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by 

Jan Ub¢e 

In this paper we prove that certain stochastic integrals in ~ are 

stable under different approximation methods. A kind of 

holomorfic-measurability condition and good Lp estimates are 

involved here. The result is used to prove that Ito and Stratonovich 

integrals coincide on a fairly large class of processes. 
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Introduction 

Stochastic integrals are usually defined as limits of Riemann sums 

with chosen approximation points. A rather awkward property is that 

the value of the integral depends on the method of approximation. 

If we choose to approximate by the values at the left end-points, we 

get Ito-integrals. Ito-integrals are useful in analysis because they 

are martingales and various good estimates are available. They are, 

however, not geometrically well behaved and are subject to a strange 

calculus. 

The midpoint approximations are called Stratonovich-integrals. They 

are well behaved but unfortunately, they do not give good esti­

mates. 

It is the purpose of this paper to prove that in many cases the 

stochastic integrals are independent of the methods of approxima­

tion. 
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Some basic concepts and notation. 

Let Wt: ' • ~ denote Brownian motion in the complex plane. We 

want to define the integral 

where Zt: Q ~ ~ is a stochastic pr9cess. 

From a Riemann integration point of view the following definition is 

natural. 

~ -~ 
Let 0 = t 1 < t 1 < t 2 < • • • < tk < tk+l = T be a partition of the 

interval [O,T]. We call a process Zt: C -+ G:: Wiener-Riemann inte­

grable on [O,T] if there exists a random variable IZT s.t. 

k 
-r:- z (W -W ) -+ IZT 
L ~ t.+l t. 

j=l tj J J 
in measure as maxjt.+1-t.j -+ 0 

j J J 

A quite strong measurability condition is needed. We call a process 

~P p 
~.t -analytically adapted if for each t, Zt is the L -closure of 

et = {f 1 (Wt1 )f2 (wt2 ) • • • fr(Wtr) where r is some positive 

integer f 1 , f 2 ,,, fr are polynomials and 0 < t 1 , t 2 ,,,tr<t}. 

This last definition is motivated by the following: If we replace 

polynomials with continuous functions and Lp -limits by limits in 

measure, we get a definition of ~-measurability, well known from 

Ito-analysis. 

We aim at proving the following. 
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Theorem 1 

If for each t E [O,T] Zt is ~~-analytically adapted, and there 

exist constants c <=, p>2, 
1 

(s,t) ~ (O,T] 2 EjZtlp < C1 

WR-integrable on [O,Tj. 

I. The problem 

C <c, a>O s.t. for all 
2 

and EjZ -z 12 < c2 1t-sla. 
t s 

T 

then is 

We want to give meaning to the symbol J Xt(w)dBt{w) where Xt is 
0 

a process on C. 

The integral cannot be defined in any ordinary sense since the paths 

of Brownia~ motion are of unbounded variation almost surely. We try 

to define it in terms of an approximation procedure. We do a 

partition • • • of the interval 

LO,Tj. A reasonable approximation would then be 

k 
LX (w)(B (w)-Bt (w)). 

j=l t~ tj+l j 
J 

The preble::: is that the limit of this expression .as the partion gets 

* * finer, may depend on the choice of tj. If tj = tj' we get an 

Ito-integral. This·limit can be shown to exist if we have reasonable 

conditions on Xt. In this paper we will study the difference 

between this choice and the others, i.e. 

We would like this to approach zero as the partition gets finer. 

Unfortunately, this fails in general. Put * tj = tj+l' and let 
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k k 
El \(X -X )(B -B >I= 

j:l tj+l tj tj+l tj 
L E(B -B ) 2 

j=l tj+l tj 

k 
= L E(Bt -t. )2 

j=1 j+l J 

k 
L I t . + 1 -t . I = T 

j=1 J J 
= 

k 
In fact, it is not hard to prove that L (X -X )(B -B ) + T 

j=l tj+l tj tj+l tj 

in L2 in this case, and that is hardly what we want to happen. 

