
Upper semi-continuity of convex functions 
and openness of affine maps 

Otte Hustad 

lntrod uction 

A fundamental result in the theory of convex functions [Bo, p.60] states 
that any locally bounded above convex function on an open convex set is 
continuous. Already the closed interval [0,1] shows that this conclusion is 
not necessarily valid if the convex set is not open. However, it is well­
known [Ro, p. 84] that the interval [0,1], and more generally any closed 
convex polytope P, has the property that any locally bounded above convex 
function on P is upper semi-continuous. We came across convex sets with 
this property in the following way: Let K be any non-empty convex set in 
a locally convex topological vector space, let e be a point outside the linear 
subspace generated by the closure of K, let K* be the convex envelope of 
K and e. Choose x 0 E K and let II(·, x0 ) be the affine projection from 
K* onto J( which sends e to xo. We ask: When is II(·,xo) an open map 
whenever x0 E K? Our answer is that this is true if and only if K has the 
property that any locally bounded above convex function on K is upper 
semi-continuous. A convex set with this property will be called an excellent 
convex set. Note, that by the preceding, every open convex set and every 
closed convex polytope is an excellent set. In fact, we shall prove in section 
1 that the closed convex polytopes are the only compact convex sets that 
are excellent. There is a geometric characterization of this property: A 
convex set K is excellent if and only if for any x0 E J( and any homothetie 
h>.(·,x0 ) with center x0 and factor A. E< 0,1 >,the image h>.(K,x0 ) of J( 

is a neighborhood of x0 in K.(Theorem 1.13). We discovered these two 
charactrizations of excellent convex sets with the help of a certain function 
A(·, xo) defined on K by 

A(x,xo) = sup{A.E[O, 1>: x- A.xoE(1- A.)K}. 

This function is concave, and it turns out that the affine projection II(·, x0 ) 

considered above is open if and only if A(·,xo) is lower semi-continuous. 
Furthermore, K is an excellent convex set if and only if A(·, x0 ) is lower 
semi-continuous at x0 whenever x0 E K. This last characterization is useful. 
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Applying it, we show that the intersection and the cartesian product of two 
excellent convex sets are convex sets of the same kind. From this we get 
that any open (in relative topology) convex subset of an excellent convex 
set again is an excellent set. The function A(·,xo) has another noteworthy 
property: If K is closed, then A(·, x0 ) is upper semi-continuous. This has 
as a consequence, that if K is closed, then K is an excellent set if and only 
if any locally bounded above and lower semi-continuous convex function on 
K is continuous (Theorem 1.19). This equivalence needs, however, not to 
be true if K is not closed. We exhibit a three-dimensional example to this 
effect. The closed unit balls of l! and l~ are polytopes, and hence excellent 
sets. In the infinite dimensional case, we show that the closed unit ball of 
Co is an excellent convex, whereas the closed unit ball of 11 is not. In fact, 
if the closed unit ball of a normed space is an excellent set, then the closed 
unit ball of any finite dimensional subspace has to be a polytope. It is an 
open problem whether the converse of this statement is true. 

It follows from the fundamental result on convex functions mentioned 
above, that the shape of a convex set at non-interior points is decisive in 
securing continuity of an arbitrary given convex funtion. To the best of our 
knowledge, the most accurate condition in this respect is to be found in 
[Bo, Chap. II, §2, Ex. 29]. Described a bit vaguely, it says that a bounded 
above convex function admits a limit at a 'conic' point. Motivated by this 
result, we shall say that a convex set K is conic at a non-interior point xo 
if there are an open, punctured convex cone C with x 0 as vertex, and an 
open convex neighborhood V of x0 such that V n C = V n int K. We show 
in section 2 that if K is closed and conic at every non-interior point, then 
K is an excellent convex set. 

In section 3 we study polyhedral convex sets. By definition, these are 
convex sets that are the intersection of an affine manifold with the inter­
section of a finite number of closed half spaces. Our main result in this 
section is that a polyhedral convex set is conic at every non-interior point. 

The subject matter is section 4 is to investigate when a closed locally 
compact convex set K will be an excellent set. We show, for instance, that 
K will have this property if and only if K is a strictly (in a topological sense) 
increasing denumerable union of polyhedral convex sets. (Theorem 4.3). 
As a corollary, we get as an extension of a classical theorem on topological 
vector spaces, that every closed locally compact excellent convex set is finite 
dimensional. Another corollary is that on such a set every convex function 
is upper semi-continuous. 

In section 5 we take up some aspects of the following problem: If K is 
an excellent convex set and Q is another convex set, when is it true that 
an affine continuous surjection c.p : K 1-+ Q is an open map? Our main tool 
in investigating this problem is a theorem essentially found in [Ku, v. 2, 
p. 63]. It says, that if K and Q are metric spaces, then a correspondence 
<P : Q ~---+ 2K is lower semi-continous if and only if the function 
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8: ]{ x Q ~--? [0, oo >: 8(x, q) = dist (x, ¢>(q)) 

is upper semi-continuous. If we assume that ]{ is contained in a normed 
vector space and that¢> is convex (see (5.2)), we can show that 8 is a convex 
function. Now, if]{ and Q are excellent sets, it was mentioned above that 
]{ X Q is an excellent set as well. Hence, in this case 8 is upper semi­
continuous if and only if 8 is locally bounded above. This gives a criterion 
for ¢> to be lower semi-continuous. In particular, we get a criterion for r.p to 
be open. A consequence of this is that r.p is always open if/{ is a bounded 
set (and /{ and Q are excellent sets). The same is true if we assume that 
/{ andQ are closed locally compact excellent sets. Finally, we show with 
the same method, that if /{ is an excellent set, then /{ is a stable convex 
set [Pa], which means that the middle point map (a, b) ~--? ~(a+ b) is open. 

Terminology and notations 

A convex set is always assumed to be a non-empty subset of a real locally 
convex Hausdorff topological vector space, and equipped with the induced 
topology. More specifically, we let E and F denote real locally convex 
Hausdorff topological vector spaces and we shall let /{ C E and Q C F 
denote non-empty convex subsets. An affine manifold in E is a translate of 
a linear subspace. If a, bEE, then [a, b] denotes the closed line segment and 
<a, b > the open line segment between a and b. If A and B are subsets of 
a topological space, and B C A, then intAB denotes the interior of B in the 
relative topology of A. Furthermore, if a E A, then VA (a) denotes the family 
of all neighborhoods of a in the relative topology of A. Note that a convex 
function is always assumed to take real values. A convex combination is 
a finite sum of the form a= 2: AjXj, where >..1 , •.. , An~ 0 and 2: Aj = 1. 
Finally, a map r.p : /{ ~--? Q is called affine provided r.p(>..x + (1- >..)x') 
>..r.p(x) + (1->..)r.p( x') whenever x, x' E /{ and >.. E [0, 1]. 

1 The utility of the function A 

We establish in the present section the general results on excellent convex 
sets described in the introduction. 

Let /{ C E be a non-empty convex set, and let e be a point outside the 
linear subspace generated by the closure of/{ in E. If necessary, we can 
consider E as embedded in ExR, and choose e = (0, 1) EExR. We denote 
with/{* the convex envelope of/{ and e. Thus 

]{* = {>..e + (1- >..)x: >..E[O, 1], xEK} (1.1) 

Notice, that the number >.. in the convex combination y = >..e + ( 1 - >.. )x, 
where x EK, is uniquely determined. In fact, if we more generally consider 
a convex combination of the form 
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n 

a= ).0 e +I: AjXj, 
1 

(1.2) 

where x1 , •.• , Xn belong to the closure of K, an easy calculation shows that 
if ).0 is not uniquely determined, then e belongs to the affine manifold 
generated by the closure of K, thereby contradicting the choice of e. 

We now fix x0 E K, and denote with II(·, x0 ), or for short II, the affine 
projection from K* to K which maps e into x0 and fixes every element of 
K. In other words 

II= II(-, x0 ) : K* ~ K: ).e + (1- ).)x ~ x + ).(x0 - x ). (1.3) 

Let a be any element in K. We define 

I( a)= {).E[O, 1): a- Ax0 E(1- ).)K} (1.4) 

Note that always OEI(a), and that 1EI(a) if and only if a= x0 • 

Lemma 1.1 Let aEK. Then 

II-1 (a) =a+ I(a)(e- xo). (1.5) 

Proof Let y=Ae+(1-A)xEII-1(a). Hence 

a= II(y) = AXo + (1- ).)x. 

Since x E K, we get ). E I( a). Furthermore, since (1- ).)x =a- Ax0 , it 
follows that 

y = Ae +a- AX0 =a+ A(e- x0 )Ea + I(a)(e- x0 ). 

Assume conversely that AEI(a) and put y = a+).(e-x0 ). Then a-Ax0 = 
(1- A)x, where x E K. Hence 

y =a- ).x0 + Ae = ).e + (1- ).)x. 

This shows that y E ]{*, and since 

II(y) = Ax0 + (1- ).)x = Ax0 +a- Ax0 =a 

the relation (1.5) is established. 0 

Lemma 1.2 Let a E K. If a= x0 , then I( a)= [0, 1), and if a=/= x0 , then 
I( a) is an interval contained in [0, 1 >. Furthermore, if K is closed, then 
I( a) is closed relative to [0, 1 >. 
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Proof. The first statement follows immediately from the definition of 
I( a). Assume therefore a f. x0 • Then 1 ¢I( a), and hence I( a) C [0, 1 >. 
Consider the map 

r.p: [0, 1 >~---+ E: r.p(,\) =a+ -\(e- x0 ). 

