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1 Introduction 

The "high contact" principle was first introduced by Samuelson (1965). He only 
gave a heuristic argument for the condition. In McKean's mathematical appendix 
to Samuelson's paper (McKean (1965)), a rigorous proof for the necessity of the 
condition was given for the case of a linear reward and a geometrical Brownian 
motion process, i.e. he proved that any solution of the optimal stopping problem has 
to satisfy the high contact condition. As there only exists one function satisfying the 
high contact condition in this situation, Samuelson's proposal is the only possible 
optimal solution. 

In Shiryayev (1978, Theorem 3.17) the condition appears as a necessary condition 
for one dimensional processes (but not under the name "high contact"). Multidimen­
sional versions of the theorem are given in Friedman (1976) and Bensoussan and Lions 
(1982). These theorems are derived from variational inequalities, and the assump­
tions in the theorems are too strong to apply to most economic applications. (See 
section 2.) 

The high contact principle is essentially a first order condition in the optimiza­
tion of the stopping time (see Merton (1973, footnote 60), and for a rigorous further 
development of the same idea 0ksendal (1990)). To derive the "second order condi­
tions" turns out to be easy, and we will in this paper prove, under weak conditions, 
that a solution proposal to an optimal stopping problem satisfying the high contact 
principle, is in fact an optimal solution to the problem. In this case we do not have 
to prove that there is only one solution satisfying the high contact principle, and the 
existence of the optimal solution is a part of the conclusion. 

Some results from stochastic analysis will be used without reference, these results 
can be found in 0ksendal (1989). 
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2 The problem 

Let 
dXt = b(Xt)dt + u(Xt)dBt (1) 

be an n-dimensional Ito diffusion, where b : JR"' ~----+ JR"' and u : JR"' ~----+ JR"'xm are 
Lipschitz continuous functions with at most linear growth. Let g be a (real) bounded 
continuous function on JR"'. The optimal stopping problem is the problem of finding: 

g"'(x) = supEz[g(X,.)] (2) ,. 
the sup being taken over all Jf-stopping times r, where Ji is the a-algebra generated 
by B., s :::::; t. Here Ez denotes the expectation w.r.t. the law pz of {Xt} given 
Xo = x. The optimal stopping time corresponding to g• is denoted r"'. 

Ifwe know g"' it is easy to find r"': It is obviously optimal to stop if g(Xt) > g"'(Xt) 
since we then achieve the optimal benefit, while if g(Xt) < g"' (Xt) it is not optimal 
to stop, since this would give less than the optimum. The set 

D = {x: g"'(x) > g(x)} 

is called the continuation region. Obviously, for xED, 

where rn = inf{ s > t : X. ft D}. 
If the continuation region is known, then the problem of finding g"' can be trans­

formed into a Dirichlet problem. Define the operator 

a 1 a2 
L = Lbi(x)-a +- :Lai,;(x) a a 

· Xi 2 · · Xi Xi I IJ • 

(3) 

where a= uuT, and where band u are as in (1). Then it is known that g"' solves the 
Dirichlet problem: 

(Lg"')(x) = 0 for xED 

limz-+u g"'(x) = g(y) for all regular yEan. 
(4) 

(y E aD is called regular if rn = 0 a.s. P 11 .) 

But Dis unknown, so this is a free boundary problem. Therefore an additional 
boundary condition is needed to identify the boundary. This is why the "high con­
tact" principle is important. The principle states that 

Vg"' = Vg on an, (5) 

which gives us the extra boundary condition. 
In a footnote Merton (1969) derives the high contact principle as a first order 

condition. Suppose Xt is one dimensional. Let De= {x: x < c}, 'fc = rnc, and 

(6) 
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Note that if cis regular for De then f(c,c) = g(c), and hence if/! exists, we have 

f~(c,c) + f!(c,c) = g'(c) (7) 

Suppose 
g*(x) = f(x,c*) = maxf(x,c), 

e 

then the high contact condition f~ ( c"', c*) = g' ( c"') is a direct consequence of the first 
order condition f!(x, c"') = 0. 

