
Random relaxed controls and partially 

observed stochastic systems 

by 

Nigel J. Cutland 
Department of Pure Mathematics 

University of Hull 
Hull HU6 7RX 

England 

Tom Lindstrpm 
Department of Mathematics 

University of Oslo 
P.O. Box 1053, Blindern 

N-Q316 Oslo 3 
Norway 





1 Introduction 

Consider the partially observed controlled stochastic system (fort:::; 1) 

Xu(t) - fota(xu, Yu, s, u(yu, s))ds + fotb(xu, Yu, s, u(yu, s))dwl(s) 

Yu(t) - fotc(xu, Yu, s)ds + latd(yu, s)dw2(s) 

(1.1) 

(1.2) 

where w1 and w2 are independent Brownian motions and where the coefficients a, b, c, dare 

bounded, continuous functions which may depend on the past of Xu and Yu· The control u 
takes values in a compact, separable metric space K and is allowed to depend on the past 

of the observation process Yu· The c..ost of u is defined to be 

j(u) = E(h(xu)), (1.3) 

where his a bounded, contim.}.ous function on path space. We consider the functions a, b, c, d 

and h as fixed and wish to find a control u which minimizes the cost. The interpretation 

is the usual one; y is a series of noisy and partial observations of the process x, and we are 

seeking the best strategy for controlling x on the basis of these observations. 

An important question is what kinds of controls we should allow. The natural choice is 

the class of ordinary controls, which is just the set of all measurable functions 

u : C([O, 1], Rm) x [0, 1] ---+ K 

which are nonanticipating in the sense that 

u(y, s) = u(z, s) 

if y(r) = z(r) for all r=::;s. But this class has bad closure properties, arid the infimum 

a = inf {j ( u) : u is an ordinary control} 

is in general not attained; i.e. an optimal ordinary control does not exist. 

One way of getting around this problem is to introduce classes of generalized controls 

with better closure properties. Two examples from the literature are relaxed controls and 

wide sense admissible controls. A relaxed control is a nonanticipating, measurable function 

U: C((O, 1],Rm) X (0, 1]---+ M(K), 

where M(K) is the set of Radon probability measures on K, while a wide sense admissible 

control to each yE C([O, 1], Rm) associates not a single path u(y,·), but a whole probability 

distribution on the set of all such paths (in, of course, a nonanticipating way). Relaxed 
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controls have a history of about thirty years going back to papers by Filippov (15], McShane 

(23] and Warga (25], but wide sense admissible controls are much more recent; slightly 

different formulations have been discussed by, among others, Fleming and Pardoux [17], 

Bismut (4], Haussmann (19], Borkar [5], and Fleming and Nisio (16] (see also (2], (6], [14], 

and (20] for later developments). 

The purpose of the present paper is to introduce a new class of generalized controls 

called random relaxed controls, and to show that under quite general conditions an optimal 

random relaxed control u exists and satisfies 

j ( u) = inf {j ( v) : v is an ordinary control} 

Random relaxed controls are natural amalgamations of relaxed and wide sense admissible 

controls; to each yE C((O, 1], Rm) they associate in a nonanticipating way a distribution on 

the set of measurable functions tL: [0, 1]---+ M(K) (see Section 3 for the technical details). 

Although random relaxed controls are entirely standard objects, our approach to them is 

based on nonstandard analysis and the following very simple idea: Consider the nonstandard 

version 

Xu(t) = fot*a(Xu,Yu,s,U(Yu,s))ds+ fot*b(Xu,Yu,s,U(Yu,s))d*wi(s) (1.4) 

Yu(t) = lat*c(Xu, Yu,s)ds+ lat*d(Yu,s)d*w2 (s) (1.5) 

J(U) = E(*h(Xu )) (1.6) 

of the system (1.4)-(1.6), and note that by the transfer principle of nonst~ndard analysis 

a= inf{j(u): u is a standard control}= inf{J(U): U is a nonstandard control}. 

Pick a nonstandard control U such that J(U) is infinitely close to a. The idea is that the 

standard control induced by U will be an optimal control for (1.1)-(1.3). 

If we are thinking in terms of ordinary controls, this argument breaks down at the very 

last step; there just isn't any reasonable way of getting a general nonstandard control to 

induce an ordinary control. However, we shall show that the random relaxed controls are 

in a natural sense exactly the standard objects induced by the set of nonstandard controls, 

and hence the argument above proves the existence of an optimal random relaxed control 

of cost a. This type of argument is not new, the first author has used it before to study 

optimal relaxed controls for various kinds of deterministic and stochastic systems, see [8], 

[9], [10], [11]. 
The paper is organized as follows. In the next section, we introduce the spaces of 

measures we shall be working with and give a brief description of their topological properties. 
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The random relaxed controls are introduced in Section 3, and the relationship between 

standard and nonstandard controls is studied in Section 4 and 5 - the main result in this 

part of the paper is Theorem 5.4 which shows that (under certain technical conditions) 

any random relaxed control can be represented by a nonstandard ordinary control. It's not 

entirely obvious how to obtain a solution of (1.1)-(1.2) when u is a random relaxed control, 

and we explain our approach to this problem in Section 7 - it requires some knowledge of 

how the solution of the equation 

Xy,J.'(t) = lot a(xy,J.', y, s, J.L(s))ds +lot b(xy,J.', y, s, J.L(s))dw(s) 

(where y E C([O, 1],Rm) and J.L: [0, 1] ---+ M(K)) depends on y and J.L, and these rather 

technical results are presented in Section 6. In Section 8 we combine results from Sections 2, 

6, and 7 to show that the costs induced by corresponding standard and nonstandard controls 

are equal, and in Section 9 we put all the pieces together and prove the existence of an 

optimal random relaxed control. We also show that the minimal cost can be approximated 

arbitrarily well by very simple, finitary controls, and we end the paper by a brief discussion 

of the conditions we have had to impose. 

The paper makes substantial use of nonstandard measure and probability theory, and 

the reader can find the necessary background in [1] or a combination of [12] and [7]. 

