
UNIVERSITY OF OSLO
Department of Informatics

Statistical
Analysis of
Concentration
Fluctuations as
Detected by
LIDAR
backscatter

Master’s Thesis

Lei Yang

December 2014





On the front is the ink painting ’Shrike on a Dead Branch’, by Miyamoto
Musashi. It can be taken as a representation of a natural logarithm, and is for
instance similar to the shape of the boundary layer velocity profile 1.

Abstract

Experimentally obtained data of LIDAR backscatter experiments performed by
DTU Risø during the MADONA campaign was analyzed with emphasis on con-
centration fluctuations of atmospherically diffused contaminants in the context of
toxic contaminants. The collected data contained concentrations measured along
the LIDAR line of sight downstream and perpendicular to released tracer aerosols.

Probability density functions and joint probability density functions for concen-
tration and time-derivatives of concentrations are generated and visualized through
Gaussian smoothing. The reduced information in the lowest order moments is in-
vestigated, in particular, to test for possible analytical relations between these
quantities. Detailed results for excess statistics are obtained, such as average level
crossing frequencies for varying positions in the plumes, and average excess dura-
tions. The results are placed in a framework of theoretical results for turbulent
diffusion. Several conditions of atmospheric LIDAR measurements were considered
both in fixed and moving center of mass frames of the plumes. Possible universal
properties of these results will have value for safety precautions in relation to ac-
cidents where toxic material is released, as well as cases of heavy local pollution
released as contaminant plumes.

1Drawing from www.flowillustrator.com/images/MaterialDerivative.jpg.
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Chapter 1

Introduction

The real justifications of these
definitions, however, will reside in
their implications. (On the use of
entropy as a measure of
information.)

C. E. Shannon
A Mathematical Theory of

Communications

This thesis analyses the often violent concentration fluctuations of tracer plumes
released into the near-ground atmospheric boundary layer. The plumes considered
here contain continuous and steady releases of non-reactive atmospheric aerosols.
We analyze their structure at a position downstream with emphasis on their use in
understanding the diffusion of accidentally released toxic contaminants or pollution
within the atmospheric boundary layer flow.

The motivation for this analysis is its potential application in the understand-
ing, and possible prediction, of toxic plume concentration distributions. Toxic
contamination or pollution can be separated into the categories of long-term or
immediate hazards. The problems caused by stable species, such as greenhouse
gases, are difficult to quantify, but for a long time scale, accurate measurements
may be taken of the amount of contaminants in the atmosphere. The form of the
initial diffusion across the atmosphere is less important than the overall quantity,
so a statistical model of particle distributions immediately after release is corre-
spondingly less interesting in this case. The locations of these contaminants are
also distributed throughout the atmosphere, and not limited to the surface layer
of the Earth. These large scale problems are outside the scope of our project.

This thesis is instead concerned with the category of local hazards. The hazards
of immediate contaminants, such as unintentionally released toxic contaminants,
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are primarily local. Their harmful consequences are heavily dependent on the
spread of the concentration distribution as it diffuses according to atmospheric flow
shortly after release. This is also true for environments near factory pipe releases,
where local populations are chronically subjected to medium to low concentration
toxicity over large amounts of time. The distribution of these plumes is driven
by the near-surface wind conditions, and the shape of the terrain. Surface wind
conditions are typically turbulent, and therefore generally unpredictable. Because
the greatest harm occurs where population density is greatest, urban environments
should ideally be considered. Buildings in an urban environment will manifest as
surface roughness from the point of view of the atmospheric fluid flow. Large scale
gas dispersion experiments in a city are unfeasible. Complex terrain experiments
like MADONA can therefore act as substitutes, because they to a certain extent
take into account the complex surface roughness, as compared to a controlled lab
environment. Analysis of data along these lines has been reported in relation to
industrial accidents (Nielsen, Chatwin, Jørgensen, Mole, Munro and Ott, 2002).
Similar studies have been conducted in relation to pollution due to smell from
industry or farming (Mikkelsen and Jørgensen, 2002). A careful literature search
have provided very few studies like these. The closest are the two previously
mentioned reports.

The experiments were done during the MADONA campaign in September
and October 1992 (see Cionco et al., 1999) using an aerosol backscatter LIDAR
(Jørgensen, Mikkelsen, Streicher, Herrmann, Werner and Lyck, 1997) with periodic
measurements spaced at T = 3s, held at ground level and measuring in a hori-
zontal line perpendicular to the plume movement. The measured concentrations
are averaged cross sections distributed along up to 800 meters in the LIDAR line
of sight. Noise was subsequently removed by the DTU Risø group, and the data
was packaged with programs made for display. Due to the age of the programs,
we were unable to directly access the data. The tools were originally written in
FORTRAN, and one of our senior engineers, Bjørn Lybekk, wrote a script for
color density visualization of the data. Figs.1.5a and 1.5b were created using this
program, and showcase the variable spatial spread of the data after noise reduction
by the original MADONA team. I subsequently added lines to output the data
in ASCII without additional encryption. The analysis performed in this thesis is
based on these data sets, which are concentration measurements over time in a
line parallel to the ground and perpendicular to the flow. We received MADONA
LIDAR backscatter measurement data sets, as well as permission to work on them,
from DTU Risø, and have therefore constrained this analysis accordingly.

Our plan was to create an analogy between the LIDAR measured gas release
from MADONA and case study of pollution, with existing data on the state of
the population after exposure. We then wanted to generalize potentially universal
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aspects of the problem through an estimate of the true probability density func-
tions the data are sampled from. Since this combination, for LIDAR data, has to
our knowledge never been done before, we made an effort to formulate the basic
problem through a ”brute force” estimate prior to more detailed analyses. The
entirety is divided into three parts:

(i) Comparing MADONA data sets with realistic pollution measurements. Pol-
lution measurements are typically time averaged single-positional concentration
data. In many cases, only a single averaged data point corresponds to the same
plume, due to for instance changing wind conditions and the often worse time
resolution compared to LIDARs. We therefore scaled the center of mass (CM)
concentration of the MADONA data set we considered best, mad21K, to corre-
spond with the local maximum of a single-positional data set gathered from an
inhabited area with an active volcano (section 1.3) and compared estimates based
on concentration thresholds (ct) and their associated exposure time limits using
environmental air quality standards. Based on qualitative agreement with medical
records, we concluded that the analogy seemed viable. We identified three quanti-
ties that are of interest: percentage time (%t) above ct, frequency of fluctuations,
measured as one-way crossings, (fcross), over ct, and the expected time (〈T 〉) above
ct for each crossing. The MADONA data sets are capable of giving these for a
continuous concentration threshold and over one dimensional space, in both CM
frame and fixed frame (FF).

(ii) Analytical and data processing tools and methods. The three quantities
mentioned above were found for continuous thresholds and positions. We found
the data to be rich enough to support analysis on this level, and three dimen-
sional visualization of crossings in particular yielded qualitative understanding of
the dangers of low-concentration fluctuations some distance from the CM. We at-
tempted model fits corresponding to physical interpretations with falsifiable basis
on 〈T 〉 and %t.

Concepts in fluid dynamics, turbulent similarity theory, and diffusion were
discussed from a ”first principles” point of view. These allowed us to understand
the underlying physics of the problem, and in particular limitations in using LIDAR
to perform statistical sampling of atmospheric diffusion of aerosols. It is explicitly
assumed, as in all related studies (Pope, 2000), that the contaminants are passively
following the flow.

(iii) Generalization. What we mean by generalization is to estimate the under-
lying true probability density function (PDF) p(c), as well as the joint probability
density function (JPDF) p(c, dc/dt), by binning measured occurrences of concen-
tration ranges. Due to the amount of data samples for each position (449 for
mad21K after removing blank data), we have reason to believe that the data set
constitutes a good estimate of the true distribution. Much longer measurement
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times are not necessarily better, since wind conditions could change. If any feature
of the 〈T 〉, fcross or %t is universal, it can be represented through the PDF and
JPDF (sec.6.3), which in principle contain all the information of the statistical
distribution. In practice, the PDFs we obtain will be limited by the resolution
of the binning, which again depends on the number of samples. In order to fa-
cilitate estimation of histogram shapes for the human eye, we introduce Gaussian
smoothing (sec.6.4).

We did not have a template for this work, since we found no previous analysis
of LIDAR data for statistical inferences of contaminant concentration fluctuations
in existing literature. Since we were free to formulate the problem as we worked,
both analytical methods and data processing tools were typically used on the data
right after they were developed. For this reason, the application of tools on the
data, and the results found, are often discussed in the same section where they are
presented, rather than in a large discussion towards the end of the thesis. I have
tried to summarize the most important results in the conclusion.

1.1 MADONA campaign

Figure 1.1: Picture taken of a plume release during the MADONA experiments
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(a) Gas containing sulfur dioxide leaks from Miyake-jima
during the volcanic eruption in 2000. The gas plumes
from the volcano after resettlement are smaller.1

(b) Plumes from the volcano on Miyake island
September 2011.2

Figure 1.2

The purpose of the MADONA experiments was to collect high resolution,
complex terrain, meteorological data from ”diffusion experiments using smoke,
sulphurhexafluoride (SF6), and propylene gas during unstable, neutral, and stable
atmospheric conditions” (Cionco et al., 1999). The MADONA scientists performed
concentration fluctuation measurements on both short bursts of tracer gas (puffs)
and long continuous releases of tracer gas (plumes). In this paper we consider
plume releases, because they best simulate the emission of common toxic pollu-
tants, such as factory releases. An additional reason is that continuous releases
are needed to estimate the underlying probability distributions. This is necessary
because we, in the future, want to compare possibly universal features of the dis-
tribution to similar experiments, as well as extend results to analogous situations.

The plumes in the MADONA experiments were created by mixing liquid SiCl4
with a 25% solution of NH4OH, and blown out through a strong air jet created
by two constant flow rate pumps. SF6 gas was mixed with the plumes and puffs.
18 LIDAR-measured plume data sets were collected over 7 days. Out of these, we
selected 5 sets, namely mad21K, mad21G, mad21F, mad21H and mad15J, as high
resolution data sets to work with. We mainly work with the data set mad21K.

Fig.1.1 shows one of the plumes released during the MADONA experiments.
A LIDAR station can be seen measuring the concentration across the plume at
a fixed position in a line normal to the flow centerline. In this application, it is
important that data from the low concentration edges of the plume are intact, and
the 5 data sets were therefore partially selected on these grounds.
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1.2 Initial Considerations

We first wish to ascertain whether experimental measurements of released plumes
over complex terrain in Salisbury, U.K. can realistically be generalized to account
for similar situations in different geographical locations, under different wind con-
ditions and for different atmospheric contaminants. One requirement for such an
analogy is that the data must be scaleable with respect to incomplete parame-
ter data from the situation where it is to be applied. The moments of the PDF
contain all the information of the distribution (Ch.3), but if we had the PDF of
the actual problem there would be no need for external data sets. In many sit-
uations, only rough averages of concentrations are available, which are sufficient
to estimate large-scale concentration movements, but fail in describing the finer
details of heavily fluctuating concentrations guided by the turbulent atmosphere.
We could then extend the superior estimates of true plume PDFs from LIDAR
measurements like MADONA to point concentration measurements in similar lo-
cations. We can test the feasibility of the analogy qualitatively by noticing that for
people standing at a distance away from the center of the plume, the nature of the
fluctuation may decide whether they are safe or in danger. Thus the fruitfulness
of fitting detailed data to similar situations is dependent on its predictive ability
for low level concentration fluctuations.

Table 1.1: Sulfur Dioxide Exposure Limits

time [min] concentration [ppm]
15 5
60 0.075

A pertinent case study is sulfur dioxide SO2 poisoning. SO2 is a common factory-
produced air pollutant. According to the U.S. Environmental Protection Agency,
inhalation leads to adverse respiratory effects including bronchoconstriction and
increased asthma symptoms. SO2 at high concentrations leads to formation of
other SOX, which react with atmospheric compounds to form small aerosols. These
aerosols penetrate into the lungs, and can cause or worsen respiratory disease, such
as bronchitis (NAAQS, 2014). In this thesis, the SO2 is used as a label to refer
to contaminant gas consisting mainly of sulfur dioxide, with elements of SOX and
associated aerosols. The short-term exposure limit, at 15 minutes, is 5 p.p.m.,

2Picture to the left above: http://cais.gsi.go.jp/Virtual GSI/Volcanology/2000 Miyake/miyake-
index.html

2Picture to the right above: http://static.panoramio.com/photos/large/58953262.jpg
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while the 1 hour standard is 0.075 p.p.m., per 2010 (NAAQS, 2014). See table
(1.1) for convenience.

To study the short-term exposure distribution of such an atmospheric contam-
inant, one needs a statistically significant amount of temporal concentration data
points obtained at least along one dimension. Concentration measurements sam-
pled over time can be found for various atmospheric measuring stations around the
world, especially for geologically active sites, such as volcanoes. However, the mea-
sured data sets do not cover spatial dimensions, and the publicly available data is
often in the form of concentration averages over several minutes. Armed with only
this average number, it is hard to say anything about the statistical concentra-
tion distributions of actual contaminants. Therefore, a suitable compromise seems
to be the use of detailed LIDAR measurements taken from the MADONA sets,
scaled onto the given, averaged values of the concentration data from a suitable
measuring station exposed to the contaminant.

We needed measurements of a controlled population living in polluted, complex
terrain. The area could not be urbanized, if we wanted to compare with the
MADONA data sets. The best fit was Miyake island, south of Tokyo. It had a
population of 2884 by the 2006 census, living near an active volcano (figs.1.2a,
1.2b). Due to the sulphur dioxide which periodically leaks from the volcano, the
residents of Miyake village must at all times have a gas mask ready, and often wear
it. A big volcano eruption in July 2000 forced the inhabitants from the island, but
most of the residents decided to return in 2005, when sulphuric gas release levels
had not yet normalized to pre-2000 levels. Toxic contamination on the island can
serve as a case study, because average and maximum measurements of SO2 levels
have been measured and published for several ”zones” around the island, alongside
medical data concerning the health of longterm residents (Iwasawa et al., 2009).
The MADONA data set mad21K was chosen as an appropriate high-resolution
specimen for comparison (fig.1.4a).

