The Crossed Product of a UHF algebra by a Shift

by

Ola Bratteli,¹⁾ Akitaka Kishimoto,²⁾ Mikael Rørdam,³⁾ Erling Størmer¹⁾

Abstract

We prove that the crossed product of the CAR algebra $M_{2^{\infty}}$ by the shift is an inductive limit of homogeneous algebras over the circle with fibres full matrix algebras. As a consequence the crossed product has real rank zero, and $\mathcal{O}_2 \cong \mathcal{O}_2 \otimes M_{2^{\infty}}$ where \mathcal{O}_2 is the Cuntz algebra of order 2.

1 Introduction

Let $M_{2^{\infty}}$ be the CAR algebra, i.e. the UHF algebra of Glimm type 2^{∞} , [BR2], [Gli]. Then $M_{2^{\infty}} = \bigotimes_{-\infty}^{\infty} M_2$. It is well-known that if β is an automorphism of $M_{2^{\infty}}$ of product type, then the crossed product $M_{2^{\infty}} \times_{\beta} \mathbf{Z}$ is an inductive limit of algebras of the form $M_{2^n} \otimes C(\mathbf{T})$, where \mathbf{T} is the circle, [Bra2, Theorem 2.1]. In this paper we will prove a similar result in the much more nontrivial situation that α is an automorphism of $M_{2^{\infty}}$ with strong ergodicity properties. Let α be the (Bernoulli) shift of $M_{2^{\infty}}$ obtained by translating each tensor factor by one to the right [BR1, Example 4.3.26]. The crossed product $\mathcal{B} = M_{2^{\infty}} \times_{\alpha} \mathbf{Z}$ is then a simple unital C^* -algebra, [Kis].

The algebra $\mathcal B$ has a canonical trace state obtained by extending the unique trace state τ on $M_{2\infty}$ to $\mathcal B$ by

$$\tau\Big(\sum_{n}a_{n}u^{n}\Big)=\tau(a_{0})$$

where $a_n \in M_{2^{\infty}}$ and u is the canonical unitary in \mathcal{B} implementing α . This is the only trace state on \mathcal{B} by the following reasoning: By [Bed] it suffices to show that the extension of the shift to the weak closure of $M_{2^{\infty}}$ in the cyclic trace representation $(\pi_{\tau}, \mathcal{H}_{\tau}, \Omega_{\tau})$ is outer. But

$$\lim_{n \to \infty} \tau(a\alpha^n(b)) = \tau(a)\tau(b)$$

¹⁾ Department of Mathematics, University of Oslo, P.O.Box 1053 Blindern, N-0316 Oslo 3, Norway

²⁾ Department of Mathematics, Hokkaido University, Sapporo, 060 Japan

³⁾ Department of Mathematics and Computer Science, Odense University, DK-5230 Odense M, Denmark

for all $a, b \in M_{2\infty}$ and hence the projection E_{ω} onto the $u_{\tau}(\alpha)$ -invariant vectors in \mathcal{H}_{τ} is one-dimensional, where $u_{\tau}(\alpha)$ is the canonical unitary operator implementing α in the trace representation, [BR1, Theorem 4.3.22]. It follows that the extension of α to $\pi_{\tau}(\mathcal{A})''$ is ergodic, [BR1, Theorem 4.3.20], and thus this extension is outer.

We conclude that \mathcal{B} has a unique trace state.

The main result of this paper is

Theorem 1.1 There is an increasing sequence \mathcal{B}_n of C^* -subalgebras of \mathcal{B} such that $\cup_n \mathcal{B}_n$ is dense in \mathcal{B}_n , and each \mathcal{B}_n has the form

$$\mathcal{B}_n \cong \bigoplus_{k=1}^{m_n} M_{[n,k]} \otimes C(\mathbf{T})$$

where $[n, k] \in \mathbb{N}$, and m_n is finite. In particular \mathcal{B} has real rank zero.

Recall from [BP] that \mathcal{B} is said to have real rank zero if for any $x=x^*\in\mathcal{B}$ and any $\varepsilon>0$ there exists a $y=y^*\in\mathcal{B}$ such that y has finite spectrum and $\|x-y\|<\varepsilon$. As soon as we have established that \mathcal{B} is an inductive limit of finite direct sum of circle algebras, it follows from the uniqueness of the trace state that the projections in \mathcal{B} trivially separate the trace states, and hence \mathcal{B} has real rank zero by [BBEK, Theorem 1.3] or [BDR, Theorem 2]. Thus the last statement in Theorem 1.1 is a consequence of the first. We will prove the first statement in Section 5.

