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INTRODUCTION 

The purpose of this paper is to work out the relationship between white noise analysis and 
ordinary calculus in as simple a setting as possible. By studying Wick calculus over finite 
probability spaces, we try to focus on fundamental algebraic relations which are easy to 
lose sight of in the complicated analytic setting of the continuous theory. Our approach 
is very much influenced by P.A. Meyer's "Toy Fock space" version of quantum probability 
theory (see, e.g. [5], [6]). 

In the first section of the paper we work out the basic properties of Wick products on 
toy Fock spaces. If j(x1, · · · ,xn) is an analytic function and X1,X2, · · · ,Xn are random 
variables, we define the Wick functional p>(X1, · · ·, Xn) by replacing all ordinary products 
in the power series off by Wick products. By an easy computation we determine the Walsh 
decomposition of j 0 (X1, · · ·, Xn) in terms of the Walsh decompositions of X 1 , · · ·, Xn. 

In Section 2 we use this relationship to prove the main theorem of the paper: Assume 
that j : en X ek ~ en is an analytic function and that Yi_, Y2, · · · , Yk are given random 
variables with expectations Yl, · · ·, Yk· Then (under a non-degeneracy condition) there is 
a one-to-one correspondence between solutions x1, · · ·, Xn of the equation 

and solutions X 1 , · · ·, Xn of the equation 

Moreover, given a solution x1, · · · , Xn of the first equation, the corresponding solution of 
the second equation can be found by solving a hierarchy of linear equations. 

In the last two sections we take a brief look at possible applications - first to ordinary 
stochastic differential equations where the coefficients are Wick functionals, and then to 

+ This research is supported by VISTA, a research cooperation between the Norwegian 
Academy of Science and Letters and Den Norske Stats Oljeselskap a.s. (STATOIL) 

* Division of Mathematical Sciences, Norwegian Institute of Technology, University ofTrond­
heim, N -7034 Trondheim, Norway 

** Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, N-0316 Oslo 3, 
Norway 

*** Haugesund Maritime College, Skaregaten 103, N-5500 Haugesund, Norway 

1 



partial differential equations with a stochastic term. Of course, within the discrete the­
ory developed here we can only treat discrete approximations to these problems, but the 
methods still give a strong indication of what a continuous approach might lead to. And 
this brings us to the question of whether it is possible to formulate a similar principle in 
a continuous setting; a question we shall not attempt to answer here, but which we hope 
to return to in the future. 

Readers who want to know more about (continuous) white noise analysis, are referred to 
the forthcoming book by Hida, Kuo, Potthoff, and Streit [1]. 

1. Wick calculus on toy Fock spaces 

Fix a finite set A. Let 
n = {wlw :A--+ { -1, 1}} 

be the set of all Bernoulli trials over A, and give n the uniform probability measure P. 
We shall sometimes assume that we are given a measure f-L on A, and refer to the function 
w: P(A) X n--+ lR defined by 

W(A,w) = :Lw(a)~ 
aEA 

as white noise over A. Although f-L and W are not really needed for the systematic de­
velopment of our theory, we shall occasionally use them to facilitate comparison to the 
continuous theory. 

By toy Pock space over A we shall simply mean the space L2 (n, P); i.e., the set of all 
functions X : n --+ C with the norm 

!lXII = (L [X(w)l 2 P(w))~ 

For each A c A define a function XA : n --+ c by 

(1.1) 
ifA#0 

ifA=0 

Clearly, {xA : A c A} is an orthonormal set in L2 (n, P) and since its cardinality equals 
the dimension of L2 (n, P), it must be a basis. Hence any function X E L2 (n, P) can be 
written uniquely as a sum 

(1.2) x = :L X(A)xA 
AcA 

where each X(A) is a complex number. We shall refer to this as the Walsh decomposition 
of X -it is the discrete analogue of Wiener-Ito chaos. 
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We are now rea-dy to introduce the Wick product on L2(n, P). Intuitively the idea is that 
we want an algebraic operation o such that 

(1.3) X 0 X = { XAuB if A n B = 0 
A B 0 otherwise 

If we extend by usual algebraic rules, we see that if X= '2.:: X(A)xA andY= E Y(B)xB, 
then Z =X o Y should have Walsh decomposition Z = '2.:: Z(C)xc where 

(1.4) Z(C) = I)x(A)Y(B)IAUB=C,AnB=0}, 

and this is what we take to be the official definition of the Wick product. 