As we shall soon see, much more can be said when we look at 

processes in the complex plane. There are, however, a few real cases 

where we can prove something positive. We first look into this. 

Example 1. 

If X : Q ~ ~ is measurable and there exist constants a>1 and 
t 

C<= s.t. 

k 

EjX -X 12 < Clt-sla then t s 

I (X -X )(B -B ) + 0 in L1 
j=l tj tj tj+l tj 

as maxjt. 1-t.l + 0 
j J+ J 

Proof. 

k 

El I (x -xt )(Bt -Bt >I 
j=l t~ j j+l j 

J 

k 

< ) 1 Ej (xt* -xt.) (Bt .+1-Bt.) I 
J= j J J J 

k 
' I (EjX -X j2)~(EjB -B 12>~ 

. 1 t"' t. t "+1 t. 
J= j J J J 

k a/2 ~ I I t . + 1 -t . I I t . + 1 -t . I 
j=l J J J J ' c 

a/2-~- k 
< C _ma.J. xI t J. + 1 -t J. I _ I It · + 1 -t · I 

j=1 J J 

a/2-L = CT max I t . -t . I "2 + 0 
j ]+1 J 

0 
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Note that the paths of such processes are only slightly better than 

Brownian p:ths where we have a=l. A typical example of this kind of 

process is 
t 

Xt = j 0b(Bs,s)ds where b is bounded. 

The next example is rather artificial, but it illustrates what we are 

going to do later. 

Example 2. 

Let X : Q ~ ~ be a process s.t. E[IX -X 14 ] ' Clt-s1 2 and assume 
t t s 

that there exist a constant a, 0 ( a < 1 s.t. for each t, Xt is 

rl' 
~ -measurable, then 
at 

max 1 t . 1 -t . I ~ 0 
j ]+ J 

Idea of proof 

Write 

k 
I (X -X )(B -B . ) ~ 0 in L2 

. , t'* t . t "+1 t . 
J= j J J J 

as 

Because Xt ·is ~at-measurable with a<1, we will in most terms where 

i>j have (B -B ) independent from the rest. Since 
ti+l ti 

E(B -B ) = 0 the whole term will be zero. The same thing happens 
ti+l ti 

when i<j, and the nonzero terms in the sum are so few that the whole 

sum can be shown to be small. 
0 

The conditions in this example can be weakened, but this need not con-

cern us. The interesting point here is that if we have an 

""' ~~-analytically adapted process, and we estimate this by a double sum 

as above, the non-diagonal terms will always be identically zero. We 

now look into this. 
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II Complex moments of 2-dimensional Brownian motion 

We let ~t = B1 t + iB2 t where B1 t and B2t are independent Brow­

nian motions. We want to estimate expressions of the form 

I ( Z -zt )( Wt -wt ) . To do this we start with some lemmas 
j tj j j+l j 

Lemma 1 

If 0 ( t < = and m is any nonzero positive integer, then 

Proof. 

This is obvious from martingale theory, but there is also an elemen­

tary way to see it. Write E[W~) = E[(B1 t+iB2t)m] and multiply out 

2k- • 
by the binomial theorem. Use independence and the relations E[Bt j = 

k 
2klt to write it out explicitly. It will look a bit messy 
2kkl 

but almost everything cancels out and the Lemma follows easily. 

Lemma 2. 

0 

If < "" are positive integers not all 

equal to zero, then 

Proof. 

By induction on k. Case k=l is lemma 1. Assume case k-1 proved. We 

can assume that t 1 <. t 2 • • • < ~ and that not all n n ~ -1< l' 2'" K-1 

are equal to zero. 
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n n 
WfLy._) w )~w~- 1 • n, 

E(W 1w 2 • • • = E(W -W + • • w 
t, t2 tk tk tk-1 tk-1 tk-1 t, 

nk a+n n 
= I <~> E[(W -W )a]E(W k-l. • • w 1] 

a=O a tk tk-1 tk-1 t, 

a+n. n 
By hypothesis all E(W x-1. 

tk-1 
• • • • • w 1 ] = 0 

t, 
and this proves the 

lemma. 
0 

Lemma 3. 