As corollaries of Proposition 4.1, established in the course of the proof, we also deduce

Corollary 1.2: $\mathcal{B} \cong \mathcal{B} \otimes M_{2\infty}$

Corollary 1.3: $\mathcal{O}_2 \cong \mathcal{O}_2 \otimes M_{2\infty}$, where \mathcal{O}_2 is the Cuntz algebra of order 2, [Cun].

Remark 1.4: Once Theorem 1.1 is established, one may use Elliott's classification in [Ell], [Su] to say more about the increasing sequence \mathcal{B}_n . One may for example take

$$\mathcal{B}_n \cong M_{4^n} \otimes C(\mathbf{T})$$

and the embedding $\mathcal{B}_n \hookrightarrow \mathcal{B}_{n+1}$ to be 2 copies of the twice around embedding, [Bla2]. This is seen as follows:

We first compute the K-theory of \mathcal{B} . By the Pimsner-Voiculescu exact 6-term sequence, the K-groups of \mathcal{B} are given by

$$K_0(\mathcal{B}) \cong \mathbf{Z}\left[\frac{1}{2}\right] \cong K_1(\mathcal{B}),$$

[Bla 1, 10.2.1]. Representatives in the K_0 -and K_1 -classes corresponding to a dyadic rational can be described explicitly as follows:

If p is a projection in the CAR algebra \mathcal{A} with trace $\tau(p) \in \mathbf{Z}\left[\frac{1}{2}\right] \cap [0,1]$, then p is contained in the K_0 class $\tau(p)$ in $K_0(\mathcal{B})$. Since 1-p and $1-upu^*$ are equivalent in the CAR algebra, there exists a partial isometry $v \in \mathcal{A}$ which implements this equivalence. Now up + v is an element in the K_1 -class $\tau(p)$. For dyadic rationals outside [0,1] one may construct representatives in the K-classes by using matrix algebras over \mathcal{A} or by considering unitaries of the form $u^n p + v_n$, where $n \in \mathbf{Z}$.

Next note that $K_0(\mathcal{B})$ as an ordered group with order unit is the dyadic rationals with positive cone equal to the non-negative dyadic numbers and order unit equal to 1. This is because the positive cone in \mathcal{A} is contained in the positive cone in \mathcal{B} . Assume that x belongs to the positive cone in $K_0(\mathcal{B})$, and that $x \neq 0$. As \mathcal{B} is stably finite at most one of the elements x and -x will belong to the positive cone in $K_0(\mathcal{B})$, [Bla1]. We know also (from $K_1(\mathcal{A}) = 0$ and Pimsner-Voiculescu's exact sequence) that at least one of the elements x and -x belongs to the image of the positive cone in $K_0(\mathcal{A})$ in $K_0(\mathcal{B})$. This shows that the positive cone in $K_0(\mathcal{B})$ is exactly the image of the positive cone in $K_0(\mathcal{A})$, which is identified with the non-negative dyadic numbers.

The K-theory of the inductive limit described in the beginning of this remark is given by:

$$egin{array}{cccc} & K_0 & K_1 \ \mathcal{B}_1 & \mathbf{Z}, \mathbf{Z}_+ & \mathbf{Z} \ \downarrow & \downarrow & \downarrow \ \mathcal{B}_2 & \mathbf{Z}, \mathbf{Z}_+ & \mathbf{Z} \ \downarrow & \downarrow & \downarrow \end{array}$$

where all the vertical arrows on the K-groups are given by multiplication by 2. Thus, if C is the inductive limit,

$$K_0(\mathcal{C}) \cong \mathbf{Z}\left[\frac{1}{2}\right] \cong K_1(\mathcal{C}),$$

and the positive cone in $K_0(\mathcal{C})$ is the non-negative dyadic numbers. It follows that the ordered K-theory of \mathcal{C} is isomorphic to that of \mathcal{B} , and hence $\mathcal{B} \cong \mathcal{C}$ by [Ell] or [Su].

2 Voiculescu's almost inductive limit automorphisms

If \mathcal{A} is a unital C^* -algebra, $\mathcal{F}(\mathcal{A})$ denotes the set of finite dimensional *-subalgebras of \mathcal{A} containing the unit of \mathcal{A} . If \mathcal{B}, \mathcal{C} are subalgebras of \mathcal{A} we will follow [Voi] in using the

notation $\mathcal{B} \subset^{\varepsilon} \mathcal{C}$ if

$$\sup \left\{ \left.\inf\{\|x-y\| \middle| y \in \mathcal{C}, \|y\| \leq 1\} \middle| x \in \mathcal{B}, \|x\| \leq 1 \right\} < \varepsilon, \right.$$

and the distance $d(\mathcal{B}, \mathcal{C})$ between \mathcal{B} and \mathcal{C} is defined by

$$d(\mathcal{B}, \mathcal{C}) = \inf\{\varepsilon > 0 | \mathcal{B} \subset^{\varepsilon} \mathcal{C} \text{ and } \mathcal{C} \subset^{\varepsilon} \mathcal{B}\}.$$