Our ”brute force” analysis is limited to measurements of the two thresholds in
table 1.1 with their associated tolerance times. We consider the CM frame in order
to postpone discussion of parameters. This allows us to introduce the specifics of
translating the data to CM, scaling, threshold measurements, and suggests topics
to be investigated in detail.

Three quantifiable central factors we can surmise are:

• Percentage of time spent in concentrations above the concentration thresh-
olds.

• Average time the concentration spends above each of the concentration

2From: http://cais.gsi.go.jp/Virtual GSI/Volcanology/2000 Miyake/miyake-index.html
3Picture from: http://all-that-is-interesting.com/the-town-where-everyone-wears-a-gas-mask
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Figure 1.3: Picture taken at Miyake-jima, year unknown.3

thresholds.

• Frequency of higher-than-threshold exposure, as measured by one-way cross-
ings over a concentration threshold.

We chose these factors because they can be sampled directly from the data by set-
ting a concentration threshold, as well as computed from the estimated true PDFs.
This means that serve both as a measure of the ”wellness” of PDF estimates, as
well as the ”wellness” of using LIDAR data to estimate the distribution near point
measurement concentrations.

The average and maximal concentrations of SO2 in Miyake reported in (Iwasawa
et al., 2009) were taken from fixed stations on the island in the period between
February 2005 and November 2006, in specified geographical zones. The largest
maximal 5-min average of all the zones was 17.25 [ppm], while the lowest maximal
5-min average of all the zones was 4.27 [ppm]. Because these are 5-min averages,
they will be assumed to represent average concentration rates of centers of plumes
drifting from the volcano. As a smallest estimate, the 4.27 [ppm]. average will be
considered.

Parameters like wind direction and speed are not considered in this brute force
application. The data set mad21K was therefore translated to its center of mass
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(a) Madona data set mad21K. Concentration c is in unnormalized LIDAR signal extinction units. Lab
frame.

(b) Madona data set mad21K. Concentration c is in unnormalized LIDAR signal extinction units.
Center of mass frame

Figure 1.4
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(a) mad21K. Gaps in the data, seen as white vertical ”stripes” are avoided
in the analysis. These gaps appear only in some of the data sets. The
entire sub-array from analysis if all positions at the sample time have
c == 0.

(b) mad14H

Figure 1.5: Colour coded density plot of the data. Made by Bjørn Lybekk.

frame (fig.1.4b). The definition of the center of mass is (§8 Landau and Lifshitz,
1976)

R =

∑
i

miri∑
i

mi

,
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(a) Madona data set mad21K. Temporal average
of concentration in CM frame [R]. Note the slight
skewness and subsequent trailing tail to the right.

(b) Illustration of definitions of average and fluctu-
ating plumes, as given in (Seinfeld, 1983).

Figure 1.6

where we take the concentration as directly proportional to mass. It represents the
reference frame of the motion of the toxic cloud as a whole. This ”well-behaved”
plume is the best case scenario for someone who is exposed to a toxic contaminant
plume, since he can move away from high concentrations. In FF, the effect of the
wind serves to make the high concentration positions less predictable.

Note that the data in the CM frame (fig.1.4b) is contained in arrays of the same
size as those in the FF. This means some of the data on the edges for high wind
fluctuations are cut off from the CM representation. This was done consciously
in order not to artificially ”skew” the data by introducing positions that are not
sampled for the entire data set.

%t, 〈T 〉 and fcross above the two exposure thresholds were considered for the
CM of the plume, and about one Gaussian standard deviation away from it on both
sides. This distance was estimated by considering that if the plume is distributed
normally, 68.2% of the concentration will be distributed within one standard de-
viation away from the center of mass on both sides. The Gaussian distribution
is a solution for the case of a purely classical diffusion of contaminants, sec.4.1,
and can be treated theoretically. However, it does not fit atmospherically diffused
concentration distributions well (Munro, Chatwin and Mole, 2003). In particular,
the FF frame data often exhibit strong skewness. However, the CM frame average
concentration, plotted over the 1D cross-section in fig.1.6a, is more symmetric. In
this section, we call this estimated Gaussian standard deviation σ, and use it as a
measure of distance.

The averaging process in fig.1.6a serves to obscure several important details.
The time-averaged distribution seems to be nowhere near the 15 minute limit
from table 1.1, yet post hoc results from table 1.2 reveal that the center of mass in
fact spends 33% of the time above this threshold. Concentration fluctuations are
glossed over in this form. By average exposure time above thresholds is meant the
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time spent above the given concentration threshold at a time, averaged over all
occurrences in the data. It is unclear what values this takes in the distribution tail
on the right side of the CM. This is significant for the 1 hour threshold. An ini-
tial brute force analysis can therefore start by counting concentration occurrences
above the given thresholds over time, for selected positions.

1.3 Brute Force Approach

1.3.1 Methods

In order to quantitatively predict the toxicity levels of a contaminant plume, we
need the time spent above a given concentration, averaged over all occurrences of
fluctuations above the threshold. In theory, we want

〈T 〉 = lim
τ→∞

1

τ

∫ τ

0

f(t|ct)dt,

where f(t) is the unknown, underlying function that determines the time spent
above a threshold, and ct is the given threshold.

Because we have discrete measurements, the estimated time differs from the
real expectation value 〈T 〉. Our approach is to divide the number of data points
above ct by the number of crossings over ct. Since data points rarely end up directly
on the threshold, the pertinent question is how to pinpoint the exact spot where
the crossing occurs. In the brute force analysis, we make the arbitrary rule that
the flag for the timer that starts incrementing above ct starts counting once a data
point with concentration c > ct is found, and stops counting once it spots a data
point with concentration c < ct. We assume that some of the error by this method
are offset on average, although we can see that a linear interpolation between two
data points on either side of the threshold would yield more accurate results. The
%t excess durations, total crossings, and the average excess duration, 〈T 〉, were
found for the two thresholds in 1.1 using these rules.

The concentrations in the data supplied by the MADONA data sets were scaled
to the toxic levels of SO2 plumes on Miyake by averaging 10 data points around
the center of mass of the plume average shown in fig.1.6a. All concentrations were
linearly scaled according to the ratio found by comparing this average maximum
level with the smallest of the 5-minute maximum levels given by (Iwasawa et al.,
2009), which was 4.27 [ppm]. Our assumption was that a 5-minute maximum
corresponds to a sensor which for considerable portions of that time was located
in the center of the plume. By taking 10 data points around the center of mass, we
can account for the fact that the sensor was not exactly in the center of that plume
during those 5 minutes. Finally, the lowest maximum was used as a conservative
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reference point. This is because a distribution analysis can pinpoint situations
where low excess concentrations occur over long periods of time, and simulate the
fact that the inhabitants are used to living in hazardous conditions, and use their
gas masks properly.

Note that the CM frame arrays are of the same size as the FF arrays. This
means that some information on the edges is lost if the CM at any time is sig-
nificantly different from the CM of the rest of the data. We did this consciously,
since these fluctuations would otherwise skew the data artificially if the position
they represent in CM space moved outside of the LIDAR sampling space.

1.3.2 Results

Table 1.2: Preliminary Results

Measured R - 2σ R - σ R R + σ R + 2σ
Crossings for ct = 5 [ppm] 0 7 59 2 2
Crossings for ct = 0.075 [ppm] 25 43 6 65 45
〈T 〉 for ct = 5 [ppm] 0s 3.86s 7.29s 4.50s 3.00
〈T 〉 for ct = 0.075 [ppm] 7.44s 20.4s 148s 12.6s 5.53s
%t for ct = 5 [ppm] 0% 2.00% 33.9% 0.67% 0.45%
%t for ct = 0.075 [ppm] 13.8% 65.3 % 98.4% 60.6% 18.5%

The results from data set mad21K were scaled against the 4.27 [ppm] average by
taking 10 points across from the center of mass over the entire 1407s measurement.
This is the method we use throughout the thesis for analyzing the MADONA data
sets with realistic concentration thresholds. This scaling is performed separately
for each data set.

The two cutoff concentrations considered were the 15 [min] limit at 5 [ppm] and
the 1 [hour] limit at 0.075 [ppm]. The time-averaged data set (fig.1.6a) exhibits
a slightly larger tail towards the right. The fluctuations also seem stronger here
than on the left side, and the concentration itself does not die off as fast. We
are interested in how this manifests through the SO2 thresholds. Snapshots of the
concentrations can be seen in figs.1.7a, 1.7c, 1.7d, 1.7e and and 1.7f.

1.4 Discussion

The resulting data calculated was based on the bullet points above can be seen
in Table 1.2. As expected, the number of crossings of the higher concentration
threshold is only significant near the center of the plume. Due to the skewness,
there are more crossings at σ left of the CM than to the right. Since the inhabitants
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(a) Data set mad21K : 2σ towards the LIDAR from CM. (b) Zoomed in version of fig.1.7c.

(c) Data set mad21K : σ towards the LIDAR from CM. (d) mad21K : sampled at CM.

(e) Data set mad21K : σ in the direction opposite to the
LIDAR, from the CM.

(f) Data set mad21K : 2σ in the direction opposite to the
LIDAR, from the CM.

Figure 1.7: Red line represents 60 min. ct, green line represents 15 min. ct.

of Miyake deal with toxic fumes daily, we expect them to react appropriately close
to the CM. However, one ”standard deviation” corresponds to 127.5 meters. At
this range, it might be harder to estimate the danger levels. Hence, the 1% of
time spent above the 15 [min] threshold is of some concern. The biggest problem
is at 2σ (255 [m]) away from the center of mass. Here an actual 28% of the
time is spent above the 1 [hour] threshold, which means that 4 [hours] without
a gas mask in seemingly safe surroundings will expose a person to potentially
dangerous levels of SO2. Considering a random exposure over several months, this
least harm ”brute force” analysis finds dangers of long-term respiratory problems
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developing. The conclusions of the medical science team that studied the patients
between autumn 2004 and November 2006 were that ’the study subjects showed
no deterioration in lung function, but that prevalence of cough and phlegm among
all participants were significantly higher in 2006 than in 2004. SO2 exposure-
related respiratory symptoms were observed in adult Miyakejima residents after
returning to the island’ (Iwasawa et al., 2009). This concurs with the ”brute force”
analysis, but would not necessarily agree with a blind estimate using only point
measurements averaged over time.

1.5 Framework for

a detailed analysis

In order to quantify the results measured in the first part of this chapter, we
illustrate some basic characteristics with reference to fig.1.6b.

No violent up-down motions of the plume means stable stratification, as dis-
cussed in section 2.2. This implies that there are few or no ”jumps” in the data.
An example of such a ”jump” is around 1120 [s] in fig.1.5a. Note that we do not
mean the entirely blank ”gaps” in the same figure, which are due to lack of LI-
DAR data at those sample times. The motion of a plume released by a consistent
source in a mean wind with additional horizontal random motions give rise to a
’meandering’ of the plume as illustrated in fig.1.6b.

A horizontally fluctuating plume can be characterized by its local average width
and its local average position. Analytical studies address the mean square values
of both these quantities. A summary of basic results is presented in fig.1.6b.

The basic elements needed to give analytical predictions of excess statistics (i.e.
average crossing frequencies and average excess durations) are discussed in section
6.4.
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Chapter 2

Analytical Concepts

What I cannot create, I do not
understand.

R. P. Feynman
on his blackboard at the time of

his death

In this chapter we briefly discuss relevant concepts related to linear classical
mechanics. This allows for a discussion of the mathematical description of the
fundamental ideas in fluid flow, which in the interest of clarity is discussed from
first principles. Limiting factors in atmospheric diffusion experiments include the
parameters of reference frame, flow speed, viscosity, and stability. These are ex-
perimental variables that a responsible data analyst must take into consideration
in order to avoid the errors of blind data processing.

2.1 Fluid Dynamics

Transport of a toxic, or otherwise unwanted dissolved material in the atmosphere
is dependent on whether the contaminant is reactive with the surrounding atmo-
sphere. In so far as it is reactive, this is a job for the chemist, but the transport
properties themselves are dependent on fluid flow, which is studied in the domain
of fluid dynamics.

The frame of reference of the observer is here important because the smallest
unit considered is still a collection of molecules, which are in general not vibrating
around a fixed position in a ’grid’. This collection of molecules, called a fluid
element, is itself a frame of reference wherein molecules fluctuate in and out. It
is known as the Lagrangian frame, and is the rest frame of the fluid element.
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Variables, e.g. the velocity field u, are here specified by

u(x(t,y(t0)), t),

where y is the position at reference time t0 (Pope, 2000). On the other hand, the
lab frame is called Eulerian, and variables are specified in the standard form

u(x, t),

where the positional vector x is an independent variable measured by a stationary
observer outside the flow.

Fluid dynamics is a continuous approximation, and its proper language is there-
fore calculus. The fundamental rules are the same as for classical mechanics,
namely conservation of mass and conservation of momentum/force balance. The
mass density of fluid elements is denoted ρ. An expression of conservation of mass
in the absence of sources and sinks is that the mass density flux ρu out of the
surface n̂dA, with n̂ pointing outwards from the body, is the same as the loss rate
∂ρ
∂t

of the density throughout the volume (§1, Landau and Lifshitz, 1989). In the
Lagrangian frame,

−
∫
V

∂ρ

∂t
dV =

∮
S

(ρu) · n̂dA,

and using the divergence theorem,∫
V

[
∂ρ

∂t
+∇ · (ρu)

]
dV = 0,

which must be true for an arbitrary volume, so that

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

called the continuity equation. This can be expressed differently:

Dρ

Dt
+ ρ∇ · u = 0,

where D
Dt

= ∂
∂t

+ u · ∇ is called the convective or material derivative. It should be
noted that the convective derivative is not simply the total derivative with respect
to time, but rather emerges due to the frame of reference. This can be seen because
the velocity field u(x, t) is defined for an independent variable x, rather than x(t),
as it would have been if the convective derivative was a total derivative (Hazeltine
and Waelbrock, 1998). In deriving the continuity equation (2.1), a fluid element
of arbitrary size was considered implicitly in its rest frame, and the mass flux was
related to this element. On the other hand, position is an independent variable only
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in an Eulerian frame. The convective derivative therefore represents the derivative
in the Lagrangian frame - for an observer following the fluid element - expressed
in an Eulerian field variable u.