Obviously, r.p is an affine injection. Furthermore, by Lemma 1.1, r.p( I( a)) = 
n-1(a). Since IT is affine, it follows that r.p(I(a)) is a convex set. Hence 

I(a) = r.p- 1(r.p(I(a))) 

is a convex subset of [0, 1 >, and is therefore an interval. Assume now that 
I< is closed. Let 

,\ E I( a) n [0, 1 > 

Hence ,\ = lim An, where {An} C I( a). It follows that for every n EN 

where Xn E K. Since ,\ < 1, we get 

and where the limit x belongs to I<. Therefore 

a- Ax0 = (1- -\)x E (1- -\)I<, 

and thus AEI(a). 0 

Definition 1.3 Let. x0 EK. The function AK(·,x0 ) is defined on I< by 

AK(a,xo) =sup{,\: AEI(a)}; aEK, (1.6) 

where I( a) is given by (1.4 ). The element x 0 is said to be the center of 
AK(·,x0 ). If context makes the meaning clear, we shall use the notation 
A(·, x0 ), or even the notation A for this function. 

We remark that it is not hard to show that A(·, x0 ) is an affine function 
on every line segment [ Xo, a] C I<. 

Note, that since 0 E I( a) and since I( a) is an interval, 

I(a) c [O,A(a)] c I(a). (1.7) 

Lemma 1.4 The function A is concave. 
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Proof Let a1 , a2 E K and let J.lt, J.l 2 E [0, 1] with J.lt + J.L 2 = 1. We have 
to prove 

Let jE{1,2}. Choose AjE[O,A(ai)> (if A(ai) = 0 we choose Aj = 0). It 
is sufficient to prove 

(1.8) 

It follows from ( 1. 7) that Aj E I( ai ). Hence there is xi E K such that 

a·- -X·x0 + (1- -X·)x· J - J J J 

Therefore 

(1.9) 

Note, that since At, -\2 < 1, 

1 > "'"'/l·(1- -X·)- 1-"'"' H·A· > 0 - L....J rJ J - L....J rJ J • 

Consequently, if we let -X = 2:: Aj J.li, then the element x defined by 

belongs to K. Since (1.9) can be written 

we conclude that 

By the definition of A, this verifies the inequality (1.8). 0 

Lemma 1.5 Assume that the convex set }( is closed. Then the function 
A is upper semi-continuous. 

Proof We have to prove that for any a E R, the set A-t ( [a, oo >) is 
closed. Obviously, we need only consider the case 0 < a 5 1. Let a belong 
to the closure of the set A - 1([a, oo > ). Hence there is a net { ai}1 converging 
to a and satisfying 
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Choose 0 < j3 <a. By (1.7) we get j3 E I(ai)· Hence there is Xi E K such 
that 

It follows that 

and where the limit belongs to K. Therefore 

a - j3x0 E (1 - f3)K. 

This means that j3 E I( a). Hence j3 ~ A( a). Since j3 < a was arbitrarily 
chosen, we get a~ A( a), as desired. 0 

The following example shows that the conclusion of Lemma 1.5 needs not 
be valid if K is not a closed set. 

Example 1.6 Let K C R 2 be the closed unit square [0, 1]2 , except that 
we have removed the interval < !, 1] x {0}. Choose x0 = (0, 0) and let 
A= A(·,xo). Then A((!,O)) = 0, whereas 

l. A( 1 1 1 un - -)=­
n--oo 2' n 2 

Hence A is not upper semi-continuous at (!, 0). 

In the proof of the next proposition, we shall make use of the following 
well-known fact (see e.g.[Ku, vol. 1,p. 117]): 

If X and Y are topological spaces, and f : X~---+ Y is a given map, then 
f is open if and only if for any subset B of Y 

(1.10) 

Proposition 1. 7 Let x0 E K. Then the affine projection 

II= II(·, xo): K* ~---+ K 

is open if and only if the function 

A= A(·,xo): K 1--+ [0, 1] 

is lower semi-continuous. 
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Proof Assume that II is open. We have to show that the inverse image 
A - 1 ( < -oo, a]) is closed whenever a E [0, 1]. Let a belong to the closure of 
this set. Applying Lemma 1.1 and (1.10), we get 

a+ l(a)(e- x0 ) = II-1 (a) C II-1 (A-1 ( < -oo, a])). (1.11) 

We claim that 

II-1(A - 1 ( < -oo, a]) C A - 1 ( < -oo, a])+ [0, a]( e- xo). (1.12) 

In fact, let 

Then A( x) ::; a, and therefore I( x) C [0, a]. By Lemma 1.1 this implies 

II-1(x) c X+ [O,a](e- xo) c A-1(<-oo,a]) + [O,a](e- xo). 

This proves (1.12). Let >..EI(a). By (1.11) and (1.12) there is a net {yi}I 
converging to a+>..( e- x0 ) and where each Yi is of the form 

(1.13) 

where )..i E [0, a], Xi E ]{ and A( xi)::; a. By compactness of [0, a] we can 
assume, if necessary by considering a subnet, that the limit 

lim>..i = )..' E [O,a] 

exists. Since Xi= Yi ->..i(e-x0 ), it follows that x = limxi exists, and that 
x E K. Applying (1.13) we get 

a+>..( e- xo) =lim Yi = x + >..'( e- xo). 

By our choice of e, we conclude that ).. = )..' E [0, a]. Hence 

A( a)= sup{)..:).. El(a)}::; a. 

This proves that A-1 ( <-oo,a]) is closed. 

We now assume that A is lower semi-continuous. 
Let B C ]{be given. According to (1.10), the map II will be open if we 

can show that 

II-1 (.8) c II-1(B). (1.14) 

Let a E B. We claim that 
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a+ I(a)(e- x0 ) C II-1 (B). (1.15) 

In fact, let ..X E J(a). Assume first that ..X= 0. Let {ai}J be a net on B 
converging to a. Hence { ai} 1 is contained in II -l (B), and so a belongs to 
the closure of this set. Assume next that ..X > 0. Hence 

0 <..X::; A( a) ::; liminf A(x) d a. 
:z:-+a 

(1.16) 

Choose e E< 0, ..X>. By definition of a there is a neighborhood U( e) of a 
such that 

(1.17) 

Let U be any neighborhood of a and choose xu E U n U (e) n B. Applying 
(1.17) we get ..X- e El(xu), and hence 

xu+ (..X- e)( e- xo) E n-1(xu) C n-1(B). 

Since a = lim xu, we conclude that 

a+ (..X- e)( e- x0 ) E II-1(B). 

Letting e --+ 0, we obtain the inclusion (1.15). Applying Lemma 1.1, we 
have therefore proved (1.14). 0 

Definition 1.8 Let ..\>0 and x0 EK. We define the map h>.(·,x0 ) on the 
affine manifold generated by ]{ by the formula 

h>.(x, x0 ) =.Ax+ (1- ..X)x0 . 

We shall call this map the homothetie with center x0 and coefficient ..\. 
Observe that if ..X E<0,1], then 

h>.(K, xo) C K. (1.18) 

Lemma 1.9 The function A(·,x0 ) is continuous at x0 if and only if the 
homothetic image h>.(K, x0 ) of]{ is a neighborhood of x0 in ]{whenever 
.AE<0,1>. 

Proof By the definition of A(·, x0 ), we get that this function is continuous 
at x 0 if and only if for any ..X E< 0,1 > there is a neighborhood U of Xo 

such that ..X E I(x) whenever x E U. Putting J.l = (1- ..Xt1 , we observe 
that ..X E I(x) if and only if hJ.I(x, x0 ) E K. Hence the property '..X E I(x) 
whenever x E U' is true if and only if hJ.I(U, x0 ) C K. But this inclusion is 
valid if and only if 
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U = ht->.(hJL(U, xo), xo) C ht->.(I<, xo). D 

Comment 1.10 Since A(·,x0 ) takes values in [0, 1], we have 

limsupA(x,x0 ) ~ 1 = A(x0 ,xo). (1.19) 
X-+Xo 

Hence A(·, x0 ) is always upper semi-continuous at x0 • Therefore Lemma 
1.9 expresses exactly when A(·, x0 ) is lower semi-continuous at x0 • 

We repeat from the introduction the definition of the main concept of 
the present paper. 

Definition 1.11 The non-empty convex set I< C E is said to be excelllent 
provided every locally bounded above convex function on I< is upper semi­
continuous. D 

It was remarked in the introduction that every non-empty open convex set 
will be excellent. In particular, the locally convex vector space E itself is 
an excellent convex set. 

The property of being an excellent convex set is preserved by open 
continuous affine maps. In fact, we have the following 

Proposition 1.12 Let I< and Q be convex sets, let 

be an open continuous affine surjection. If ]{ is an excellent set, then so is 
Q. 