Since any automorphism β of the CAR algebra \mathcal{A} is approximately inner it follows from [Voi, Lemma 3.1] that for any $\mathcal{D} \in \mathcal{F}(\mathcal{A})$ and any positive integer m, there are $\mathcal{B}_j \in \mathcal{F}(\mathcal{A})$, $j = 0, 1, \dots, m$ with $\mathcal{B}_0 = \mathcal{B}_m$ such that

$$d(\beta(\mathcal{B}_j), \mathcal{B}_{j+1}) < \frac{5\pi}{m}$$

for $0 \le j < m$, and

$$\mathcal{D} \subseteq \mathcal{B}_j$$

for $j = 0, 1, \dots, m$. Thus, if e_{ij} , $i, j = 0, 1, \dots, m-1$ is a complete set of matrix units for M_m , and σ_m is the cyclic shift of M_m , defined through

$$\sigma_m(e_{ij}) = e_{i+1,j+1}$$

(where the addition is modulo m), and $\mathcal{E} \in \mathcal{F}(\mathcal{A} \otimes M_m)$ is defined through

$$\mathcal{E} = \sum_{j=0}^{m-1} \mathcal{B}_j \otimes e_{jj},$$

then

$$\mathcal{D} \otimes 1 \subset \mathcal{E}$$

and

$$d((\beta \otimes \sigma_m)(\mathcal{E}), \mathcal{E}) < \frac{5\pi}{m}$$
.

Now suppose β has the property that for any positive integer m_0 there is an integer $m > m_0$ such that for every positive integer N and every $\delta > 0$ there is a subalgebra $\mathcal{C} \subset^{\delta} \otimes M_2 \subseteq M_{2^{\infty}} = \mathcal{A}$ such that \mathcal{C} contains the unit of $\mathcal{A}, \mathcal{C} \cong M_m, \mathcal{C}$ has a cyclic shift σ_m , and $\|\beta(x) - \sigma_m(x)\| \leq \delta \|x\|$ for $x \in \mathcal{C}$. Then β is an almost inductive limit automorphism of \mathcal{A} , i.e. for every $\mathcal{D} \in \mathcal{F}(\mathcal{A})$ and every $\varepsilon > 0$ there is a $\mathcal{E} \in \mathcal{F}(\mathcal{A})$ such that $\mathcal{D} \subset^{\varepsilon} \mathcal{E}$ and $d(\beta(\mathcal{E}), \mathcal{E}) < \varepsilon$.

This is seen as follows: By modifying the \mathcal{D} and \mathcal{B}_i above by a small amount we may assume $\mathcal{B}_i \subseteq \bigotimes_{-N}^N M_2$ for some N, but then, integrating over the unitary group of $\bigotimes_{-N}^N M_2$ and using the techniques of [Gli] and [Bra1], we may assume $\mathcal{C} \subseteq \left(\bigotimes_{k=-\infty}^{-N-1} \otimes \bigotimes_{k=N+1}^{\infty}\right) M_2$. Then redefine the \mathcal{E} above as $\mathcal{E} = \sum_{j=0}^{m-1} \mathcal{B}_j e_{jj}$. If $x = \sum_{j=0}^{m-1} b_j e_{jj} \in \mathcal{E}$ one computes

$$\|\beta(x) - \beta \otimes \sigma_m''(x)\| = \|\sum_{j=0}^{m-1} \beta(b_j)(\beta - \sigma_m)(e_{jj})\|$$

$$\leq \sum_{j=0}^{m-1} \|b_j\| \delta,$$

where the notation " $\beta \otimes \sigma_m$ " is self explanatory. As $||x|| = \sup_i ||b_i||$, it follows that

$$\parallel \beta(x) - \parallel \beta \otimes \sigma''(x) \parallel \leq m\delta \parallel x \parallel$$

Since we may choose this δ after m, we may make δm as small as we want, and as

$$d(("\beta \otimes \sigma")(\mathcal{E}), \mathcal{E}) < \frac{5\pi}{m}$$

we may make $d(\beta(\mathcal{E}), \mathcal{E})$ as small as desired.