If the fluid element conserves its density in the Lagrangian frame it is incom-
pressible. This happens when the fluid element is unaffected by pressure variations,
and even in gases when local pressure variations are small enough (Batchelor,
2000).

Thus for incompressible fluids,

Dρ

Dt
= 0,

and consequently
∇ · u = 0. (2.2)

Momentum conservation can be expressed similarly to the above derivation of
the continuity equation (2.1) (Pécseli, 2013). The momentum flux ρuu through

the surface n̂dA is balanced by the volume rate of change of momentum d(ρu)
dt

.
Unlike mass conservation, however, momentum sources and sinks are common in
the form of both long range and local forces, here represented by the sum of all
force densities F. For any given volume,∫

V

∂(ρu)

∂t
dV = −

∮
S

ρuu · n̂dA+

∫
V

FdV,

and again using the divergence theorem,∫
V

[
∂(ρu)

∂t
+∇ · (ρuu)− F

]
dV = 0. (2.3)

Using the vector relation ∇ · (AB) = (∇ ·A)B + (A · ∇)B,∫
V

[
ρ
∂u

∂t
+ u

∂ρ

∂t
+ (∇ · (ρu))u + ρu · ∇u− F

]
dV = 0,

where the 2nd and 3rd terms sum to 0 by the continuity equation (2.1). Again, the
integrand must be 0 for an arbitrary volume, whence

ρ

(
∂u

∂t
+ u · ∇u

)
= F,

which is the general form of the force density balance needed. It is a representation
of Newton’s second law, and may be more explicitly written as

ρ
Du

Dt
= F.
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This is another reminder that the convective derivative is the time variation in the
fluid element’s rest frame.

Applicable long range force fields may be superposed on the description as
needed. These fields must be applied on a case-by-case basis, and are not pre-
dicted by a local theory. The common field in an electro-neutral fluid is the grav-
itational field, although in other manifestations of fluid theory, such as magneto-
hydrodynamic (MHD) descriptions of plasma, other fields such as that for the force
due to an imposed magnetic field should also be included (Pécseli, 2013).

The local force field acting on an arbitrary fluid volume may be expressed in
terms of the pressure gradient (§2, Landau and Lifshitz, 1989)

−
∮
S

pn̂dA = −
∫
V

∇pdV.

If the gravitational acceleration is added,

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ g.

This is called Euler’s equation. It is sufficient for many purposes, for instance
usually in hydrodynamic wave theory, but in other cases internal friction in the
form of viscous forces must be accounted for.

A general way of looking at the variation of momentum in a fluid element is to
consider the tensor formulation of the integrand in eq.(2.3) in the absence of long
range fields. Let the local force be expressed by the gradient of the pressure, as in
Euler’s equation:

∂(ρui)

∂t
= − ∂

∂xj
(pδij + ρuiuj).

Evidently, the momentum is time-propagated by the spatial variation of a ten-
sor quantity. It is named the momentum flux tensor Π, and describes here the
thermodynamically reversible transfer of momentum in the fluid volume due to
mechanical transport and internal, adiabatic pressure differences. The governing
equation for momentum transport in the absence of long range fields is therefore:

∂(ρui)

∂t
= −∂Πij

∂xj
. (2.4)

To incorporate the effects of internal friction, an additional, thermodynamically
irreversible term called the viscous stress tensor σ can be added:

Πij = pδij + ρuiuj − σij.

The viscous stress tensor together with the pressure constitute the stress tensor
T, the mathematical representation of the internal forces that manifest when fluid



CHAPTER 2. ANALYTICAL CONCEPTS 21

elements interact with each other. Its components Tij represent the ith component
of stress on a surface with normal vector pointing in the j direction (Acheson,
1990). Atmospheric gases are in general Newtonian fluids, and for these the viscous
stress tensor is a linear function of the first derivatives of velocity. It can be
shown (§15 Landau and Lifshitz, 1989) that for Newtonian fluids, the momentum
equation can then be written as

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ µ∇2u + (ζ +

1

3
µ)∇(∇ · u),

where µ is the dynamic viscosity coefficient. ζ is sometimes called the second
viscosity. Together with eq.(2.1) this constitutes the full Navier-Stokes equations,
and can be solved to model a fluid flow given appropriate boundary and initial
conditions. They can be simplified substantially by assuming incompressible flow,
and become

∇ · u = 0
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u. (2.5)

µ
ρ

= ν is the kinematic viscosity coefficient. Long range fields such as gravity may
be superposed on the solution when needed. In theory, given boundary and initial
conditions, the solution of the Navier-Stokes equation set (2.5) will give a complete
description of the fluid flow in a given system.

Two issues then arise. (i) Under what circumstances can incompressibility be
assumed in the context of atmospheric physics? (ii) Is the set of Navier-Stokes
equations generally solvable under atmospheric conditions?

(i) The condition for incompressibility can be illustrated by assuming com-
pressible perturbations p = p0 + p̃ and ρ = ρ0 + ρ̃ in an irrotational, ideal gas.
The velocity field can then be characterized by a scalar potential through ∇φ = u.
It can be shown (§64 Landau and Lifshitz, 1989) that this potential satisfies the
wave equation

∂2φ

∂t2
− C2∇2φ = 0,

where the velocity of sound C =
√
∂p/∂ρ under constant entropy. In the case of a

plane wave, this can be solved together with the adiabatic property p̃ = (∂p/∂ρ0)sρ̃
(Landau and Lifshitz, 1980) to give the 1 dimensional condition

u

C
=

ρ̃

ρ0

.

Since the right hand side of the equation represents the compressibility of the gas,
a rough estimate for incompressibility is u << C, or in terms of the Mach number
M = u

C
,

M << 1.
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This is satisfied under normal wind conditions, considering that a moderate breeze
on the Beaufort scale (MET, 2014) is only ∼ 6− 8 m/s, while the speed of sound
through air is ∼ 343 m/s. On the other hand, the presently highest measured wind
speed we could find is 113 m/s (WMO, 2014), and for these sorts of anomalous
speeds the incompressibility assumption is obviously very poor. Rapidly traveling
objects will compress the air, but the aerosols considered in this thesis are simply
released into the wind and considered as passive scalars. This thesis therefore
assumes incompressible flow.

(ii) Whether the Navier-Stokes set is solvable is dependent on the flow condi-
tions. Consider a decomposition of the field velocity into a mean and a fluctuating
part:

u = u0 + ũ.

If the flow can be linearized, i.e. fluctuations to the 2nd order in the non-linear term
(u · ∇)u may be neglected, then the momentum flux tensor Π will not depend on
shear stress terms ũiũj 6=i, and the set can then be closed. However, the atmosphere
is not mainly driven by linear processes, and the momentum transfer cannot be
accounted for purely by normal stresses, since these contribute little to momentum
transport (Tennekes and Lumley, 1972). The shear stresses cannot be found within
the Navier-Stokes equations without generating additional unknowns. This is the
closure problem of turbulent flow, which will be discussed in chapter 3.

2.2 Instability

Regarding the conditions under which LIDAR measurements of concentration fluc-
tuations are taken, a distinction is made between stable and unstable atmospheric
flow. Given that the LIDAR measures a contaminant plume from a fixed position,
good statistical data is dependent on the plume being relatively stationary with
respect to the LIDAR line of sight, so that the concentration fluctuations measured
over time are always related to the same horizontal axis in the plume’s reference
frame. The meandering of the plume along the LIDAR line of sight is analyzed
in the fixed frame statistical analysis, but vertical meandering is suggested by the
sudden lowering of concentration throughout the data. This can be difficult to spot
for a data analyst who was not present during the measurements, considering that
large fluctuations occur naturally in a turbulent fluid. Even though atmospheric
instability onset can be described as a deterministic phenomenon which can be
solved through classical physics, the unstable phenomenon itself cannot be fully
described deterministically. Deliberate measurements of unstable plumes may be
fruitful, but even if the LIDAR could follow the center line of the plume as it
moves vertically, the change of angle necessitates an assumption of isotropy if the
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data is to be analyzed statistically. Therefore, one dimensional LIDAR scattering
sensors may not be the best experimental tool for this sort of measurement.

What remains to be shown is that atmospheric instability onset can be derived
mathematically through classical physics. One point of interest is what happens to
a fluid element that is transported in a local gravitational field in Earth’s boundary
layer. Since a fluid element is not a single molecule, but a collection, the mass
of the element must be found from the mass density. Assume that there are n(z)
molecules in a given fluid element. Say that the average mass of one molecule is
〈m〉 . Then,

ρ = n(z)〈m〉,

where z is the height-coordinate.
Consider an element with density marked ρ′, in a medium of density ρ. In the

rest frame of the surrounding gas, the fluid element experiences a gravitational pull
relative to the surroundings due to its density difference from the media. Since the
densities of the elements are dependent on z, we can use the well-known equation

F = mg = −dU
dx

, (2.6)

to construct the potential energy, U , of a fluid element, due to the local gravi-
tational potential. The relative potential that a fluid element experiences in the
reference frame of the surrounding media can be expressed as

U = −gV
∫ z

z0

(ρ− ρ′)dz′,

where V is the volume of the fluid element. The element is assumed small enough
to be uniform, and the variation of ρ with respect to height is assumed to apply
equally to the entire element. We can set z0 = 0 as the point of origin of the fluid
element. Then ρ′0 = ρ0 due to thermodynamic equilibrium. If the fluid element
is moved slightly from its natural habitat to a position z, as long as the height
increment of the element, ∆z, is small, the new density can be expressed as a
linearized extension of the previous one:

∂ρ

∂z
|surroundings =

ρ− ρ0

∆z
,

∂ρ

∂z
|element =

ρ′ − ρ′0
∆z

.

Now let ∆z → z. In the context of linearization, ∂ρ
∂z

is considered a constant. The
relative gravitational potential between the two reference frames is then

U =
1

2
V gz2(

∂ρ

∂z
|element −

∂ρ

∂z
|surroundings). (2.7)
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Consider a fluid element that performs oscillations of this type in the atmosphere,
so that an average potential energy 〈U〉 can be found. If the oscillations are con-
strained, the time average of kinetic and potential energy, 〈T 〉 and 〈U〉 respectively,
may be taken as

〈T 〉 = lim
τ→∞

1

τ

∫ τ

0

T (t)dt, 〈U〉 = lim
τ→∞

1

τ

∫ τ

0

U(t)dt,

and U is a homogeneous function of the co-ordinates, i.e.

U(αr1, ...αrn) = αkU(r1, ...rn).

The virial theorem then applies (§10 Landau and Lifshitz, 1976), and

2〈T 〉 = k〈U〉, (2.8)

where k is called the degree of homogeneity of U .
The degree of homogeneity of the potential energy found in eq. (2.7) is k = 2.

This case is special. Using k = 2 in the virial theorem, eq.(2.8), we apply eq.(2.6)
to get

−dU(z2)

dz
= mz̈ ∝ z.

The result describes a harmonic oscillator, and is interesting because the period
of small oscillations is independent of the amplitude of oscillation. This means
that an angular frequency of fluid element oscillations may be ascribed to general,
thermodynamic conditions, without knowing the exact distance each fluid element
moves.

This property of a harmonic oscillator may be shown using mechanical simi-
larity principles. In classical mechanics, Lagrange’s equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0,

with appropriate boundary conditions, completely determine the equations of mo-
tion of the classical system. L is the Lagrangian of the system, which in an energy
potential that is not explicitly dependent on time gives

L = T − U,

while qi are the generalized coordinates of the system. In this case, there is only one
coordinate, z, and because it is a Cartesian coordinate, the equations of motion
are expressed in terms of mass,

mẍ = f(x, ẋ).
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Multiplication of the Lagrangian of the system by a constant does not change the
equations of motion (§10 Landau and Lifshitz, 1976). One can multiply the space
coordinate z and the time coordinate t with constant factors such that

zb = αza tb = βta.

Since

U(zb) = U(αza) = αkU(za),

and

T (zb, tb) = (
α

β
)2T (za, ta),

there is only one way to express

L(zb, tb) = cL(za, ta)

for constant c, the condition for conserving the equation of motion, and this is by
setting

β = α1− k
2 .

This means that there is a classically deterministic relation between the size of
path of the particle, and the corresponding time of motion for the particles to
follow the paths. However, setting k = 2 yields a time of motion, in this case the
period of oscillation, that is independent of the size of the path taken, in this case
the amplitude of oscillation.

Note that it is now known that 〈T 〉 = 〈U〉. The virial theorem in eq.(2.8)
only works if the motion takes place in a finite region of space, for finite velocities.
Otherwise the mean kinetic energy

〈T 〉 = lim
τ→∞

1

τ

∫ τ

0

T (t)dt (2.9)

would grow out of bounds, meaning the element would no longer be constrained
to the local (effective) potential field. In the current application, this means that
the fluid elements would be accelerated out of the reference frame of the local
atmospheric medium. Considering that the atmosphere is composed of several
species of molecules, each of which can be assumed homogeneous in mass, this
type of instability can cause atmospheric layering, where different species separate
into different substrate heights. Relatively mild wind conditions are required for
plume measurements since the contaminant is carried passively.

The condition for instability may be found. Since 〈T 〉 is proportional to v2, it
must be positive. This means that the condition for breaking the virial theorem eq.
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(2.8), and therefore having unconstrained particle oscillations, is that 〈U〉 becomes
negative, i.e.

(
∂ρ

∂z
|element −

∂ρ

∂z
|surroundings) < 0,

∂ρ

∂z
|surroundings >

∂ρ

∂z
|element. (2.10)

The equation of motion of a harmonic oscillator is of the form

z̈ + ω2
Bz = 0.