To make this argument rigorous it is necessary to verify that: 
(i) Dis of the form De, and c is a regular point for De. 
(ii) c 1-+ f(x,c) E C 1 

And if we want to use this high contact principle to prove that a proposed solution 
is optimal we must show that: 

(iii) The candidate satisfying high contact is unique 
(iv) There exists an optimal solution 

In the multidimensional case, which is the most relevant one for economic appli­
cations, it is necessary to have smoothness assumptions on the optimal continuation 
regions as well. In 0ksendal {1990) a property analogous to (ii) is verified under the 
assumption that L is elliptic. Since the argument only proves the necessity of high 
contact, we must also verify (iii) and (iv). 

The purpose of this paper is to show that - under certain conditions - the high 
contact property is also sufficient for the solution of the optimal stopping problem. 
More precisely, we show that if there exists an open set D C IRn with C 1 - boundary 
and a function h on D such that 

h~g 

Lg 5:0 
onD 

outside the closureD 

(8) 
(9) 

("the second order condition") and such that (D, h) solves the free boundary problem 

then in fact h = g* on D. 

Lh=O 

h=g 

Vh=Vg 

onD 

on aD 
on8D 

(10) 
(11) 
(12) 

To achieve this result the basic idea is the following. Extend h to JRn by setting 
h = g outside D. We know that g"' is the least superharmonic majorant of g. We also 
know that h 5: g* since h is what we get from using r = rD. It only remains to show 
that his Xt-superharmonic, i.e: 

(13) 

for all stopping times r, and all x. If h E C 2, then this is equivalent to Lh 5: 0. This 
follows from Dynkin 's formula: 

h(x) = Ez[h(X,.)- fa'" Lh(Xt)dt] {14) 
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By construction Lh = 0 in D, and by assumption Lh ~ 0 outside the closure D. 
Unfortunately we generally o~ly have hE C1 (8D) (this is the h~gh contact principle). 
If we can approximate h with hE C 2 such that lh-hl < € and Lh ~ €, for an arbitrary 
small €, this will do. In Brekke (1989, Appendix C) this idea is used to prove the 
sufficiency of the high contact in an essentially one-dimensional case. 

To extend this result to the multidimensional case, it turns out to be more con­
venient to generalize the Dynkin formula, using a Green function. This is done in 
Section 3, but first we will consider the relevance of the theorem in economic appli­
cations. 

3 High contact in economics 

As we have pointed out in the introduction, the existing high contact theorems are 
either one-dimensional or make very strong assumptions. Let us consider a typical 
problem in the economics of exhaustible resources, the problems will be similar in 
other economic applications. Let 

(15) 

be the price of the resource, where a and (3 are constants. Consider the stopping 
problem 

(16) 

where I and g are given bounded continuous functions. If the problem is to find 
the optimal time to stop production, then I is the profit, and g is the abandonment 
cost. When the problem is to find the optimal time to start a project, g(P) is the 
net present value of the field started at price P, and I= 0. Note that (16) is not of 
the form (2), because time and the integral of I until Tare introduced in the reward 
function. The problem can, however, be brought into the form of (2) at the cost of 
increasing the dimension of the process. Let yt = (t, Ph E>t) where 

(17) 

is the "profit" earned until t, then 

g"'(t,p) + () = sup,.Et,p,ll(g(T,P,.) + 9,.) (18) 

A high-contact principle applying to this problem must allow for processes of dimen­
sion three (or two if I = 0). In other words, none of the one-dimensional theorems 
apply to economic problems where discounting is relevant. 

Multi-dimensional results derived from regularity results for variational inequal­
ities make assumptions that exclude the geometrical Brownian motion (15). A theo­
rem in Friedman (1976) requires e.g. that Lis uniformly elliptic and that a(x) = uuT 
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is bounded, which excludes the geometrical Brownian motion where a(p) = {32p2 • 

Furthermore he assumes that 

which in the case of a geometrical Brownian motion means o: = 2{32 • These assump­
tions are too strong for most economic applications .. 

Another multi-dimensional result is given in 0ksendal (1989), who proves the 
necessity of the high contact principle under the assumption that L is locally elliptic, 
but he has to make smoothness assumptions on the form of the boundary as welL 

All these results are necessary conditions. Here we will establish that high contact 
is sufficient for a function to be identified as a solution of the optimal stopping prob­
lem. Moreover, we can relax the assumptions to cover most economic applications, 
e.g. the time-space geometrical Brownian motion mentioned above. 

