ISBN 82-553-0755-9 Pure Mathematics No.19 November 1991

On the spectral sequence for the equivariant cohomology of a circle action.

by Tor Skjelbred

PREPRINT SERIES – Matematisk institutt, Universitetet i Oslo

When a circle group S^1 is acting continuously on a paracompact topological space X, an important invariant of the group action is the equivariant cohomology ring $H_{S^1}^*(X;k)$ where k is a field of arbitrary characteristic. This cohomology ring is the cohomology of the space X_{S^1} which is the total space of the Borel fibering ([1,3])

$$X \to X_{S^1} \to B_{S^1}.$$

The spectral sequence E_r , $1 \leq r \leq \infty$, of this fibering is such that E_{∞} is the sum of subquotients

$$F^q/F^{q-1}\simeq E_{\infty}^{\star q}$$
, $q\geq 0$,

where $F^{q-1} \subset F^q \subset H^{\star}_{S^1}(X;k)$ is a filtration of the module $H^{\star}_{S^1}(X;k)$ over $k[t] = H^{\star}(B_{S^1};k)$ where t is a generator of $H^2(B_{S^1};k)$.

We now state the result of this paper. We assume that

$$dim_k H^q(X;k) < \infty$$
 for $q \ge 0$.

Theorem.

As graded modules over the polynomial ring k[t] the cohomology module $H_{S^1}^{\star}(X;k)$ is isomorphic to the module E_{∞} of the spectral sequence.

When $Y \subseteq X$ is a closed invariant subspace, the corresponding statement on $H_{S^1}^{\star}(X,Y;k)$ is equally valid.

The case of $H_{S^1}^{\star}(X,Y;k)$ is similar to the case of $H_{S^1}^{\star}(X;k)$ and we focus on the latter.

The localization theorem for equivariant cohomology will not be used in this paper. Hence the field k may be of any characeristic.

We will define a mapping of sets

$$E: H^{\star}_{S^1}(X;k) \to E_{\infty}$$

which is not a module homomorphism. We define E(0) = 0 and if

$$x \in F^q, x \notin F^{q-1}, q \ge 0,$$

then E(x) is the image of x by the module homomorphism

$$F^q \to F^q / F^{q-1} \xrightarrow{\simeq} E_{\sim}^{\star q}$$

associated to the spectral sequence. Each E_{∞}^{pq} lies in the image of E and $E(x) \neq 0$ for $x \neq 0$, but E is not injective. The mapping E has the following four properties where x_j are homogeneous elements of $H_{S1}^{\star}(X;k)$.

(1) If
$$E(x_1)E(x_2) \neq 0$$
, then $E(x_1x_2) = E(x_1)E(x_2)$

- (2) If $t^{a}E(x_{1}) \neq 0$, then $E(t^{a}x_{1}) = t^{a}E(x_{1}), a \geq 1$.
- (3) If $E(x_1) \in E_{\infty}^{\star q}$ with $q \ge 0$, then $E(t^a x_1) \in E_{\infty}^{\star s}$ with $s \le q$ for $a \ge 1$.

(4) If $x_1 \neq 0$ and $t^a E(x_1) = 0$ and $E(x_1) \in E_{\infty}^{\star q}, q \ge 0$, then $E(t^a x_1) \in E_{\infty}^{\star s}$ with s < q.

We shall use the following lemma of T.Chang and the author.

Lemma. ([2])

The k[t]-module $E_r^{\star q}, 2 \leq r \leq \infty$, is generated as a module by the linear subspace E_r^{oq} .

We first prove a key lemma.

Lemma.

Let $x \in E_{\infty}^{pq}$ be such that $t^a x = 0$ for some $a \ge 1$. Then there is an $u \in H_{S^1}^{p+q}(X;k)$ with E(u) = x and $t^a u = 0$.

Proof.

If q = 0 so that $x \in E_{\infty}^{po} \subset F^{o} \subseteq H_{S^{1}}^{*}(X;k)$, this is evident. Thus we may assume that q > 0. Choose $v \in H_{S^{1}}^{p+q}(X;k)$ such that E(v) = x. As $t^{a}E(v) = t^{a}x = 0$, whereas $t^{a}v \neq 0$ in general, we have $t^{a}v \in E_{\infty}^{*q_{1}}$ for some $q_{1} < q$, by property (4). As $E^{*q_{1}}$ is generated over k[t] by $E_{\infty}^{oq_{1}}$ there is some $v \in H^{q_{1}}(X;k)$ with $E(v_{1}) \in E^{oq_{1}}$.

