& Zakai proved that every L 2-martingale 

w.r.t. a 2-parameter Wiener process Bst' can be represented as a 
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sum of two stochastic integrals f ~B + J ~dBdB. This also 
R R xR 
st st st 

applies when the a-algebras are generated by several independent 

two-parameter Wiener processes. In our case each 

be written on the form 

2 2 
l f ~. dB. + l f ~. . dB . dB . 

1. =1 R 1 1 1' J' R xR 1 J 1 J 
st ' st st 

W -martingale can 
st 

If you split the matrices involved into ~-linear and ~-antilinear 

parts, it is easy to see that you have the following representation. 

Theorem 2.1 (Wong·& Zakai) 

If X is a ~-valued L 2-martingale, then 
st 

x5 t = x0 + f ~dw + 
R 
st 

f q,dW + 
R 
st 

f adWdW + 
R XR 
st st 

f . ~dWdW + 
R XR 
st st 

f ydWdW + 
R xR 
st st 

f 6dWdW 
R xR 
st st 

It turns out that the terms in this representation are actually 

orthogonal in L 2 • More exactly we have. 

Proposition 2.2 

Let 

Then 

Also if 

I1 = J ~w 
R 
zo 

Is = J ydWdW 
R XR 
zo zo 

E[I.I.] = 0 unless i = j 
1 J 

X 
st 

= x0 + f x • ow EH 
r 

we get E [x 1. ] = o 
zo J 

if j = 2,4,5,6 
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Proof 

Partition Rz 0 into rectangles 6ij and assume to begin with that 

all integrands are constant on 6 • We first look at 
ij 

E[Ill2] = L E[~ .. <IL16 .. Wii.lW] 
' ' k 1 l.J '.IC l.J K l., ]I I 

Here either 6ijw' ~1w or both are independent from the rest. 

Since 

Case two 

E [I, i3 ] = L L 
i, j k, l,m,n 

1\ 

Here either 

(k, 1) 1\ ( n, n) 

6 w 
mn 

E ( ~ .. ~l 6 .. W 6 W ] 
l.J .K mn l.J mn 

or the pairs 

are independent from the rest. The first three cases are trivial, so 
1\ 

let us consider the remaining two. When (k,l)/\(m,n) ~kl is 

5r!n- measurable and as such independent of 6mnw. When 6ijw~1w 
are dependent, but independent from the rest (i,j)=(k,l) and 

The first part of the proposition is proved along the same lines and 

are left to the reader. As for the second part E [x ! 2 ] = o zo 
and 

E[X 16 ] = 0 are easy since there are no non-conjugate terms. The zo 
two remaining terms require a bit more carefulness. Look at 

E[X ·I ~. 'kl6 .. Wii.lW] 
zO ' ' k 1 l.J l.J K l.,J, I 

1\ 
(i,j)/\(k,l) 
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Write 

s 
x = x0 + f x• d w = x + I x• (w -w } 

z 0 0 ut0 u ut0 o m smto sm+ltO smto 

where s 1 ••• sN are the lower a-coordinates of the partition 

The case with x0 is trivial. Consider 

/). . . . 
l.J 

I 
i,j,k,l 

1\ 
(i,j)A(k,l) 

The nontrivial case occurs when (W t -ws t ) 
sm+l 0 m 0 

and 
-

!:J., .w are 
l.J 

dependent, but independent from the rest. This only happens when the 

rectangle Rij have upper and lower s-coordinates sm+l and 

X' is s:' k21 -measurable so it is independent from Since i<k 
smto 

~1w. Then ~1w can also be split out, and we are through. 

In general 

E[x 15 ] = o 
zo 

X will not be independent from 
smto 

you have to use 

!:J. w. To prove 
kl 

s . 
m 

proof can be carried out along the same lines. The above also 

explains why you cannot expect to get E[X 13 ] = 0. In this case 
zo 

you would end up with terms of the form E(X~mtO aijkl ~1w] and this 

may not vanish because and 

X' = W 

Corollary 2.3 

If ci> E H then 
st 

cp 
st = ci>0 + f ~dW + f adWdW 

Rst Rstx Rst 

-
~1w may be dependent. E.g. 
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.. 