4 A generalized Dynkin formula 

This section uses some advanced mathematical results and methods, and hence it 
may be difficult to read. Lemma 1 and the following remark contains the results that 
are needed in the later sections. The reader that is not interested in the details, may 
skip the remaining part of the section. 

Let Xt be as defined in (1) and L the corresponding operator (3). Then Xt has 
a generator which coincides with L on the smooth functions. Let Lioc (dx), q ~ 1 
be the set of all functions f such that 1/lq is locally integrable with respect to the 
Lebesgue measure dx, and c: (A) is the set of functions with bounded continuous 
derivatives of second order in the set A. 

If V c JR"' is a bounded domain such that Ee [Tv] < co for all e then we can define 
the Green measure of X (with respect to V), .9(e, ·),by 

.9(e,¢) = .9v(e,¢) = Ee[fo"' ¢(Xt)dt] 

If the measure .9 ( e' dx) has the form 

¢ E C(V) 

.9(e,dx) = G(e,x)dx ( dx is the Lebesgue measure) 

(19) 

(20) 

then we say that X has a Green function G(e, x) (in V). Note that in this case we 
can write 

(21) 

A sufficient condition that X has a Green function in any bounded domain V, is 
that X (or, more precisely, the generator L of X) is uniformly elliptic in V, i.e. that 
there exists .\ > 0 such that 

for all x E V, z E JR"' (22) 
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In fact, if X is uniformly elliptic in V and n ~ 3 then by a result of Littman, 
Stampacchia and Weinberger (1963) there exists, for any compact H in V, a constant 
C = C(H) < oo such that 

Gx(e,x) ~ C ·ie- xl2-n for all e,x E H. (23) 

Using polar coordinatesin JRn we see that this implies that 

!H G(e, x)qdx = cl fol r-(n-2)qrn-ldr = cl fol rn-l-q(n- 2)dr (24) 

which is finite if q < 1 + j. 
We summarize: 

If X is uniformly elliptic in V then X has a Green function G(e,x) satisfying 

1 
G(e,x) E Lfoc(dx) for q < 1 +- (25) 

n 

We are also interested in processes of the form 

dXt = [ ~~: l = [ ~~~g l dt + [ v(~) l dBt (26) 

with Kt E JRm and yt E JRd.. 
Assume for simplicity that V = M x N where M C JRm, N C JRd. and assume 

that Y is uniformly elliptic in N. Then it is well known that Y has a transition 
function Pt ( '7, y) in N, in the sense that 

(27) 

where dy denotes Lebesgue measure (in IRa.). 
In fact, by a result of Aronson (1967) there exist constants C < oo, a > 0 such 

that 

(28) 

for all t, and all x, yEN. 
Using the transition function of Y we can describe the Green measure 9x(e, ·), 

for X (given by (26)) as follows: 

Suppose ¢(x) = cP1(k)¢2(y) where x = (k, y). Then 

9x(e,¢) - Ee [fooo ¢1(Kt)cP2(l't) · Xt<Tvdt] 

fooo (IN cPl(Kt). cP2(Y)Pt(f1,y)dy) XK,eMdt, e = (ko,f/). (29) 

Since a general ¢(k, y) can be approximated by a sum of such products, we conclude 
that for general ¢(k, y) we have 

(30) 
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with Pt('7, y) satisfying (28), provided that Xt = (Kh Y,) where Y, is uniformly elliptic. 
The conclusions (25) and (30) will be needed in the proof of the next result. 

Lemma 1 (Generalized Dynkin formula) 
Let u' v be bounded domains with C1 borders in JRR and let r denote the boundary 

of U. Suppose 
¢ E c;(v \ r) n C1(V) 

and that X satisfies one of the following two conditions: 

1. Xt is uniformly elliptic in V 

(31) 

1!. Xt = (Kt, Y,) as in {1!6}, with Y, uniformly elliptic in N {where V C M X N} 
and for each k E M the set 

f~: ={yEN: (k,y) E f} C JR:' (32) 

has zero d-dimensional Lebesgue measure. 

Then 
(33) 

where Lif>(x) is the function defined for all X E v \ r by pointwise differentiation 
according to {9}. 