Proof Let g be a locally bounded above convex function on Q. Choose 
a E R. We have to prove that g-1( < -oo, a>) is an open set in Q. Put 
f = goc.p. Then f is a locally bounded above convex function on K. Hence 
f- 1( < -oo, a>) is an open set inK. Since c.p is a surjection, we get 

and since, by assumption, the left hand side of this equation is open in Q, 
we are through. o 

Theorem 1.13 Let K be a non-empty convex set. Then the following 
four properties are equivalent. 

(i) K is an excellent set. 

(ii) The function A(·, x0 ) is lower semi-continuous whenever x 0 E K. 

(iii) The function A(·, x0 ) is lower semi-continuous at x0 whenever x0 E K. 
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(iv) The homothetic image h>.(K, x0 ) of]{ is a neighborhood of Xo inK 
whenever x0 E I< and .X E< 0,1 >. 

For the proof we need the following 

Lemma 1.14 Let ]{1 and ]{2 be convex sets with a non-empty intersection 
]{I nK2. Let Xo E ]{1 nK2· Then 

(1.20) 

Proof Let X E ]{1 nK2· Since (1.20) is trivially true when X = Xo, we 
shall assume x =f x0 • Let 

I(x) ={.X E [0, 1 >: X- Axo E (1- .X)(Kl n K2)} 

and 

Ij(x) ={.X E [0, 1>: x- .Xx0 E (1- .X)Ki}i j = 1,2. 

Hence 

(1.21) 

By definition 

and 

AK;(x,xo) = sup{.X: .X E Ij(x)}; j = 1,2. 

Hence we get from (1.21) 

Assume that the right hand side is positive, and let .X be a positive number 
less than this minimum. By (1.21) we get 

and therefore .X:::; AK1nK2 ( x, x0 ). It follows that 
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We have thus proved (1.20). 0 

Proof of Theorem 1.13. (i) =>(ii). This is clear, since by Lemma 1.4, 
A(·, x0 ) is a concave function taking values in [0, 1]. (ii) =>(iii). Obvious. 
(iv){:}(iii). This follows from Lemma 1.9 and Comment 1.10. (iii) =>(i). 
Let f be a locally bounded above convex function on K. Choose Xo E K, 
and let V be an open convex neighborhood of x0 in E such that f is 
bounded above on K n V, say 

f(x)::; 8 < oo; x E KnV. (1.22) 

Since 

limsup f(x) = limsup f(x), 
x-+xo,xeKnV x-+xo,xeK 

we have to prove that 

limsup f(x)::; f(xo) 
x-+xo,xeKnV 

(1.23) 

Let xEKnV. By Lemma 1.14 

AKnv(x, xo) = min{AK(x, xo), Av(x, xo)}. (1.24) 

Since V is open, Av( ·, x0 ) is continuous. Furthermore, since we assume 
AK(·,x0 ) to be lower semi-continuous at x0 , we get from (1.19) and (1.24) 

lim. AKnv(x, xo) = AKnv(xo, xo) = 1. 
x-+x0 ,xeKnV 

(1.25) 

Therefore, if ). E< 0, 1 >, there is a neigborhood U of x0 in E such that 

). < AKnv(x,xo); xEKnvnu. 

This implies that if X E !{ n v n u' then there is an x* E !{ n v such that 

x = -Xx0 + (1- -X)x*. 

By applying (1.22), we therefore get 

f(x)::; -Xf(xo) + (1- -X)f(x*)::; -Xf(xo) + (1- -X)8. 

Hence 

limsup f(x)::; -Xf(xo) + (1- -X)8. 
x-+xo,xeKnV 
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Letting .X-+ 1, we obtain (1.23). 0 

Corollary 1. A non-empty convex set K is excellent if and only if the 
projection map 

II(·, x0 ): K* ~ K 

is open whenever x0 E K. 

Proof. An immediate consequence of Proposition 1.7 and Theorem 
1.13(ii). 0 

We denote with ext K the set of extreme points of K. In addition, we 
denote with ext( K, x0 ) the set of all points x E K that are extremal relative 
to x0 , which means that xis not an interior point of any segment [a, xo) C 
K. Thus 

ext( K, x0 ) = { x E K : px + ( 1- J.l )x0 ¢ K whenever J.l > 1} 

We note that 

ext(K,x0 ) = {xEK: A(x,xo) = 0} (1.26) 

Corollary 2. If K is an excellent set, then ext K is a subset of K without 
accumulation points, and ext(K, x0 ) is closed relative to K whenever 
xoEK. 

Proof If x0 E K is an· accumulation point of ext K, then there is a net 
{ai}I on (extK)\{x0 } converging to x0 • Since A(ai,xo) = 0 whenever iEI, 
we get 

0 = liminf A(x,x0 ) < 1 = A(xo,xo) 
X-+Xo 

Thus, the property (ii) of Theorem 1.13 is contradicted. Furthermore, since 
for any xoEK 

{ x E K : A( x, xo) ~ 0} = { x E K : A( x, xo) = 0}, 

it follows from (1.26) and Theorem 1.13(ii) that ext(K, x0 ) is closed for any 
xoEK. o 

Corollary 3. 
polytope. 

If K is an excellent compact convex set, then K is a 

Proof The set ext K has to be finite, and hence, by the Krein-Milman 
theorem, K is a polytope. 0 

The proof of the next lemma is very similar to the proof of Lemma 1.14, 
and is therefore omitted. 
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Lemma 1.15 Assume that K1 and K2 are non-empty convex sets. If 
(at, a2 ) E K 1 x K 2 and if the center of AK1 xK2 is ( a1 , a2 ) and the center of 
AK; is ai where j = 1, 2, then 

Proposition 1.16 Let K 1 C E and K2 C F be two excellent convex sets. 
Then the cartesian product K 1 X K 2 is an excellent set. Furthermore, if 
E = F and the intersection K 1 n K2 is non-empty, then this set is an 
excellent set as well. 

Proof This is an immediate consequence of Lemma 1.14, Lemma 1.15 
and Theorem 1.13(ii). 0 

Proposition 1.17 If K C E is an excellent set, and if PC K is an open (in 
relative topology) non-empty convex subset of K, then P is an excellent 
set. 

Proof Let f be a locally bounded above convex function on P, and let 
a E P. It will suffice to show that there is an open convex neighborhood V 
of a in E such that PnV is an excellent set. Because, in that case 

limsupf(x) = limsup f(x) ~ f(a). 
x-+a,xEP x-+a,xePnV 

By assumption, there is an open 0 in E such that P = 0 n K. Hence 
we can find an open convex neighborhood V of a in E such that V C 0. 
Consequently 

vn K = vn onK = vnP. 

By Proposition 1.16, the set VnK is excellent. Hence VnP is excellent, 
as required. o 

Lemma 1.18 Let K =f 0 be convex and closed, let a E K and assume that 
VeE is a convex set with OEV. If 

(a+ V) n ext(K,a) = 0, 

then for any AE<O, 1 > 

(a+ .XV) n K c h;.(K,a) (1.27) 
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Proof Choose >.. E< 0,1 >. Let v E V and assume that x0 =a+ >..v E K. 
We have to find an x E K such that a+ >..v = x0 = a+>..( x- a). This means 
that we have to prove that a+ v E K. Hence we can and shall assume v f. 0. 
Consider the ray 

r = r(x0 ,a) ={a+ !-l(x0 - a): /-l~O} ={a+ /-lAV: /-l~O}. (1.28) 

If r C K, we choose 1-l = >.. - 1 , and get a+ /-lAV = a+ v E K. Assume therefore 
r rj_ K. Hence Knr has to be a closed line segment of the form 

]{ n r = [a, b] . (1.29) 

Hence bEext(K,a), and so, by assumption 

b-a¢V. (1.30) 

Since x0 E Knr, there is, by (1.29) an a E< 0, 1] such that a+ >..v = x0 = 
a+ a(b- a). Hence b- a= >..a-1v. Since Vis convex and OE V, we must 
have >..a-1 > 1, since otherwise b- a E V, thereby contradicting (1.30). Put 
x =a+ a>..-1(b- a). It follows from (1.29) that x E K, and since x -a+ v, 
we are through. 0 

Theorem 1.19 Let K f 0 be closed and convex. Then the following five 
properties are equivalent. 

(i) K is an excellent set. 

(ii) Every locally bounded above and lower semi-continuous convex func-
tion on K is continuous. 

(iii) The function A(·, x0 ) is continuous whenever x0 E K. 

(iv) The set ext(K,x0 ) is closed whenever x0 EK. 

(v) If x0 EK, then x0 ¢ext(K,x0 ). 

Proof It is an immediate consequence of Lemma 1.5 and Theorem 1.13 
that the first. three properties arc equivalent. F\uthermore, applying Corol­
lary 2 of Theorem 1.13, we get that (i) implies (iv). And since x0 is not a 
member of ext(K, x0 ), it is trivial that (v) follows from (iv). Finally, apply­
ing Lemma 1.18, we get that (v) implies that h>.(K,x0 ) is a neighborhood 
of x0 inK whenever x0 EK, and hence, by Theorem 1.13, the property (i) 
is true. 0 

The following example shows that if K is not closed, then the property 
(iv) of Theorem 1.19 does not necessarily imply the property (i) of that 
theorem. 
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Example 1.20 Let ]{ be the open unit disc in the plane and with the 
point a = (1, 0) added. If x0 E K\ {a}, then ext(K, x 0 ) = {a}, and since 
ext(K,a) = 0, the property (iv) of Theorem 1.19 is true. The set I< is, 
however, not excellent. Consider for instance 

This set is the open disc with radius ~ and center ~a and added the point 
a. Hence this set is not a neighborhood of a in K. By Theorem 1.13, it 
follows that ]{ is not an excellent set. 0 

We shall now exhibit a 3-dimensional example to show that if ]{ is not 
closed, then the property (ii) of Theorem 1.19 does not necessarily imply 
that ]{ is en excellent set. 