Thus, it follows from [Voi, Proposition 2.3] that for any $\varepsilon > 0$ there is a unitary $u \in \mathcal{A}$ such that $||u-1|| < \varepsilon$, and $\gamma = Adu \circ \beta$ is an inductive limit automorphism, i.e. there exists an increasing sequence $\mathcal{A}_n \in \mathcal{F}(\mathcal{A})$ such that $\bigcup_n \mathcal{A}_n$ is dense in \mathcal{A} and $\gamma(\mathcal{A}_n) = \mathcal{A}_n$. But then $\mathcal{A} \times_{\gamma} \mathbf{Z}$ is the inductive limit of $\mathcal{A}_n \times_{\gamma} \mathbf{Z}$, and each of these latter algebras has the form $\mathcal{D}_n \otimes C(\hat{\mathbf{Z}}) = \mathcal{D}_n \otimes C(\mathbf{T})$ where \mathcal{D}_n is the finite dimensional algebra obtained from \mathcal{A}_n by merging the factors over the central orbits of γ into one factor of dimension equal to the product of the dimensions of each factor by the order of the orbit [Bra 2]. Note also that $\mathcal{A} \times_{\gamma} \mathbf{Z}$ is isomorphic to $\mathcal{A} \times_{\beta} \mathbf{Z}$, [Tak]. In conclusion, we have the following known lemma:

Lemma 2.1 [Voi, Lemma 3.3] Let β be an automorphism of $A = M_{2\infty}$ with the property that for any positive integer m_0 there is an integer $m > m_0$ such that for every positive integer N and every $\varepsilon > 0$ there is a subalgebra $C \in \mathcal{F}(A)$ such that $C \subset \mathbb{R} \setminus M_2 \subseteq A$, $C \cong M_m$ and there exists a cyclic shift σ_m of order m on C such that

$$\|\beta(x) - \sigma_m(x)\| \le \varepsilon \|x\|$$

for all $x \in \mathcal{C}$.

It follows that β is an almost inductive limit automorphism, and hence $\mathcal{A} \times_{\beta} \mathbf{Z}$ contains an increasing sequence \mathcal{B}_n of C^* -subalgebras such that $\cup_n \mathcal{B}_n$ is dense, and each \mathcal{B}_n has the form

$$\mathcal{B}_n \cong \bigoplus_{k=1}^{m_n} M_{[n,k]} \otimes C(\mathbf{T})$$

where $[n, k] \in \mathbb{N}$ and m_n is finite.

3 Quasifree automorphisms and the shift

If \mathcal{H} is a separable infinite-dimensional Hilbert space with inner product (,), the algebra $\mathcal{A} = M_{2\infty}$ can be described as the universal C^* -algebra generated by operators $a(f), f \in \mathcal{H}$, satisfying

$$f
ightarrow a(f)$$
 is antilinear, $a(f)a(g) + a(g)a(f) = 0$, $a(f)a(g)^* + a(g)^*a(f) = (f,g)\mathbf{1}$,

see e.g. [BR2, Theorem 5.2.5]. If $(f_k)_{k=1}^{\infty}$ is an orthonormal basis for \mathcal{H} , the matrix units $\left(e_{ij}^{(k)}\right)_{i,j=1}^{2}$ for the k'th tensor factor of $\mathcal{A} = \bigotimes_{k=1}^{\infty} M_2$ can be given by

$$e_{11}^{(k)} = a(f_k)a(f_k)^*$$
 $e_{12}^{(k)} = V_{k-1}a(f_k)$
 $e_{21}^{(k)} = V_{k-1}a(f_k)^*$ $e_{22}^{(k)} = a(f_k)^*a(f_k)$,

where

$$V_k = \prod_{i=1}^k (1 - 2a(f_i)^* a(f_i))$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes \cdots \otimes \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes 1 \otimes 1 \otimes \cdots,$$

and there are k factors $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Conversely

$$a(f_k) = \left(\prod_{l=1}^{k-1} \left(e_{11}^{(l)} - e_{22}^{(l)}\right)\right) e_{12}^{(k)}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes \cdots \otimes \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes 1 \otimes 1 \otimes \cdots,$$

where there are k-1 factors $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

If V is any isometry on \mathcal{H} , V defines a *-morphism of \mathcal{A} by

$$a(f) \rightarrow a(Vf)$$

(and this is a *-automorphism if V is unitary, called a quasi-free or Bogoliubov automorphism). In particular, let β be the morphism defined by the one-sided shift:

$$V f_k = f_{k+1}, \qquad k = 1, 2, \dots$$

We call β the one-sided quasi-free shift. On the other hand, let α be the usual one-sided shift on A:

$$\alpha(e_{ij}^{(k)}) = e_{ij}^{(k+1)}, \qquad k = 1, 2, \dots,$$

i.e.

$$\alpha(x) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes x .$$

Let γ be the quasi-free automorphism defined by

$$\gamma(a(f)) = -a(f) ,$$

i.e.

$$\gamma(e_{ij}^{(k)}) = (-1)^{i-j} e_{ij}^{(k)} .$$

Define an element $x \in \mathcal{A}$ to be even if $\gamma(x) = x$ and odd if $\gamma(x) = -x$. Thus the *-algebra \mathcal{A}^e of even elements is the closure of the set of polynomials in $a(f), a(f)^*$ with an even number of creators or annihilators in each constituent monomial. Using the expression of $a(f_k)$ in terms of the $e_{ij}^{(k)}$'s, one now easily computes

$$\beta(x) = \begin{cases} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes x & \text{if } x \in \mathcal{A}^e , \\ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes x & \text{if } x \text{ is odd } . \end{cases}$$

In particular we deduce

Lemma 3.1 The one-sided shift α and the one-sided quasifree shift β have the same restrictions to the even algebra \mathcal{A}^e .