Remark: Note that if U is the ordinary product of X andY, then U has Walsh compo-
nents 

u(c) = I)x(A)Y(B)IA~B = C}. 

Hence in one sense the Wick product is simpler than the ordinary product; to compute 
Z(C) we only need to know the Walsh components X(A) and Y(B) for subsets ofC, while 
U(C) depends on all Walsh component of X andY. The strategy of this paper will be to 
exploit this feature of Wick multiplication systematically. 

1.1 Example. An element X E £ 2 (fl, P) is called a stochastic integral if it is of the form 

X= j X(s)dW(s) = LX(s)W(s) 

Using that W(s) = .;;[S)x(s), the Wick product of two stochastic integrals is easily 
computed: (! X(s)dW(s)) o (/ Y(s)dW(s)) = 

LX(s).;;[S)x(s) o LY(s)~x(s) 

= j X(s)dW(s) · j Y(s)dW(s)- j X(s)Y(s)d~-t(s) 

Our first result is a trivial observation. 

1.2 Lemma: (L2(fl,P),+,o) is a commutative ring with unit element x0 = 1 

0 

With a well-defined Wick product it is straightforward to define Wick polynomials. If 
m 

p(z1, · · · , Zk) = '2.:: C0 Z0 is a complex polynomial in k variables (where 
lai=O 

a= (a1, a2, · · ·, ak) run over multi-indices), we define an associated operator 

3 



by 

(1.5) 
Tn 

p0 (X1, ... 'Xk) = L CaXfa1 0 ... 0 x~Qk;' 
lai=O 

where, of course, xon =X o ···oX (n times) for every positive integer n, and X 00 is the 
constant 1. 

Remark: Observe that it doesn't make sense to write p0 (X(w)) for p0 (X)(w); the value 
of p0 (X) at w depends on the whole random variable X and not only on its value at w. 

In order to express the Walsh decomposition of p0 (X1, · · ·, Xk) in terms of the Walsh 
decompositions of x1, ... 'xk, it is convenient to introduce the following notation. If 
a = (a1, · · ·, ak) is a multi-index and A is a subset of A, let Pa(A) be the family of all 
sequences of sets 

({A1(1) A2(1) . . . A (1)} {A1(2) . . . A (2)} . . . {A1(k) . . . A (k) }) 
' ' ' C¥1 ' ' ' C¥2 ' ' ' ' Qk; 

where the sets AY) are nonempty, disjoint subsets of A whose union is A. If a= = 0, we 

just let {A~=),···, A~~} be the empty set. We shall write < {AY)} > as an abbreviation 
{ (1) (1)} { (k) (k) of< A1 , · · ·, Aa 1 , • • ·, A1 , · · ·, Aa"'} >. 

The zeroth order component Xi(0) in the Walsh expansion Xi = .2::::: Xi(A)xA will play 
a particularly important part in the theory, and when it is convenient we shall denote it 
simply by Xii hence xi =Xi+ .2::::: Xi(A)xA. 