As $E_{\infty}^{\star q_1}$ is generated over k[t] by $E_{\infty}^{oq_1}$, there is some $v_1 \in H_{S^1}^{q_1}(X;k)$ with $E(v_1) \in E_{\infty}^{oq_1}$ and $t^{a+k_1}E(v_1) = E(t^av) \neq 0$, (in general), where $k_1 > 0$.

It is convenient to draw a picture of E_{∞} ,

As $E(t^{a}v) - E(t^{a+k_{1}}v_{1}) = 0$, it follows that $E(t^{a}v - t^{a+k_{1}}v_{1}) \in E_{\infty}^{\star q_{2}}$ with $q_{2} < q_{1}$. Thus there is some $v_{2} \in H_{S^{1}}^{q_{2}}(X;k)$ with $E(v_{2}) \in E_{\infty}^{oq_{2}}$ and, with $k_{2} > k_{1}, t^{a+k_{2}}E(v_{2}) = E(t^{a}v - t^{a+k_{1}}v_{1})$. We then have

$$E(t^{a}v - t^{a+k_{1}}v_{1} - t^{a+k_{2}}v_{2}) \in E_{\infty}^{\star q_{3}}$$

with $q_3 < q_2 < q_1 < q$.

We go on in this manner until we get $q_j \leq 0$. We then get

$$E(t^{a}v - (t^{a+k_{1}}v_{1} + t^{a+k_{2}}v_{2} + \dots + t^{a+k_{j}}v_{j})) = 0,$$

where $0 < k_1 < k_2 \cdots < k_j$, and hence,

$$t^{a}v = t^{a+k_{1}}v_{1} + t^{a+k_{2}}v_{2} + \dots + t^{a+k_{j}}v_{j}.$$

We now define $u \in H_{S^1}^{p+q}(X;k)$ by the equation

$$v = t^{k_1}v_1 + t^{k_2}v_2 + \dots + t^{k_j}v_j + u.$$

We then have $t^a u = 0$ and as $v_1, v_2, \dots v_j \in F^{q_1} \subseteq F^{q-1}$ and $v \notin F^{q-1}$, we obtain x = E(v) = E(u) where $t^a u = 0$.

We now prove the theorem together with the following lemma.

Lemma.

For each $q \ge 0$ the exact sequence

$$0 \to F^{q-1} \hookrightarrow F^q \to E_{\infty}^{\star q} \to 0$$

is a split exact sequence of graded k[t] modules.

Proof.

Choose elements

$$\alpha_1, ..., \alpha_a, \beta_1, ..., \beta_b \in E_{\infty}^{oq}$$

such that the cyclic k[t]-modules generated by α_j are torsion modules of dimension $d_j \geq 1$ over k, and the submodules generated by the β_j are free modules, and such that $E_{\infty}^{\star q}$ is the direct sum of those a + b submodules.

Let $\alpha'_j \in H^q_{S^1}(X;k)$ be such that $t^{d_j}\alpha_j = 0$ and $E(\alpha'_j) = \alpha_j$, and let $\beta'_j \in H^q_{S^1}(X;k)$ be such that $E(\beta'_j) = \beta_j$. Then the a + b cyclic submodules of $H^*_{S^1}(X;k)$ generated by the α'_j and the β'_j form a direct sum in $F^q \subseteq H^*_{S^1}(X;k)$, and this sum maps isomorphically onto E^{*q}_{∞} under the homomorphism $F^q \to E^{*q}_{\infty}$.

The proof of the theorem follows by using the split sequences of this lemma for all $q \ge 0$.

REFERENCES

- 1. A.Borel et al., Seminar on Transforamtion Groups. Ann. of Math.Studies, No 46, Princeton U.Press, Princeton 1960.
- 2. T.Chang and T.Skjelbred, Group actions on Poincaré duality spaces. Bull.Amer.Math.Soc. 78 (1972) 1024-6.
- 3. W.-Y. Hsiang, Cohomology Theory of Topological Transformation Groups. Ergebnisse der Mathematik, Band 85, Springer-Verlag 1975