4 Almost shift-invariant matrix sub-algebras of $M_{2^{\infty}}$.

Proposition 4.1 Let $A = M_{2\infty} = \bigotimes_{k=1}^{\infty} M_2$ and let α be the one-sided shift on A. If $\varepsilon > 0$ and $\rho_1, \rho_2, \dots, \rho_n \in \mathbf{T} \subseteq \mathbf{C}$ then there exist a subalgebra $\mathcal{B} \in \mathcal{F}(A)$ such that $\mathcal{B} \cong M_{2^n}$, and an automorphism β of \mathcal{B} of the form

$$\beta = Ad\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & \rho_1 \end{array}\right) \otimes \left(\begin{array}{cc} 1 & 0 \\ 0 & \rho_2 \end{array}\right) \otimes \cdots \otimes \left(\begin{array}{cc} 1 & 0 \\ 0 & \rho_n \end{array}\right)\right)$$

relatively to some tensor product decomposition of \mathcal{B} , such that

$$\|\alpha(x) - \beta(x)\| \le \varepsilon \|x\|$$

for all $x \in \mathcal{B}$.

Remark 4.2 Once this is true for the one-sided shift α it is also trivially true for the two-sided shift.

Remark 4.3 In particular, putting

$$\rho_k = e^{2\pi i 2^{-k}}, \qquad k = 1, \cdots, n ,$$

the spectrum of the unitary operator implementing β becomes the set of all 2^n -roots of 1, and hence the proposition applies to the cyclic shift of order 2^n on M_{2^n} .

Proof of Proposition 4.1 First note that the two-sided shift V on $L^2(\mathbf{Z})$ is a unitary operator with spectrum \mathbf{T} , and hence by spectral theory there exist for any $\delta > 0$ mutually orthogonal unit vectors $\xi_0, \xi_1, \dots, \xi_n$ in $L^2(\mathbf{Z})$ such that

$$||V\xi_0-\xi_0||<\delta,$$

$$||V\xi_k - \rho_k \xi_k|| < \delta, \qquad k = 1, \dots, n.$$

Furthermore, shifting the ξ_k 's sufficiently far to the right and changing each ξ_k by a small amount we may assume

$$\xi_k \in L^2(\mathbf{N}), \qquad k = 0, 1, \cdots, n.$$

Now, one checks that the operators a_k defined by

$$a_k = a(\xi_k)(a(\xi_0) + a(\xi_0)^*), \qquad k = 1, \dots, n$$

satisfy the anti-commutation relations

$$a_k a_l + a_l a_k = 0$$

$$a_k a_l^* + a_l^* a_k = \delta_{k,l} 1,$$

so the *-algebra B generated by the a_k 's is isomorphic to M_{2^n} by [BR2, Theorem 5.2.5]. Furthermore, the automorphism β of \mathcal{B} determined by

$$\beta(a_k) = \overline{\rho}_k a_k, \qquad k = 1, \cdots, n,$$

has the required form

$$\beta = Ad\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & \rho_1 \end{array}\right) \otimes \cdots \otimes \left(\left(\begin{array}{cc} 1 & 0 \\ 0 & \rho_n \end{array}\right)\right)$$

relatively to the matrix units defined by a_1, \dots, a_n .

If σ is the quasifree one-sided shift defined by $V|_{L^2(\mathbb{N})}$, then

$$\sigma(a_k) - \overline{\rho}_k a_k = a(V\xi_k)(a(V\xi_0) + a(V\xi_0)^*) - a(\rho_k \xi_k)(a(\xi_0) + a(\xi_0)^*).$$

Thus, using $||a(\xi)|| = ||\xi||$ we deduce

$$\|\sigma(a_k) - \overline{\rho}_k a_k\|$$

$$\leq 2\|V\xi_k - \rho_k \xi_k\| + 2\|V\xi_0 - \xi_0\|$$

$$< 4\delta.$$

Since any element in \mathcal{B} is a polynomial in the a_k, a_k^* of degree at most n, it follows by choosing δ small enough that

$$\|\sigma(x) - \beta(x)\| < \varepsilon \|x\|$$

for all $x \in \mathcal{B}$. Finally, as the a_k are polynomials of homogeneous degree 2 in creators and annihilators, $\mathcal{B} \subseteq \mathcal{A}^e$ and it follows from Lemma 3.1 that $\alpha|_{\mathcal{B}} = \sigma|_{\mathcal{B}}$. Thus Proposition 4.1 follows.