Proof 

When ~ E H, ~ is clearly an L 2-martingale so by theorem 2.1 
st st 

~ 
st 

= ~O + I + I + I + I + I 
1 2 3 4 5 

By proposition 2.2 

+ I 
6 

0 = I~ - ~ - I 1 - I - I - I - I - I a2 
st 0 2 3 4 5 6 

= U ~ s t - ~O - I 1 - I 3 I 2 + II I 2 I 2 + II I 4 II 2 + U I 5 I 2 + II I 6 H 2 

so all the conjugate terms vanish. 

The process J and Green's formula. 

We define the process 

J 

z 

J by the relation 
z 

where fti( ~, n> 
• 1\ 

= {01 l. f ~ 1\ T) 
otherwise 

If you approximate fti by simple processes and calculate the 

conditional expectations, if is easy to see that 

martingale with quadratic variation 

<J> 
st 

= J 4jftij 2d~dT) 
RstxRst 

J 
z 

is a 

The process J gives a connection between surface integrals and z 
line integrals. We first observe the following 

Proposition 2.4 

J = J WoW - f WdW st 
Hst Rst 

J = f WoW - J WdW 
st 

vst Rst 
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Proof 

Partition R into rectangles ~ i 1 j < n. Then 
soto ij 

• I t. . . wa w 
. . ,.. l ~J Kl 
~l]l.r..l 

1\ 
(i 1 j) /\){ 1 1 

k-1 j-1 
= I I }: ~ .. w'\1w 

jlk i 1 ~J 

j-1 
= I (wk.+1-wk.) }: '\lw 

jlk J J 1 

=I (wk.+1-wk.)(-~.w) + L (wk. 1-wk.>l~lw 
jlk J J J jlk J+ J 1 

= - I < wk . + 1 -wk . ) '\ . w 
jlk J J J 

j j-1 

+jfkwkj+1 f~lw- wkjf ~lw 

- }: w,... ( 1 ~lw- j-f ~lw) 
j I k .r..J 1 K 1 K 

The second sum telescopes in j and 1 and we get 

+ I w (w -w ) 
k kn k+1n kn 

- I w,... a .w 
. ,.. .r..J KJ 
]I .r.. 

• 0 + f WoW - f WdW 
H R 

so to so to 

since the first term obviously can be made uniformly small. The 

proof of the second relation is similar. 
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A complex version of Greens formula follows almost immediately from 

proposition 2.4. First you need to observe that it is possible to 

integrate against Jst" The definition on simple processes is of 

course I w .. ~ .. J and there is an isometry also in this case. The 
i,j ~J ~J 

class of integrable processes against a general L 2-martingale 

depends on the quadratic variation <M>st" In the case of Jst' 

however, the quadratic variation is so small that is suffices to 

have E[w ] 2 bounded on compact sets. 
st 

Once it is meaningful to integrate against 

integration formula. 

Greens formula 2.5 

J we can state an 
st 

M 
st 

Assume that w' 
st 

is adapted measurable with bounded on 

compact sets. When w = w0 + I w' oW, then for any rectangle 
st 

vst 

I wow = - I WdW - I w'dJ 
oA s A A 

A 

The integration is counter-clockwise and integration 0 
s 

means that 

the vertical segments are ignored. With the same conditions on w', 

the symmetric relation along the vertical segments is that if 

Proof 

wst= w0 +I w'oW 

Hst 

then 

I wo w = I wdw + I w'dJ 
oA t A A 

By a standard argument you can reduce to the case where w' is 

constant on A. Then the formula follows from proposition 2.4. For 

details see Cairoli · & Walsh [ 1 ] p. 1 51 
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This Green's formula has two important corollaries. 

Corollary 2.6 

If ' E H then ' has a primitive ~ s.t 

Proof 

By 2.5. 

~ = ~ + 
0 

f $oW 
H 
st 

Corollary 2.7 

If ~ E H 2 then 

I .PdJ 
R 
st 

= J .pow 
v 
st 

.~ 
st 

= ~0 + I ~·dw + f ~"dJ 

Rst Rst 

Proof 

Immediate from 2.5 since 
st 

= ~0 + J ~· 0 w 
oR t 

st 

Corollary 2.7 is the basic idea to prove that all processes ~ E H 
CD 

are in fact H • From corollary 2.3 we know that 

One can hope to prove that cjJ = ~· and that ex represents ~" in 

some sence. To pursue this further, we need to be able to translate 

an integral J 'dJ to the form 
R 
st 

For this you have the following. 

f cxdWdW. 
R xR 
st st 
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Proposition 2.8. 