Remark: We will use (33) in the form of (44) (in case 1) or (46) (in case 2). In 
both cases, the expectation is transformed to an integral with respect to the Lebesgue 
measure. Thus, since the boundary r has Lebesgue measure zero, we do not have to 
define L¢ on the boundary. 

Proof 
First assume that condition 1 holds. 

Let D;~:¢ denote the distributional double derivative of¢ with respect to x; and 
x~; and let 8~28~,. denote the pointwise double derivative which is defined everywhere 

outsider and hence almost everywhere (dx). We claim that 

a2¢ 
D;~:¢ = a a for 1 $; j, k $; n (34) 

x; x~; 

To establish (34) we put V1 = V n U, V2 = V \ U and choose u E C<f(V). By 
integration by parts we have 

(35) 

where nii is component j of the outer unit normal iii from V;. Another integration 
by parts leads to 

r a¢ au dx = r 4> au ni~:ds - r 4> a2u dx (36) 
lv; ax~; ax; lav; ax; lv; ax;ax~; 
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Combining (35), (36) and adding for i = 1, 2 gives: 

r 824> udx = r 4> a2u dx 
lv 8x;8x~c lv 8x;8x~c 

(37) 

which proves the claim {34). 
For m = 0, 1, 2, ... and 1 :::; p < oo define the spaces 

. wm,p = {u: u E .V(V); Dau E.ll'(V) for all multi-indices } (3S) 
o: = (o:h ... , o:~c) w1th lo:l = o:1 + ... + o:~c :::; m 

equipped with the norm 

llullm,p = ( L IIDaull:) l/p 
ial$m 

(39) 

and let Hm,p denote the closure of em in this norm. Then a famous result of Meyers 
& Serrin (see e .. g. Adams (1975), Th. 3.16) states that 

Hm,p =Wm,p (40) 

For all p < oo we have 4> E W 2·P, by (31) and (34). So by (40) there exists a 
sequence { 4>~c} E C2 such that 

ll4>~c - 4>112,p --+ 0 as k --+ oo 

H p > j the Sobolev inequality combined with (41) gives that 

4>~c--+ 4> uniformly on V 

Since 4>~c E C 2 , we know that Dynkin's formula holds for f/>~c, i.e. 

(41) 

(42) 

(43) 

Choose p > j + 1, then if!+!= 1 we have q < 1 +~'so for such a value of p 
we can combine (41), (42) and (43J to conclude that: 

Ee[4>(X1V)] = lim~c-ooEe[4>~c(X1V)] = 4>(e) + [ Lf/>(x)G(e,x)dx (44) 

because by Holder's inequality 

I [ (L4>~c- Lf/>)(x)G(e, x)dxl < IIL4>~c- Lf/>IIPIIG(e, ·) llq --+ 0 (45) 

as k --+ oo by (25). That proves (33). 
Next assume that the second condition holds. We proceed as in the first case up 

to (43), so that we have, using (30), for each k 

Ee[4>~c(X1V )] = 4>~c(e) + fooo (JN Lf/>~c(K, Y)Pt(TJ, y)dy) XKteMdt (46) 
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Choose 1 < q < oo (to be determined later) and apply Holder's inequality for each t: 

fw ILtf>~c(Kt, y) - Ltf>(Ke, y) !Pt('l, y)dy 

< Uw ILtf>~c- Ltf>!Pdy) 11P Uw p1(f1,y)dy) 1fq where!+!= 1 p q 

By the estimate (28) we get, using the substitution u = ~: 

(47) 

fwp1(f1,y)dy ~ C1 · t-qd/2 /R4 exp(-aqjuj2)td/2du ~ C2 · c(q-l)d/2 (48) 

and this is locally t-integrable near 0 if q < 1 + ~- (Note that we used the Holder 
inequality for each t, so we need at-uniform approximation, but this follows from the 
result of Meyers and Serrin which implies that there exist a constant C3 such that 

for all k and all t, where llt/>ll 2,p means the norm of the function y ~ tf>(Kt, y). ) 
Therefore, if we choose 1 < q < 1 + ~ and p such that ! + ! = 1 we obtain that . p q 