5 The shift is an almost inductive limit automorphism

The proof of Theorem 1.1 is now immediate: By Remark 4.2 there exist for any $\varepsilon > 0$ and any n a subalgebra \mathcal{B} of \mathcal{A} containing the unit of \mathcal{A} such that $\mathcal{B} \cong M_{2^n}$ and an automorphism β of \mathcal{B} isomorphic to the cyclic shift of order 2^n such that

$$\|\alpha(x) - \beta(x)\| \le \varepsilon \|x\|$$

for all $x \in \mathcal{B}$. Since the latter estimate is not changed by the replacement $\mathcal{B} \to \alpha^m(\mathcal{B})$, $\beta \to \alpha^m \beta \alpha^{-m}$, we may also assume that $\mathcal{B} \subset \bigotimes_{k=N+1}^{\infty} M_2$ for any given N. Theorem 1.1 now follows from Lemma 2.1.

Remark 5.1 By pushing the ideas from [Voi] and using the techniques in [BKR, Proposition 2.12] one could prove Theorem 1.1 if one could establish that for any $\varepsilon > 0$ there is a unitary $u \in \mathcal{A}$ such that $||u-1|| < \varepsilon$, and the C^* -dynamical system $(\mathcal{A}, Adu \circ \alpha)$ is isomorphic to $(\mathcal{A} \otimes \mathcal{A}, \beta \otimes \sigma)$, where $\sigma = \bigotimes_{n=1}^{\infty} \sigma_{2^n}$ on $\mathcal{A} \cong \bigotimes_{n=1}^{\infty} M_{2^n}$, and σ_{2^n} is the cyclic shift of order 2^n on M_{2^n} , and β some automorphism of \mathcal{A} . One may then appeal directly to [Voi, Lemma 3.3] to prove that $Adu \circ \alpha$ is an almost inductive limit automorphism.

6 Divisibility of $M_{2^{\infty}} \times_{\alpha} \mathbf{Z}$

In this section we will prove Corollary 1.2, i.e.

$$\mathcal{B} = M_{2^{\infty}} \times_{\alpha} \mathbf{Z} \cong (M_{2^{\infty}} \times_{\alpha} \mathbf{Z}) \otimes M_{2^{\infty}}.$$

To this end we will combine Proposition 4.1 with a special case of a result in [BKR]:

Lemma 6.1 [BKR, Proposition 2.12] Let \mathcal{A} be a unital separable C^* -algebra with the property that for any finite set $\{x_1, \dots, x_n\} \in \mathcal{A}$ and any $\varepsilon > 0$ there exists a $\mathcal{B} \in \mathcal{F}(\mathcal{A})$ such that $\mathcal{B} \cong M_2$ and $\|[x_i, y]\| \leq \varepsilon \|y\|$ for $i = 1, 2, \dots, n$ and all $y \in \mathcal{B}$. It follows that

$$\mathcal{A}\cong\mathcal{A}\otimes M_{2^{\infty}}.$$

Proof: By [BKR, Proposition 2.12 and its proof], $A \cong C \otimes M_{2\infty}$ for a suitable C^* -algebra C. But as $M_{2\infty} \otimes M_{2\infty} \cong M_{2\infty}$ it follows that

$$\mathcal{A} \cong \mathcal{C} \otimes (M_{2^{\infty}} \otimes M_{2^{\infty}})$$

$$\cong (\mathcal{C} \otimes M_{2^{\infty}}) \otimes M_{2^{\infty}}$$

$$\cong \mathcal{A} \otimes M_{2^{\infty}}.$$

To prove Corollary 1.2, note that, by Proposition 4.1, for any $\varepsilon > 0$ there is a $\mathcal{C} \in \mathcal{F}(\mathcal{A})$ such that $\mathcal{C} \cong M_2$ and $\|\alpha(x) - x\| \leq \varepsilon \|x\|$ for all $x \in \mathcal{C}$. Replacing \mathcal{C} by $\alpha^m(\mathcal{C})$ we may assume that \mathcal{C} approximately commutes with any finite subset of $M_{2^{\infty}}$, and as this replacement does not affect the estimate $\|\alpha(x) - x\| \leq \varepsilon \|x\|$ the new \mathcal{C} (as well as the old) approximately commutes with the canonical unitary u in the crossed product $\mathcal{B} = M_{2^{\infty}} \times_{\alpha} \mathbf{Z}$.

Corollary 1.2 now follows from Lemma 6.1.