It is related to the potential energy as expressed in eq.2.7 by

mz̈ = −∂U
∂z

, z̈ = −1

2

∂

∂z
(z2ω2

B),

hence the harmonic oscillation has angular frequency

ω2
B =

g

ρ
(
∂ρ

∂z
|element −

∂ρ

∂z
|surroundings).

When the system becomes unstable, ωB is imaginary as expected. This corresponds
to exponential, rather than sinusoidal, solutions of the equation of motion. This is
called unstable stratification. The harmonic angular frequency used in this context
is known as the Brunt−V äisälä frequency. See for instance (Yeh and Liu, 1972).
This frequency is special, as pointed out previously, because it corresponds to small
vibrations, and is therefore independent of the amplitude of oscillations.

An explicit solution of this instability criterion is in order. Consider a ’naive’
view of the Troposphere where the primary composition of O2 and N2 is simplified
to a single diatomic ideal gas. The ideal gas approximation is good for sufficiently
rarefied gases, where the intermolecular interactions are negligible. This can be
justified loosely on the grounds that the previously assumed incompressibility im-
plies rarefaction, and the chemical composition is uniform. Since the molecular
interactions are small, the gas number density can be formulated according to the
Boltzmann distribution

n(r) = n0e
−U(x,y,z)/kBT ,

where n is the number density of molecules (§38 Landau and Lifshitz, 1980). This
is transformed into the barometric formula by inserting the effective gravitational
potential for low altitude variations,

n(z) = n0e
−〈m〉gz/kBT .

The quantity Hn = kBT
〈m〉g is called the density scale height, and differentiating

gives
1

Hn

= − 1

n

dn

dz
= −1

ρ

dρ

dz
. (2.11)
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Figure 2.1: Illustration of unstable stratification with large up and down motions of the plume. These are
conditions which should be avoided for LIDAR experiments. The figure is a single frame from a film taken at
Risø National Laboratory.

For an isothermal ideal gas, dp = kBTdn, and so for an isothermal atmosphere,

p = p0e
−z/Hp .

This is the scale where, for an isothermal atmosphere, the pressure has dropped
to ∼ 0.37 of its original quantity. This scale is approximately 8 km in the Tropo-
sphere. Differentiating the above gives

1

Hp

= −1

p

dp

dz
. (2.12)

The movement of the fluid element from its position of thermodynamic equilib-
rium to its new position can be assumed fast enough so that no heat was exchanged
with the environment, but slow enough so that pressure p′ = p, so that the process
was adiabatic. For adiabatic processes,

pργ = const,

where γ = f+2
f

= CP
CV

, for f degrees of freedom. Differentiating this expression
gives

1

p
dp =

γ

ρ
dp. (2.13)

Then according to eq.(2.13) and eq.(2.12),

∂ρ

∂z
|element =

ρ

γp

∂p

∂z
= − ρ

γHp

,
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Figure 2.2: Horizontal spectra at different heights. Taken from (Finnigan et al., 1984), including the original
figure caption. The distinct spikes (given by the full lines) at low frequencies originate from gravity waves.

and according to eq.(2.11), the density of the environment between the two heights
changes according to

∂ρ

∂z
|surroundings = − ρ

Hn

.

Hence,

ω2
B = g

(
1

Hn

− 1

γHp

)
, 〈U〉 =

1

2
ρz2g

(
1

Hn

− 1

γHp

)
,

and the instability criterion is
γHp > Hn.

Using this criterion, one could theoretically predict the expected occurrence of
stratification and subsequently avoid those conditions for making concentration
fluctuation measurements. If we include viscosity (Yeh and Liu, 1972) we find
the stable solution given above to be damped. As an intermediate case we can
find neutrally stable conditions where the growth rate exactly compensates viscous
damping, to give undamaged oscillations.

An unstably stratified atmosphere will be characterized by large scale up and
down motions, as visualized for instance in fig.2.1. Such conditions are disadvan-
tageous for LIDAR-detection, since the plume can spend significant time intervals
at larger altitudes, so that it is not crossed by the beam. The data analyzed in the
present thesis refer to stable or neutrally stable conditions (in this sense) where the
turbulent motions are primarily in the horizontal direction (Finnigan et al., 1984),
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(Einaudi and Finnigan, 1993). This information is not available to us from the
MADONA experiments, but fig.2.2 serves as an illustration, also for our case.

By its derivation, the Brunt-Vaisala frequency characterizes large scale, or bulk,
oscillations of the entire stratified atmosphere. If finite wavelengths are considered
these waves will be called atmospheric gravity waves (Hines, 1960), following their
own dispersion relation. Indications of these waves are given by the full lines at
low frequencies in fig.2.2.
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Chapter 3

Statistical
Treatment
of Turbulence

3.1 Description of Turbulence

1 Similarity is about finding properties that remain invariant when the variables
of the system are scaled by a common factor. In fluid dynamics, these more
general properties allow us to characterize flow regardless of form. We are therefore
interested in dimensionless quantities.

Typically given parameters of flow are the size of the media in at least one
dimension, on the order of the length scale L, (O (L)), the flow velocity O (U),
and the kinematic viscosity ν. In SI units:

L = [m] U =
[m
s

]
ν =

[
m2

s

]
.

Dimensionless combinations of the above are powers of

R =
UL

ν
,

called the Reynolds number. If the lengths r and velocities u are measured in
terms of L and U , dimensionless parameters r

L
and u

U
can be introduced, represent-

ing measurements in terms of the scales. Since the only dimensionless combination

1Picture above from: http://i621.photobucket.com/albums/tt294/toddsiler1/LeonardodaVincisStudyofDeluge.jpg
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is Reynolds’ number R,

u = U · f
( r

L
,R
)
,

for some unknown function f . Similarly the pressure can be described in terms of
Reynolds’ number as

p = ρU2 · g
( r

L
,R
)
,

for some other function g (Landau and Lifshitz, 1989).
In the incompressible Navier-Stokes eq.(2.5), the term (u · ∇)u represents in-

ertial forces, while ν∇2u represents viscous forces. We estimate these quantities
as

(u · ∇)u ∼ U2

L
ν∇2u ∼ νU

L2
.

As a result,
|(u · ∇)u|
|ν∇2u|

∼ U2/L

νU/L2
=
UL

ν
= R.

Evidently, R signifies the ratio between inertial and viscous forces in the flow.
Turbulence typically occurs at very high Reynolds’ numbers, and is therefore char-
acterized by strong non-linearities. We can also assign Reynolds numbers for local
length scales. For instance, the smaller eddies in a turbulent field of e.g. R ≥ 5000
are dominated by both viscous and inertial forces. Then we assign Rlocal ∼ 1 6= R.
In this way, we use Reynolds’s numbers to characterize scales of flow. Note that
Reynolds’s number for a turbulent flow also approximates the ratio between the
molecular and turbulent time scales, R ∼ Tmol

Tturb
(Tennekes and Lumley, 1972).

Since as far back as Boussinesq (Feriet and Pai, 1954), it was held as impractical
to follow each heavily fluctuating fluid element. Instead, statistical ensembles of
fluid elements are constructed, approximated by the time average, in the sense of
eq.(2.9). Similarity solutions based on mean values can be constructed.

A turbulent velocity field can be considered a random function oscillating in
some sense around a mean (Tennekes and Lumley, 1972):

u = 〈u〉+ ũ,

where the fluctuation ũ is considered the result of superposition of turbulent eddies.
The fluctuation ũλ for arbitrary length scale λ may be taken as the velocity of
turbulent eddies at that scale. These eddies are the rotations and reverse currents
created in unstable flow, for instance in high R flow past material obstacles. The
largest eddies are created first. As R increases, subsequently smaller eddies are
created. The largest eddy sizes are denoted O (l), where l is called the external
scale, and correspond to small frequency ”vibrations”. They are identified with a
scale l where the fluctuation ũ is relatively large. Most of the kinetic energy of
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the fluid is retained in these eddies, and this scale is therefore called the energy
range. The smallest eddies are on the scale where viscous effects are important.
The kinematic viscosity ν is scale-independent. Since Rlocal estimates the relative
importance of inertial against viscous effects at the length scale λ, corresponding
to local velocity fluctuations ũ, if

Rλ ∼
ũλλ

ν
∼ 1

or lower, viscous effects are important. This internal scale corresponds to the
smallest eddies, and is called the dissipation range. The kinetic energy from larger
scales is here transferred to heat. The range between the energy and dissipa-
tion scales is called the inertial range. Fully developed turbulence occurs when
a continuous range of eddies have been created here. The Richardson cascade
(Richardson, 2007) (Richardson, 1926) postulates that energy passes with little
dissipation within the inertial range, from small to large frequencies, which leads
to the conclusion that similarity arguments may be employed to create scaling
laws within this range.

Viscosity is not important in the energy and inertial ranges. Dimensional
arguments may be used, since the large-eddy energy dissipation

ε =

[
J

kg · s

]
can only be constructed through

ũ =
[m
s

]
l = [m] ρ =

[
kg

m3

]
.

The only dimensionally valid relation is

ε ∝ ũ3

l
.

Since Richardson cascade assumes that the energy dissipation ε is constant above
the dissipation range, this means that the eddy velocities are related to their
respective length scale λ within the inertial range by Kolmogorov’s and Obukhov’s
law (Kolmogorov, 1991):

ũλ ∝ (ε · λ)
1
3 .

The invariance of the energy dissipation can then be used to relate the two scales,
hence:

ũλ ∝ ũ ·
(
λ

l

) 1
3

, (3.1)
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which illustrates the similarity properties in the inertial range. This can be made
obvious by considering the ’translation’ in Reynolds’ number between scales, using
eq.(3.1):

Rλ ∼
ũλλ

ν
∼ ũ · λ 4

3

ν · l 13
∼ R ·

(
λ

l

) 4
3

.

For instance, let the internal scale where Rlocal ∼ 1 be denoted λ0.
From eq. (3.1),

l

(
ũλ0
ũ

)3

∝ λ0,

viz

λ0 ∝
l

R
3
4

ũλ0 ∝
ũ

R
1
4

.

We want to know whether similarity theory is applicable to fixed source diffusion of
a contaminant. In terms of similarity theory, the question is whether the dispersion
〈r2〉 is mainly dependent on the inertial eddies, or the large eddies. Consider the
time variation of the one-dimensional case:

d〈r2〉
dt

= 2〈r(t) · u(t)〉 = 2

∫ t

0

〈u(t′) · u(t)〉dt′.

The correlation
∫ t

0
〈u(t′) · u(t)〉 is mainly dependent on (t− t′) rather than t or t′

separately (Batchelor, 1950), and can therefore be written S(t− t′), such that

d〈r2〉
dt

= 2

∫ t

0

S(τ)dτ.

When τ = 0, S(τ) = 〈u2〉 for a stationary process, and is not strongly dependent
on the inertial eddies. As τ increases, the large eddies, which are dominated by the
boundary conditions, are first excited (Batchelor, 1950). Thus similarity theory
can not be used until the turbulence is fully developed. When this happens is hard
to estimate. However, the diffusion process for very large τ tends towards classical
diffusion (sec.4.2), which we can understand and simulate through random walk
models (sec.4.1).

The second option is to use a completely statistical approach. It should be
specified that when the dispersion 〈r2〉 is expressed as an expectation value, this is
theoretically sampled from an ensemble of individual realizations under the same
statistical conditions. To approach this in an experimental setting, the ensemble
must be equated with the sample over space or time. Hence in practice, the
ensemble integral is often the experimental time average over time T (Feriet and
Pai, 1954). Let ω stand for samples in the measure space. Then

〈f(x, t, ω)〉 =

∫
ω

f(x, t, ω)dω ∼ 1

2T

∫ T

−T
f(x0, t)dt.
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This depends on how steady the measurement conditions are, as well as whether
the time average represents an ensemble average. The first is decided practically,
since a long measurement time may lead to uncontrolled fluctuations due to factors
that vary in the long time scale. Ergodicity is the hypothesis that an observation
over a long time is an accurate depiction of the phase space of the system, which
is where permutations of fluid elements’s state (q, p) occur as time processes. For
thermodynamics, this can be shown by Liouville’s theorem, but no complete proof
exists for turbulent fluids. Nevertheless it is a another assumption which is made
in the statistical treatment of the subject.

The statistical moments, e.g. of the field velocity u, are

〈un〉 =
1

2T

∫ T

−T
un(t)dt.

The first moment 〈u〉 is the mean flow velocity, and as has been shown above,
the turbulent flow field can be deconstructed into a mean and a fluctuating part.
The second moment 〈u2〉 is proportional to the mean energy density of the flow.
Thus, important physical characteristics of the flow can be gathered through simple
statistical analysis.

When we want to generalize statistical data to account for different boundary
and surface conditions, the underlying ensemble can be expressed according to
a (normalized) probability density function (PDF) p(x), so that the moments of
some variable x can be found through

〈xn〉 =

∫ ∞
−∞

xp(x)dx.

In practice, this typically means binning frequency of occurrence of variable x
within xi ±∆x (sec.6.1).

3.2 Statistical Moment Relations

For classical diffusion, the {0, 1, 2}th moments (blue and green in figs.3.1a, 3.1b) are
sufficient for a macroscopic description (sec.4.1). This is not the case for turbulent
diffusion, where the presence of extreme fluctuations and a lack of symmetry about
the mean have to be accounted for. The first is related to the kurtosis, the second
to the skewness of the distribution.

For a variable c with mean µ, the skewness is defined as the variance-normalized
third moment:

α3 =
〈(c− µ)3〉

[〈(c− µ)2〉] 32
,
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(a) Fixed Frame (b) Center of Mass Frame

Figure 3.1: The first 4 moments of the data set K, Day 265 of measurement. The set has been normalized
according to Miyake concentrations.

while the corresponding kurtosis is defined as:

α4 =
〈(c− µ)4〉

[〈(c− µ)2〉]2
.