A#0 

1.3 Proposition. Let p(z) = p(z1, · · ·, Zk) = .2::::: CaZa be a complex polynomial in k 
variables, and let X 1 , · · ·, Xk be elements in L2 (0.) with Walsh decomposition 

xi =xi+ I: xi(A)x(A) 
A#0 

Then the Walsh decomposition p0 (X1, · · ·, Xk) = .2::::: h(A)x(A) is given by 

and - for A =/= 0 

(1.6) 

h(A) = L L Dap(xl, · · · ,xk)X1(A~1)) · ... · X1(A~~) 
a <{A~i)}>EP.,(A) 

J 

· ... · Xk(A~k)) · ... · Xk(Ag-J) 
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Proof: It is an elementary fact from algebra that if p(X1, · · ·, Xk) =I:: caXa is a complex 
polynomial over a commutative ring R, then for any elements a1, · · · , ak E R 

(1.7) 

If we apply this in our situation with ai = Xi we get 

(1.8) 

From the definition of the Wick product we have 

(X1- x1ta1 o (X2- x2ta2 o · ... · o(Xk- Xkta"' 

= (L X1(A)xAta 1 o · · · o (L Xk(A)xAta"' 
(1.9) A#0 A#0 

= L a1!a2! · · · ak! L X1 (A~1)) · ... · Xk(A~k2)x(A), 
A <{A~i)}>E'Pa(A) 

3 

and substituting this into (1.8) we prove the proposition. 

For the convenience of the reader we include a proof of (1.7) in the one variable case (the 
general case is similar, but notationally messy): 

Since the binomial theorem holds in a commutative ring, we have 

'In m 

p(X) = L CkXk = L ck((X- a)+ a)k 
k=O k=O 

rn (n)( ) 
= L p 1 a (X- a)n 

0 n. 
n= 

D 

We can use Proposition 1.3 to extend our "functional calculus" from polynomials to ana­
lytic functions: 

1.4 Definition: Iff is analytic at (x1, · · ·, Xk), define 

(1.10) 
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Note that since. (X1- x1)M1 ~ • • • o (X- Xk)Mk = 0 when JaJ = a1 + · · · + ak > JAJ, there 
are no convergence problems. 

1.5 Example. Let us compute exp<>(X) when X is a stochastic integral X= 'LX(s)W(s): 

= IT (1 + X(s)W(s)) 
sEA 

Recall that W(s) = v;r;)ws. If J.L(s) is very small (infinitesimal?), then 

exp<>(X) = II (1 + X(s)W(s)) = eL 1n(l+X(s).J;Wws) 

sEA 

J X(s)dW(s) 
~ eLX(s)W(s)-~ 'LX 2 (s)IL(s) = _e---::,-----

e~ j X 2 (s)d!L(s) 

2. Functional equations 

Let a1, a2, ···,aN be an enumeration of A. The space cA of complex-valued functions over 
A is isomorphic to eN in an obvious way, and we shall move back and forth between the 
two spaces without further ado. Let 

be an analytic function, and let Y1, Y2, · · ·, Yk : n -t C be a (fixed) sequence of random 
variables with means y1, y2, · · · , Yk· We want to study the relationship between solutions 
X 1' x2' ... 'XN of the stochastic functional equation 

(2.1) 

and solutions x1, x2, · · · , x N of the deterministic equation 

(2.2) 

Note that a solution X= (X1 , · · ·, XN) of (2.1) may be thought of as a stochastic process 
(or a random field) X: A X n -t c. 
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The idea is simple: we want to determine the Walsh decompositions Xi= L::Xi(A)x(A) 
of the solutiop of (2.1) by computing the Walsh decomposition of the left hand side of 
(2.1), and solving the ensuing equations for Xi(A). 

According to Proposition 1.3, the Walsh decomposition of the i-th component of 
F 0 (X1, · · ·, XN, Y1, · · ·, Yk) is 

Ft(Xl, · · · ,XN, Y1, · · ·, Yk) = 

Fi(Xl, ... ,XN,Yb ... ,yk) 

(2.3) + :2::{:2:: :2:: DaFi(xl, ... ,xN,Yl,···,yk)Xl(AF)) ... 
A#0 et <{A~}>E'Pa(A) 

X1(A~2) · · · Yk(A~!:))}x(A) 

By uniqueness of the Walsh decomposition, this means that X1, · · ·, XN is a solution of 
(2.1) if and only if the following set of equations is satisfied: · 

(2.4) 

for A= 0, and for all other A, 
(2.5) 