2 Measure theoretic preliminaries 

This section is something of a nuisance; it presents a few facts from measure theory which 

are important to our later arguments. Since these facts and arguments show up in two 

different settings and are needed for the formulation of our problems as well as for their 

solution, we have chosen to give an abstract treatment of them at the outset. 

If X is a Hausdroff space, let M(X) be the space of all Radon probability measures on 

X endowed with the weak topology. It is known that if X is a metric space, then M(X) is 
metrizable by the Prohorov metric (see Appendix III in Billingsley [3] for an exposition; the 

rather annoying conditions concerning measurable cardinals can be removed using results 

of Ftemlin [18), see also [22].) Two much simpler results are that if X is either compact or 

metric and separable, then M(X) has the same properties. Recall that a topological space 

is Polish if it is separable and admits a complete metric. 

Let us now fix two Polish spaces X and C, and a Radon probability measure Q on X. 

We shall assume that Cis compact. Define R(X, C) to be the set of all measurable (w.r.t. 

Q) functions 

J.L: X---+ M(C), (2.1) 
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and identify two elements /-Ll and JL2 of'R(X, C) if JL 1(x) = JL2 (x) for Q-almost all x. Define 
also a subset MQ(X x C) of M(X x C) by letting PEMQ(X x C) if and only if 

P(A x C) = Q(A) (2.2) 

for all Borel sets A C X. 
Given a JLE'R(X x C), we can construct an element fl in M(X x C) by letting 

jl(A x B)= L JL(x)(B)dQ(x) (2.3) 

for all Borel sets A and B, and then extending to a Radon measure on X x C. That 

such an extension exists and is unique is standard measure theory (it follows, for example, 

immediately from theorem 3.5.1 in [1]). Using conditional probabilities we can reverse the 
construction: 

2.1 Lemma. The map JL H fl is a bijection from 'R(X, C) to MQ(X x C). 

Proof: Let fl E MQ(X x C), and let A denote the a-algebra consisting of fl-measurable 

sets of the form A x C. Since X x Cis Polish, Theorem 1.1.6 in Stroock-Varadhan [24] 

tells us that the conditional probability JL(x)(·) of fl with respect to A exists, and that for 

each x, JL(x)(·) is an element of M(C) satisfying (2.3) 

The next lemma is a natural and useful extension of formula (2.3): 

2.2 Lemma Iff: X x C-+ R is a bounded Borel function and JLE'R(X, C), then 

I f(x, c)dfl(x, c)= I I f(x, c)dJL(x)(c)dQ(x) 

Proof: Let A be the class of all subsets D of X x C satisfying 

fl(D) =I I 1v(x, c)dJL(x)(c)dQ(x). 

n 

(2.4) 

(2.5) 

Clearly, A contains the family Ao of all finite unions U (Ax Bi) where Ai, Bi are Borel sets. 
i=l 

Moreover, by the Monotone Convergence Theorem A is closed under increasing, countable 

unions. Since Ao is an algebra, the Monotone Class Theorem tells us that A contains the 

a-algebra a(Ao) generated by Ao. But since X and Care separable metric spaces, a(Ao) is 
exactly the Borel algebra on X x C, and hence (2.5) holds for all Borel sets. Approximating 

f by simple functions, the lemma follows. 

The natural topology on MQ(X x C) is the one inherited from M(X x C). It turns 

out to have very nice properties: 
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2.3 Lemma Mq(X x C) is a compact Polish space. 

Proof: Since X x Cis a separable metric space, M(X x C) is separable and metrizable. 

It thus suffices to show that Mq(X x C) is compact. 

We shall use the nonstandard characterization of compactness; given f.,LE*Mq(X x C), 
we must show that f.,L is nearstandard and that its standard part belongs to Mq(X x C). 
This is almost trivial; since C is compact and f.,L(A x C) = *Q(A), the "pushed down" 

Loeb-measure L(f..L) o st-1 is the standard part of f.,L and it clearly belongs to Mq(X x C) 
(see section 3.4 of [1] for the necessary background). 

On 'R(X, C) we put the topology generated by the basic open sets 

o,,f,IJ.O = {f.J.: I J J J(x, c)df.,L(x)(c)dQ(x)- J J J(x, c)df.,Lo(x)(c)dQ(x)l < ~:} 

where f.,Lo E'R(X, C), <:ER+, and f: X x C-+ R is a bounded continuous function. 

2.4 Corollary 'R(X, C) is a compact Polish space. 

Proof: According to lemmas 2.1 and 2.2, the map f.,L ~----+ jl is an homeomorphism, and the 

result thus follows from Lemma 2.3. 

Our last result in this section concerns the interplay between Mq(X, C) and its non

standard version * Mq(X, C). In Section 8 it will be used to establish the relationship 

between standard and nonstandard costs. 

2.5 Lemma Let U E * Mq(X x C) and define u = L(U) o st-1 . If 

O:XxC-+R 

is a bounded, measurable function which is continuous in the second variable, then 

J O(x, c)du(x, c) = 0 J *O(x, c)dU(x, c). 

Proof: Define B: X-+ C(C,R) by 

O(x) = O(x, ·). 

By Anderson's Lusin Theorem (see, e.g., Corollary 3.4.9 in [1]), there is a set X 0 C *X of 

L(*Q)-measure one such that 0 *0(x) = O(ox) for all x E X 0 • Hence 0 *0(x, c) = B(ox, cc) for 

all x EX0 and all cE C, and since this means that *0 is a lifting of() with respect to U, the 

lemma follows. 
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Before we end this section, let us observe that any measurable function g : X - C may 

be considered as an element of n(X, C); just identify g(x) with the unit point mass 8g(x) 

at g(x). We shall denote this subspace of n(X, C) by 'Ro(X, C), i.e., 

'Ro(X, C)= {89 En(X, C)lg: X-C is measurable} (2.6) 

In the sequel we shall apply the results of this section in two different settings. In the 

first, X is the interval [0,1], Cis the control space K, and Q is the Lebesgue measure. In 

the second, X is the path space of the observation process, C is n([O, 1], K), and Q is a 

reference measure on X such that the measure induced by the observation process is always 

absolutely continuous with respect to Q. 