Let and let n , n • • 
1 2 • ~ be any positive 

integers. If Y is 1t -measurable with EjYjp < = p>1, then 
1 

• • • 
n +n +++n 

= E(W 1 2 kY) 
t1 

Proof 

Induction on k again. Case k=1 is trivial. Assume case k-1 

proved, then 

~ ~-1 n, 
E((Wt -Wt +Wt ) Wt • • • W Y) 

k k-1 k-1 k-1 t, 

= 

By lenuna 2 
n -a 

k 
E(Wt. -Wt ) = 0 unless a=~ so only this term 

-K k-1 

remains 

• • • 
n +n +++n 

= E(W 1 2 kY) 
t1 

by hypothesis 

0 

Lemma 3 provides an easy proof of the following lemma, which is the 

key to this theory. 
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Lemma 4. 

l"v 

Let 0 ' t 1 , t 2 , , , tk < CD 

with EIYIP < CD p>l, and 

and let 0 ' s ' t. If Y is 7 -measurable s 

' is any holomorfic polynomial in k 

complex variables, then 

E(t(Wt, W ,,,W )(W -W )Y] = 0 
1 t2 tk t s 

Proof. 

We look at each term in the polynomial expression and put all 

~s-measurable parts together with Y to form a Y. Then by lemma 3 we 

push all times down to s. Two equal parts ·will cancel each other. 

0 

Proposition 1. 

Let z be ~2-analytically adapted for some r>O and let O,s,t. If 
r 

Y is ~ -measurable with E I Y 12 < .,. 
s 

then E[Z(W -W )Y] = 0 
t s 

Proof. 

Given ~ > o choose z in ~r s.t. EIZ-ZI 2 ' ~· 

jE(Z(Wt-Ws)Y) I = IE[(Z-Z)(Wt-Ws)Yj+E(Z(Wt-Ws)Y)i 

By lemma 4 the last term is zero, so by Holder's inequality 

and this proves the proposition since the constant does not depend 

on T). 

0 
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We now proceed to define our integral •. The definition will be 

consistent with the definition of the Ito-integral. Usually the 

Ito-integral is defined by some cutting and step-function procedure. 

Since this will destroy analytic adaptedness of processes, we have to 

use a slightly non-standard approach. Because of this we give a short 

discussion of Ito-integration. 

III - The Ito-integral. 

The definition of the Ito-integral is based on the following simple 

fact, the so-called Ito-isometry, here stated in a complex version. 

Ito-isometry 

If y 
t. 

J 

Proof. 

is 
rv 
~ -measurable and 
t. 

J 

E [ 1 I Y (w -w ) 12 ] 
j tj tj+l tj 

y 
t. 

J 

is in then 

Unless i=j the term is zero by independence since E{W -W }=0 
ti+l ti 

=I E [I Yt 12 I wt -wt 12 ]=IE [I Yt j2 ]E [I wt -wt ~ 2 ]=2 IE [I Yt 12] It. , -t ·I 
j j j+l j j j j+l j j j J+ J 

. Estimation lemma. 

If is ~ -measurable with E [I Z -Z 12 ] <: C It-s I a 
t t s 

• • <: t = T 
k 

partitions of the interval [O,T] then 

• • 0 ( s = t 
r 

0 

are two 
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r 
I z (w -w ) 1 2 j 

. 1 s . s . +1 s . 
J.= 1 1 1 

This is just a standard estimate, and we will not go deeply into it. 

Similar proofs can be found in any standard textbook on Ito-

integrals. The idea is just to use a refinement of the partitions to 

get a single sum, and then use the Ito-isometry on this sum. 
0 

Definition of the Ito-integral 

If Zt is ~t-measurable with E[izt-zsj 2 j ( Clt-sla a>O then there 

exist a random variable IZT s.t. 

Proof. 