The normalization by variance ensures that these quantities are dimensionless.
There exists a lowest bound on the kurtosis, relating it to the skewness, courtesy

of Karl Pearson (Pearson, 1916). It can be found by constructing the quadratic
form (Gnedenko, 1997) in the continuous distribution function (CDF) F (c). For
variable c to the point c0,

F (c0) = P (c ≤ c0),

where P (c ≤ c0) is the total probability that c ≤ c0. The moments are then defined
in terms of the CDF as

〈cn〉 =

∫ c0

−∞
cndF (c).

If νi(a) is the ith moment around a:

Jn =

∫ [ n∑
k=0

tk(c− a)k)

]2

dF (c) =
n∑
j=0

n∑
k=0

νk+j(a)tktj ≥ 0,

for any combination of constants {tk}. The first 2n moments must therefore satisfy,
for the determinant,∣∣∣∣∣∣∣∣

ν0(a) ν1(a) . . . νk(a)
ν1(a) ν2(a) . . . νk+1

. . . . . . . . . . . .
νk(a) νk+1(a) . . . ν2k

∣∣∣∣∣∣∣∣ ≥ 0, (k = 0, 1, 2, ..., n).
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Consider this inequality for k = 2. The first three moments can be trivialized
without loss of generality (Wilkins, 1944), by assuming

ν0 = 1 ν1 = 0, ν2 = 1.

This corresponds to a centralized and normalized distribution, where the variance
has become reduced so that ν3 = α3 and ν4 = α4. The resulting determinantal
inequality relates kurtosis and skewness:∣∣∣∣∣∣

1 0 1
0 1 α3

1 α3 α4

∣∣∣∣∣∣ ≥ 0.

This expands to

α4 ≥ α2
3 + 1. (3.2)

Imagine that the initial release was given time to stabilize, so that the entire
concentration distribution was flat. At the moment of release, we can describe the
concentration distribution PDF as consisting of a delta spike representing the 0
concentration points outside of the release area, as well as a delta spike representing
the constant concentration points within the release tube. This model, sometimes
called a ”top hat” model, is mathematically expressed as

p(c) = (1− β)δ(c) + βδ(c− c0).

It can be shown, see for instance (Bergsaker, 2012), that the skewness-kurtosis
relation for this particular distribution is exactly

α4 = α2
3 + 1,

which means that if we assume that the initial distribution followed this model, any
subsequent deviation of the skewness-kurtosis relations found from the MADONA
data sets can be seen as a result of the diffusion of the distribution away from the
steady state case.

It is well known, e.g.(Squires, 2001), that the estimate of standard deviation
from discrete measurements is performed as

σ2 ≈ 1

n− 1

n∑
i=1

(ci − µ)2.

However, in this thesis we average over the hundreds of samples measured over
time for each data set. For instance, there are 449 data points for each fixed
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(a) Fixed Frame (b) Center of Mass Frame

(c) FF: Interpolation reads
α4 = 1.105777(α2

3 + 1) + 3.843643.
(d) CM: Interpolation reads
α4 = 1.111012(α2

3 + 1) + 4.864338.

(e) FF: Interpolation reads
α4 = 1.105777α2

3 + 4.949420.
(f) CM: Interpolation reads
α4 = 1.111012α2

3 + 5.975349.

Figure 3.2: mad21K : Skewness-Kurtosis Relations. The red line in figs.3.2a and3.2b corresponds to α4 = α2
3 + 1.

We can see that no data point goes under this line for both reference frames. Each data point here is the Skewness-
Kurtosis relation at a single position, averaged over time. The models shown in figs.3.2e and3.2f are from the
interpolations in figs.3.2c and3.2d, shown on [α3x̂, α4ŷ] axes.
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location in mad21K. This means that we can let n − 1 ≈ n in the context of our
calculations. We use the expression

σ2 ≈

(
1

n

n∑
i=1

c2
i

)
− µ2.

The mean is estimated as

µ ≈ 1

n

n∑
i=1

ci,

and skewness and kurtosis are, respectively,

α3 =
1

n

∑n
i=1(ci − µ)3

σ3
, α4 =

1

n

∑n
i=1(ci − µ)4

σ4
. (3.3)

The expression for the skewness can be made computationally cheaper by inserting
for µ and σ. Notice that

〈(c− µ)3〉 =
〈
c3 − 2c2µ+ cµ2 − c2µ+ 2cµ2 − µ3

〉
= 〈c3〉 − 3〈c2〉µ+ 3µ3 − µ3

= 〈c3〉 − µ3 − 3µσ2.

This means that the skewness can be expressed as

α3 =
〈c3〉 − µ3 − 3µσ2

σ3

α3 ≈
∑n

i=1 c
3
i

σ3
−
(µ
σ

)3

− 3µ

σ
. (3.4)

The expression for kurtosis can be simplified to

α4 =
〈c4〉+ 3µ(〈c2〉µ− 〈c3〉)− µ4

σ4
− µα3

σ
.

Since we are not saving the moments of c in this particular context, we will use
eq.(3.3) to calculate the kurtosis.

Eqs.(3.4) and (3.3) were used to estimate the skewness-kurtosis relation from
eq.(3.2). The results are plotted as [(α2

3 + 1)x̂, α4ŷ] in figs. 3.2a and 3.2b, for fixed
frame and center of mass frame, respectively. The data points never fall below the
straight line, as theoretically predicted.

We are now interested in the least squares linear interpolation through all the
points which gives

α4 ≈ a(α2
3 + 1) + b.
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This expression gives a quantitative idea of the deviation away from the theoretical
initial distribution expressed in the top hat model. The interpolation can be seen
in figs. 3.2c and 3.2d. The model of the skewness kurtosis relation becomes

α4 ≈ aα2
3 + (a+ b). (3.5)

These models are shown in figs. 3.2e and 3.2f. Note the lack of difference that the
conversion from FF to CM frame actually makes. We found that a relation of the
form shown in eq.(3.5) gives a surprisingly robust fit to the data, even when we mix
results from 5 different experimental conditions, as shown in figs.3.3a, 3.3b. The
similarity of the α4 - α3 relation when comparing absolute and moving frame data
has been observed for some different data sets in for instance(Jørgensen, Mikkelsen
and Pécseli, 2010). It is also interesting that the best fit to the data is not too
different from the analytical limit found in eq.(3.2). I know of no analytical basis
for a universal relation between skewness and kurtosis, but many data support
expressions like eq.(3.5).

Another point of interest is the relation between the skewness and the variance.
This has been shown for the top hat model (Bergsaker, 2012) to correspond to

σ2

µ2
= 1 +

1

2

(
α2

3 + α3

√
α2

3 + 4

)
. (3.6)

This assumes µ 6= 0, and so does not apply where the concentration is 0 through-
out. It would therefore be interesting to test this relation in the CM frame, and
specifically note those points that are close to the CM itself. We know from fig.3.5a
that these are points with low skewness values. Setting an artificial sampling cap
at α3 = 5, we traced a linear and quadratic interpolation over the data in fig.3.3f.

The result can be seen in fig.3.3e. This relation does not have any rigorously
defined boundary as the Skewness Kurtosis relation. Nevertheless, we see that no
point crosses the boundary traced by the top hat model, despite significant spread
at high skewness. This could suggest a similar theoretical cap as the Skewness
Kurtosis relation found in eq.3.2. Also, in this case, we find a seemingly systematic
relation of σ2 for a varying α3, at least for positions close to the CM. Again, no
analytical basis exists for such a relation, and in this case, some observations
in plasma physics have given counter-examples (Bergsaker, 2012). Nevertheless,
the fact that the top hat model forms a limit here, as in the skewness-kurtosis
comparison, may be due to an empirical factor, for instance that the concentration
can only grow more disordered if we assume that the release corresponds to a top
hat distribution, or a constraint due to the fact that the concentration is never
negative, because Bergsaker (2012) allowed for negative numbers for the variable
in the top hat model.
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(a) Fixed Frame (b) Center of Mass Frame

(c) FF: Interpolation reads
α4 = 1.077042(α2

3 + 1) + 2.993569.
(d) CM: Interpolation reads
α4 = 1.057745(α2

3 + 1) + 4.362009.

(e) CM: σ
2

µ2 plotted against α3. Red line is the expected

relation according to top hat model.
(f) CM: Linear and Quadratic fit for fig.3.3e. Linear fit
reads
σ2/µ2 = 1.545α3 − 1.332. Quadratic Fit reads
σ2/µ2 = 0.1560α2

3 + 0.6842α3− 0.3591. The black line is
the truncation used for fit sampling.

Figure 3.3: mad21K : Skewness-Kurtosis Relations for all 5 data sets: mad21K, mad21H, mad21G, mad21F,
mad15J. Figs.3.3e and3.3f show the Skewness-Variance Relation for mad21K. The scatter in the data points gives
a measure of the uncertainty on the estimated curve fits.
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(a) FF. (b) CM.

(c) FF: interpolated up to α3 = 5. Linear fit reads
σ2/µ2 = 2.179α3 − 2.143. Quadratic fit reads σ2/µ2 =
0.5134α2

3 − 0.7728α3 + 1.535.

(d) CM: interpolated up to α3 = 5. Linear fit reads
σ2/µ2 = 2.155α3 − 2.000. Quadratic fit reads σ2/µ2 =
0.3626α2

3 + 0.1914α3 + 0.08080.

Figure 3.4: Variance-skewness comparison with top hat model for the 5 data sets mad15J, mad21F, mad21G,
mad21H, mad21K. The scatter in the data points gives a measure of the uncertainty on the estimated curve fits
also here.



CHAPTER 3. STATISTICAL
TREATMENT
OF TURBULENCE 43

Table 3.1

Red Yellow Green Blue Black
x-R
[m]

[-82.5,84] [-157.7,-84]
[85.5, 159]

[-232.5, -159]
[160.5, 234]

[-307.5, -234]
[235.5, 309]

[-382.5, -309]
[310.5, 384]

a 1.627 1.372 1.184 1.237 1.048
b 0.6433 0.6757 3.328 1.346 11.52

The top hat model in eq.3.6 is shown to hold as a limit, in figs.3.4a and 3.4b,
also for a superposition of all data from the five MADONA data sets we use
throughout this thesis, in CM frame and FF.

The last point of interest concerning the skewness-kurtosis relation in the
MADONA data sets that we explore concerns the relative deviation from the
exact relation in eq.(3.2) of points identified by their position from the center of
mass. We explore this in CM frame for the data set mad21K in figs.3.5a-3.5f.
Because we study a single data set, we can not separate the data into too small
portions based on position, as we would lose statistical significance. A good se-
lection was found to use groups of 100 data points, separated into 5 color coded
subsets. We interpolated a least squares line for each subset, and compared them
in table 3.1. a and b here are the interpolation coefficients defined in eq.(3.5). The
three possibilities are:

(i) The relation is statistically scale invariant with distance from the CM. This
suggests that we can perform the analysis on the 5 data sets superposed.

(ii) The positions closer to the CM exhibit a closer fit to eq.(3.2) than the
flanks because they have been ”mixed” less by the atmosphere.

(iii) The flanks exhibit better fit to eq.(3.2) than the CM. This might suggest
that the flanks have concentrations which are more ”settled” according to the ”top
hat” model. This could also suggest that the ”top hat” model is a poor assumption
for the initial state of release, since the plume was a mix of several compounds.

Table 3.1 shows that, apart from the blue data points, the rest seem to suggest
option (iii). We also see from fig.3.5a that the data points further away from
the CM have both larger skewness and kurtosis. The larger deviations in b as
we move away from the CM are likely due to this larger scale. This could be
used to qualitatively estimate the distance away from the CM of measurements
made by continuous point measurements under steady conditions. However, such
a conclusion should be corroborated by a simultaneous measurement of LIDAR
and typical point measurement tools for pollution, and is therefore outside the
scope of this work.
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(a) All color coded points for mad21K. Note that the po-
sition of the points clearly differ by their distance from
the CM. However, it is not clear whether there is a dif-
ference of gradient in addition to scale.

(b) Red line linear fit: α4 = 1.627(α2
3 + 1) + 0.6433.

(c) Yellow line linear fit: α4 = 1.372(α2
3 + 1) + 0.6757. (d) Green line linear fit: α4 = 1.184(α2

3 + 1) + 3.328.

(e) Blue line linear fit: α4 = 1.237(α2
3 + 1) + 1.346. (f) Black line linear fit: α4 = 1.048(α2

3 + 1) + 11.52.

Figure 3.5: mad21K : CM frame. Fig.3.5a shows α2
3 + 1, α4 relation in color code. See table 3.1 for numerical

positions of the color codes. Figs.3.5b -3.5f show the same relation for distances away from the center of mass in
descending order, left to right. With the exception of the blue line, the gradient is decreasing as we move away
from the CM. The line in cyan is α4 = α2

3 + 1. The scatter in the data points gives a measure of the uncertainty
on the estimated curve fits also here.
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3.3 The Logarithmic Boundary Layer

Consider the boundary condition where the fluid molecules near a solid ”wall” get
”stuck” due to adhesive forces. This is the no-slip condition. The fluid molecules
all feel cohesive forces, so the neighboring molecules tend to be slowed down by
the ”stuck” molecules. In the continuum approximation, there is a continuous
decrease in the velocity field as one moves from the main flow to the boundary,
where the flow is still. This entire volume is called the boundary layer.

Our interest lies in the pollutant distribution over time in the local environ-
ment. The near-ground surface of the Earth can be considered as a giant boundary
layer, and different geographical locations can be associated with different values of
a roughness parameter d. The surface is coated with varied terrain, and especially
urban sites tend to have dense protrusions in the form of buildings. It there-
fore pays to have a means of relating the flow characteristics with the roughness
parameter.

The flow in the non-viscous sublayer of the boundary layer can be worked out
in a way analogous to the Richardson cascade.The mean value of the momentum
flux density tensor Πxy will be called σ. It is known as the Reynolds stress tensor,
and originates from the velocity gradient du

dy
. Assuming σ to be invariant with

respect to y within this sublayer, dimensional arguments give

du

dy
∝
√

σ

ρy2
.