3 Ordinary, relaxed, and random relaxed controls 

The spaces 'Ro([O, 1], K) and n([O, 1], K) (where K is a fixed compact space, the control 

space) will play important parts in this paper, and it is convenient to introduce the abbre
viations 

no= no([O, 1], K), n = n([o, 1]),K). (3.1) 

The underlying measure on [0,1] will always be the Lebesgue measure. An element in no 
is called a response, while an element inn is a relaxed response. 

In what follows, we shall think of 

Y = C([O, 1], Rm) 

as the space of all possible observations. If y E Y and t E [0, 1], we shall write y f t for 

the restriction of y to [0, t]. We shall also fix a Radon measure Q on Y, and think of it 

as the measure induced by the observation process (or, more correctly, as a fixed reference 

measure on Y such that the measure induced by the observation process is always absolutely 

continuous w.r.t. Q). In this setting, an ordinary control (or simply a control) is just a 

measurable function 

u:Y-no (3.2) 

which is nonanticipating in the sense that if y rt = y' rt, then u(y)(t) = u(y')(t). A relaxed 
control is a measurable function 

(3.3) 
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satisfying the same nonanticipation condition. Hence a (relaxed) control is a nonanticipat

ing function which to each observation associates a (relaxed) response. Roughly speaking, 

a random relaxed control is a nonanticipating function which to each observation assigns a 

probability distribution on the set of relaxed responses. To make this precise, we must first 

agree on what it should mean for such a function to be nonanticipating. 

A subset A of n is determined at time t if it is Borel and has the property that if 1-L E A 

and J.Lrt = J.L'ft, then J.L'EA. In other words, A EFt where Ft = a{J.L(s)ls:S:t} is the natural 

filtration on n. 

3.1 Definition A random relaxed control u is a measurable function u: Y-+ M(n) with 

the following property: If y tt = y' rt and A is determined at timet, then 

u(y)(A) = u(y')(A) (3.4) 

Equivalently, we could say that for each A EFt, the map y -+ u(y)(A) is Ct-measurable, 

where Ct = a{y(s): s:S:t} is the natural filtration on Y. 
Note that we can also think of a random relaxed control as an element of the space 

R(Y,R). 
Since all our topologies are defined in terms of continuous functions, it will be useful to 

have a characterization of random relaxed controls in terms of such functions rather than 

sets. A function f : R -+ R is determined at time t if 

(3.5) 

whenever 1-L t t = 1-L' t t. If k : Y -+ R, let 

(3.6) 

be the conditional expectation of k with respect to the measure Q and the filtration Ct 

generated up to time t. The following lemma is a straightforward exercise in measure 

theory which we shall leave to the reader. 

3.2 Lemma A measurable function u : Y-+ M(R) is a random relaxed control if and 

only if the following holds: For all bounded, continuous functions f : R-+ R, k: Y-+ R 

such that f is determined at timet, 

j j [k(y) - kt(Y)]· f(J.L)du(y)(J.L)dQ(y) = 0 (3.7) 

(Let us make it quite clear what the left hand side of (3.7) means. For each y E Y, 
u(y)(·) is a measure on the space n ofrelaxed responses, and we first integrate the function 
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p, 1--+ [k(y)- kt(Y)]f(p,) against this measure. The result is a function. of y, which we then 

integr~te against .the measure Q on )J.) 
Observe that given a relaxed control u, we can construct a random relaxed control u' 

by 

u'(y) = Ou(y) , 

where ~u(y) is the unit mass at u(y). Hence we can always consider the relaxed controls as 
a subset of the random relaxed controls. Since the ordinary controls are special kinds of 

relaxed controls, an ordinary control can also be considered as a random relaxed control in 

the obvious way. 

4 Standard parts of nonstandard controls 

Random relaxed controls are quite complicated, abstract objects, and the reader may well 

wonder where they come from and what they are good for. In this section, we shall give a 

partial answer to these questions by showing that ra?dom relaxed controls arise naturally 

as the standard parts of nonstandard ordinary controls. 

Let us first try to explain this informally. Assume that U is a nonstandard control; i.e. 

U is a nonanticipating, internal function 

u: *Y ~ *Ro, (4.1) 

and let us try to find U's standard part u. There are two aspects of U. we cannot capture 

if we insist that u should be an ordinary control. To see the first, let y E Y and t E (0, 1]. 

If s, r E * (0, 1] are both infinitely close to t, there is no reason why U(*y)(s) and U(*y)(r) 
should be infinitely close. Hence there is no single, natural value to assign to u(y) at time 

t; all we can prescribe is the distribution of 0 U(*y)(s) as s ranges over the monad oft. This 

explains why, in general, the standard part of U will have to be a relaxed control. The 

other difficulty is of a similar nature. Assume as before that y E )J, and let y1, Y2 be two 

elements in *Y infinitely close toy. Again there is no reason why U(y1) and U('!J2) should 

be infinitely close, and thus there is no canonical way of assigning a single relaxed response 

toy. What is naturally given is the distribution of 0 U over the monad of y, and this leads 

us to the notion of a random relaxed control. 

When we next try to make this argument rigorous, it will be useful to work with a more 

general problem. Starting with a nonstandard, random relaxed control 

U:*Y~*M(R), (4.2) 
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we shall see how it can be turned into a standard random relaxed control. Assume that Q 
is an internal, Borel probability measure on •y supported on the nearstandard elements, 

and let 

Q = L(Q) osr1 (4.3) 

be its standard part. Let 

(J E *MQ(*Y X *M(R)) (4.4) 

be the measure induced by U and Q as defined in (2.3). Since M(R) is compact and Q is 
the standard part of {J, it is easy to check that 

u = L(U) o sr1 (4.5) 

is an element of MQ(Y x M(n)). Using the bijection in lemma 2.1, we obtain an element 

u:Y-~M(n) (4.6) 

which we shall refer to as the standard part of U. 

4.1 Lemma The standard part of a nonstandard, random relaxed control is a random 

relaxed control. 