(49) 

as before, thereby completing the proof of Lemma 1. • 

5 The sufficiency of high contact 

We now apply this to the optimal stopping problem (2): 

g* (x) =sup Ez[g(X,.)] = Ez[g(X,.. )] (50) 
1" 

Theorem 1 {Sufficiency of high contact for the optimal stopping problem) 
Suppose W C JRn is an open set such that Xt E W for all t if X 0 E W. Let g E 

C 1 (W). Suppose we can find an open set D c W with C 1 boundary such that TD < oo 
a.s.. Assume furthermore that Xt satisfies either condition 1. or 2. of Lemma 1 for 
U = D and for every sufficiently small open ball V centred on the boundary an uW, 
and suppose we can find a function h on D such that h E C1(D) n C2 (D), h ~ g 
on D, g E C 2 (W \D) and Lg ~ 0 in W \ D, and such that (D, h) solves the free 
boundary problem: 

(i) Lh(x) - 0 for xED 
(ii) h(x) - g(x) for X E aD 
(iii) Vzh(x) - V zg(x) for xE aDnW 

if Xt satisfies 1. (51) 

(iii)' V 11h(x) V 11 g(x) for X E annw 
if Xt satisfies !!. 
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{where x = (k, y) if X 1 satisfies 2.) 
Extend h to all of W by putting h = g outside D. Then h solves the optimal 

stopping problem {50}, i.e.: 

h(x) = g*(x) = supEz[g(X,.)] (52) 
1" 

and thus r• = rD is an optimal stopping time. 

ilD 

Figure 1: Illustration of boundaries 

Remark: Note that in (51), aD is the boundary of the set D regarded as a 
subset in JRn, not relative toW. Thus there may be parts of aD not belonging to 
W, as illustrated in Figure 1, where W is the positive orthant of JR2 • Note also that 
(51) (iii} or (iii)' is the high contact condition. 

Proof: First we note that by (51) (i), (ii) we have 

(53) 

hence h :::; g•. To prove the opposite inequality, it suffices to show that h is X1-

superharmonic since we have assumed that h > g and we know that g* coincides 
with the least X1-superharmonic majorant of g. For this it is enough to show that 
h is locally X,-superharm.onic. (Dynkin (1965), p.22) Since Lh :::; 0 outside aD, h is 
clearly X,-superharmonic there. So it remains to show that his X,-superharmonic 
on an: 

Fixe E aD and let V be a ball centred at e. By Lemma 1 we get 

Ee[h(X,.)] = h(e) + fv Lh(x)a(e,x)dx < h(e), (54) 

where r = rv. Thus h is locally X,-superharmonic everywhere and the proof is com­
plete. • 

This result also applies to the apparently more general problem 

7"'(x) = sup,.Ez[fo'" f(X.)ds + g(X,.)] (55) 
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where f(x) is a given bounded continuous function. In this case we consider the 
process Zt given by: 

dZ = [ dXt l = [ b(Xt) l dt [ u(Xt) I 0 l dB 
t df>t f(Xt) + 0 I 1 h 

Zo = (x,8) (56) 

where Bt = (B1(t), ... , Bn+l(t)) is an (n+ !)-dimensional Brownian motion. Consider 
the problem 

k*(z) = sup,.Ez[k(Z,.)], (57) 

where k(z) = k(x, 8) = g(x) + 8. 
For E[r] < oo we have E 0 [Bn+l(r)] = 0, and since it is enough to take the sup 

over such stopping times we have 

k*(x,8) - sup,.Ez[8 + fo'" f(X.)ds + Bn+l(r) + g(X,.)] 

- 8 + sup,.Ez[fo'" f(X.)ds + g(X,.)] (58) 

- 8 + "Y*(x) 

Therefore, if k* solves the problem (57), then "Y* = k* - 8 solves (55). This gives the 
following conclusion. 