Choose any sequence of partitions s.t. max It . 1 -t . I .. 0. Then by the 
j J+ J 

estimation lemma above, the corresponding sums form a Cauchy-sequence 

in L2 converging to a random variable IZT. The estimate also 

proves that the closeness of approximation only depends on 

max I t . 1 -t . I 
. J+ J 
J 0 

IV The Wiener-Riemann integral. 

We are now in a posltion to prove our main theorem. 

Theorem 1. 

If for each (51 t) 

p>2 

[ - 2 E o, T J , zt is 

and E [ I z -z 1 2 ] 
t s 

WR-integrable on [O,T]. 

~-analytically adapted with 

( Clt-sla a>O then Z is 
t 
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Proof. 

It is enough to estimate 

= E [ I ( z ?I -zt ) (w -wt )( z -z ) (w -w ) ] 
i,j ti i ti+1 i tj tj tj+l tj 

If i>j the te~ is zero by proposition 1 since tj+1 (ti. The case 

i<j is similar. So we are left to estimate 

I E [I z -z 12 1 w -w 12 j 
J.' t?l t. t.+, t. 

j J J J 

It suffices to show that if r ( s ( t then 

Put A = {wl IW -W I > It-ria} By Tsjebysjev's inequality P(A) 
t r 

1-2a 
( Clt-rl . Choose a<~ s.t. 2a +a> 1. 

Then we consider the integrals 

In the first integral we use the uniform boundedness of Zt in Lp 

and Holder's inequality. The se~ond expression has a trivial 

estimate. This proves the bound with y = min{1+(1-2a)/C, 2a+a} 

Remark 1. 

In its simplest form, the theory of the Ito-integral is a kind of 

L2 -theory and the conditions ~~-analytically adapted and 

0 

E [I Zt -zs 12 j .;; C It-s I a a >0 seems to be quite natural. If we want to 

integrate more than once, however, the condition E[IZtlpJ .;; C p>2 
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is quite awkward. It is very hard to prove Lp estimates with p>2 

on Ito-integrals, unless you are able to carry out the integration 

explicitly. In the next section we are going to study the problem 

locally, and then we can replace the condition with E[IZt~~IPJ < C 

where ~ is a stopping time. 

Remark 2. 

It would be much more satisfactory if we could replace all the condi-

tions in the theorem with limits in measure. It is reasonable to 

conjecture that a theorem like this should be true, but it seems to 

require a different kind of proof. Although the expected values of 

the non-diagonal terms are zero, the terms themselves are not nece-

ssarily small. It seems to be quite difficult to control these terms 

without good Lp estimates. 

If we restrict ourselves to Ito and Stratonovich integration, some 

more machinery is available and to some extent we can extend the 

theorem to processes that do not have good Lp estimates. We will do 

this in section 6. 

Remark 3. 

As is clear from example 1 in section 1, we can prove WR-integrabi-

lity under weaker assumptions than analytic adaptiveness. Without 

much work we can prove a generalization of theorem 1. 

Theorem 2. 

If satisfies the conditions of theorem 1 and 
,.._ 
~t-measurable with 

the product YtZt 

IY {w)-Y (w)j < Clt-sl~ 
t s 

is WR-integrable. 

a.s. 

y 
t 

where 

is 

B >~, then 
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Proof. 

Put Ht = Ytzt. It is clear from the conditions that Ht is Ito­

integrable in ·the sense mentioned before, so it is enough to prove 

that 

To do this it is enough to estimate the expressions 

I E~ Y -Y ) ( w -w ) z I 
J. t"* t. t.+1 t. t. 

j J J J J 

I E~Y -Yt ){wt -wt )(z -zt >I 
J. t * . . + 1 . t 11 • . J J J . J 

J J 

The first expression we compare with its L2-norm and write it out in 

a double sum just as in theorem 1. Since Yt. 
J 

IV 
is .:r t . -measurable the 

J 

non-diagonal terms are still zero, and since the Y -s 
t. 