:2:: L DetFi(Xl, ... ,XN, Yl, ... ,yk)Xl(A~1)) ... Xl(A~{) ... Yk(A~!:)) = 0 

a <{A~}>EPa(A) 

This system is not as complicated as it may look at first glance. To see why, assume that 
we have determined X 1 (B), · · · ,XN(B) for all proper subsets B of A. Then almost all the 
terms in (2.5) are known; in fact, the only unknown quantities are the Xj(A)-terms which 
appear when Det = 8~ .. This structure becomes more evident if we rewrite (2.5) as 

J 

(2.6) 

where all terms on the right hand side are known. Recalling that what we have is really a 
system of equations - one for each value of the index i - we see that our unknown quantities 
are the solutions of a very simple, linear system. 

The strategy for finding the Walsh components of X= (X11 X 2, · · ·, XN) is now clear. We 
first solve the deterministic equations (2.4). Using these solutions as an input, we can then 
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solve (2.6) for all singletons A = { ai}· With these solutions we can solve (2.6) for all two 
element sets A = { ai, aj}, and so on. We sum up our findings in the following theorem. 

2.1 Theorem. Assume that F : c_N x c_k ___. e,N is an analytic function, and let Y1, · · · , Yk : 
n ___. C be random variables with expectations y1 , · · · , Yk respectively. Assume also that 
the Jacobian matrix 

(2.7) 

is nonsingular. Then there is a one-to-one correspondence between solutions x 1 , • · ·, XN of 
the deterministic equation 

(2.8) 

and solutions X 1 , · · · , XN of the stochastic equation 

(2.9) 

Given a solution X= c~) of (2.8), the corresponding solution X= (;:) of (2.9) is 

given by the following hierarchy of equations: 

(2.10) X(0) =X 

and if X(B) has been determined for all proper subsets of A, then X(A) is given by 

(2.7) 

k 8F 
X(A) = -JF(x1, · · ·, XN, Yb · · ·, Yk)-1['2: a(x1, · · ·, Yk)Yi(A) 

1=1 Yl 

+ L L DaF(x1, · · ·, Yk)X1 (Al1)) · ... · Yk(A~!Z))] 
lal>l <{A;}>E'Pa(A) 

As an immediate consequence of the argument above, we have the following corollary: 

0 

2.2 Corollary: Assume that Y1, · · ·, Yk and Z 1, · · ·, Zk are two sequences of random 
variables with the same expectations (i.e. Yi = Zi for all i). Fix a solution Xt, · · ·, XN of 
the equation 

(2.8) 
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and let x1, ... '·xN and x-1, ... 'XN be the corresponding solutions of 

(2.9) 

and 

(2.10) 

respectively. If Y(B) = Z(B) for all B ~A, then X(A) = X(A). 

0 

In the next two sections we shall take a brief look at some applications of the results apove. 
We emphasize that these sections are intended primarily as illustrations of the scope of 
the method and not as systematic expositions of new theory. 

3. Discrete Ito-Wick equations 

In this section we let 
A= {0, 1, 2, · · ·, N}, 

and consider equations of the form 

(3.1) 
X(O) =Xo E C 

X(n + 1) = X(n) + G0 (X(n), n)~t + H 0 (X(n), n) o w(n)J/Sj 

where we think of ~t as a "small", real number. Obviously, (3.1) is a discrete version of 
the continuous Ito-Wick equation 

t t 

(3.2) X(t) = Xo + j G0 (X(s), s)ds + j H 0 (X(s), s) o dB(s) 

0 0 

Equation (3.1) has a unique solution obtained by induction, and our aim is to describe 
this solution in terms of the general machinery developed above. 

If we define F: cN+1 X eN ---+ cN+1 componentwise oy 

(3.3) 

and, fori> 0, 

(3.4) 

Fo(xo, · · ·, XN, Yo,···, YN-1) = xo- Xo 

Fi(xo, · · · ,xN,Yo, · · · ,YN-1) =Xi- Xi-1- G(xi-1,i- 1)~t 

- H(xi-1, i- 1)Yi-1 J/Sj, 
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we see that (3.1) is equivalent to 

(3.5) F 0 (X(O), · · ·, X(N),w(O), · · · ,w(N- 1)) = 0, 

which is exactly the kind of equation we studied in the preceding section. 