Example 1.21 Let ]{ consist of all the points (x, y, z) of the unit cube 
[0, 1 )3 , except that the 'front face' 1 x [0, 1 )2 only contains the points in the 
closed disc with center (1, 0, ~) and radius ~, that is points of the form 
(1, y, z) where 

1 1 . 
y = r cos <p , z = 2 + 2 r sm <p ; 

1 7r 7r 
O<r<-, --<u><-. - -2 2-r-2 

I< is convex, and we note that any point of the form (1,! cos <p,! +!sin <p) 

is an extreme point of ]{ Hence these points are accumulation points of 
ext]{, and therefore, by Corollary 2 of Theorem 1.13, ]{ is not excellent. 
However, we shall show in the next section, as a consequence of a rather 
general result, that I< is 'conic at non-interior points', and therefore, as we 
shall show, satisfies the property (ii) of Theorem 1.19. 0 

The next lemma will be of use in section 4. 

Lemma 1.22 Let ]{ C E be convex and let M C E be an affine manifold. 
If the set ext( KnM) admits an accumulation point x0 E KnN.l, then A(·, x0 ) 

is discontinuous at x0 • 

Proof Let a E ext( I< n M) \ { x0 }. We are through if we can show that 
A(a,x0 ) = 0. Let ,\ E [0, 1 >and assume that a- .\x0 = (1- ,\)x, where 
x E K. Then x =f x0 , and since a, x0 EM it follows that x E KnM. Therefore, 
,\ = 0, and hence A( a, xo) = 0. 0 

Proposition 1.23 The closed unit ball of CQ is an excellent convex set. 

Proof Let ]{ be the closed unit ball of CQ. Hence 

K ={a= (an): liman = 0 and llall $ 1} 
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where 

According to Theorem 1.13, we have to prove that if b = (fln) E K and 
..X E< 0,1 >,then the homothetic image h>.(K, b) of K is a neighborhood of 
b in K. Hence we have to find an E > 0, such that 

K n B(b, e:) c h>.(K, b), (1.31) 

where 

B(b,e:) = {x E C{): llx- bll ::S e:} 

Note that if aEc0 , then aEh>.(K, b) if and only if a= ..Xx+(1-..X)b, where 
x E K. This means, however, that II a- b + ..Xbll ::S ..X. Hence to prove (1.31) 
we have to find an E > 0 such that 

(1.32) 

whenever sup{ ian I} ::S 1 and sup{ I an - fln I} ::S E. At this point we observe 
that if fJ = ±1 and 0 < E ::S ..X, then 

[-1, 1] n [fJ- e:, fJ + e:J c [fJ- ..XfJ- ..x, fJ- ..XfJ +..X]. (1.33) 

We note, furthermore, that if lal ::S 1 and lfJI ::S ~ and Ia- fJI ::S e:::S ~..X, then 

(1.34) 

We are now ready to determine e:: There is an no E N such that lfln I ::S ~ 
whenever n;::: n 0 • Put 

E =min{~, ..X(1 - l.Bnl) : n ::S no and lflnl f. 1} 

We claim that (1.31) is valid with this €. In fact, let sup{ ian I} ::S 1 and 
sup{[an - flnl} ::S €. Choose n EN. If n;::: n0 , then it follows from (1.34) 
that 

and if n ::S no and lflnl = 1, then the same inequality follows from (1.33). 
Assume therefore that n ::S n0 and I fln I f. 1. Then we get, by the definition 
of e:, 
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Hence (1.32) is valid and thus (1.31) is proved. D 

Comment 1.24 It is well-known and easy to prove that if K is the unit 
ball of eo, then ext K = 0. In particular, the set ext K is without accu­
mulation points in K. That this condition is not sufficient to secure that 
the unit ball of a normed space is an excellent set, is shown by the next 
example. 

Example 1.25 The unit ball of 11 is not an excellent set. 

Proof Let K be the unit ball of 11 . Hence 

Choose a = (an) E K with L lanl = 1 and such that an =f 0 whenever 
n EN. By Corollary 2 of Theorem 1.13, we are through if we can prove 
that ext(K,a) is not closed. Let, as usual, 

en= (0, ... ,0,1,0, ... ), 
n 

and put 

Then llxnlh = llalh = 1. Furthermore, let 1-l > 1. Then 

111-lxn + (1- p)alh =I: lail + (21-l-1)lanl = 1 + 2lanl(l-l- 1) > 1. 
#n 

Hence XnEext(K,a). Since Xn~a and since a¢ext(K,a), we have proved 
that ext( K, a) is not closed. 0 

At this point we remark that it follows from Proposition 1.16 and Corollary 
3 of Theorem 1.13 that if E is~ normed space such that the closed unit ball 
of E is an excellent set, then the closed unit ball of any finite dimensional 
subspace of E has to be a polytope. 

We pose the converse of this statement as the following open 

Problem If E is a normed space such that the closed unit ball of any 
finite dimensional subspace of E is a polytope, is it then true that the 
closed unit ball of E is an excellent set? 
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2 Convex sets that are conic at non-interior 
points 

We introduce in the present section convex sets that are conic at non­
interior points, and prove that any closed set of this kind is an excellent 
set. The main tool in proving this is the property stated in the Bourbaki 
exercise mentioned in the introduction. We state this property and, for the 
convenience of the reader, we supply a proof. 

Lemma 2.1 ([Bo, Chap. II §2, Ex. 29]) Let A C E be an affine manifold, 
let x0 E A and assume that C C A is an open (relative to A), punctured, 
convex cone with x 0 as vertex. Furthermore, let V C A be an open (relative 
to A) convex neighborhood of x0 . Iff is any bounded above convex function 
on c n v' then the limit 

lim f(x) 
x-+xo,xecnv 

exists as a real number. Furthermore, if f admits a convex extension to 
{x0 } U (C n V), then this limit is less or equal f(x 0 ). 

Proof By applying a translation, we can and shall assume that x0 = 0. 
Hence A is a linear subspace of E. Define 

a= liminf f(x), /3 = limsup f(x). 
x-+O,xeCnV x-+O,xeCnV 

Thus f3 < oo, since f is bounded above. We have to show that a = {-J. 
Assume that this is not the case. Let f. = !(/3- a) if a> -oo, otherwise let. 
f. = 1. We note that in the first case a + f. = f3 - f.. Hence, by the definition 
of a, for any u EVA(O) there is ayE u n v n c such that 

f(y) < f3- f.. (2.1) 

Claim: Given b > 0 there is an a E C n V such that 

f(>..a)~/3-b, >..E<0,1] (2.2) 

In fact, there exists a convex U E VA(O) such that 

1 
f3 :::; sup{f( x) : x E U n V n C} < f3 + 3o. (2.3) 

Define U0 = !(U n V). Hence U0 c U n V. Thus we can find an a E U0 n C 
such that 
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1 
{3- -6 < f(a) 

3 

Since 2a E U n V n C, we get from (2.3) 

1 
f(2a) < (3 + 36. 

(2.4) 

(2.5) 

Let J.L E [0, 1 >. Then a = (1 + J.L t 1(1 - J.L )a+ (1 + J.L t 1 J.L2a, and where 
( 1 - J.L )a and 2a belong to V n C. Hence 

Applying (2.4) and (2.5) we get 

1 1 
(1 + J.L)(fl- 36)::; !((1- J.L)a) + J.L(fl + 36) 

By a simple computation, we thus obtain 

(3- 6::; !((1- J.L)a), 

thereby proving (2.2). 
We now choose 6 = 2 in the inequality (2.2). Since a E CnV, there 

exists a symmetric and convex U1 EVA(O) such that 

a+ Ut c Cn V. (2.6) 

Let k > 1 be given and define 

(2.7) 

Choose la#yEUnCnV according to (2.1), and let l be the line through 

the two points Jca andy. Hence 

t 
l(t)=ka+(1-t)y; tER. 

In particular 

l(k)=a+(1-k)y. (2.8) 

It follows from (2.6) and (2.7) that l(k)ECnV. Now (2.8) can be writtell 

1 1 1 
ka = (1- k)y + kl(k) 
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Hence we get from (2.2) and (2.1) 

1 1 
< (1- ""i;)f(y) + kf(l(k)) 

1 1 
< (1-k)(/3-t)+kf(l(k)). 