Proof: Let U be the nonstandard, random relaxed control and u its standard part. As

sume that f : n ~ Rand k : Y ~ Rare bounded continuous functions, and that f is 

determined at time t. We have 

oj j[*k(y)- *kt(Y)] * f(Jl,)dU(y)(p,)dQ(y) 

= oj j[*k(y)- *kt(Y)] * f(p,)dU(y,p,) 

= J j[k(y)- kt(Y)]f(p,)du(y, p,) 

= J J [k(y) - kt(Y)]f(p,)du(y)(p,)dQ(y), 

(4.7) 

where the first and last equality hold by lemma. 2.2, and the second one by the definition of 

u. By the *-version of lemma. 3.2, the first integral in (4.7) is zero. Hence the last integral 

is also zero, and thus u is a. random relaxed control by lemma 3.2. 
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5 Liftings of random relaxed controls 

Assume that Q is an internal, nearstandardly concentrated probability measure on *Y as 

in the last section, and let Q = L(Q) o sr1 be its standard part. A lifting of a random 

relaxed control u is a nonstandard random relaxed control U whose standard part is u. If U 
is a nonstandard ordinary control, we call it an ordinary lifting of u. The key observation 

behind this paper is that (under some technical conditions) all random relaxed controls 

have ordinary liftings. To prove this, we shall need the following lemma which is just a 

nonstandard way of saying that 'Ro is dense in R. 

5.1 Lemma There is an internal map 1r : *'R ---+ *'Ro such that 7r(J.t) ~ J.t, and 7r(J.t)(t) = 

7r(J.t')(t) if J.t rt = J.t' rt. 

Proof: Partition* K into a hyperfinite family of *Borel subsets K~, K 2 , ••• , KH in such a 

way that each K; is contained in a monad. Pick one element k; from each equivalence class 

K; in an internal way. For each J.t E *'R, and i < H, let /li be the measure on * K defined by 

(i+I)/H 

J.ti(A) = H I J.tt(A)dt 
i/H 

(5.1) 

The function p, = 7r(J.t) : *[0, 1] ---+ * K will be constant on each interval of the form 

[fa-, (j;jP), and will take no other values than k1, k2 , ••• , kH, so it is sufficient to define P,(s) 

for s = Jb. 
On the interval [o, k) let p, take some arbitrary value- say P,(s) = k1 . Now assume 

that p,(s) has been defined for all s < -b and that (ij/) ·:::; fa- < (it2) • Define p,(fa-) = kr 

where r is the smallest number maximizing 

i+1 j 
H 2J.ti(Kr) -l{s: H:s;s< H3 and P,(s) = kr}l· (5.2) 

If we put 

i+1 i+2 
ar = l{s: H:s;s<H and P,(s) = kr}l, 

then clearly L:ar = H 2 and ar :::; H 2!li(K) + 1. Thus for any DE* a{Kt, ... , KH} 

1 1 
H2 L ar:::; L J.ti(Kr) + H ~ /li(D)' 

krED krED 

and so, in fact, 
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From this it is easy to see that ji ~ /-L (as in [11]). Since we have used J.,Li to define ji on 

[<~J>, <~;>],it is immediately clear that 7r(J.,L)(t) = 7r(J.,L')(t) if J.,Ltt = J.,L'tt. This completes 
the proof. 

Given an element v in *M('R), we can turn it into an element 1r(v) in *M('Ro) by 

1r(v)(A) = v{J.,L: 7r(J.,L) E A}. (5.3) 

Since 7r(J.,L) ~ J.,L, it is easy to check that 1r(v) ~ v. We can now prove: 

5.2 Lemma Any random relaxed control u has a random ordinary lifting U; i.e., there 

exists a nonanticipating function U: *Y--+ "'M('Ro) whose standard part is u. 

Proof: Since M('R) is separable, there is an internal map f): *Y--+ *M(n) such that 

of)(y) = u(0 y) L(Q)-almost everywhere. Define U0 : *Y--+ * M('Ro) by Uo(Y) = 1r(U(y)). 
By construction of 1r, 0 U0 (y) = u(0 y) L(Q)-almost everywhere. It remains to turn U0 into 

a nonanticipating function U. 

Let Ct be the internal u-algebra on *Y generated up to timet; i.e., Ct consists of all *Borel 

sets A with the property that if yEA and y(s) = z(s) for all s S. t, then z EA. The idea is 

to make U t t the conditional expectation of U0 with respect to Ct. To make this precise, 

observe that by the proof of Lemma 5.1, U0 is supported on the set of responses which are 

constant on each interval [Jb, *) and take values in the set k = {kt, k2 , ••• , kH }. Since 

U will be supported on the same set, it suffices to specify 

(5.4) 

for each internal sequence Co, c1 , ••• , Cj E k, j < H 3 , where 

(eo, c1, ... , ci) = {J.,LE *Ro: J.,L(s) = Ci for all sE [~3 , i;))} . (5.5) 

Let 

(5.6) 

then for Q-almost all y, 

U(y)( (eo, c1, ... , ci)) = L U(y)( (eo, c1, ... , ci, c)). (5.7) 
cek 

By modifying U appropriately on the remaining null set, we can make (5.7) hold for ally. 

But then each U(y)(·) can be extended to an internal measure on *'R,0 in an obvious way, 

and it's easy (but a bit tedious) to check that U is a random ordinary lifting of u. 
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Remark. If Q = *Q is the nonstandard version of a standard measure Q, there is a very 

simple proof of Lemma 5.2- we can simply let U(y) = 1r(*U(y)). 

We need to go one step further and turn the random ordinary liftings in Lemma 5.2 into 

ordinary liftings. In doing so, we shall find the following notation and terminology helpful. 

If M is an infinite integer, then a set of the form 

{( t: t: ) *Rml Ji < t: Ji + 1 £ . 1 } <,1, ••• , <,m E M _ <,i < -u or z= , ... , m , 

where j 1 , ••• ,jm E •z, is called an M-set. For each t E *R+ define an equivalence relation 

""t,M on *Y by 

YI ""t,M Y2 {::} Yl ( Jh) and Y2 ( Jh) belong to the same M -set for all ~3 ::::; t 

Let [Y]t,M denote the equivalence class of y with respect to ""t,M. 