7 The Cuntz algebra \mathcal{O}_2

Recall from [Cun] that \mathcal{O}_2 is the universal C^* -algebra generated by two operators S_1, S_2 satisfying the relations

$$1 = S_1^* S_1 = S_2^* S_2 = S_1 S_1^* + S_2 S_2^*.$$

We will prove Corollary 1.3, i.e.

$$\mathcal{O}_2 \cong \mathcal{O}_2 \otimes M_{2^{\infty}}$$
.

Recall from [Cun] that \mathcal{O}_2 contains $M_{2\infty}$ canonically as a unital sub-algebra as follows: If μ is a multiindex of length n with values in $\{1,2\}$, i.e. $\mu=(\mu_1,\cdots,\mu_n)$ with $\mu_j\in\{1,2\}$, define $S_{\mu}=S_{\mu_1}S_{\mu_2}\cdots S_{\mu_n}$. Then the set of

$$S_{\mu}S_{\nu}^{*}$$
,

where μ, ν run over the multiindices of length n, constitute a complete set of $2^n \times 2^n$ matrix units. Letting $n \to \infty$, one establishes that the fixed point subalgebra \mathcal{A} of \mathcal{O}_2 under the gauge group $\rho \in \mathbf{T} \to \sigma_{\rho}$, where $\sigma_{\rho}(S_1) = \rho S_1, \sigma_{\rho}(S_2) = \rho S_2$, is isomorphic to $M_{2^{\infty}}$.

Now, define a morphism ϕ of \mathcal{O}_2 by

$$\phi(x) = S_1 x S_1^* + S_2 x S_2^*$$

Then ϕ commutes with the gauge action, so $\phi(\mathcal{A}) \subseteq \mathcal{A}$, and by applying ϕ to the matrix units $S_{\mu}S_{\nu}^{*}$, one sees that the restriction of ϕ to \mathcal{A} is the one-sided shift. It follows from

Proposition 4.1 that for any $\varepsilon > 0$ there is a * subalgebra \mathcal{B} of \mathcal{A} containing the unit of \mathcal{A} such that $\mathcal{B} \cong M_2$ and such that

$$\|\phi(x) - x\| \le \varepsilon \|x\|$$

for all $x \in \mathcal{B}$. But

$$(\phi(x) - x)S_1 = S_1 x S_1^* S_1 + S_2 x S_2^* S_1 - x S_1$$
$$= S_1 x - x S_1 = [S_1, x],$$

and correspondingly

$$S_1^*(\phi(x)-x)=[x,S_1^*],$$

$$(\phi(x)-x)S_2=[S_1,x],$$

$$S_2(\phi(x)-x)=[x,S_2^*],$$

so the commutator of $x \in \mathcal{B}$ with any monomial in S_i, S_i^* of order 1 has norm less than or equal to $\varepsilon \|x\|$. Since the polynomials in S_i, S_i^* are dense in \mathcal{O}_2 it follows that \mathcal{O}_2 is approximately divisible in the sense that for all finite sequences $x_1, \dots, x_n \in \mathcal{O}_2$ and all $\varepsilon > 0$, there exists a *-subalgebra $\mathcal{B} \subseteq \mathcal{O}_2$ containing the unit of \mathcal{O}_2 such that

$$||[x_i,x]|| \leq \varepsilon ||x||$$

for all $x \in \mathcal{B}$, and $\mathcal{B} \cong M_2$. It therefore follows from Lemma 6.1 that

$$\mathcal{O}_2 \cong \mathcal{O}_2 \otimes M_{2^{\infty}}$$
.

8 Complements on almost shift-invariant projections

Let α be the shift on $M_{2\infty}$. It follows from Proposition 4.1 that for any $\varepsilon > 0$ we may find an m and a nontrivial projection

$$E \in \bigotimes_{1}^{m} M_{2} \subseteq \bigotimes_{-\infty}^{\infty} M_{2}$$

such that $\|\alpha(E) - E\| < \varepsilon$. The following proposition says that $m \ge \pi/2 \arcsin \varepsilon$.

Proposition 8.1 If $E \in \bigotimes_{1}^{m} M_{2}$ is a nontrivial projection, then

$$||E \otimes 1_2 - 1_2 \otimes E|| \geq \sin(\pi/2m)$$
.

When m=2, this is the best possible estimate. (Here $E\otimes 1_2$ and $1_2\otimes E$ are both viewed as projections in $\bigotimes_{1}^{m+1} M_2$).