In order to apply Theorem 2.1, we must first compute the Jacobian JF(xo, · · ·, YN-1) and 
its inverse. A simple calculation yields 

1 0 0 0 

-a1 1 0 

0 -a2 1 0 

(3.6) JF(xo,···,XN,Yo,···,yN-1) = 0 0 -as 1 

0 0 

where 

(3.7) 

(all derivatives will be with respect to the first variable). Since in our case Yi = E(w(i)) = 0, 
we simply get 

(3.8) 

The inverse of (3.6) is 

1 0 

a1 1 

(3.9) JF(xo, · · ·, YN-1)-1 = 
a1a2 a2 1 

a1a2a3 a2a3 a3 1 

a1a2 ···aN 

We can now use Theorem 2.1 to compute the Walsh decomposition 

(3.10) Xn=Xn+ LXn(A) 
A:;!:0 

0 

of the solution of (3.1). The deterministic part Xn is simply the solution of the equation 

(3.11) 
xo=Xo 

Xn+1 = Xn + G(xn, n)llt 
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obtained by "turning off" the noise in (3.1). If Xm(B) is known for all B C A and 
all m E A, then Xn(A) is given by equation (2.7). In the present setting this equation 
simplifies substantially as many of the partial derivatives and most of the Yi(A)-terms are 
zero, and after a few rearrangements, we end up with 
(3.12) 

Xn(A) = 

n-1 n IAI 
= L II aiL G(k) (xm, m) L Xm(A1) · · · Xm(Ak)~t+ 

m=O i=m+2 k=2 {A1,···,Ak}EP~o(A) 

n IAI-1 
+ L II aiL H(l)(xm,m) Xm(B1) · ... · Xm(Bz)vf5:i, 

mEA i=m+2 l=O {B1,···,Bz}EPz (A\{m}) 

n 
where we have used the conventions that n ai = 1 and that 

i=n+1 

L Xm(B1) · ... · Xm(Bo) = { 1 if A= ~m} 
{B1 , .. ·,Bo}EPo(A\{m}) 0 otherwise 

Equation (3.12) may be simplified further. A simple induction argument on the size of 
A shows that Xn(A) = 0 unless n is larger than all the elements in A (this is also an 
immediate consequence of the fact that X is a nonanticipating process). If we write [A] 
for the largest element in A, then (3.12) reduces to 

n-1 n IAI 

(3.13) 
2:: II aiL G(k) (xm, m) 

m=[A]+1 i=m+2 k=2 {Al,···,A~c}EP~c(A) 

n IAI-1 

+ II ai L H(l)(X[A], [A]) L X[A](B1) · ... · X[AJ(Bz)vf5:i 
i=(A]+2 l=O {B1,···,Bz}EPz(A-{[A]}) 

when n > [A] (here Pk(A) denotes the set of all partitions of A with k partition classes). 

This is still quite abstract, and it will be informative to work out what Xn(A) is when A 
is a one or two element set. For a singleton {A}= j, we get immediately from (3.13) that 

{
0 Hn~j 

Xn({j}) = i=Q_
2 

aiH(xj,j).JfS:t if n > j 

Summing over all j, we see that the "first order" contribution to the Walsh chaos is 

N N-1 n 

(3.15) LXn({j})x{j} = L IT aiH(xj,j)W(j), 
j=O j=O i=j+2 

11 



where W(j) = x{j}.JLQ is white noise. Since 
n-1 

n n-1 '2: G'(xi,i)C:..t 

II ai = II (1 + G'(xi, i)tlt) ~ e•=H1 

the continuous counterpart of the right hand side of (3.15) is 
t 

(3.16) it J G'(xr,r)dr 

es H(xs,s)d13(s), 

0 

which "ought to be" the first order contribution to the Wiener-Ito chaos representation of 
the solution to the stochastic differential eqution (3.2). · 