Defining the proportionality factor as the von Kármán constant κ, and relating
the momentum flux to its contributing velocity fluctuations v?,

σ = ρv2
?, (3.7)

du

dy
=
v?
κy

(Landau and Lifshitz, 1989). This is readily solved, and

u =
v?
κ

(lny + c) (3.8)

is the logarithmic velocity profile. Note that eq.(3.8) implies that u keeps increasing
for arbitrarily large heights y. In reality, this is correct only for altitudes up to a
few hundred meters. It has been speculated that the Weibull distribution offers a
good experimental fit for higher altitudes.

The constant c can be found from the usual assumption that viscosity becomes
important as R ∼ 1. Denoting this distance from the boundary as y0,

R ∼ v?y0

ν
∼ 1,
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y0 ∼
ν

v?
.

The viscous sublayer extends from y0 to 0, and is very small. Thus to a good
approximation, one could let u approach 0 at the transition:

u =
v?
κ

ln

(
y

y0

)
=
v?
κ

ln
(yv?
ν

)
. (3.9)

For rough surfaces, the velocity profile in eq.(3.9) is modified by the roughness
coefficient d, since this is now the distance where the velocity becomes small.
Then,

u =
v?
κ

ln
(y
d

)
.

The energy flux per mass, ε, can be found by letting x̂ be the flow direction, so
vx = u+ ṽx, vy = ṽy, vz = ṽz. Now the Reynolds stress tensor (Reynolds, 1895) is
defined

σ = ρ〈vivj〉.
It has been previously established that the main momentum transfer is due to
shear stresses i 6= j. Consider the ŷ energy flux density q:

〈q〉 = 〈(p+
1

2
ρv2)vy〉.

According to eq.(3.9), the fluctuation terms are logarithmically small compared to
the main flow u, so to a good approximation,

〈q〉 = ρu〈ṽxṽy〉.

Because the mean stress is invariant towards the boundary within the non-viscous
sublayer,

1

ρ

d〈q〉
dy

= σ
du

dy
,

and using eq.(3.7) and eq.(3.9), and defining ε = 1
ρ
d〈q〉
dy

,

ε =
v3
?

κy
.

ε is the mean energy flux per mass, like in the Richardson cascade. The form is
analogous to ε ∝ ũ3

l
. This should not be strange, since this was the only way

to dimensionally construct the energy flux in the absence of viscosity. A similar
logarithmic relation between the main flow and the local fluctuations in the inertial
range of turbulent flow would analogously take the form

u ∼ ũ ln

(
lũ

ν

)
u ∼ ũ ln(Rlocal). (3.10)
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The expressions in eqs.(3.8) and (3.10) illustrate the nature of the inhomogeneity
encountered in boundary layers, and in the MADONA experiment in particular.
By pointing the LIDAR in a horizontal direction, as done in this experiment,
the conditions will remain homogeneous along the beam direction. Changes in
turbulence conditions that would result by taking the horizontal beam at different
altitudes are illustrated in fig.2.2. These data are taken for different physical
conditions, but the basic features will apply also to the MADONA experiments.
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Chapter 4

Atmospheric
Diffusion

4.1 Classical Diffusion

1 When a dense tracer fluid is slowly injected horizontally into an unmarked,
less dense fluid, the marked fluid will slowly dissolve into the unmarked. It is
important that this happens under symmetrical, steady forces, as manifested in
a homogeneous and isotropic laminar velocity field. The system tends towards
eradicating the inhomogeneity in density, since the denser fluid has more particles
traveling towards the unmarked fluid.

In seeking a quantitative description of the phenomena, the mathematical anal-
ogy of the random walk is convenient for later expansion, because it explains the
macroscopic dynamics through statistical modeling and emphasizes the importance
of the moment distributions of the underlying probability density function.

We consider here an unobstructed one dimensional random walk, so that each
walker we release on a grid discretized with steps associated with a transition prob-
ability density function χ with equal probability density for left or right steps. The
distribution of ”walkers” will then be defined by its tendency to distribute away
from large distributions, just as in the case of classical diffusion. The theoretical
discussion below is partly based on the discussion in (Sethna, 2006).

For simplicity, let χ(z) be normalized and centered, and let l0 be its standard
deviation. The standard deviation is constant for a stationary process, which is
true because the forces were assumed steady. The first three moments of the

1Picture above from http://shibiaoxu.net/wp-content/uploads/2013/04/InkDiffusion.png
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variable z become:

〈z0〉 =

∫ ∞
−∞

χ(z)dz = 1, (4.1)

〈z1〉 =

∫ ∞
−∞

zχ(z)dz = 0, (4.2)

〈z2〉 =

∫ ∞
−∞

z2χ(z)dz = l20. (4.3)

The conditional probability distribution over time and space, ρ(x, t+ ∆t|x′, t),
is related multiplicatively to any previous state because the steps of a free ran-
dom walk are by definition independent. The probability density of a single step
between x and x′ is the transition probability χ(x− x′):

ρ(x, t+ ∆t|x′, t) = ρ(x′, t)χ(x− x′).

If one accounts for all origins, the distribution ρ(x, t + ∆t) becomes the prob-
ability density of any time increment. Integrating over all paths in one spatial
dimension:

ρ(x, t+ ∆t) =

∫ ∞
−∞

ρ(x′, t)χ(x− x′)dx′.

By changing variables z = x−x′, ρ can be expressed in the form of the moments
above:

ρ(x, t+ ∆t) =

∫ ∞
−∞

ρ(x− z, t)χ(z)dz.

By the assumption of uninhibited random walk, the probability distribution of
the particles will be broad and therefore slowly varying compared to the step size.
That justifies Taylor expanding ρ(x− z, t), separating the integral for x and z as
well as into its first moment components:

ρ(x, t+ ∆t) ≈ ρ(x, t)〈z0〉 − ∂ρ

∂x
〈z1〉+

1

2

∂2ρ

∂x2
〈z2〉

ρ(x, t+ ∆t) ≈ ρ(x, t) +
l20
2

∂2ρ

∂x2
.

∂ρ

∂t
≈ l20

2∆t

∂2ρ

∂x2
.

The classical diffusion equation is found by collecting the constant terms, defin-

ing the diffusion coefficient D =
l20

2∆t
. Assuming that the concentration c reflects
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(a) Binned Monte Carlo simulation using 20000 walkers,
400 positions, and 499 iterations.

(b) Binned Monte Carlo simulation using 20000 walkers,
400 positions, and 500 iterations.

Figure 4.1: Comparison between simulated random walk and analytically found Gaussian solution. The green
envelope is the analytical solution. The vertical slash corresponds to x=0.

the underlying probability distribution, we set c = ρ, and

∂c

∂t
= D

∂2c

∂x2
, (4.4)

Different general solutions apply for different initial and boundary conditions
(BC). For the purposes of a released tracer gas, we define a set of idealized BCs as

c(x, t = 0) = c0δ(x), lim
x→±∞

c(x, t) = 0. (4.5)

This set of BCs can describe the co-moving frame of the cross section of a released
tracer gas, perpendicular to the flow, if certain assumptions are made. The diffu-
sion can in the approximate sense occur in the horizontal direction perpendicular
to the flow if we assume a small and geometrically uniform release point with
constant release concentration c0, under stable wind conditions, and under atmo-
spherically stable flow. Constant release concentration and stable wind conditions
constrain the diffusion to the cross section perpendicular to the flow. We can op-
erate in the CM frame to further constrain the diffusion to one axis. Atmospheric
stability (sec.2.2), constrains the diffusion to a mainly horizontal plane. Eq.(4.5)
then applies for the horizontal direction perpendicular to the flow in the co-moving
frame. The solution is the system response to an impulse at x = 0 as given in
eq.(4.5). It is known (e.g. (Pécseli, 2000)) that the diffusion eq.(4.4) solution to
this set of BCs is the centered and normalized Gaussian function:

c(x, t) ≈ 1

2(πtD)
1
2

e−
x2

4Dt . (4.6)

The Gaussian solution eq.(4.6) can be shown to correspond with unobstructed ran-
dom walk of an initial concentration at x = 0 by a simple Monte Carlo simulation.
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The random walk step PDF χ must be broad and slowly varying compared to
the step size. The simplest way to achieve this is to use the uniform distribution
U(a, b), defined by

p(z) =
1

b− a
, a < z < b p(z), else.

We use U(−0.5, 0.5) and decide that z ≤ 0 corresponds to a leftward ”walk”, and
z > 0 is a rightward ”walk”. This leads to a small artificial asymmetry which is
trivial because the distribution is continuous. The distribution U(−0.5, 0.5) must
satisfy eqs.(4.1), (4.2), (4.3). This can be shown by

〈z0〉 =

∫ b

a

1

b− a
dx = 1,

〈z1〉 =

∫ b

a

x

b− a
dx =

1

2
(a+ b) = 0,

l20 = 〈z2〉 =
1

3
(a2 + ab+ b2) =

1

12
.

Note that the time increment ∆t is associated with the stepwise standard deviation
l0. This means that l0 is the step size of the random walk. Using the distribution
U(−0.5, 0.5) to generate ”walks” and grid cutoffs suitably far away from 0, we
plot the results of the analytical Gaussian solution from eq.(4.6) random walks.
These can seen in figs.4.1a and 4.1b. The large spike at x = 0 in fig.4.1b is due
to the choice of a constant step distance. This means that for even numbers of
iterations, about half the walkers to the immediate left and right of the center go
to the center, making it about twice as big as it ”should” be. The problem does
not occur when using odd numbers of steps, as seen in fig.4.1a.

The variance of the diffusion equation (4.4) is of special interest. Defining
α = 1

4Dt
:

〈x2〉 =

√
α

π

∫ ∞
−∞

x2e−αx
2

dx = −
√
α

π

d

dα

∫ ∞
−∞

e−αx
2

dx = −
√
α

π

d

dα
(

√
π

α
)

〈x2〉 = 2Dt.

The variance describes the spread of a classical diffusive cloud. In particular, we
notice that the variance is proportional to the time in a classical diffusive scale.
Note that for a homogeneous and isotropic system of several dimensions, D will
remain the same, and so each dimension becomes separable in the solution to the
diffusion equation. Then the variance will become additive for each dimension, i.e.
for n dimensions,

〈r2〉 = 2nDt. (4.7)
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It was pointed out that the classical diffusion equation (4.4) is only valid for
relatively flat distributions and where the chosen time scale has independent steps.
Evidently, ∆t can take on the smallest possible size of this time scale. Unless the
velocity field is infinitely smooth, there will always be scales below this where
subsequent steps exhibit memory properties, and correlation becomes important.
These are scales where classical diffusion becomes increasingly inaccurate. For
systems with correlations, ρ(x−z, t) is not necessarily separable into ρ(x, t)ρ(z, t),
and we can no longer assume a broad and slowly varying probability distribution
ρ(x, t + ∆t). Higher order moments 〈z3〉, 〈z4〉, etc. are no longer negligible. This
means that eq.(4.4) no longer applies for turbulent diffusion, which is characterized
by correlations.

The velocity field is generally not infinitely smooth, but neither are memory
properties normally detected under laminar flow, where diffusion is typically mea-
sured. In the case of fluid particles, the amount of molecular particles within each
’packet’ fluctuates, in a basic approximation, according to the

√
n rule. For laminar

gases, the flow scale does not go belowO (1000) of the molecular scale (Pope, 2000),
and this amounts to a fluctuation below 3% of the molecular density of fluid par-
ticles. Thermodynamic fluctuations may disrupt the particles from following the
large scale mean force field, leading to an increasingly random velocity field for
smaller scales. In practice, however, this is not encountered in flow measurements,
since the scales considered are much larger. The random velocity field exhibited
by turbulence is also for that reason not of thermodynamic origin.

This also suggests that diffusion can be seen to naturally arise in time scales
where correlation between successive steps can be thought to have been decoupled.
The precise size of the scale where this occurs is dependent on the actual field
smoothness of both long-range and short-range forces in the system. Below, we
describe turbulent diffusion by its variance, and compare it with classical diffusion.

4.2 Single-Particle Diffusion in a Turbulent Ve-

locity Field

Because the inertial range does not explicitly depend on boundary conditions like
the energy range, or local inhomogeneity like the dissipation range, the turbulent
velocity field may be considered isotropic and homogeneous as long as the turbulent
diffusion in discussion is to be understood as within the inertial range of a fully
developed turbulent field. In the Lagrangian frame of the ”test particle”, the
turbulent velocity field can be defined as u(r(t), t). The position of this particle is
in this reference frame specified by r(t, r0), where r0 is the position at a reference
frame (Pope, 2000). This is important because at this level of description, the
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position will evolve according to nonlinear dynamics as it moves away from the
sample reference, from a linear, deterministic path, to an increasingly random path.
Once a collection of these random paths become fully realized, it is expected that
a statistical treatment will be able to describe their spread. It is therefore to be
expected that short time scales yield deterministic paths according to the local
field, whereas very long time scales should yield a distribution of random paths
that behave in a diffusive manner, corresponding to the independent steps of a
free random walk.

We are interested in the centered variance of the position, 〈r2(t)〉. It can be
differentiated:

dr2(t)

dt
= 2r(t) · dr(t)

dt
= 2u(r(t), t) ·

∫ t

0

u(r(t′), t′)dt′ = 2

∫ t

0

u(r(t), t) ·u(r(t′), t′)dt′.