Accordingly, we obtain 

Since l ( k) E Cn V, and k > 1 can be chosen arbitrarily large, this inequality 
contradicts the boundedness from above of f on C n V. This proves the 
first statement in the lemma. As for the second one, we choose an element 
b E C n V. By assumption, the restriction of f to [0, b] is convex, and 
is therefore, as mentioned in the introduction, an upper semi-continuous 
function. Hence 

lim f(x) = limsup f(x):::; f(O). 
x-+O,xeCnV x-+O,xE<O,b] 

D 

Lemma 2.2 Let K be a convex set contained in the affine manifold A. 
Assume that intAK 'f: 0. Let f be a lower semi-continuous convex function 
on K. Then, for any x0 E K, 

limsup f(x) = limsup f(x). 
x-+xo,xEK x-+xo,xEintAK 

(2.9) 

Proof Since the left hand side of (2.9) is greater or equal the right hand 
side, we have to prove the opposite inequality. Let U be an open (relative to 
A) convex neighborhood of x0 , and let aEKnU. Choose bE intAK. Exactly 
the same proof as in [Bo, p. 54) shows that <a, b] C intAK. Since U is open 
and convex, we can find an element cE<a, b]nU. Hence <a, c) C Un iutAK. 
The restriction of f to [a, c) is, as mentioned in the introduction, upper 
semi-continuous, and hence, by assumption, continuous. It follows that 

f(a) = lim f(x):::; sup{f(x): xEUnintAK}. 
x-+a,xE<a,c] 

Hence 

sup{f( a) : a E U nK} :::; sup{f(x) : x E Un intAK}. 

Since the family of open convex neighborhoods of x 0 constitutes a base of 
VA(x0 ), this proves (2.9). 0 
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Comment 2.3 Without the assumption that f is lower semi-continuous, 
the above Lemma 2.2 is not necessarily true. A simple example is given by 
the function on [0, 1] with the value one at the point 1 and zero otherwise. 

Comment 2.4 It is easy to prove that if the convex set K is contained in 
the affine manifold A and intAK =/= 0, then A is in fact the affine manifold 
generated by K. This comment is relevant for the next definition. 

Definition 2.5 Let A be the affine manifold generated by the convex set 
K. Assume that intAK =/= 0, and let x0 EK\intAK. We say that K is conic 
at x0 if there are an open (relative to A) punctured convex cone C C A with 
x0 as vertex and an open (relative to A) convex neighborhood V E VA(:t: 0 ) 

such that 

If K is conic at x0 whenever x0 E K \ intAK, then K is said to be conic at 
every non-interior point. 0 

Proposition 2.6 Assume that the convex set K is conic at every non­
interior point. Iff is a locally bounded above lower semi-continuous convex 
function on I<, then f is continuous. 

Proof We have to prove that f is upper semi-continuous at every point 
Xo E K. If x0 E intAK, this follows from [Bo, Prop. 21, p. 60]. Assume 
therefore that x0 E K \ intAK. Choose C and V according to Definition 2.5. 
Hence 

(2.10) 

By assumption, there is a convex open neighborhood U of x0 such that f is 
bounded above on U n K. Applying Lemma 2.2 and Lemma 2.1 and (2.10) 
we get 

limsup f(x) = limsup f(x) = limsup f(x) 
x-+xo,xEK x-+xo,xEintAK x-+xo,xeUnVniutAK 

= limsup f(x) = lim f(x) :::; f(xo)· 
x-+xo,xeunvnc x-+xo ,xeunvnc 

Corollary 2. 7 If K is a closed convex set, and K is conic at every non­
interior point, then K is an excellent set. 
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Proof This is an immediate consequence of Theorem 1.19 and Proposition 
2.6. 0 

Proposition 2.8 Assume that K is conic at every non-interior point. Let 
PC K be a non-empty open (relative to K) convex subset of K. Then P 
is conic at every non-interior point. 

Proof Let A be the affine manifold generated by K. By a simple argu­
ment, we get 

(2.11) 

This set is, however, non-empty. In fact, choose x0 EP and bE intAK, and 
let U be a convex neighborhood of x 0 , open relative to A and such that 

UnKcP. (2.12) 

As in the proof of Lemma 2.2, we have <x0 , b] C intAK. Since <x0 , b] nU 
is non-empty, we get 

It follows, as remarked in Comment 2.4, that A is the affine manifold gen­
erated by P. Let x0 E P\ intAP, and choose U as above. Applying (2.11) 
we have x0 E P \ intAK. But K is conic at every non-interior point. So we 
can choose C and V as in Definition 2.5. Hence 

V nunC= V nUn intAK = v nun P n intAK = v nun intAP. 

Since vnu is an open neighborhood of Xo, we are through. 0 

Lemma 2.9 Let P C K be a subset such that intK P =f 0. Then the affine 
manifold A generated by K equals the affine manifold M generated by P. 

Proof Clearly M CA. To prove the converse, it suffices to prove K C lvl. 
Choose aE intKP. Hence there is VEVE(O) such that (a+V)nKcP. 

Let x E K. We want to show that x E M, and therefore we can assume 
x f a. There is a ,\0 E <0, 1> satisfying ,\0 ( x - a) E V. Let 

Xo =a+ Ao(x- a)= (1- Ao)a + Aox. 

Then 

Xo E (a + V) n K c P. 
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Since x of a and 0 < Ao < 1, the point x belongs to the line through x0 and 
a. Since this line is contained in M, we get x E M. Therefore J( C Af. 

D 

We referred to the next proposition in the Example 1.21. 

Proposition 2.10 Let J( be a convex set with intAJ{ of 0, and let P be 
a convex subset of I< such that intAP = intAI<. If I< is conic at every 
non-interior point, then so is P. 

Proof Applying Lemma 2.9, we get that A is the affine manifold gener­
ated by P. Let x0 EP \ intAP. By assumption, x0 EI< \ intAI<. Choose C 
and V as in Definition 2.4. Hence 

This shows that P is conic at every non-interior point. 0 

The next proposition will be of use in section 4, in our study of locally 
compact excellent sets. 

Proposition 2.11 If the convex set I< is the union of a sequence {Kn} 
of convex sets I<n such that every I<n is conic at non-interior points and 
satisfies 

(2.13) 

then I< is conic at non-interior points. 

Proof Let A be the affine manifold generated by I<. We first want to 
show 

(2.14) 

Obviously, the relation :::> is true. To prove the opposite inclusion, let 
x E intAI<. Choose n EN such that x E I<n. There exists an open set U in 
A with the property 

(2.15) 

Applying (2.13), it follows that 

Therefore 
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Thus (2.14) is proved. We now observe that it follows from (2.13) and 
Lemma 2.9 that the affine manifold generated by I<n+t equals A. Hence, 
by assumption, intAI<n+t =/: 0. By (2.14), we conclude that intAJ{ =/: 0. 

Let x0 EK\intAK. Applying (2.14) once more, there is nEN such that 

Since Kn+l is conic at x0 , there are an open convex cone C C A, punctured 
at x0 , and an open neighborhood V of x0 , with V cA, such that 

(2.16) 

With U as in (2.15) we claim that 

(2.17) 

lrideed, 

Since the set on the left hand side is open in A, it follows that 

as claimed. Now 

Xo E Kn c intK I<n+l = u n I<. 

Hence unv is an open neighborhood of Xo. By (2.16) and (2.17) we get 

This proves that K i,s conic at x0 • 0 
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3 Polyhedral convex sets 

The main goal of the present section is to prove that a polyhedral convex 
set is conic at every non-interior point. 

We shall first fix some notations. If n is a natural number, we put 
N(n) = {jEN: l:::;j:::;n}, whereas N(O) denotes the empty set. A closed 
half Jpace H (in the given topological vector space E) is a subset of the 
form H = f-1 ([o:, oo > ), where f =f 0 is a continuous linear functional on 
E and o:ER. 

In the finite dimensional case, a polyhedral convex set is defined to be 
the intersection of a finite number of closed half spaces (see for instance 
[Ro]). However, in the infinite dimensional case, such an intersection has 
to be of infinite dimension. Hence a polytope, which by definition is the 
convex hull of finitely many points, would not be a polyhedral convex set 
according to this definition. In order to remedy this, we have chosen the 
following 

Definition 3.1 A convex set K C E is called a polyhedral convex set if 
there are an affine manifold ACE and a finite family of closed half spaces 
{Hi: j EN(n)} with n ~ 0 such that 

K =An n{Hi: j EN(n)} (3.1) 

Note, that by choosing n = 0, we get in particular that every affine manifold 
is a polyhedral set. 

Proposition 3.2 Let K C E be a polytope and let M C E be an affine 
manifold. Then M +K is a polyhedral convex set. 

Proof It is evident that the translate of a polyhedral convex set is a set 
of the same kind. Therefore, we can and shall assume that M is a linear 
subspace of E. 

(i) We first assume M = {0}. Let A be the affine manifold generated by 
K. Since K is a polytope, A is finite dimensional. Choose a E A and let 
L =A- a. Then K- a is a polytope in the finite dimensional linear space 
L. Referring for instance to [Ro], we can find finitely many non-zero linear 
functionals r.p1 , •.• , 'Pn on L and real numbers {31 , ••• , f3n such that 

K- a= n{r.pj1([(3h oo>): j EN(n)}. 

Now, by the Hahn-Banach theorem, there exists a linear continuous exten­
sion fi of 'Pi to E. Put O:j = f3i + fi( a). By an easy argument it follows 
that 

K =An n{Ji-1([o:h oo>): j EN(n)}. 