Proof: View $\bigotimes_{1}^{m} M_{2}$ as a subalgebra of $\bigotimes_{-\infty}^{\infty} M_{2} = M_{2\infty}$, let τ be the trace state on $M_{2\infty}$, and let \mathcal{H} be the Hilbert space of the cyclic representation associated with τ . Since τ is invariant under the shift α , there is a unitary operator U on \mathcal{H} such that

$$\alpha(x) = UxU^*$$

for all $x \in M_{2^{\infty}}$. We have the identification

$$1_2 \otimes E = \alpha(E \otimes 1_2) = \alpha(E) = UEU^*$$

so we must show

$$||E - UEU^*|| \ge \sin(\pi/2m) .$$

But

$$U^m E U^{-m} = \alpha_m(E) \in \bigotimes_{m+1}^{2m} M_2,$$

thus E and $U^m E U^{-m}$ are distinct commuting projections, and there exists a nonzero vector $\xi \in \mathcal{H}$ such that

$$E\xi = \xi \quad , U^m E U^{-m} \xi = 0,$$

i.e. $\xi \in E\mathcal{H}$ and $U^{-m}\xi \perp E\mathcal{H}$. Since the angle between $U^{-m}\xi$ and $E\mathcal{H}$ is $\pi/2$ it follows by weak compactness of the unit ball in \mathcal{H} that there is another unit vector $\xi \in E\mathcal{H}$ such that the angle between $U^{-1}\xi$ and $E\mathcal{H}$ is at least $\pi/2m$ (since the maximum such angle between $U^{-k}E\mathcal{H}$ and $U^{-1}\xi$ over all $\xi \in U^{-k}E\mathcal{H}$ is the same for $k=0,1,\cdots,m-1$, and the sum of these angles is at least $\pi/2$). But this means that

$$||EU^{-1}\xi|| \le \cos(\pi/2m) ,$$

and then

$$||EU^*\xi - U^*\xi|| \ge \sin(\pi/2m) ,$$

i.e.

$$||UEU^*\xi - \xi|| \geq \sin(\pi/2m)$$
,

and thus

$$\|\alpha(E) - E\| \ge \sin(\pi/2m).$$

Let us now look at the case m=2, where the lower bound becomes

$$||E \otimes 1_2 - 1_2 \otimes E|| \ge 1/\sqrt{2}.$$

This lower bound is actually achieved by the projection

$$E = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0\\ \frac{1}{2} & \frac{1}{2} & 0 & 0\\ 0 & 0 & \frac{1}{2} & -\frac{1}{2}\\ 0 & 0 & -\frac{1}{2} & \frac{1}{2} \end{pmatrix},$$

as one may verify by direct computation, or by noting that E is a solution of the braid relation:

$$(E \otimes 1_2)(1_2 \otimes E)(E \otimes 1_2) = \frac{1}{2}(E \otimes 1_2).$$

References

- [BBEK] B. Blackadar, O. Bratteli, G. A. Elliott and A. Kumjian, Reduction of real rank in inductive limits of C*-algebras, Math. Ann. 292 (1992), 111–126.
- [BDR] B. Blackadar, M. Dadarlat, M. Rørdam, The real rank of inductive limit C^* -algebras, Math. Scand. 69 (1991), 211–216.
- [Bed] E. Bedos, On the uniqueness of the trace on some simple C^* -algebras, preprint 1991.
- [BRK] B. Blackadar, A. Kumjian and M. Rørdam, Approximately central matrix units and the structure of noncommutative tori, preprint 1991.
- [Bla1] B. Blackadar, K-Theory for Operator Algebras, MSRIP 5, Springer Verlag 1986.

- [Bla2] B. Blackadar, Symmetries of the CAR algebra, Ann. of Math. (2) **131** (1990), 589–623.
- [BP] L. G. Brown and G. K. Pedersen, C*-algebras of real rank zero, J. Functional Anal. 99 (1991), 131–149.
- [BR1] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, Second Edition, Springer Verlag (1987).
- [BR2] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics II, Springer Verlag (1981).
- [Bra1] O. Bratteli, Inductive limits of finite dimensional C*-algebras, Trans. Amer. Math. Soc. 171 (1972), 195–234.
- [Bra2] O. Bratteli, Crossed product of UHF algebras by product type actions, Duke Math. J. 46 (1979), 1–23.
- [Cun] J. Cuntz, Simple C^* -algebras generated by isometries, Commun. Math. Phys. 57 (1977), 173–185.
- [Ell] G. A. Elliott, On the classification of C^* -algebras of real rank zero, preprint.
- [Gli] J. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318–340.
- [Kis] A. Kishimoto, Outer automorphisms and reduced crossed products of simple C^* -algebras, Commun. Math. Phys. 81 (1981), 429–435.
- [Su] H. Su, On the classification of C*-algebras of real rank zero: Inductive limits of matrix algebras over non-Hausdorff graphs, preprint 1992.
- [Tak] M. Takesaki, Covariant representations of C*-algebras and their locally compact automorphism groups, Acta Math. 119 (1967), 273–303.
- [Voi] D. Voiculescu, Almost inductive limit automorphisms and embeddings into AFalgebras, Ergod. Th. & Dynam. Sys. 6 (1986), 475–484.