The ensemble average becomes:

d

dt
(〈r2(t)〉) = 2

∫ t

0

〈u(r(t), t) · u(r(t′), t′)〉dt′,

where the mean within the integral is the un-normalized Lagrangian velocity cor-
relation function. For a short time scale, the history of the turbulent velocity field
over times [0,t] may be approximated at the sample time t, effectively taking the
trace over the correlation tensor. The correlation tensor becomes variance 〈u2〉.
We assume a stationary process, where the variance is constant, so that:

d

dt
(〈r2(t)〉) = 2〈u2〉t

〈r2(t)〉 = 〈u2〉t2. (4.8)

This is called the ballistic limit, the result we get by assuming the particle to follow
straight lines: r(t) = ut. If the ballistic limit is not found in a set of experiments,
it suggests that either the field is very rapidly changing, or the measurements
are at a much larger scale and don’t have the resolution to identify the short time
scales, as suggested in the above section. In the context of non-linear or anomalous
diffusion, this result corresponds to superdiffusive power scaling

〈u2〉 ∝ tα, α > 1 (4.9)

where in this case, α = 2.
If we let several paths in a turbulent velocity field continue for an indefinite

amount of time, a discrepancy in any of their earlier states quickly leads to the
paths being radically different. However, the fact that we can predict that all
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paths above some time scale will be de-correlated, means that for a very long time
scale ∫ ∞

0

〈u(t′) · u(t)〉dt′ = 〈u2〉τ,

where τ can be taken as a constant, called the Lagrangian integral time scale of
the correlation function. Solving for 〈r2(t)〉,

d

dt
(〈r2(t)〉) = 2

∫ t

0

〈u(r(t), t) · u(r(t′), t′)〉dt′ = 2〈u2〉τ

〈r2(t)〉 = 2〈u2〉tτ,
we find a diffusive scaling that is linear with time. Suppose we are in a 2 dimen-
sional turbulent field. Defining D = 1

2
〈u2〉τ ,

〈r2(t)〉 = 4Dt,

which agrees with the previously found classically diffusive variance in eq.(4.7). In
the context of the diffusive scaling in eq.(4.9), long time scale diffusion corresponds
to α = 1, so that the the exponent throughout the range of time scales seemingly
takes values in the range 1 ≤ α ≤ 2.

We can compare this macroscopic view of diffusion with the previous micro-
scopic derivation of the diffusion eq.(4.4). Note that the dimensionality is outside
D in eq.(4.7) due to the separable solution, while it is contained inside 〈u ·u〉 here.

D =
l20
∆t

=
1

2
〈u2〉τ,

we find a description of the long time scale turbulent diffusion through microscopic
properties and the correlation length:

τ

∆t
=

1

〈u2〉
a2

(∆t)2
.

The limit of times much larger than the Lagrangian correlation time is called the
diffusion limit. The condition that

t >> ∆t

for classical diffusion makes sense. Then, in 2 dimensions, for long time ranges
and stationary process in homogeneous and isotropic fields,

〈r2(t)〉 = 2〈u2〉t∆t = 4Dt,

D =
1

2
〈u2〉∆t.
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A full description of turbulence encompasses all scales between the very largest
and very smallest, because important quantities like energy are not generally scale
independent in a turbulent field. To describe the spread of the full range of time-
scales, modeling from experimentally found pdfs is necessary. However, the mathe-
matical expression may be simplified somewhat (Brenna, 2013), for in a stationary
process, all moments are constants when averaged over position, and so:

〈r2(t)〉 = 2〈u2〉
∫ t

0

∫ t′′

0

RL(t′′ − t′)dt′dt′′,

where RL is the normalized Lagrangian velocity correlation function. This can be
simplified by introducing the variables τ = t′′ − t′ and s = t, and performing a
change of variables with Jacobian

J =

∣∣∣∣ ∂τ
∂t′′

∂τ
∂t′

∂s
∂t′′

∂s
∂t′

∣∣∣∣ = 1.

Then, ∫ t

0

∫ t′′

0

RL(t′′ − t′)dt′dt′′ =
∫ t

0

∫ s

0

RL(τ)dτds =

∫ t

0

∫ t

τ

RL(τ)dsdτ.

Since there is no explicit dependence on the variable s in the correlation function,
the positional variance is connected to the velocity variance by:

〈r2(t)〉 = 2t〈u2〉
∫ t

0

(1− τ

t
)RL(τ)dτ.

We can Fourier transform the Lagrangian correlation function with

SL(ω) =
1

2π

∫ ∞
−∞

RL(t)e−iωtdt,

to get the Lagrangian power spectrum. We can therefore estimate the relation
between turbulent diffusion and the time-stationary velocity fluctuations in fre-
quency space as:

〈r2(t)〉 = t2〈u2〉
∫ ∞
−∞

sinc2

(
ωt

2

)
SL (ω) dω.

If we have the Lagrangian power spectrum, we can estimate, at least for homoge-
neous and isotropic turbulence, the effect of the measured fluctuation of the wind
profile on the turbulent diffusion of a released toxic aerosol in the atmosphere. In
reality, we would need to first express this in a Eulerian frame, which is in general
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not easy, but is after all how we measure the turbulent diffusion experimentally.
We also need to take into account the properties of the boundary layer, which is
in general neither homogeneous nor isotropic, and varies with season and time of
day. Nevertheless, this idealized discussion is important because it clarifies that in
the absence of a complete theory which allows us to deduce the precise expression
for the correlation function,the minimum knowledge for predicting the spread of
a toxic or pollutive gas by turbulent diffusion is an experimentally verified model
for the Lagrangian power spectrum, or its equivalent. In principle, the Lagrangian
integral time scale τ can be estimated from a characteristic length and velocity.
The length step is estimated for mad15J as on the order of 25[m] in section 4.4,
but unfortunately the velocity requires an independent measurement which is not
available through the LIDAR data alone.

4.3 Two-Particle Diffusion

A more realistic development is to approach the case of a diffusive cloud composed
of multiple fluid particles. From the lab frame, we are interested in the relative
spread of the particles, rather than the RMS position of a single tracer, and the
simplest possible model for this is the relative diffusion of two tracer particles.
In the context of a completely random (in the sense of complete lack of correlation)
velocity field, every random walker in a classically diffusive gas is statistically
independent. Then Bienaymés formula states that

V ar

(
n∑
i=1

xi

)
=

n∑
i=1

V ar(xi).

Thus for the long time scale solution of two particles in a turbulent velocity field,
we expect the relative diffusion of the gas to be twice what was found for a single
particle:

〈x2〉2 = 2 · 〈x2〉1 = 4tτ〈u2〉. (4.10)

This can be shown by defining the separation between particles at r1 and r2:
y(t) = r1 − r2, and the separation between two local velocity fields: ∆u(t) =
u(r1(t), t)− u(r2(t), t). Then

y(t) = y(0) +

∫ t

0

[u(r1(t′), t′)− u(r2(t′), t′))]dt′ = y0 +

∫ t

0

∆u(t′)dt′

and
d

dt
(y2(t)) = 2∆u(t)y(t) = 2∆u(t)y0 + 2

∫ t

0

∆u(t′)∆u(t)dt′,
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so the ensemble average becomes

d

dt
(〈y2(t)〉) = 2

∫ t

0

〈∆u(t′)∆u(t)〉dt′ = 2

∫ t

0

〈(u1(t′)− u2(t′)) · (u1(t)− u2(t))〉dt′,

(4.11)
which for the non-correlated time scales means that

〈y2〉 = 4τt〈u2〉

as predicted qualitatively in equation (4.10).

Shorter time scales exhibit gradually stronger correlations due to the turbulence,
and the relative diffusion is therefore in general not twice the single-particle so-
lution for the equivalent time scale. The isotropic condition that was rather ar-
tificially imposed on the discussion simplifies the problem considerably through
symmetry. An isotropic tensor of the second order is of the form:

Qi(r) = Arirj +Bδij

for even, scalar functions A and B. We can write the velocity correlation tensor
in the form:

Rij(r) = F (r)rirj +G(r)δij. (4.12)

To identify a means to measure the identity of F and G, we can assume incom-
pressibility. This is not far-fetched considering the nature of the atmosphere, and
that we already assumed a homogeneous and isotropic turbulence. Following the
incompressibility condition:

∇ · u = 0, (4.13)

we want to relate this to velocity correlations. Noting that the normalized velocity
correlation tensor for two points separated by space vector r is

Rij(r) =
〈ui(x)uj(x + r)〉

〈u2〉
,

the incompressibility condition (4.13) can be related to the velocity correlation
tensor, since for incompressible flow:〈

ui(x)
∂uj(x + r)

∂rj

〉
= 0

〈
∂ui(x)

∂ri
uj(x + r)

〉
= 0,
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and so explicitly
∂Rij

∂ri
=
∂Rij

∂rj
= 0.

The velocity tensor formulated in equation (4.12) can now be worked out:

∂Rij(r)

∂ri
= rj(4F + r

∂F

∂r
+

1

r

∂G

∂r
) = 0,

where the 4 occurs instead of 3 since the trace portion yields 2 instead of 1. Since
this relation must be satisfied for all indices of r, we have a relation between F and
G

4F + r
∂F

∂r
+

1

r

∂G

∂r
= 0,

showing that a single scalar function can specify isotropic turbulence (Batchelor,
1993).

The ballistic limit of relative diffusion in eq. (4.11) is formally (I have used Tr
for trace to distinguish from the variable t.)

Tr〈yiyj〉 = Tr{y0iy0j + t2〈u2〉[δij − 2RE
ij(y0, 0)]}

noting that the relative diffusion is in an Eulerian frame. In this notation, rirj =
yiyj and r2 = y2

0. Explicitly,

Tr〈yiyj〉 = Tr{y0iy0j + t2〈u2〉[δij − 2(Fyiyj +Gδij)]},

which for a 2-dimensional case, with Tr{δij = 2} and Tryiyj = y2
0, becomes

〈y2(t)〉 = y2
0 + 2t2〈u2〉(1− (Fy2

0 + 2G)).

The representation might not be physically intuitive, which is why one often uses,
especially for experimental work, the alternative set of scalar functions defined by:

f(r) =
〈up(x)up(x + r)〉

〈u2
p〉

and

g(r) =
〈un(x)un(x + r)〉

〈u2
n〉

,

where up and un are the parallel and normal velocity components with regard to
the vector separation r, and f(r) and g(r) are called the longitudinal and lateral
velocity correlation coefficients. They are related to F (r) and G(r) by (Batchelor,
1993):

〈up(x)up(x + r)〉
〈u2

p〉
= f(r2)
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〈un(x)un(x + r)〉
〈u2

n〉
= g(r2).

Then it may be shown that for two dimensions in the ballistic limit (Pécseli and
Trulsen, 1997):

〈y2(t)〉 = y2
0 + 2t2〈u2〉(1− [f(y2

0) + g(y2
0]).

In this case, for short time scales, the longitudinal contribution is the same as the
lateral contribution. This result serves as the basis for illustrating the difference
between correlated and uncorrelated diffusion processes.

Strictly speaking, the two particle separation refers to an initial particle release,
i.e. a problem that differs from that of a continuous release. The physical mech-
anism for the particle separations and thereby the plume expansion, are however
the same for both bases. We therefore use results from two particle separations
in order to understand the plume expansion. As a first approximation, we can
interpret the time after release as the travel time from the continuous source to
the detector.

4.4 Statistical Analysis for the Plume Mean Square

Width

On comparing analytical results with experimental estimates we assume that the
mean square width of the plume can be adequately represented by the mean-square
two-particle separation. As a summary of the foregoing analysis we can write

σ2
FF ≡ 〈(y1 − y2)2〉 = 2〈y2〉 − 2〈y1y2〉,

where the last term represents a correlation between the two particles. When
the separation is very large, we assume 〈y1y2〉 ≈ 0, and the two particles diffuse
independently. This will correspond to the diffusion limit discussed before. For
short and intermediate times, the correlation 〈y1y2〉 was discussed previously.

Just as well for mean square separation, the average position 1
2
(y1 + y2) is also

statistically varying, and also this variation has a standard deviation. We can
write this as

σ2
PDF ≡

1

4
〈(y1 + y2)2〉 =

1

2
〈y2〉+

1

2
〈y1y2〉.

σ2
FF can be estimated by the widths of the plumes in the fixed frame of reference.

At each time we can determine a center of mass of the plume, and use this as a
representation for 1

2
(y1 + y2) in that realization. Given these data at each time-

sample, we can construct a PDF of the center of mass, and give an experimental
estimate of σ2

PDF . The first term, 〈y2〉, represents the result we would find by
following the trajectory of a single particle. We do not have this information, but
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can use the meandering of the center of mass as an equivalent, by the foregoing
arguments.

By taking 4σ2
PDF , we can add or subtract σ2

FF to obtain

4σ2
PDF + σ2

FF = 4〈y2〉 and 4σ2
PDF − σ2

FF = 4〈y1y2〉.

In table 4.1, we show these quantities for 5 good data sets. These numbers are not
dimensionless, having dimension length2, and are therefore difficult to compare. In
the last column we have used 〈y2〉 to normalize the correlation 〈y1y2〉, in order to
make it dimensionless. If this normalized quantity is very small, we argue that
the plume has reached the (classical) diffusion limit. It is readily seen that we

in all cases have
〈yiyj〉
〈y2〉 � 1, but note that mad15J is distinguished by having

a noticeably smaller numerical value than the other entries. For this particular
experiment we will have that the width of the plume σFF is close to the horizontal
”outer scale” of the turbulence, about 25[m], i.e. the separation that makes y1

and y2 uncorrelated. This length depends critically on turbulence conditions, and
since mad15 and mad21 experiments were performed on different days, this may
explain why the correlation value of mad21G is larger than mad15J even though
their σFF are close. For the particular case mad15J, we can conclude that the
typical step length in the diffusion limit is of the order of 25[m]. For the other
cases, the data does not allow similar estimates, but we can conclude that e.g. for
mad21K, the similar step length should be larger than 100[m].

4.5 Results Applied to Experimental Data

We can in principle use the previous results to distinguish the diffusion limit from
the earlier ballistic limit. Thus, in case the plume width has become large com-
pared to the horizontal turbulent length scale, we expect two opposite positions
measured from the center of mass to be statistically independent.

The CM-PDF is shown in fig.4.2b. We compare this with the corresponding
root-mean-square (RMS) average plume widths (fig.4.2a).

Table 4.1: Correlation Estimates

Data Set σFF σCM σPDF
σCM
σPDF

σCM
σFF

〈y1y1〉 〈y1y2〉
〈y2〉

mad21K 107.82 83.07 75.16 1.11 0.771 2740 26.8
mad21G 31.67 22.16 21.63 1.03 0.700 868 29.4
mad21F 91.20 66.33 74.23 0.894 0.727 3430 35.3
mad21H 47.04 30.69 38.76 0.792 0.652 949 18.78
mad15J 24.11 17.31 17.78 0.974 0.718 171 7.18
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(a) mad21K : FF plume width. (b) mad21K : Meandering of the CM.