5.3 Definition We shall call the internal measure Q smooth if the following two conditions 

are satisfied for all y E *Y and all k E *Z, 0::::; k < H 3 : 

(i) There is an infinite integer M and a positive infinitesimal c such that for all Ck/H3-

measurable subsets B of [Y]kjH3,M and all M-sets A 

(ii) If B C [Y]kjH3,M is Ck/H3-measurable with Q(B) > 0, then the measure 

A f-+ Q{zEAizEB} 

is nonatomic. 

In most examples, the integer M will be infinite compared to the (already infinite) 

integer H3 • 

5.4 Theorem Let Q be an internal, nearstandardly concentrated and smooth probability 

measure on *Y. Then any random relaxed control u is the standard part of a nonstandard 

ordinary control U. 
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Proof: Given a random relaxed control u, let U be the random ordinary lifting constructed 

in the proof of Lemma 5.2. We shall construct U by modifying U, and just as for U, all the 

responses of U will be constant on the intervals [~, ~) and take values in the hyperfinite 

set k = {kt, ... , kH}· 

Since Q is smooth, we can fix an infinite integer M satisfying Definition 5.3.1. To 

simplify the notation, we shall write "'k and [Y]k for "'kfH3,M and [Y]kjH3,M, respectively. 

We shall also find it convenient to write 

as an abbreviation of "U(z) (Jh-) = <; for each i :5:. k". 
We are now ready to construct U, but before we begin, let us admit that our U will be 

slightly flawed in one respect - instead of depending on the behaviour of z up to time };3 

as it should in order to be nonanticipating, U(z) (-/fa) will, in fact, depend on z all the way 

up to 'Jj} . This flaw is easily fixed; if we just delay the execution of the strategy by Jh- , we 

get a new strategy which is nonanticipating and which has the same standard part as the 

old one. (We could, of course, have avoided this problem by defining the delayed control 

directly, but this would have made our formulas much less intuitive.) 

Assume that we can define a nonstandard ordinary control U such that for all y E * Y 
and all n < H 3 , we have 

Q{zE [Y]n+I 1\ U(z)(n) =en}= an(Y) r U(z)(eo, ... 'en)dQ(z) 
}(Y]n+l 

(5.8) 

where an(Y) ~ 1. It is then an easy exercise in nonstandard measure theory to show that 

U and U have the same standard part, and hence that U is an ordinary lifting of u. We 

shall leave this exercise to the reader, and concentrate on proving (5.8). 

Let us assume that we have defined U up to time ~!l, and that we now want to define 

U(z) (fb) for ally E *Yin such a way that (5.8) holds. Observe first that if we sum both 

sides of (5.8) for all possible choices of Cn E .k, we get 

Q{zE [Y]n+I 1\ U(z)(n- 1) = Cn-1} = an(Y) r U(z)(eo, ... 'Cn-I)dQ(z)' 
}(Y]n+l 

which means that an(Y) has to satisfy the consistency condition 

an(Y) = Q{z E [Ylr:+1 1\ IJ(Z)(n- 1) ==:_ Cn-1} . 
frYln+l U(z)(Co, · · ·, Cn-I)dQ(z) 

(5.9) 

On the other hand, the nonatomicity condition 5.3.(ii) guarantees that once (5.9) is satisfied, 

it is possible to choose U(z) (fb) in such a way that (5.8) holds and U(z) (iJa) only depends 

on the behaviour of z up to time j[al . 

13 



We now have an inductive procedure for defining U, and it only remains to show that 

the an(Y) in {5.9) is infinitely close to one. Starting with the numerator, we see that 

Q{zE [Y]n+I 1\ U(z)(n- 1) = Cn-1} = 

= Q{zE [Y]n+IIU(z)(n- 1) = Cn-1 1\ zE [Y]n} · Q{U(z)(n- 1) = Cn-1 1\ ZE [Y]n} 

= ,BQ{zE [Y]n+IIzE [Y]n} · an-1(Y) f U(z)(C(), ... , Cn-1)dQ(z), 
}(y]n 

where ( 1 +-b) -l ~ ,8 ~ ( 1 +-b) (we have used condition 5.3(i) in the first factor and the 

definition of an_1(y) in the second). Similarly, we get for the denominator 

f U(z)(C(), ... , Cn-1)dQ(z) = 
J(Y]n+l 

= 'Y ·1 U(z)(C(), ... , Cn-1)dQ(z) · Q{zE [Y]n+IIzE [Y]n} 
(y],. 

where (1 +-b) -1 ~ 'Y ~ (1 +-b). Hence an(Y) = ~an_1 (y), which means that 

( c )-2 ( c )2 1 + H3 O!n-1(Y) ~ an(Y) ~ 1 + H3 O!n-1(Y) · 

By induction, 

and since cis infinitesimal and n ~ H 3 , it follows that an(Y) ~ 1, and the proof is complete. 

Remark: In many applications the smoothness condition is difficult to verify, but in 

Lemma 9.1 we shall indicate a way around this problem. 

6 Dependence on observations and controls 

So far we have only studied the relationship between various kinds of controls, but we 

have now reached the stage where we can begin to approach our stochastic system (1.1 )

(1.3). Obviously, the performance part Xu of this system depends on the control u and 

the observations Yu, and in this section we want to study this dependence in an abstract 

setting. 

Let X= C([O, 1], Rn) and assume that a and bare bounded, continuous functions 

a: X X y X [0, 1] X K---+ Rn 

b : X x Y x [0, 1] x K ---+ S(n) 
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(S(n) is the set of symmetric nxn-matrices) which are nonanticipating in the sense that if 

X ft =X ft andy ft = y' ft, then a(x, y, t, k) = a(x', y', t, k) for all k, and Similarly for b. 

Given a path y E Y and a relaxed response J.L E n, we shall study the Ito-equation 

t t 

Xy,,.,.(t) =I a(xy,,.,., y, s, J.L(s))ds + J b(xy,,.,., y, s, J.L(s))dw(s) (6.1) 
0 0 

As yet, this equation only makes sense when J.L is an ordinary response, J.L E 'R0 , but for 

general J.L we shall simply interpret it as 

t t 

Xy,,.,.(t) = J aJ..I.(xy,,.,., y, s)ds + j b,.,.(xy,,.,., y, s)dw(s) (6.2) 
0 0 

where 

a,.,.(x,y,s) = ja(x,y,s,k)dJ.L(s)(k) (6.3) 

and 

[I , 2 ]1/2 b,.,.(x, y, s) = b(x, y, s, rc) dJ.L(s)(k) . (6.4) 

The square in the definition of bJ.l is natural since it is b2 rather than b itself which determines 

the dynamics of the process (see Cutland [11] for further comments). 