When 
st 

sets,and 

is adapted measurable with El'stl 2 

1\ 
~ when (r,s)/\(t,u) 

= lost 

then 

Proof 

a(r,s,t,u) otherwise 

J ¢J 
R 
st 

= j adWdW 
R xR 
st st 

Partition R into rectangles 
so to 

D. • • 
l.J 

i1 j ( n 

bounded on compact 

and replace J 
st 

by its approximertion given by = E [ I fl. . w f:.. 1 W 1 r t J 
. . k 1 l.J K. s 

Then the n 
J -s are martingales and Jn~ 

is fixed according to the partition we have 

D. . • J 
l.J 

n and we get 

f 'dJ "' L '. · fl · · Jn . . l.J l.J 
Rst 11 J 

i-1 j-1 
= L L '· ·L\·Wfl.lW 
ilj k,l l.J J l. 

i-1 j-1 
= I I a. .. 1/l_ . w D. • lw 

' . k 1 .KJ 1 KJ 1 J.,J I 

k-1 j-1 
= L L a. 'klb.. ,Wll_lW 
k,l i,l l.J l.J K 

= L a.. fl .. Wflk W 
. . k 1 l.Jkl l.J 1 l.,J, , 

1\ 
(i,j)/\(k,l) 

"' j adWdW 
R xR 
st st 

l.r)l I 
1\ 

(i,j)/\(kll) 

uniformly in n 
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Part 3 Weakly holomorphic processes are H 

When the processes X = st and 

"" 

restricted to the straight line-segments Vst and 
~ 

1-parameter martingales w. r. t. the a-algebras :;t ""t 

are 

Hst' they become 

and ~ • As 
S"" 

such they have unique quadratic varitions along these line segments. 
V H 

We denote the variations by <x >, <x > and so on. It is fairly 

straigtforward to generalize the quadratic variations from the real 

case, see Cairoli & Walsh [1] p. 158. The result is the following 

(we omit the proof). 

Proposition 3. 1 

Let 

Then 

= J 
R 
st 

<bdW 

<~,~> 
st 

1\ 

<~,~>st 

H 
<Y > = st 

= 

= 

J 
Rst 

1\ 

X = st J 
R 
st 

J 2 4>( ~) 

Rst 

1\ 
<bdW 

J 
RCDt 

= f q,dWdW 
R xR 
st st 

~< n, ~)dw d~ 
T] 

1\ 

y = 
st 

J 2! q, ( T] I ~ ) dW T) J 1\ -
"'( T] 1 1 ~) dW TJ 1 d ~ 

Rst Rmt Ra>t 

2lf q,(TJ,~)dW 12d~ 
RCDt 

T] • 

When ~ E H we have 
"'st 

= J <jldW + f adWdW 
R xR 
st st 

= f 4>' aw 
v 
st 

1\ f q,dWdW 
R xR 
st st 

Cairoli & Walsh observed that an equality of the above type cannot 

hold unless q, and a are intimately related. More exactly we 

have 
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Proposition 3.2 

If ~ E H then for (s1t) outside a negligible set 
st 

functions 

't + a(a1tlsl't) is a.s. essentially constant in [01 t] 

0' + a( a1t 1s 1 't) is a.s. essentially constant in [ 01 s] 

Moreover for (s~'t) and (sl "t') outside a negligible 

s.t. 't < 't' ( t we have 

~ S 't - ~ S 't 1 = J a ( U 1 V 1 S 1 't 1 
) - a ( U 1 V 1 S 1 't) dW UV 

Root 

and for (o1t) 1 (o't) outside a negligible set 

q,,...._- ~ = J a(a1t 1U 1V)- a(o' 1tlulv)dW 
v~ o't uv 

Root 

Proof 

Since 

s 
q, = J q,ow = J q,• d w 
st0 

Hst 0 
ut0 u ut0 

0 

we get from Ito's formula that 

s 
= f 2tolq,'t 12du 

0 u 0 

and 

By the first relation we see that 

o H H 
<q> lw > 

2t0 Os st0 

1 
for a.e.s 

When we insert this in the first relation, we have 

G C R 2 
+ 

the 

for a.e.a 

for a.e."t 

set F and 



Since 

~ 
st 
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8 1 :. H H = f I u <~ ,W > t 12du 
oTto Tu u o 