Turning to two element sets A= {p, q},p < q, we see from (3.13) that when n > q, then 
n-1 n 

Xn{p,q} = L II aiG(2)(Xm, m)Xm({p} )Xm( {q})tlt 

(3.17) 
m=q+1 i=m+2 

n 

+ II aiH'(xq,q)Xq({p})~ 
i=q+2 

Using (3.14) to compute Xm( {p} ), Xm( {q}) and Xq( {p} ), and substituting the results into 
(3.17), we get 

n n n-1 n 

Xn{P, q} = II aiH(xp,p) II aiH(xq, q) L II aiG(2) (xm, m)Llt2 

(3.18) 
m=q+1 i=m+2 

n q 

+ II aiH'(xq, q) II aiH(xp,p)tlt 
i=q+2 i=p+2 

when n > q, and Xn{P, q} = 0 when n :5 q. Summing over all p and q, we get the following 
expression for the secc.md order contribution to the Walsh chaos: 

n-1 q-1 n n n-1 n 

L L II aiH(xp,p) II aiH(xq, q)[ L II aiG(2)(xm, m)tlt]W(p)W(q) 
q=O p=O i=p+2 i=q+2 m=q+1i=m+2 

n-1 q-1 q n 

+ L L II aiH(xp,p) II aiH(xq, q)W(p)W(q) 
q=O p=O i=p+2 i=q+2 

The continuous counterpart of this expression is 
s t t 

it is J G'(xu)du J G'(xu)du it J G'(xv)dv 

( er H(xr, r)dl3r )es H(xs, s) [ e" G(2) (xu, u)du]d13s 
0 0 s 

s t 

it is J G'(xu)du J G'(x.,.)du . 

+ ( er H(xn r)d13r)es H(xs, s)d13s, 
0 0 
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which should therefore be the second order component of the solution of (3.2). 

In principle vie can continue in this way to obtain higher order components, but in practice 
the computations soon become unwieldy; the third order term is a sum of ten iterated 
integrals and can still be written down quite easily, but the fourth order component has 
82 terms! 

An alternative approach to (continuous) Ito-Wick equations was developed in [3] and [4]. 
At the present stage it is not clear to us what the relationship between these two methods 
is; in both cases the original stochastic equation is replaced by a family of deterministic 
equations, but these deterministic equations are not the same in the two approaches! The 
advantage of the method developed in the present paper is that the only nonlinear equation 
we have to solve is the one obtained by turning off the noise in the given stochastic equation; 
the main disadvantage is that the linear equations which we also have to solve, interact in 
a quite complicated way. In the Hermite transform approach of [3] and [4] the nonlinear 
equation is usually more difficult to solve, but there is no coupling between the equations. 

4. Discrete Schrodinger operators with a random potential 

Fix a "small", positive number D.x, and let A be a finite subset of the lattice 

r = {(k1D.x, · · ·, kdb.x): (k1, · · ·, kd) E Z} 

The interior A 0 of A consists of those elements in A whose nearest neighbors all belong to 
A, and the boundary 8A is the rest, i.e. 8A =A\ A 0 • The discrete Laplacian .6. on A is 
defined by 

(4.1) D.u(i) = .6.~2 (u(i)- 2
1d L u(j)) 

jEN(i) 

for all i E A 0 , where N ( i) is the set of nearest neighbors of i. 

For each i E A, let }i, zi : n---+ R. be random variables with expectation Yi, Zi, respectively, 
and assume that Yi is positive for all i E A 0 • We are interested in the boundary value 
problem 

(4.2) 
- b.X(i) + 'Yi o X(i) = Zi fori E A o 

X(i) = Zi fori E 8A 

If we introduce a function 

by 

Fi(Xl, ... 'XJAI, Yl, ... 'YIAI, Zr, ... 'ZJAJ) = 

(4.3) 1 1 """' =-D.x2 (Xi- 2d ~ Xj) + YiXi- Zi 

jEN(i) 

= -b.x(i) + YiX(i)- Zi 
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fori E A0 , and 

(4.4) 

for i E 8A, we see that ( 4.2) is equivalent to 

(4.5) 

The Jacobian ofF is just (the matrix corresponding to) the discrete Schrodinger operator 
-.!l + y with boundary conditions z, and since y is positive, -.!l + y has an inverse G. 