6.1 Proposition Fix a J.tE'R, and assume tha,t (6.1) has a pathwise unique solution for 

each y E Y. For each Radon probability measure Q on Y, we can choose versions of these 

solutions such that the map (w, y) 1-4 Xy,,.,.(w, ·) is P x Q-measurable. 

Proof: The proof falls naturally into two parts. In the first we show that the map y 1-4 Xy,J.l 
is continuous with respect to the norm 

(I 2 )1/2 llxy,,.,.ll = sup lxy,J.<(w, t)i dP(w) . 
t:::;l 

Pick f) E * Y infinitely close to y E Y, and let 

t t 

Xy,•J.<(t) = J*a(Xii,*J.<,i),s, *J.L)ds+ J*b(Xy,•,.,.,i),s, *J.L)d*w(s) (6.5) 
0 0 

Clearly, the nonstandard version *xy,J.< of the solution of (6.2) satisfies 

t t 

*xy,,.,.(t) = l*a(*xy,J.<, *y,s, *J.L)ds+ J*b(*xy,J.<, *y,s, *~.t)d*w(s) (6.6) 
0 0 
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and taking' standard parts on both sides of (6.5) and (6.6), we see that the standard parts 

o Xg,•"' and o•xy,"' both satisfy (6.2). Since we have assumed that (6.2) has only one solution, 

this means that IIXii,*J.&- •xy,J-&11 ~ 0, and hence y 1-+ Xy,J.& is continuous. 

We are now ready for the second part of the proof, in which the continuity of y 1-+ Xy,J.& is 
used to approximate (w, y) 1-+ Xy,J.&(w) by PxQ-measurable simple functions. For each n EN, 
choose a compact set Kn with Q(Kn) > 1- ~ in such a way that {Kn} is an increasing 

sequeric:e whose union is Y. Partition Kn into a finite number of sets A~n), . .. , A~l such 

that if Yt,Y2E~n) for some i, then 

(6.7) 

Pick an element yf") in each partition class A~n), and define 

x<n): n X y- X 

by 

and 

Obviously, each x<n) is P x Q-measurable. By (6. 7) 

(6.8) 

and thus {x<")} is a Cauchy-sequence in L2(0 x Y, X) converging to some PxQ-measurable 

function x. There is a subsequence {x<""')} such that 

sup lx(nt.:)(w, y)(t)- x(w, y)(t)l- 0 
t9 

(6.9) 

for P x Q-almost all (w, y). Comparing (6.8) and (6.9), we see that for Q-almost all 

y,xy,J.&(w,·) = x(w,y)(·) for almost all w, and that x(·,y)(·) hence is a solution of (6.1) 

for all these y's. Modifying x on the remaining y's if necessary, we get the version of xy,J.L 
required by the proposition. 

We shall also need the following result. 

6.2 Proposition Assume that for each y E Y and Jl E 'R, the solution of (6.1} is unique 

in distribution. Then the distribution of xy,J.& depends continuously on (y, Jl). 
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Proof: Let (jj, ji) E *Y x •n be nearstandard with standard part (y, p,), and let Xg,iJ. be 

the solution of the nonstandard version 
t t 

Xg,iJ.(t) =I *a(Xg,iJ., jj, s, ji,(s))ds +I *b(Xg,iJ., jj, s, ji,(s))d*w(s) (6.10) 
0 0 

of (6.1). The idea is to show that the standard part 0 Xy,iJ. of Xy,p. is a solution of (6.1), and 

that the distribution of Xy,iJ. thus is infinitely close to the distribution of Xy,w 

It clearly suffices to show that 

t t 

0 j *a(Xy,iJ., jj, s, jj,)ds = j a(0 Xg,jj, y, s, p,)ds (6.11) 
0 0 

for all t E [0, 1], and that there is a Brownian motion w such that 

t t 

o j *b(Xg,iJ., jj, s, jj,)d*w(s) = j b(0 Xy,p., y, s, p,)dw(s) (6.12) 
0 0 

for all tE [0, 1]. 

The first of these equalities is an immediate consequence of the continuity of a and the 

choice of topology on n. To prove (6.12), note that 

t t 

0 j *b2 (Xg,p., jj, s, il)ds = j b2 ( 0 Xy,iJ., y, s, p,)ds. (6.13) 
0 0 

If we assume for a moment that b is invertible and define (in the notation of (6.4)) 

t 

M(t) = 0 j *bp.(Xg,jj, jj, s)d*w(s), (6.14) 
0 

then 
t 

w(t) = j bp.(o Xg,J.£, y, s)-1dM(s) (6.15) 
0 

is a Brownian motion (simply because the quadratic variation [w](t) = t). Inverting (6.15), 

we get 

t 

M(t) = j bp.(0 Xy,f.£, y, s, p,)dw(s), (6.16) 
0 

and comparing this to (6.14), we see that M equals both sides of (6.12). 

If b isn't invertible, the proof of Theorem 5.3 in Doob [13] shows that we can still find 

a Brownian motion iiJ such that (6.16) holds, and thus our argument goes through also in 

this case. 
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7 The probabilistic setting 

Let us now return to our partially observed stochastic system 

t t 

Xu(t) = la(Xu 1 Yu 1 S,u(yu,s))ds+ lb(xu,Yu 1 S1 U(Yu 1 S)dwt(s) 
0 0 

t t 

Yu(t) =I c(xu, Yu 1 s)ds +I d(Yu 1 s)dw2(s) 
0 0 

We shall assume that the coefficients a, b,c and dare bounded, continuous functions 

a: X X y X [0, 1] X K-+ an 
b: X x Y x [0, 1] x K-+ S(n) 

c: X X y X [0, 1]-+ am 

d: Y x [0, 1]-+ S(m) 

(7.1) 

(7.2) 

which are nonanticipating in the sense explained before, i.e. if X f t = X1 f t and y f t = y' f t, 
then a(x, y, t, k) =a(x', y', t, k) for all kEK, etc. In addition we have to put some conditions 

on thes.e coefficients to guarantee the necessary regularity: 

7.1 Conditions Assume that 

(i) The functions a, b, c, and dare bounded, continuous, and nonanticipating. Moreover, 

d(y, s) is nonsingular for ally and s, and d- 1(y, s) is bounded. 