are uniform-
J 

ly bounded the term goes to zero as before. To estimate the two re-

maining terms we use Holder's inequality and the fact that the 

Z -s are uniformly bounded. The theorem follows easily t. 
J 

from this. 0 

From the proof, it is easy to see that the conditions on Yt can be 

weakened if the analytic part is "very nice" i.e. if the analytic 

part is in - Lp all p, then it is sufficient to have something like 

EIYt-Ytl 3 ~ Clt-sl 3 ; the product is still WR-integrable. If you look 

at a stochastic differential equation 
,t . t 

zt = z 0 + ; 0 ~(s)~(Zs)dWs + I 0b(s, zs}ds and set up an iteration se-

It It quence ~Zk = z 0 + O~(s)~(Zk_ 1 )dW5 + 0 b(s, zk-1 )ds it is possible 
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to carry out the integrations in a semi-explicit way to se~ that all 

iterates are WR-integrable by the result above. You need ~ a poly-

nomial, and good boundedness conditions on ' and b. 

V Localization. 

With a few minor adjustments it is easy to see that most of what we 

have done can be carried out locally. We need to use Dynkin's for-

mula. For a discussion of this formula see ¢ksendal (1) p. 91. 

Lemma. 

If ~ is a stopping time dominated a.s. by the first exit time of 

W from a compact set K, and m is a nonzero positive integer, 
t 

then 
- m-

E lW j = O. 
't 

Proof. 

Put f(z) 
m 

= z and cut f by a function outside K. Then use 

Dynkins formula. 

Since Bro~nian motion is a strong Markov process, B 
~1 

- B 

0 

behaves 
"2 

as B . From this it is easy to see that lemma 2,3 and 4 follows 
~1-~2 

as before. 

We also make the following observation. If ~~t a.s. and is bounded 

as above, then by Dynkin's formula on 

function: 

f(x) 
2m = X cut by a 
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E(B2m] = E[(~2m(2m-1)B 2m-2ds 
• . 0 s 

Jt 2m-2 -
( E( 0 2m{2m-l )Bs dsj 

So essentially, it is valid to estimate the moments by sup-estimates 

on the stopping time. This proves that we have an estimate 

and this estimate makes it possible to define a local Ito-integral in 

exactly the same way as before. 

Now consider all definitions locally by replacing all t by tA• on 

appropriate places. Then we clearly have the following 

Theorem 3. 

Let be a stopping time bounded a.s. by the first exit time of 

from some compact set. If for each {s,t) E [O,Tj2 

a 
E [ I Z - Z I 2 ] ( C I t-s I a > 0 and t/\• S/\'t 

analytically adapted, 

E [I ztA~ lp J .; c then 

[O,T A~J. 

Zt"• is WR-integrable on the interval 

Locally we are able to prove a theorem about the integral. 

Theorem 4. 

Assume that z 
tA~ 

satisfies the conditions in theorem 3, and 

IZ 
SA't 

denote the WR-integral of z 
tA't 

on [0, SA't] S(T. If 

stopping E [I I 
p 

time s.t. ZS"•I ] ' c p>2, then the stochastic 

let 

• is 

pro-

w 
t 

a 
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cess IZ defined on the interval .[0, T~~J is WR-integrable on 
Sl'': 

this interval. 

Proof. 

From the isometry we used to define the Ito- integral it is easy to see 

that we have a limiting estimate 

s 
E [I IZ -IZ 12 ] < c J E [I z 12 ]dt < c I S-RI 

SA~ RA~ R tA~ 

To satisfy the ?Onditions in theorem 3, we only have to prove that 

the process IZ is ~ 2 -analytically adapted. Fix s, and choose 
SA~ SA't 

a partition s.t. L Z ~ (W -w . ) is close to IZ in L2. 
j tjA~ tj+lA~ tjA't SA't 

Since we have a finite sum and each term can be approximated by pro-

cesses in fJ , it is easy to see that IZ can be approximated 
LsA't sA~ 

in L2 by such processes. This proves the theorem. 
0 

In the next section we will· have to use some th~ory on semi-martinga-

les and quadratic variations. Since it would take too long to explain 

all of this here, we refer to Kunita [2] for details. 