Theorem 2 Suppose W C IRn is an open set such that Xt E W for all t if X0 E W. 
Let g E C1 (W). Suppose we can find an open set D c W with C1 boundary such 
that rv < oo a.s.. Assume furthermore that Xt satisfies either condition 1. or 2. 
of Lemma 1 for U = D and for every sufficiently small open ball V centred on the 
boundary aD UW, and a function h on D such that hE C1 (D) n C2 (D), h ~ g on D, 
g E C 2(W \D) and Lg :$; - f in W \ D, and such that (D, h) solves the free boundary 
problem: 

(a) Lh(x) - -f(x) for xED 
(b) h(x) - g(x) for X E aD 
(c) Y'zh(x) - Y'zg(x) for xE aDnW 

if Xt satisfies 1. (59) 

(c)' V 11h(x) - V 11g(x) for X E an nw 
if Xt satisfies 2. 

{where x = ( k, y) if Xt satisfies 2.} 
Suppose furthermore that for all x, we can find p > 1, such that: 

inf fT lf(X.(w))lds > -oo. 
wEO,T>O}o 

(60) 

where 0 is the measure space on which Bt is defined. 
Extend h to all of W by putting h = g outside D. Then h solves the optimal 

stopping problem {55}, i.e.: 

h(x) = "Y*(x) = supEz[ f'" f(X.)ds + g(X,.)] (61) ,. lo 
and thus r* = rv is an optimal stopping time. 
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Proof: Define H(x, 6) = h(x) + 6, k(x, 6) = g(x) + 6. 
Let 

au 1 a2u 
.Cu(x,6) = Lzu + f(x) as+ 2 as2 , u E coo 

denote the generator of the process Zt. 
Then by (a), (b) and (c) we have 

and 

.CH(x, 6) = Lh(x) + f(x) = 0 if x En 

H(x,6) = k(x,6) if x E an 

{ V zH(x, 6) = V zk(x, 6) if x E an 
~IJ (x, 6) = ~! (x, 6) 

By Theorem 1 applied to h = H, g = k and the process z, and by 
conclude that 

H(x, 6) = sup.,.Ez,ll[k(Z.,.)] = 6 + 1*(x) 

i.e. that h = ,. as claimed. 

(62) 

(63) 

(64) 

{65) 

(58) we 

(66) 

Note that k = 6 + g is not bounded, hence Theorem 1 does not apply directly. 
By an inspection of the proof, however, we find that the condition (60) is sufficient. • 

Remark: H f is of the form f(x) = F(y)e-rt, where F(y);::: -M > -oo, then 

loT M 
f(Xt(w))dt;::: -- > -oo 

o r 
(67) 

hence (60) is satisfied. This applies to many economic problems. 

6 An application: Starting and stopping of re­
source extraction 

The starting and stopping of a mine or a field was studied in a seminal paper by 
Brennan and Schwartz (1982). For ease of analysis we will simplify their model 
considerably, and disregard the discussion of taxes and convenience yield. The results 
in this section is also similar to the entry and exit model of Dixit (1989), where the 
only difference is that his model includes no resource extraction. 

We will formulate the model as two simultaneous stopping problems. The use 
of the high contact principle in this model illustrates the use of both theorems. 
Furthermore, we point at an unresolved problem in using optimal stopping theories 
to solve sequential stopping problems. 

Suppose that the price process is a geometrical Brownian motion: 

dPt = a.Ptdt + fiPtdBt (68) 
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where a, fJ are constants. The stock of remaining reserves in the field is denoted by 
Qt. If the field is open, extraction is proportional to remaining reserves. Hence 

where 

X= { ~ if the field is open 
if the field is closed 

(69) 

(70) 

When the field is open, a rental cost K is the only operating cost. Thus profit is 
"AQtPt- K. It costs C to close the field, and J to open the field. 

Let V denote the value of a closed field, and U the value of an open field. Then: 

and 
V(p,q,t) = sup{Ep,q,t[fl(P,.,Q,.,r)- Je-""]} 

It is reasonable to guess that: 

,. 