(ii) Given a relaxed response J.L E 'R, a Brownian motion w1 , and a function y E Y, the 

equation 

t t 

xy,~(t) = la(xy,~,y,s,J.L(s))ds+ lb(xy,~,y,s,J.L(s))dw1 (s) (7.3) 
0 0 

has at most one solution. 

(iii) For each Brownian motion w2 , the equation 

t 

y(t) =I d(y, s)dw2(s) (7.4) 
0 

has exactly one solution. 
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7.2 Remark: Since a and bare continuous and bounded, a straightforward extension of 

Theorem 5.2 in [21] guarantees that there is a Brownian motion WI such that (7.3) has 

a solution for all y and p,. By the "homogeneity" and "universality" results in the same 

paper, condition (ii) also implies that the solutions of (7.3) are unique in distribution, i.e. 

solutions of (7.3) with respect to different Brownian motions WI induce the same measure 

on X. 

We mentioned in the introduction that the two Brownian motions w1 and w2 are sup

posed to be independent, and it will be convenient to work with a special realization of this 

independence. First choose a probability space (OI, PI) carrying a Brownian motion WI 

such that 

t t 

Xy,J.&(t) = j a(xy,!J., y, s, p,(s))ds + j b(xy,J.£, y, s, p,(s))dW1(s) (7.5) 
0 0 

has a solution for all y and p,. Next let (02 , P2) (Y, P2 ) be ordinary Wiener space, let 

W2 be the canonical Brownian motion on 0 2 , and let y be the solution of 

t 

y(t) = j d(y, s)dW2 (s). (7.6) 
0 

Q is the Radon measure induced by yon Y. Finally, let 

be the completed product. In an obvious way, W1 and W2 may be thought of as independent 

Brownian motions on (0, P). 
We shall choose solutions xy,p. of (7.5) such that (wi, y) ~---+- xy,J.&(wi, ·)is P1xQ-measurable 

for each p,ER (this is possible by Proposition 6.1). Using Girsanov's formula, we shall now 

turn (xy,J.&,y) into a solution of (7.1)-(7.2). For each xEX and yEY define 

{ 
t 1 t } 

g(x,y) = exp [(d-2cf(x,y,s)dy(s)- 2 [(d-Ic?(x,y,s)ds (7.7) 

where the first term in the exponent is a stochastic integral. If Px is the measure on Y 
given by 

dPx(Y) = g(x, y)dQ(y), (7.8) 

then Girsanov's theorem tells us that there is a Brownian motion Wx on (02 , P.1:) such that 

t t 

y(t) = jc(x,y,s)ds+ jd(y,s)dWx(s) (7.9) 
0 0 
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We are now ready to describe our solution of (7.1)-(7.2). Let u be a random relaxed 

control, and keep in mind that for each y E Y, u(y) will be a measure on the space n of 

relaxed responses. Define a probability measure Pu on n X n by 

I f(w~, y, fL)dPu(w~, y, IL) = 

=I [I [I f(wby,fL)g(x11,/A(wi),y)dP(wi)]du(y)(IL)] dQ(y) 

for bounded, product measurable f, and let 

Xu: n X n X [0, 1]--+ Rn 

Yu: n X n X [0, 1]--+ Rm 

be defined by 

Xu(wl, y, fL, t) = x11,/A(wl, t) 

Yu(WI, y, fL, t) = y(t). 

(7.10) 

It follows from the construction that as processes on (n x n, Pu), the pair (xu, Yu) is in 

a natural sense a solution of (7.1)-(7.2), and it is this solution we shall work with in the 

sequel. 

8 Standard and nonstandard costs 

The cost of a random relaxed control u is given by 

j(u) = Eu(h(xu)), (8.1) 

where h : X --+ R is a (given) bounded, continuous function, and Eu denotes expectation 

with respect to the measure Pu defined at the end of the preceding section. More explicitly, 

j(u) is given by 

(8.2) 

It is easy to check that if u happens to be an ordinary control, this expression coincides 

with the usual definition. 

If U is a nonstandard random relaxed control, we can carry through the contruction in 

the last section in a nonstandard setting. Abusing conventional notation slightly, we shall 

refer to the resulting processes as *xu, *yu, and the corresponding probability measure as 

* Pu. The nonstandard cost of U is then defined as 

J(U) = *Eu(*h(*xu)), (8.3) 
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where * Eu is expectation with respect to * Pu. 

Our aim in this section is to show that if u is the standard part of U, then j ( u) is the 

standard part of J(U). To do this we must impose one extra condition on our system; we 

need the Girsanov density g(x, y) introduced in (7. 7) to be continuous in the first variable. 

Due to the stochastic integral in the exponent, this is not entirely obvious, but the following 

simple lemma shows that it is enough to require that %s ( d-2c) (x, y, s) is bounded and 

continuous: 

8.1 Lemma Assume that 

k:XxY-+-R 

is a bounded, continuous and nonanticipating function whose first derivative %tk(x, y, t) is 

also bounded and continuous. Then there is a measurable function 

K:XxY-+-R 

which is continuous in the first variable and satisfies 

1 

K(x, y) = J k(x, y, s)dy(s) 
0 

Proof: Integration by parts yields 

1 1 8 j k(x, y, s)dy(s) = k(x, y, 1)y(1)- j y(s) 08 k(x, y, s)ds, 
0 0 

from which the lemma follows immediately. 