VI. Ito and Stratonovich integration 

Ito and Stratonovich integrals can be d~fined under much weaker 

assumptions than the ones discussed earlier in this paper. As in 

Kunita [2j we let denote Ito-integrals and we let 

denote Stratonovich integrals. Both can be defined whenever X 
t 

is a 

continuous semi-martingale, and the relation between the two is that 

where <X,B> denotes the joint quadratic variation of the processes 
T 
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X and B • It is easy to see that there is a corresponding complex 
t t 

version of this relation. 

Quadratic variations of complex processes. 

We let ~t defined on [O,T] be a continuous semimartingale in ~ 

i.e. ~t = X + iY 
t t 

where X 
t 

and y 
t 

are real .semimartingales. We 

consider the space of all such processes with the topology of uniform 

convergence in probability. (i.e) ~~ + ~t if 
n 

P(supl~t-~ti>E) + 0. 
t<:T 

The real quadratic variations <X>t and <Y>t are well defined, and 

the mapping X + <X> 
t 

is continuous on the subspace of local 

martingales. We define the quadratic variation of a process ~ by 
"'t 

We define the joint quadratic variation of a pair of processes 

With this definition it is easy to see that the mappings ~ + <~, T)) 
t 

with TJ a fixed local martingale are continuous on the subspace of 

local martingales. There is a much simpler way to view the joint 

quadratic variation. Actually we will have 

k 

<~, n> = limit in 
t 

probability of .I (~t. -~t.)(~t. -nt+l) where 
J=l J+l J J+l 

0 = t 1 <: t 2 <: ••• <: t = t is a partition of [O,t]. 
k+l 

From the real variable theory and the definitions above, it is a 

straightforward matter to see that the above limit exists and is 

consistent with all other definitions. The point with all this is 

that 

I 
I 
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From this expression the following corollary is immediate. 

Corollary 1. 

If is a sequence of WR-integrable continuous local martingales, 

and is a local martingale s.t. 

probability, then the Ito integral 
T 

integral J0zt o dWt. 

Remark. 

uniformly in 

. equals the Stratonovich 

Actually it is enough that is a semimartingale and that 

converges to the martingale part of zt. 

Theorem 5. 

If for each (s,t) E (O,T] 2 Zt is ~i-analytically adapted p>2 

with E[IZtlq] < C q>2 and E[jzt-Zsi 2 J < Cjt-sla a>O, then the 

stochastic process IZt is well defined on [O,T] and repeated Ito 

and Stratonovich integrals are all equal. 

Proof. 

l: if .i " t n 
= I z. (w -w ) where 

n 
Put I zt t. = 

">0 .l t.+l t. J if .i > t J n . J J n 

It is straightforward to see that each satisfies the 

conditions in theorem 1, so each 
n 

I Zt are WR-integrable. We also 

martingale convergence theorem uniformly in probability, 

so theorem 5 follows from corollary 1. 
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We introduce processes in the same way. This again will be 
n n 

WR-integrable. If we can prove that I I ZT ~ IIZT in L2 then 

jT0 IIZ dW = jT0 IIZ o dW will follow as above. 
t t t t 

Given E>O we can find N0 s.t. for all n>N0 

Then for any partition ••• ' 1:-k = T 

By the Ito-i_sometry. 

'2T E(supjiZ -InZ 12] 
t'T t . t 

' 8T E [I IZT-InZT 12 J 
E ' -8 

By a martingale inequality, see Kunita 
(2] p. 151. 

Now choose a partition 
1 2 

[0, ~· ;,,,T] s.t. 

with this partition 

n n n 
I I ZT =~I zt.<wt.+1-wt.> and we get 

J J J J 

So n n 2 I I ZT ~ IIZT in L and 

Clearly this kind of argument can be applied repeatedly as long as 

you please, and this proves that all repeated integrals are equal in 

the Ito and the Stratonovich sense. 

0 
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