V(p, q, t) 
U(p, q, t) 

V(p, q)e-rt 

U(p, q)e-rt 

(71) 

(72) 

(73) 

(74) 

We search for solution proposals v and u that solve the free boundary problem 
(59). The first condition (a), states that (using the decomposition (73) and (74)): 

where 

and 

Lvv - 0 

Luu -"Aqp+K 

a 1 2 2 a2 
Lv = -r + ap- + -{3 p -

ap 2 ap2 

a 
Lu = Lv- "Aqaq· 

(75) 
(76) 

(77) 

(78) 

It is reasonable to guess that the continuation region for the starting problem is of 
the form {(t,p,q) : p < x(q)}, and for the stopping problem {(t,p,q) : p > y(q)}. 
This gives a boundary at p = 0 for v and at p = oo for u. That v(O, q) = 0 is 
rather obvious. The boundary condition for u is more complicated. It is reasonable 
to assume that the expected time until it is optimal to close the field approaches oo 
as p approaches oo. In the limit the value of the field should be equal to the value 
of a field with no option to close. We skip the details. Using this argument, we can 
derive the boundary condition 

u(p, q) - [ pq - K] -+ 0 as p -+ oo 
r+"A-a r 

(79) 
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Using these boundary conditions on the equations (75) and (76) we can derive the 
general form of u and v in the continuation areas. (See Bjerkholt and Brekke (1988) 
1) 

u(p,q) - pq K ( )v -----+c1· pq r+A-a r 
v(p, q) - c2(q) · P" 

where 
-(a -!,82) + .j(a -!,82)2 + 2r,B2 

I= ,82 > 1 

-(a- A- !.82) - .j(a- A -!,82)2 + 2r,B2 
v = ,82 < 0. 

The boundary conditions at the free boundaries x(q) and y(q) are 

v(x(q), q) 

v~(x(q), q) 
u(y(q), q) 

u~(y(q), q) 

- u(x(q), q) - J 

u~(x(q), q) "high contact" 

v(y(q), q)- C 

- v~(y(q);q) "highcontact" 

Inserting the general form of u and v we get 

(80) 

(81) 

(82) 

(83) 

(84) 
(85) 
(86) 
(87) 

(88) 

(89) 

(90) 

(91) 

If we guess that the form of the solution is x(q) = :, y(q) = ~' and c2(q) = k2 • q", 
the equation system simplifies to : 

X K 
(92) 

r+A-a 
+ clxv k2x" + (J +-) .r 

X + vc1xv 1k2x" (93) 
r+A-a 

y + C1Yv 
K 

(94) 
r+A-a - k2y" +(--C) r 

y + VCIYV 1k2y" (95) 
r+A-a 

These are four equations to determine four unknowns, x, y, c1 and k2 • Suppose there 
exists a solution to these equations, is then the corresponding stopping rule the op­
timal policy? 

1 The general form of v was first derived in Olsen and Stensland (1988) 
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Take the case of optimal starting of the field first. We can pick W = {x E 1R : 
x > 0}, and the operator is clearly elliptic for Pt > 0. Hence it only remains to prove 
Lv(u(p,q)- J) ~ 0 for p > x(q). Using (78) we get 

Lv(u- J) 
au 

- rJ+Luu+>..qaq 

rJ + K- >..pq- >..[ ~q + vc1(pq)"] 
r+ -a 

(96) 

r-a 
- - >.. pq + (rJ + K) + >..vc1(pq)". 

r+ -a 

Since v < 0 it suffices to prove: 

r-a 
.A pq > (rJ +K) 

r+ -a 
(97) 

and since the left hand side is increasing in p it suffices to prove this inequality for 
p = x( q). Combining (92) and (93) we find that (97) is equivalent to 

(98) 

which can easily be checked for a specific solution to (92) - (95). Hence, if (98) is 
satisfied we can conclude that if u is the optimal value of an open field, then v is the 
optimal value of a closed field. 

In the case of u, we have to prove Lu(v-C) ~ -/,and (60). The first inequality is 
treated by an argument similar to the one above. As for (60) we have that f ~ -K e-rt 
hence by the remark following the proof of theorem 2, we conclude that (60) is 
satisfied. 

Hence if v is the optimal value of a closed field, then u is the optimal value of the 
closed field. 

To conclude, we have proved that 

u(p, q)e-rt = sup{Ep,q,t[ {"' (..XQ.P.- K)e-r•ds + v(P,., Q,.)e-r'" - ce-r'"]} (99) 
1" lt 

and 
v(p, q)e-rt = sup{Ep,q,t[u(P,., Qr)e-r'"- J e-"]} (100) 

1" 

This is similar to the optimality equation in dynamic programming. To complete 
the proof that u and v are optimal, an optimality equation for sequential optimal 
stopping is needed. This is a problem for future research. 
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