This proves that K is a polyhedral set. 
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(ii) We now consider the genral case. Consider the quotient map · 

TJ: E ~---+ElM, 

where E I M is equipped with the quotient topology. Hence E I M is a locally 
convex vector space. It is not hard to prove that TJ(K) is also a polytope. 
From (i) we therefore get 

TJ(K) =An n{Hi: j EN(n)} 

where A is an affine manifold and H1 , ..• , Hn are closed half spaces in E I M. 
Hence 

where TJ- 1 (A) is an affine manifold and TJ-1(H1), ..• , TJ- 1(Hn) are closed 
half spaces in E. Since 

we conclude that M + K is a polyhedral set. 0 

Lemma 3.3 Let J =f 0 be a finite set, let { Ai : j E J} be a family of affine 
manifolds in E. If K is convex and 

then there exists a k E J such that K C Ak. 

Proof Define for any x E K 

By assumption, J(x) =f 0. The proof will obviously be finished if we can 
prove that the intersection 

n{J(x): xEK} 

is non-empty. Equip J with the discrete topology. Then J is a compact 
Hausdorff space and every J( x) is a closed subset of J. Hence it is sufficient 
to prove that the family { J( x) : x E K} has the finite intersection property. 
We thus have to prove that if mEN and x1 , ••• , Xm E K, then 

n{J(xi): iEN(m)} =f 0 (3.2) 
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To prove this, we use induction on m. Since J( x) !- 0 for any x E K, the 
relation (3.2) is true when m = 1. Assume therefore that m E N is given 
and that the relation (3.2) is true whenever xi, ... , Xm E K. 

Let Xt, •.. , Xm+I E K be given. By the induction hypothesis, we can and 
shall assume that these elements are all different. Choose i E N( m ), and 
let li be the line between Xi and Xm+l· Thus 

Choose ,\ E<O, 1>. Then 

{ZI(,\), ... , lm(,\)} C K. 

Therefore, by the induction hypothesis, there exists an element 

k(,\) E n{J(li(,\)): iEN(m)} 

Since J is finite, we can find two different ,\, ,\' E<O, 1> such that k(,\) = 
k(,\'). We call this element k. Then li(,\) !- li(N) and 

li(,\),li(,\') E Ak; iEN(m). 

Hence the line li is contained in Ak. In particular 

But this means that 

k E n{J(xi): iEN(m + 1)}. 

The induction step is thus proven. D 

Let K be a polyhedral convex set as given by (3.1). We want to determine 
0 

intAK. If Hi denotes the interior of Hi in E, one might believe that intAK 
will be the set 

0 

However, if we choose n = 1 and A= HI\ Ht, then K =A, whereas the 
set above is empty. Motivated by this example, we introduce the set 

(3.3) 

We then have the following 

Lemma 3.4 If the polyhedral convex set K is given by 
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then 

{ (i) K=Ann{Hi:jEN(n)\I} 

(ii) intAK =An n{.Hi: j EN(n) \I}, 
(3.4) 

where I is given by (3.3). 

Comment 3.5 In the formulas (3.4) and in what follows, we use the con­
vention that the intersection of a family of subsets of E with an empty set 
of indices, is the set E itself. 

Proof The first formula in (3.4) follows immediately from the definition 
of the set I. As for the second formula we have to prove that the left hand 
side of (3.4)(ii) is contained in the right hand side. Assume that this is not 
true. Hence there exist an x0 E int A K and an index j EN ( n) \ I such that 

We can find a continuous linear functional /j and a real number aj such 
that 

(3,5) 

Furthermore 

(3.6) 

and hence 

(3~7) 

Let U C A be an open (relative to A) convex neighborhood of x0 such that 
U C K. We shall show that if we assume that fi is constant on U, then we 
shall get 

(3.8) 

a contradiction since j ¢I. So let a EA. Assume first that a =/= x0 • Let l 
be the line between x0 and a. Then Unl is an open interval containing x0 • 

Choose XI E unz with XI =I= Xo. Any X E l can be written 

x = (1- t)x0 + txi; t E R. 

Since we assume fj constant on U, we get 
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fi(x) = (1- t)fi(xo) + tfi(xt) = fi(xo) = aj, 

where we used (3.7) in the last equation. In particular, fi(a) = fi(x0 ) = aj. 
By (3. 7), we have thus proved the contradiction (3.8). It follows that there 
exists an a E U such that !; (a) =/:. !; ( x0 ). Let again l be the line between 
a and Xo. Since unz is an open intervall around Xo, there exists an € > 0 
such that 

X = (1 - t)xo + ta E u n l c K; ltl < €. (3.9) 

Since fi(x 0 ) =a;, we get 

J;(x) = aj + t(fj(a)- fi(xo)) 

But we know that !;(a) =/:. !;( x0 ). By (3.9) we therefore get that for some 
x E K, !; ( x) <a j. This is the desired contradi tion, since 

D 

We shall now study the case where intAK = 0. For that purpose the 
following lemma is useful. 

Lemma 3.6 Let K be given as in Lemma 3.4. Then intAJ( = 0 if and 
only if the set 

(3.10) 

is non-empty. 

Proof Assume that intAK = 0. It follows from Lemma 3.4 that for any 
0 

x E K there exists j E N ( n) \ I such that x E Hj \ Hi. Hence 

K C U{Hj\ Hj: j EN(n) \I} 

0 

Since Hj \ H j is a hyperplane in E, we get from Lemma 3.3 the existence 
0 

of j E N(n) \I such that K C Hi\ Hi· This means that J =/:.. 0. Assume 
conversely that j E J. Hence 

Since j EN(n) \I, we have 

30 



It follows that the affine manifold generated by K is a proper subset of A. 
By Comment 2.4, we conclude that intAK = 0. 0 

Applying Lemma 3.6 we define the reduction r(A) of A by the formula 

We note that r(A) is an affine manifold with K C r(A) CA. Furthermore, 
we get by a straightforward argument 

K = r(A) n n{Hi: j EN(n) \ (IUJ)}. (3.12) 

Lemma 3. 7 With K as above, the following formula is valid 

(3.13) 

Proof If IUJ = N(n), then (3.12) shows that K = r(A), and so (3.13) 
is valid. We can therefore assume 0 =f N ( n) \ (I U J). Let j E N ( n) and 
suppose 

Then j EIUJ. In fact, if j EN(n) \I, the inclusion Kcr(A) implies 

and hence j E J. Consequently, if j EN(n) \ (IUJ), then 

0 

r(A) C/. Hi\ Hi 

Therefore, if we use Lemma 3.4 with K represented as in (3.12), we get that 
the corresponding I-set is empty. Hence (3.13) follows from the formula 
(3.4)(ii). 0 

Lemma 3.8 With r(A) defined by (3.11) we always have 

intr(A)K =f 0 
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Proof Assume contrarily that intr(A)K = 0. It follows from Lemma 3.7 
that for any x E K there exists j EN ( n) \ ( JU J) such that 

Hence 

Applying Lemma 3.3 we conclude that there exists an element k E N( n) \ 
(IUJ) such that 

Since kEN ( n) \ I, this implies that k E J, a contradiction. 0 

Proposition 3.9 If K is a polyhedral convex set, then K is conic at every 
non-interior point. 

Proof By the formula (3.12), Lemma 3.7 and Lemma 3.8, we can assume, 
with a slight change of notation, that 

(3.14) 

and 

(3.15) 

It follows, as in Comment 2.4, that A has to be the affine manifold generated 
by K. 

Let x0 E K \ int A K. Hence there exists j EN ( n) such that 

Let 

and define 

(3.16) 

Then C(x0 ) is a convex relatively open subset of A. Furthermore, since 
intAK is contained in C(x0 ), we get C(x0 ) -.:J 0. We claim that C(x0 ) 

is a punctured convex cone with x0 as vertex. In fact, since J(x0 ) -.:J 0, 
Xo rt C(xo). Furthermore, let X E C(xo) and let z+ be the open half-line 
through x0 and x with start in x0 • Hence 
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z+(t) = (1-t)xo +tx; t>O. 

We have to show that z+ c C(x0 ). Of course, z+ cA. Therefore, let j E J(x0 ). 

There exist an fi with fi =/= 0 and a real number aj such that 

Hi= fT 1(<aj,oo>) and Hi\ Hi= fT 1 (aj)· 

Let t > 0. Then 

(1- t)fi(x0 ) + tf;(x) = 

ai + t(Ji(x)- ai) > ai 

0 

Hence z+ CHi· This proves the claim. Define 

0 

V(xo) =An n{H;: j EN(n) \ J(xo)} 

Thus V(x0 ) is a convex set, open relative to A, and x0 E V(x0 ). By (3.15) 
and the definitions of C(x0 ) and V(xo) we get 

V(xo) n C(xo) - An n{Hi: j EN(n)} = 
intAI< = V(x0 )nintAI<. 

This proves that I< is conic at x0 • D 

Combining Proposition 3.9 with Corollary 2.7, we get the following 

Corollary 3.10 A closed polyhedral convex set is an excellent convex set. 

D 

In the next section we shall have need of the following extension of Propo­
sition 3.9 

Proposition 3.11 Let I< be a convex set such that 

K = U{Kn: nEN}, 

where { Kn} is a sequence of polyhedral convex sets with the property 

Then K is conic at non-interior points. 