We are now ready to apply Theorem 2.1. If 

xi =xi+ .2::.: xi(A)x(A) 
A:;60 

is the Walsh expansion of the solution of (4.2), then the deterministic part xis simply the 
solution of the boundary value problem 

- .!lx(i) + YiXi = Zi fori E A0 

(4.6) 
Xi = Zi for i E 8A, 

and hence 

(4.7) x=Gz. 

Since almost all partial derivatives ofF are zero, the recurrence relation (2. 7) is particularly 
simple in this case; in fact 

If we are willing to simplify the problem further, we can use (4.8) to obtain an explicit 
expression for Xi(A). Let us assume that Z is deterministic (i.e. Zi = Zi for all i), and 
that Y has the form Yi = Yi + Yix(i), where Y E JR. Then (4.8) turns into 

(4.9) Xi{j} = -G(i,j)xiYj 

when A is a singleton, and 

(4.10) Xi(A) =- L G(i,j)Xj(A \ {j})Yj 
jEA 

when A has more than one element. If we play around with these two formulas, we are led 
to the expression 

Xi{j1, · · · ,jk} = 

(4.11) = (-1)kfjl · ··· · Yjk LXiu(k)G(i,ju(l))G(ju(l),iu(2)) · ··· · G(ju(k-l),iu(k)) 
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where the sum is over all permulation CT of the set { 1, 2, · · · , k}. 

To prove (4.11) by induction, first observe that by (4.9) the formula holds for k = 1. 
Assume next that the formula holds for all sets of cardinality k, and let {j1, · · ·, jk+l} be 
a set of cardinality k + 1. By (4.10) 

k+l 
Xi{jl, · · · ,jk+l} =- L G(i,jz)Xj1 (j1, · · · ,]z, · · · ,jk+l)YJz 

l=l 

where the hat above jz means that jz is not part of the expression. Using the induction 
hypothesis, we get 

. . k+l- -
Xi{Jl, ... ,Jk+l}= (-1) }j1 • ... ·ljk+lx 

(4.12) k+l 

X 2:= G(i,jz) 2:=xiuz(k)G(jz,jcr2 (1)) · ... · G(jcr1(k-l),jcr1(k)) 
l=l CT! 

where for each l az runs over all permutations of the set {1, · · · , i, · · · , k+ 1}. By rearranging 
(4.12) slightly, we get the expression we are looking for, and hence (4.11) is proved. 

The full Walsh decomposition of X can now be written as 

IAI k 

(4.13) xi= xi+ L(-1)k L xikG(i,j1) · ... · G(jk-l,jk) II"Yzx{jl, · · · ,jk} 
k=l (il,-··,jk)EAk l=l 

For simplicity we have in this section worked with the Laplace operator, but it is clear 
that the general method applies equally well to any other operator - even nonlinear ones 
as long as we are able to "solve" the corresponding deterministic equation. 

In [2] we have developed a different approach to problems of this kind (based on extensions 
of the Hermite transform methods from [3] and [4]). As with the ordinary differential 
equations in Section 3, the two methods lead to different kind of computations, and the 
relationship between the two approaches is not at all clear. 

Final remarks -

The purpose of this paper has been to point out the close relationship between stochastic 
Wick equations and their associated determinstic equations in the discrete case. Since 
nobody is very much interested in discrete Wick calculus for its own sake, our real aim 
is to extend our approach to the continuous case, but this leads to difficult convergence 
problems which we have so far not studied in any depth. We are particularly interested 
in understanding the relationship between the approach in this paper and the Hermite 
transform methods developed in [2], [3] and [4]. 
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