We can now prove the result announced above: 

8.2 Proposition Assume that Condition 7.1 is satisfied and that the Girsanov density 

g(x, y) is continuous in the first variable. If u is the standard part of the nonstandard 

random relaxed control U, then 

j(u) = 0J(U). (8.4) 
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Proof: By Proposition 6.1 the map 

is measurable, and by Proposition 6.2 and the continuity assumptions on h and g, it is 

continuous in the second variable. Hence by Lemma 2.5 

J 8(y, ll)du(y, ll) = oJ *()(y, ll)du(y, ll) , 

and according to Lemma 2.2 this is exactly what we want. 

9 Optimal random relaxed controls 

We are now almost ready to piece everything together and show that under the conditions 

we have been working with in the last two sections, an optimal random relaxed control 

always exists and that its cost is equal to the infimum of the costs of all ordinary controls. 

But there is one small problem we have to deal with first. 

9.1. Lemma Let Q be the measure on Y induced by the solution of 

Y(t) =fat d(y, s)dW(s), 

(W is a Brownian motion) and let *Q be its nonstandard version. Then any random relaxed 

control u has an ordinary lifting U with respect to * Q. 

Proof: We would have liked to appeal to Theorem 5.4, but the problem is that there is 

no obvious reason why *Q should satisfy the smoothness condition of that theorem. To 

circumvent this problem, we shall first replace *Q by a measure Q which is smooth, then 

we shall lift u with respect to Q, and then show that this lifting can easily be modified into 

a lifting of u with respect to *Q. 

We begin by observing that according to Lemma 5.2 (and its proof), u has a random 

ordinary lifting U (w.r.t. *Q) which is constant on intervals of the form [-fa, W) and which 

only takes values in a hyperfinite set k = { k1, k2, ... , k H}. Let M = J7 and define 

d(y, t) = *Q([Y]t,M)-1 f d(z, s)d*Q(s) 
j(Y]t,M 

to be the average value of dover the equivalence class of y (recall the definitions preceding 

Definition 5.3). Fix an infinite integer K which is infinitesimal compared to H, and let 

[ti'ITK _ 
y(t) = lo d(Y, s)ds 
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where Tk = inf{t: IIV(t)ll ~ K}. Finally, let Q be the measure y induces on *Y. 
Observe that given the equivalence class [YJi;Ha,M, the diffusion coefficient d(y, s) is 

independent of y and constant on the interval [~, W). Hence an easy calculation with 

Gaussian integrals is enough to check that Q is smooth (we shall leave this to the reader; 

observe that the truncation at K is necessary in order not to get in trouble far out at 

infinity). By Theorem 5.4, u has an ordinary lifting U' with respect to Q. 
In order to modify U' into a lifting of u w.r.t. *Q, we first observe that since both d and 

dare nonsingular, we can establish a one-to-one correspondence between *Y and itself by 

y(w, t) f-+ y(w, t) 

(there's a slight nuisance caused by the truncation at K which we shall simply overlook). l 
Note that with probability one, the two paths y(w, ·) and y(w, ·) are infinitely close. We 

now define U by 

U(y, t) = U'(y, t). 

It is easy to check that since U' is nonanticipating, so is U. Moreover, since y and y 
, are infinitely close with probability one, the standard part of U w.r.t. *Q must equal the 

standard part of U' w.r.t. Q; i.e. it equals u. Hence U is an ordinary lifting of u, and the 

lemma is proved. 

We are now ready for the main theorem. 

9.2 Theorem Assume that Conditions 7.1 are satisfied and that the Girsanov density 

g(x, y) in (7.7) is continuous in the first variable. Then there exists a random relaxed 

control u which is optimal in the following sense 

j ( u) - inf {j ( v) : v is a random relaxed control} = 
(9.1) 

- inf {j ( v) : v is an ordinary control} 

Proof: If 

a = inf {j ( v) : v is an ordinary control}, 

then by transfer 

a = inf { J (V) : V is a nonstandard ordinary control}. 
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Given a random relaxed control v, we can find an ordinary lifting V by Lemma 9.1. By 

Proposition 8.2 

which shows that the two infimums in {9.1) are equal. 

On the other hand, there must be a nonstandard control U such that J(U) ~a. If u is 
its standard part, then 

j(u) = 0 J(U) =a, 

and the theorem is proved. 

9.3 Remark: A trivial modification of the proof shows that 

{j ( v) : v is a random relaxed control} 

is the closure of 

{j ( v) : v is an ordinary control}. 

As an immediate consequence of our construction, we can show that very simple, ordi

nary controls can bring us arbitrarily close to the minimal cost. Call an ordinary control u 

finitary if there is a finite set k C K and an integer MEN such that for each y E Y, the 

path u(y)(·) is constant on intervals of the form [i,, ~) and only takes values ink. 

9.4 Corollary inf{j(u) : u is an ordinary control}= inf{j(u) : u is an finitary control}. 

Proof: For each infinitely large integer HE "'N, the theory developed above tells us that 

there is a hyperfinite set k = { k1 , ••• , kH} and a nonstandard ordinary control VH which 

takes values in k, is constant on intervals of the form [ ~3 , iiti) , and has a cost J (V H) ~ a. 
In particular, J(VH) <a+<= for any given <:>0. By the "underspill" principle of nonstandard 

analysis, there must be a finite Hand a corresponding control VH such that J(VH) <a+ E. 

We now take v to be the standard part of VH. 

Let us end the paper with a brief and informal discussion of the conditions we have 

imposed on our system (1.1)-(1.3). There are no "metaphysical" reasons why we have 

allowed the functions a and b to depend on Xu, Yu, sand u, while c depends on Xu, Yu and s, 
and d only on Yu and s - we have simply chosen the most general conditions our technical 

machinery will allow. It is quite possible that we could extend our methods to the case 
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where c also depends on the control u, but it is vital that d does not depend on Xu and u as 

we needed the measures Yu induced on Y for different controls u to be mutually absolutely 

continuous. It is also important that the diffusion coefficient d of the observation process 

doesn't degenerate too much; if it does, we do not have sufficient inherent randomness 

to approximate random relaxed controls by ordinary controls. An interesting problem for 

future research is to construct an example where an optimal relaxed control does not exist 

(but -of course -where an optimal mndom relaxed control does exist); since there are 

several existence results for optimal relaxed controls of different kinds of systems in the 

literature, such an example would probably have to be quite complicated. 
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