Proof Use Proposition 3.9 and Proposition 2.11. D 
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4 Locally compact excellent convex sets 

We have proved in the preceding section that if the convex set I< is the union 
of a strictly increasing family of polyhedral convex sets, as in Proposition 
3.11, then I< is conic at non-interior points. FUrthermore, it was shown in 
section 2 that any closed convex set of the latter kind is an excellent set. 
The main objective of the present section is to prove that if I< is closed 
and locally compact, then these three properties are indeed equivalent. A 
corollary of this characterization is that every closed locally compact excel­
lent set is finite dimensional. This is an extension of the classical theorem 
that every locally compact topological vector space is finite dimensional, a 
theorem we shall make use of in the proof. Otherwise, our main analytical 
tool will be a theorem of V.L. Klee [Kl] stating that if I< is a closed locally 
compact convex set containing no line, then there is a closed half space H 
such that KnH is compact. 

Recall that ext I< denotes the set of extreme points of I<. 

Lemma 4.1 If I< C E is convex and iff =I 0 is a continuous linear func­
tional on E and a E R, then 

ext[Knj-1 ( <-oo, a])] c (ext K)Uext(Knj-1 ( a)). 

Proof Let c be an extreme point of Knj-1 ( <-oo, a]). Iff( c)= a, then 
cis an extreme point of Knj- 1(a). Assume therefore f(c) <a. If cis not 
an extreme point of I<, then 2c = a + b, where a, bE I< and a =I b. Hence 

f(a) + f(b) = 2f(c) < 2a. ( 4.1) 

We must have min{f(a), f(b)} <a, say f(a) <a. Since cis an extreme point 
of Knj-1 ( < -oo, a]), it follows that f(b) >a. Define ..\0 = (f(b)-a)(f(b)­
f (a) t 1 • Then ..\o > 0 and using ( 4.1) we get f (a)-f (b) = f (a)+ f ( b )-2! (b)) < 
2( a- f(b)). Hence 0 < ..\0 <!. Let a0 = ..\0a + (1-..\0 )b. Then f( ao)=a and 
cis an interior point of [a, a0 ]. Since 

( 4.2) 

we have got the desired contradiction. D 

We now assume that the convex set I< is closed. Let a E I<. We shall follow 
Bourbaki [Bo, Chap. II, §2, Ex. 14] and call 

the asymptotic cone of I<. Then CK is a closed convex cone with zero as 
vertex, and CK is independent of the choice of a. FUrthermore, CK +a is 
the union of all half lines with start in a and contained in K. Let 
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Then Lis a closed linear subspace of E, and it is easy to see that L is the 
union of {0} and of all lines through zero contained inK. Let N C E be a 
linear subspace supplementary to L in E. If we assume 0 E K, then as in 
[Kl] we have 

K=L+NnK, (4.3) 

where NnK contains no line. We now assume that K is locally compact as 
well. Hence Lis a locally compact space, and is therefore finite dimensional. 
By a well-known result L admits a closed supplementary linear subspace 
N such that the projection 

r:E=L+N~---+N:x=u+v~----+v ( 4.4) 

is continuous. If we choose this N in ( 4.3), we get in particular that NnK 
is a closed locally compact convex set containing no line. 

Lemma 4.2 Let L and N be supplementary linear subspaces in E such 
that 

K=L+NnK. (4.5) 

Choose x0 E NnK. Then ANnK(·, x0 ) is equal to the restriction of A(·, xo) 
to the set NnK. 

Proof Let a E N n K, and let as in section 1 

I( a) = {.X E [0, 1] : a - .Xx0 E (1 - .X )K}. 

We are finished if we can prove 

I( a)= {.XE [0, 1] :a- .Xx0 E (1- .X)NnK}. (4.6) 

Of course, the relation :J is valid. Therefore, let .X E /(a). If .X = 1, then 
a= x0 and the right hand side of (4.6) equals [0, 1). We shall therefore 
assume .X f. 1. There is x E K such that a = .Xx0 + (1- .X)x. By (4.5), 
X= u + v, where uEL and veNnK. Hence 

(1- .X)u =a- .Xx0 - (1- .X)v E LnN = {0} 

Therefore, u = 0 and consequently x = v E NnK. This proves the inclusion 
C in (4.6). 0 

A continuous affine function f onE is by definition of the form f =a+ g, 

where a E R and where g is a continous linear functional on E. 
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Theorem 4.3 Let K C E be a closed convex set. Consider the following 
five properties P(1 ), ... ,P(5). 

P(1) There is a continuous affine function f on E such that 

is a polyhedral convex set whenever n EN. 

P(2) There are a finite dimensional affine manifold Manda sequence of 
polytopes { Pn} such that 

and 

P(3) There is a sequence of polyhedral convex sets {Kn} such that 

and 

P( 4) I< is conic at non-interior points. 

P ( 5) I< is an excellent set. 

Then P(1) =>P(3), P(2) =>P(3), P(3) =>P( 4) and P( 4) =>P(5). Furthermore, 
if I< in addition is locally compact, then all five properties are equivalent. 

Proof P(1) =>P(3). Putting Kn = I<nf-1( <-oo, n]), we get 

I<n C I<n/-1 ( <-oo, n + 1>) C I<n+l, 

and since the middle term is an open subset of K, P(3) follows. 

P(2) =>P(3). 

P(3) =>P( 4). 

P( 4) =>P(5). 

Use Proposition 3.2 

Use Proposition 3.11. 

Use Corollary 2.7. 

It remains to prove, that if I< is locally compact, then P(5) implies both 
P(1) and P(2). Assume therefore that K is a closed locally compact excel­
lent set. Hence, by Theorem 1.19, the function A(·, x0 ) is continuous for all 
xoEK. Let us first assume OEK. It then follows from (4.3) that 
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K- L+NnK (4.7) 

where we have remarked that L is finite dimensional and that NnK is a 
closed locally compact convex set containg no line. It follows from [Kl, p. 
236] that there is a continuous linear functional g on N such that if we 
define 

( 4.8) 

then Pn is compact whenever n E N. We claim that Pn is a convex poly­
tope. In fact, applying Lemma 4.2, we get that ANnK(·,xo) is continuous 
whenever x0 ENnK. Now, by Lemma 4.1, 

ext Pn C [Pnnext(KnN)] U ext(KnNng-1(n)). (4.9) 

Since Pn and KnNng-1(n) are compact subsets of KnN, it follows from 
Lemma 1.22 that both of the sets on the righthand side of ( 4.9) are finite. 
Hence Pn is a polytope. Let T be the continuous projection as given in 
(4.4). Let f = gor. Then f is a continuous linear functional on E. Without 
difficulty we get 

(4.10) 

It follows from Proposition 3.2 that the left hand side of ( 4.10) is a poly­
hedral convex set. This proves P(1 ). Furthermore, as in the proof of 
P(1) =*(P(3), we get 

(4.11) 

Finally, using (4.10), it follows that 

K = U{L+Pn: nEN}. 

This proves P(2). In the general case, choose a0 E K and let K' = K- a0 • 

Thus 0 E K', and K' is a closed locally compact excellent convex set. By 
the first part of the proof there are a finite dimensional linear space L, a 
continuous linear functional fo on E and a sequence { Pn} of polytopes such 
that 

L + Pn = (K- a0)nj01 ( <-oo, n]); nEN. 

Hence 

L + ao + Pn = Kn (/01( <-oo, n]) + a0 ) (4.12) 

Let 
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f = fo - fo( ao) , M = L + ao. 

Then f is an affine continuous function, and M is a finite dimensional affine 
manifold. Furthermore, from (4.12) we get without difficulty 

M + Pn = Kn/-1 ( <-oo, n]); nEN. 

As in the preceding part of the proof, it follows that P(1) and P(2) are 
satisfied. 0 

Corollary 4.4 If I< is a closed, locally compact excellent convex set, then 
I< is finite dimensional. 

Proof By P(2) and Lemma 2.9, the affine manifold generated by I< is 
equal to the affine manifold generated by M + P2 • Since M is finite dimen­
sional and P2 is a polytope, this manifold is finite dimensional. 0 

Proposition 4.5 If I< is a closed locally compact excellent convex set, 
then any convex function on I< is upper semi-continuous. 

