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When a circle group 8 1 is acting continuously on a paracompact topological space X, 
an important invariant of the group action is the equivariant cohomology ring H~1 (X; k) 
where k is a field of arbitrary characteristic. This cohomology ring is the cohomology of 
the space Xs1 which is the total space of the Borel fibering ([1,3]) 

The spectral sequence En 1 ~ r ~ oo, of this fibering is such that Eoo is the sum of 
subquotients 

Fqjpq-1 ~ ~ ,q ~ 0, 

where pq-1 C pq C H;1 (X; k) is a filtration of the module H~1 (X; k) over k[t] -
H*(Bs1; k) where tis a generator of H 2(Bs1; k). 

We now state the result of this paper. We assume that 

Theorem. 

As graded modules over the polynomial ring k[t] the cohomology module H~1 (X; k) is 
isomorphic to the module Eoo of the spectral sequence. 

When Y ~X is a closed invariant subspace, the corresponding statement on H~1 (X, Y; k) 
is equally valid. 

The case of H~1 (X, Y; k) is similar to the case of H~1 (X; k) and we focus on the latter. 

The localization theorem for equivariant cohomology will not be used in this paper. Hence 
the field k may be of any characeristic. 

We will define a mapping of sets 

which is not a module homomorphism. We define E(O) = 0 and if 

X E pq X d pq-1 q > 0 
' 5I= ' - ' 

then E(x) is the image of x by the module homomorphism 

associated to the spectral sequence. Each Ef,2 lies in the image of E and E(x) =/= 0 for 
x =f 0, but E is not injective. The mapping E has the following four properties where x; 
are homogeneous elements of H~1 (X; k). 
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(2) If ta E(x1) =/= 0, then E(tax1) = ta E(x1), a~ 1. 
(3) If E(x1) E E:,g with q ~ 0, then E(tax1) E E::, with s :5 q for a ~ 1. 
( 4) If x1 =/= 0 and ta E(x1) = 0 and E(x1) E E~, q ~ 0, then E( tax1) E E::, with s < q. 

We shall use the following lemma of T.Chang and the author. 

Lemma. ( [2]) 

The k[t]-module E:q, 2 :5 r :5 oo, is generated as a module by the linear subspace E~q· 

We first prove a key lemma. 

Lemma. 

Let x E Egg be such that tax= 0 for some a~ 1. Then there is an u E H~iq(X; k) with 
E(u) = x and tau= 0. 

Proof. 
If q = 0 so that x E Egg C po ~ Hs1 (X; k), this is evident. Thus we may assume that 
q > 0. Choose v E H~q(X; k) such that E(v) = x. As ta E(v) =tax= 0, whereas tav =/= 0 
in general, we have tav E E*cJ1 for some q1 < q, by property (4). 
As E*c:J1 is generated over k[t] by E~t, there is some v1 E HZHX; k) with E(v1) E E~1 

and ta+k1 E(vl) = E(tav) =/= 0, (in general),where k1 > 0. 

It is convenient to draw a picture of E00 , 

q 
(p,q) (p+ 2a, q) 

~. (2a-2k1 ,ql) 

2a ~ 
p+q+2a 

As E(tav) - E(ta+k1 vl) = 0, it follows that E(tav - ta+k1 v1) E E~2 with q2 < q1. 
Thus there is some v2 E HZHX;k) with E(v2) E E~2 and, with k2 > k1,ta+k2 E(v2) = 
E(tav- ta+ktvl)· We then have 
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We go on in this manner until we get Q; ~ 0. We then get 

where 0 < k1 < k2 · ·· < k;, and hence, 

We now define u E H~tq(X; k) by the equation 

We then have tau = 0 and as v1, v2, · · ·v; E Fq1 ~ Fq-1 and v fj. Fq-1, we obtain 
x = E(v) = E(u) where tau= 0. 

We now prove the theorem together with the following lemma. 

Lemma. 

For each q 2:: 0 the exact sequence 

0 -+ Fq-1 '--+ Fq -+ ~q -+ 0 
00 

is a split exact sequence of graded k[t] modules. 

Proof. 
Choose elements 

a~, .... , aa, {31, ... , (3b E E~ 

such that the cyclic k[t]-modules generated by a; are torsion modules of dimension d; 2:: 1 
over k, and the submodules generated by the (3; are free modules, and such that E~ is 
the direct sum of those a + b submodules. 

Let aj E H~1 (X; k) be such that td;a; = 0 and E(aj) =a;, and let f3j E H~1 (X; k) be 
such that E((3j) = {3j. Then the a+ b cyclic submodules of H81 (X; k) generated by the aj 
and the (3j form a direct sum in Fq ~ H81 (X; k), and this sum maps isomorphically onto 
E~ under the homomorphism Fq -+ E~. 

The proof of the theorem follows by using the split sequences of this lemma for all q 2:: 0. 
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