= f QidW + f adWdW 
Rst Rst 

and w 
st 

= j 1dW 

Rst 

we may also compute the quadratic variations from proposition 3.1 

i.e. 

s t 
= f JO 2 ~ + f 2 a ( TJ, u, v) dW dvd u 

0 0 uv R Tl 
..,to 

Then for a.e.s 

t 
= 2j0 ~ + f a(TJ,u,v)dW dv 

0 sv R TJ 
a>t 

0 

The same argument also gives 

= 2j I~ + f a( TJ,u,v)dW l 2dudv 
R uv R TJ 
sto Q)to 

When we insert these expressions in (*) we get 

s t 
I f21 ~ + f a( TJ,ti,v)dW j 2dvdu = 
0 0 uv R Tl 

Q)t 
0 

So for a.e.s we must have 

t 
f I ~ + f a ( TJ, s , v) dW I 2dv = 
0 sv R TJ 

<»to 

1 to 
-t If ~ + I a ( TJ, s , v) dW d v I 2 

0 0 sv R TJ 
mt 

0 
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But by the Cauchy-Schwarz inequality it is easy to see that this can 

only happen whenever the integral is a.s. constant in vl We get that 

for a.e.s there is a random variable p(s) s.t. for a.e v ( t 

p(s) = <jl 
sv 

CI(T),S,v)dW 
T} 

We can also choose p measurably by averageing. Then outside a 

negligible set F with 

= J a ( T}, s' 't I ) a( TJr s, ,;)dW 

R..,t 
0 

T} 

Since the left-hand side is Jr 1 -measurable it is easy to see ao,; 

that we must have cz(TJ,S,'t 1 ) = cz(n,s, ,;) for a,e,TJ E R - R 1 • 
=t Cll't 

0 

When this is applied to all possible pairs ('t,'t 1 ) we get a process 

"f'(u,v,s) s.t 

"f'(u,v,s) = a(u,v,s,,;) for a.e. 't ( v. 

The second pair of relations is proved along the same lines. 

0 

Let us for a moment forget about the negligible sets in proposition 

3.2, and let us see what we would have if the relations were true 

everywhere. 

When ~ E H the functions 

't + cz(a,t,s,,;) 

a+ cz(a,t,s,,;) 

are essentially constant and a will essentially satisfy the 

conditions in proposition 2.8. When we define "f'(s,t) = a(O,t,s,O) 

we get 



We then have 

~ 
st 

= J "fdJ 
R 
st 
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= ~O + f ~dW + f "fdJ 

Rst Rst 

Essentially we also have 

= J a(n,s,t)- a(n,s,t')dW 
T) 

Ra.t• 

a(u,v,s,t)dW 
uv 

if t ( t I 

since everything else vanish outside this set. But we also know that 

a essentially doesn't depend to u. i.e. a(u,v,s,t) = "f(s,v). 

Then we get 

( 1 ) Y(s,v)dW 
uv = J "foW - f "foW 

vst• 

By the same way of reasoning we also get 

(2) = J 

If ( 1 ) and ( 2) were true 

~st = ~0 + J YoW 
r 

By Green's formula 2.5 we 

J ~ow = J ~dW + 
Hst Rst 

J ow = J qKjW + 
v 
st Rst 

This would prove that ~ 

YoW - f YoW 
H· 
st 

everywhere it would 

i.e y = ·~· 

would also have 

J qKjJ = ~ - ~ 

Rst 
st 0 

J YdJ = ~ - ~ 

Rst 
st 0 

= ~· and that y = 

follow that 

~~~. The process ~ 
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= 
then has a second derivative ~", and by iteration ~ E H . 

In general we need to correct the processes on sets of measure zero, 

and to extend the equalities using martingale properties and 

conditional expectation. The details are the same as in Cairoli '& 

Walsh [1 ], see p. 174, 178, 179. Since these arguments are 

technical, and have little to do with the complex aspect of this 

theory, they are left to the reader. 
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