Proof We know, by Corollary 4.4, that I< C E, where Eisa finite dimen­
sionallinear space. Hence we can and shall equip E with a norm 11·11 such 
that the closed ball Br = { x : llxll ~ 1·} is a polytope whenever r > 0. We 
now make use of the property P(3) of Theorem 4.3. Hence 

I<= U{I<n: nEN}, (4.13) 

where every I<n is a polyhedral convex set such that 

(4.14) 

Let f be a convex function on I<. We have to show that f is locally upper 
bounded on I<. Assume first that K itself is a polyhedral convex set. Let. 
r > 0 be given. Then I<nBr is a bounded polyhedral convex set. It follows, 
for instance by [Ro, pp. 170-171], that I< n Br itself is a polytope. Let 
e1 , ... , em be the extreme points of this set. Hence any x in I<nB,. can be 
written as a convex combination x = 2: >.;e;. Therefore 

This shows that f is bounded above on I<nBr. In particular, if x0 E I<, and 
r = llxoll + 1, then I<nBr is a neighborhood of x0 on which f is bounded 
above. We now consider the general case. Let x0 EI<. According to (4.13), 
there is ann so that x0 E I<n. Chooser= llxoll + 1. By the first part of the 
proof, the function f is bounded above on BrnKn+l, and therefore on the 
set BrnintKI<n+l· But this set is, by (4.14), a neighborhood of x 0 relative 
to I<. 0 
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5 Openness of affine maps between excellent 
convex sets 

We study in the present section the problem when a ·continuous affine sur­
jection cp : K 1-+ Q between excellent convex sets ]{ and Q will be open. 
As is well known, the map cp is open if and only if the correspondence 
cp-1 : Q 1-+ 2K is lower semi-continuous. Now a theorem in Kuratowski 
[Ku, vol. 2) asserts that if]{ and Q are contained in metric spaces, then 
a correspondence cf> : Q 1-+ 2K is lower semi-continuous if and only if the 
function 

h: KxQ ~--+ [O,oo>: h(x,q) = dist(x,cf>(q)) 

is upper semi-continuous. We prove that if ]{ is contained in a hormed 
space and the correspondence cf> is convex, then h is a convex function on 
]{ X Q. Since we have proved in section 1 that ]{ X Q is excellent if ]{ and 
Q are excellent, the function h is upper semi-continuous if and only if it 
is locally bounded above. We thus obtain a general criterion for cf> to be 
lower semi-continuous. As corollaries we get that if ]( is bounded, then any 
t.p : K 1-+ Q is open, and that the same conclusion is valid if ]( and Q are 
locally compact closed excellent sets. A third consequence of this criterion 
is that if P is any convex set, and cp : ]( 1-+ P is a closed continuous affine 
surjection, then cp is open. Finally, we prove that any excellent convex set 
]( contained in a normed space is a stable convex [Pa], which means that 
the middle-point map (a, b) 1-+ ~(a + b) is open. 

Throughout this section we assume that the convex set ]( is contained 
in a normed linear space (E, 11·11). Furthermore, we shall assume that Q is 
a convex set contained in a metrizable locally convex vector space F. 

We recall that a correspondence 

where X and Y are topological spaces, 1s called lower semi-continuous 
provided the set 

{yEY: cf>(y)nU =f 0} 

is open in Y whenever U is open in X. 
The next lemma can be found in [Ku, v. 2, p. 63, Th. 3). Actually, it is 

assumed in this theorem that the metric spaces are compact, but the proof 
works without this assumption. 

Lemma 5.1 Let (X,p) and (Y,a) be metric spaces, let 

cf>: y I-+ 2x 
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be a correspondence (by definition we require that every </>(y) =f 0). Then 
</> is lower semi-continuous if and only if the function 

6: XxY H [O,oo>: 6(x,y) = dist(x,</>(y)) (5.1) 

is upper semi-continuous. D 

If X and Y are convex sets, then a correspondence 

is said to be convex provided 

(5.2) 

whenever Yt, y2 E Y and At, A2 ~ 0 with At + A2 = 1. 

Lemma 5.2 Let 

be a convex correspondence. Then the function 

6: KxQ H [O,oo>: 6(x,q) = dist(x,</>(q)) (5.3) 

ts convex. 

Proof Let j = 1,2 and let aj E K, qi E Q, Xj E <f>(qi) and Aj ~ 0 with 
At + A2 = 1. By convexity of</>, 

Hence 

From this inequality we immediately get 

Lemma 5.3 Let (X, p), (Y, a) and 6 be as in Lemma 5.1. Then the func­
tion 6 is locally bounded above if and only if whenever {Yn} is a convergent 
sequence on Y there is a bounded sequence { Xn} on X such that Xn E </>( Yn) 
for any nEN. 
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Proof We first note that it follows by a straightforward argument that 8 
is locally bounded above if and only if 

sup b(xn, Yn) < oo, 
neN 

whenever {(xn,Yn)} is a convergent sequence on XxY. 

(5.4) 

Assume that 8 is locally bounded above. Let Yn -+ y0 on Y. Choose 
Xo E </>(yo). There are a neighborhood V of (x 0 , y0 ) and an R < oo such 
that 8(x,y)<R whenever (x,y)EV. Furthermore, there is an n0 EN such 
that if n 2:: no, then (xo, Yn) E V. Hence 8(xo, Yn) < R whenever n 2:: no. 
This implies, by the definition of 8, that there is Xn E <f>(Yn) such that 
p(x0 , xn) < R whenever n 2:: n0 • It follows that if we choose an arbitrary 
Xn E <f>(Yn) when n <no, then the sequence { Xn} is bounded and Xn E </>( Yn) 
for any nEN. 

To prove the converse implication, let ( Xn, Yn)-+ ( x0 , y0 ) on X X Y. Since 
Yn -+ y0 , there is, by assumption, a bounded sequence {x~} on X with 
x~ E <f>(Yn) whenever n EN. Hence . 

Since Xn-+ x0 , and the sequence {x~} is bounded, it follows that (5.4) is 
valid. 0 

Theorem 5.4 Assume that K and Q are excellent convex sets, and that 

is a convex correspondence. Then </> is lower semi-continuous if and only if 
the following condition ( #) is satisfied 

Whenever { qn} is a convergent sequence on Q, there is 
a bounded sequence { Xn} on K such that Xn E </>( qn) for ( #) 
any nEN. 

Proof The correspondence </>is, by Lemma 5.1, lower semi-continuous if 
and only if the function 8 is upper semi-continuous. Applying Lemma 5.2, 
we get that 8 is a convex function on KxQ. Since, by Proposition 1.16, the 
product K X Q is excellent, it follows that 8 is upper semi-continuous if and 
only if 8 is locally bounded above. However, by Lemma 5.3, this occu:rs if 
and only if the condition ( #) is satisfied. 0 
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Comment It is known that in the situation of Lemma 5.1, the corre­
spondence </> is lower semi-continuous if and only if whenever Yn-+ Yo on Y 
and xo E </>(yo), there is Xn E </>(Yn) such that Xn-+ Xo. The condition ( #) of 
Theorem 5.4 is thus a considerable weakening of this general criterion. 

Corollary 5.5 Let <p : I< 1-+ Q be a continuous affine surjection. Then <p 
is open if and only if the following condition (*) is fulfilled. 

Whenever { qn} is a convergent sequence on Q, there is 
a bounded sequence {xn} on K such that cp(xn) = qn for (*) 
any nEN. 

Proof By general topology, the map <p is open if and only if the corre­
spondence 

is lower semi-continuous. Since it is immediate that this correspondence is 
convex, the conclusion follows. o 

Corollary 5.6 If K is a bounded excellent convex set, then any continuous 
affine surjection 

<p:I<~--+Q 

1s open. 

Proof The condition (*) is in this case fulfilled. D 

Corollary 5. 7 If K and Q are closed locally compact excellent sets, then 
any continuous affine surjection 

cp:K~--+Q 

1s open. 

Proof As was noted in the proof of the theorem, the product K x Q is 
an excellent convex set. Since this set is also closed and locally compact, 
it follows from Proposition 4.5 that the function 6 in Lemma 5.2 is locally 
bounded above. This means, by Lemma 5.3, that the condition (*) is 
fulfilled. 0 

Comment 5.8 Since any normed linear space is an excellent convex set, 
the Corollary 5.5 above gives in particular a necessary and sufficient condi­
tion for a continuous and linear surjection between two normed spaces to 
be open. Let us look at the following example: 

Define 
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T: C [0, 1] f-+ C [0, 1]: Tf(s) = ~o· f(t)dt; sE [0, 1]. 

Then T is linear, continuous and injective. Hence it follows, by geneml 
functional analysis, that Tis not open onto its image. Hence the condition 
(*) cannot be true. It is easy to show this directly. In fact, define for 
any n EN the continuous function fn on [0, 1] by requiring that fn is zero 
on [0, 1 - ~], and that fn is linear on [1 - ~~ 1] with fn(1) = n. Then 
llfn lloo = n, whereas liT fn lloo = 2~. Hence the condition (*) is violated. 

0 

Proposition 5.9 Let P be any non-empty convex set in a locally convex 
Hausdorff topological vector space, let K be an excellent convex set, and 
assume that the continuous affine surjection 

is closed (that is cp(A) is closed in P whenever A is closed in K). Then cp 
is open, and hence P itself is an excellent convex set. 

Proof It follows by general topology that cp is open if and only if the 
correspondence 

¢>: K f-+ 2K: ¢>(x) = cp-1(cp(x)); xEK 

is lower semi-continuous. It is easy to sec that ¢> is convex. FUrthermore, 
since x E ¢>(x) whenever x E K, it follows immediately that the condition 
(#)of Theorem 5.4 is fulfilled. Finally, applying Proposition 1.12, we get 
that Pis an excellent convex set. 0 

Proposition 5.10 Any excellent convex set K contained in a normed vec­
tor space is a stable convex set. 

Proof We have to prove that the middle point map 

m : K X K f-+ K : (a, b) f-+ a ; b 

is open. Since m is a continuous affine surjection, and I<xi< is excellent, it 
suffices to show that the condition(*) of Corollary 5.5 is satisfied. But this 
is easy. In fact, let Xn-+Xo on K. Hence (xn,xn)-+ (x0 ,x0 ), and therefore 
the sequence { ( Xn, Xn)} is bounded. Since m( Xn, Xn) = Xn, we are through. 

0 
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