(c) mad21H : FF plume width. (d) mad21H : Meandering of the CM.

(e) mad15J : FF plume width. (f) mad15J : Meandering of the CM.

Figure 4.2: Comparison between meandering of the CM as an equivalent of single-particle motion and plume
width in fixed frame.The space between the red and green lines in the figures denote σFF (left), and σPDF
(right). The Gaussian Smoothing used for the histograms is discussed in section 6.4.
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The plume width and corresponding width of meandering of estimated single-
particle motions were calculated as standard deviations. For a normalized CM-
PDF with variable CM R, the standard deviation is

σPDF =

√∫ ∞
−∞

R2p(R)dR− 〈R〉2.

For a binned PDF, this is approximated as a sum, by the size of bins ∆R, from
an array of N bins, as

σPDF ≈

√√√√ N∑
i=1

R2
i p(Ri)∆R− 〈R〉2,

where the expectation value is precalculated as

〈R〉 ≈
N∑
i=1

Rip(Ri)∆R.

The CM-frame and FF plume width concentrations are not normalized, so the
standard procedure of calculating standard deviation from functions of variables
applies. Below is the process used for the CM frame plumes. The process is exactly
equivalent for the FF.

σCM =

√∫∞
−∞ x

2
CMc(xCM)dxCM∫∞

−∞ c(xCM)dxCM
− 〈xCM〉2,

approximated by

σCM ≈

√∑N
i=1 x

2
CMc(xCM)∑N

i=1 c(xCM)
− 〈xCM〉2,

given

〈xCM〉 ≈
∑N

i=1 xCM,ic(xCM,i)∑N
i=1 c(xCM,i)

.

Table 4.1 shows the equivalent raw and normalized correlations. In addition to
the standard deviation in the CM-frame, σCM , and its ratio with the other standard
deviations were added for comparison. We note in fig.4.2d that the distribution
might contain two components, one wide and one more narrow. In general, one
would interpret this as a change in wind dynamics during the data acquisition,
but direct inspection of the data shows nothing conspicuous, so we assume this
feature to be a consequence of using a data set of finite duration.
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Chapter 5

Data Analysis

5.1 Interpolation for Thresholds

In order to more precisely pinpoint the time at which crossings over concentration
thresholds occur, a two-point interpolation is used between neighbors on two sides
of the concentration threshold. This is triggered in the same way as in the ”brute
force” implementation, but now a linear interpolation is computed in order to find
a more accurate time of crossing. This affects %t and 〈T 〉, but not fcross. The
continuous threshold used in this section is discussed in sec.5.2.

Given coordinates (t0, c0) and (tf , cf ) for the two neighboring points, a linear
interpolation would be computed by

c = c0 + α(t− t0), α =
cf − c0

tf − t0
.

We now wish to have t(ct), the exact time of crossing according to the linear
interpolation, and we find

t(ct) = t0 + (ct − c0)
tf − t0
cf − c0

.

Since the ”brute force” script already counts time spent in integers according to a
counter, we only need to add the fraction of that integer spent above the threshold
at the moment of crossing. Thus, tf − t0 = 1, and what we want to compute is

t(ct)− t0 =
ct − c0

cf − c0

.
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(a) mad21K : %t at x = R in CM frame. The ”brute
force” curve calculates a lower percentage of time above
thresholds at low concentrations, and a higher percentage
at high concentrations. This can lead to underestimation
of time spent above low concentration thresholds, and
should be avoided.

(b) mad21K : Percentage time difference between the two
curves shown in fig.5.1a, shown as Interpolated calcula-
tion minus ”brute force” calculation. The difference is
never higher than 5% , and peaks at a low concentration.
This is partially explained by the fact that the error of
a ”brute force” method scales with the number of cross-
ings, which according to fig.5.2a peak before 5 ppm.

(c) mad21H. (d) mad21F.

(e) mad21G. (f) mad15J.

Figure 5.1: Comparison of the ”brute force” method with Linear Interpolation at x = R in CM frame.
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(a) Crossings at x = R (b) Crossings at x = R + σ

Figure 5.2: mad21K CM frame.

Note that on the ”upwards” crossing, the fraction of unit time spent above the
threshold is tf − t(ct) = 1 − (t(ct) − t0), while on the ”downwards” crossing it is
t(ct)− t0. This is a result of the direction of the interpolation.

A python function that computes this time, triggered by crossing the given
threshold, is sufficient for our purposes. The difference from the ”brute force”
method is shown in fig.5.1a. The resulting plot is smoother because it is able to
accommodate the higher resolution of the ”continuous” threshold. This smooth-
ness is to a certain degree manufactured, and is only good to the extent that linear
interpolation at this resolution is feasible. The largest differences between the two
plots occurs near 2 [ppm], as can be seen in fig.5.1b. This is partially explained by
the higher number of crossings here. For mad21K, the highest difference does not
exceed 5% , although mad21G shows an 11% maximum difference between ”brute
force” and linear interpolation at low concentrations.

There is a sign change in the error between high and low concentrations. From
figs.5.1b-5.1f, it seems that the ”brute force” chronically underestimates time at
low concentrations, and overestimates at high concentrations. Since low concen-
tration fluctuations are important in many cases of toxic contamination, the un-
derestimation in particular is grounds for using interpolation rather than simply
counting.

5.2 Continuous Threshold Sampling

During the ”brute force” calculations, two thresholds were used. Now we introduce
a continuous range of thresholds. We do this by selecting a number, typically
around 500, of ct along the range 0-20 [ppm], which is near the maximum of
occurring concentrations in CM frame. These numbers were found to produce
good results by varying the parameters based on the data set in question. Sampling
around 500 ct allowed us to pick up on individual fluctuations at the tail.
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(a) Crossings over ct for positions towards the LIDAR
from the CM.

(b) Crossings over ct for positions away from the LIDAR
from the CM.

Figure 5.3: Stackplots of mad21K in CM frame. Spaced at 1
4
σ from the CM. Blue is at CM in both figures.

Figs.5.2a and 5.2b show the number of crossings in CM frame for mad21K at
x = R and x = R + σ as defined for the ”brute force” calculations. We retain
σ rather than recalculate an actual standard deviation because we compare with
the results of the ”brute force” method, where these distances served to illustrate
points of interest. For a discussion of how such standard deviations are calculated,
see sec.4.5.

There is a clear shift of maximum number of crossings towards lower concen-
trations away from the CM. The maximum fluctuation levels are on the same order
for the two positions, but fluctuations quickly reduce past 1 [ppm] for x = R+ σ,
while for x = R the maximum occurs near 5 [ppm]. There is a line above 0 in
fig.5.2b from 4 to 5 [ppm]. This is because of a single 5 [ppm] point at the posi-
tion, which manifests in the entire range between 4 to 5 [ppm]. It is important to
realize that the number of crossings do not necessarily reflect the fluctuations at
that concentration, but rather fluctuations over that threshold.

Figs.5.3a and 5.3b show in total 9 positions spaced in the range −σ < x−R < σ
in CM frame. The distribution of crossings is largely symmetrical on both sides of
the CM with small differences, such as the ”notch” in fig.5.3b, and the difference
in size between the figures of the red and cyan distributions. We know from the
”brute force” calculations that a small amount of skewness is to be expected, even
in CM frame.

Figs.5.4a and 5.4b show the %t spent above a threshold. This was found by
counting time in units of time samples, as explained in sec.5.1, and normalizing
against the number of samples for that position. We see that the shape of the
curve is different between the two figures. In particular, fig.5.4a is concave for
low concentrations, while fig.5.4b is convex. If the curve becomes increasingly
convex as we move away from the CM, it is correspondingly important to know
associated exposure times, like those in table 1.1, for low concentrations. Ideally,
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(a) %t above ct at x = R. (b) %t above ct at x = R + σ.

Figure 5.4: mad21K -CM frame: R is the CM. σ is the estimated Gaussian standard deviation we used in sec.1.3,
which we keep using to compare with that section.

(a) %t above ct for positions towards the LIDAR from
the CM.

(b) %t above ct for positions away from the LIDAR from
the CM.

Figure 5.5: Stackplots of mad21K in CM frame. Spaced at 1
4
σ from the CM. Blue is CM in both figures.
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(a) 〈T 〉 above ct at x = R. (b) 〈T 〉 above ct at x = R + σ.

Figure 5.6: mad21K -CM frame: R is the CM. σ is the estimated Gaussian standard deviation we used in sec.1.3,
which we keep using to compare with that section.

(a) 〈T 〉 above ct, for positions towards the LIDAR from
the CM.

(b) 〈T 〉 above ct, for positions away from the LIDAR
from the CM.

Figure 5.7: Stackplots of mad21K in CM frame. Spaced at 1
4
σ from the CM. Blue is CM in both figures.

we want estimates of exposure times for continuous concentration thresholds of
various pollutants. Such estimates could be compared to the MADONA data by
scaling %t to ”simulate” variable time spent in a toxic plume, and could form the
grounds for an eventual interdisciplinary project, but are outside the scope of a
master’s thesis.

Figs.5.5a and 5.5b show stack plots with the same range of positions as the
stack plots for crossings. The two plots are symmetrical in form, and display for
instance no asymmetrical ”notches” like fig.5.3b. Time spent above thresholds
depends only on the distribution of concentrations, which we discuss in the form
of the PDF p(c) in sec.6.1, while crossings depend on short-term fluctuations.
Since %t is symmetrical, we assume that the underlying turbulent fluctuations can
be considered as a stationary process. If true, this suggests that our theoretical
discussion from sec.4.2 and later is valid for mad21K.

〈T 〉 was found by dividing the time spent above ct, in [s], by the number of
crossings. As an average number, it is the most generalizable of the three types of
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(a) Natural logarithm of vertical axis, fitted by linear
regression. Clearly not exponential throughout, although
2-5 [ppm] is a potential fit.

(b) Natural logarithms of vertical and horizontal axes.
The section marked by the yellow and green truncation
lines is a candidate for linear fit.

Figure 5.8

quantities we consider.
Figs.5.6a and 5.6b show 〈T 〉 at x = R and x = R + σ respectively. The high

number of crossings from 2 to 5 [ppm] heavily split up the total time in this re-
gion, making the 〈T 〉 of the entire range of positions convex, as is suggested by the
stack plots in figs.5.7a and 5.7b. This also shortens the relevant ct range consider-
ably. We have used a range between 0 and 5.5 to accommodate the concentration
threshold with known exposure time at 5 [ppm].

The convex form of all the sample positions in the stack plots suggests that
we try power law fits. We found the best way to perform both power law and
exponential fits to be in log or log-log space. Linear fits in log space correspond
to exponential fits, while linear fits in log-log space corresponds to power-law fits.
Using log or log-log space, we can easily see for what range a fit is linear, and
truncate outside that range. This can be shown for power law fits:

lny = alnx+ b,

y = Cxa,

and for exponential fits:
lny = ax+ b,

y = Ceax,

where C = eb is a constant coefficient.
Consider fig.5.6a, at the CM. Taking first the natural logarithm along the ver-

tical axis, we see that an exponential fit fails outside 2 to 5 [ppm]. exponential
(fig.5.8a). Upon also taking the logarithm of the horizontal axis, we find by in-
spection that the section between 4.95 ppm and 1

e
[ppm] in fig.5.8b, between the

yellow and green lines, is a candidate for linear fit. This is a better fit than what
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Figure 5.9: Truncated and fitted by linear regression. 〈T 〉 ∝ c−0.919
t .

we could achieve in fig.5.8a. We performed a truncation for these limits, and fitted
by linear regression. The resulting fit can be seen in fig.5.9. For this sample, the
linear regression gives

〈T 〉 ≈ 32.1c−0.919
t .

This is close to

〈T 〉 ∼ 1

ct
. (5.1)

The fit becomes better for large ct. The consequences of this are discussed in
sec.6.4.
〈T 〉, %t and number of crossings were also found in FF. Their stack plots are

shown in figs.5.10a-5.10f. We do not expect any symmetry in the fixed frame, and
especially the number of crossings show that the concentration fluctuations act
different on either side of the center of measurement. This results in the small-
concentration 〈T 〉 on the side away from the LIDAR being noticeably smaller,
since the fluctuations divide the total time above ct more heavily closer to ct = 0
on this side.

Figs.5.11b, 5.11d and 5.11f show the power-law model generated by a least
squares fit in logarithmic space for distances away from average concentration,
as argued in sec.6.4, and terminated before reaching the high fluctuation tail of
the data. The power-law relation between time expectation and threshold con-
centration on the LIDAR side, relative to the center of measurement, is closer to
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(a) Crossings over ct on the LIDAR side of center of
measurement.

(b) Crossings over ct on the side opposite to the LIDAR
from the center of measurement.

(c) %t over ct on the LIDAR side of center of measure-
ment.

(d) %t over ct on the side opposite to the LIDAR from
the center of measurement.

(e) 〈T 〉 on the LIDAR side of center of measurement. (f) 〈T 〉 over ct on the side opposite to the LIDAR from
the center of measurement.

Figure 5.10: Stackplots of mad21K in FF. Spaced at 1
4
σ from the CM. Blue is CM in all figures.
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(a) x = 384 [m]. Sample range of linear model in log-log
space.

(b) x = 384 [m]. Power-law fit in linear space. The legend
reads 〈T 〉 ∝ c−0.668105

t .

(c) x = 354 [m]. Sample range of linear model in log-log
space.

(d) x = 354 [m]. Power-law fit in linear space.The legend
reads 〈T 〉 ∝ c−0.755812

t .

(e) x = 414 [m]. Sample range of linear model in log-log
space.

(f) x = 414 [m]. Power-law fit in linear space. The scaling
legend 〈T 〉 ∝ c−0.516581

t .

Figure 5.11: Power law fit of 〈T 〉 against ct in linear and logarithmic space. Uncertainty in the fit depends on
the extension of the linear fit in log space. This depends on what we consider as noise, as well as the fact that
logarithms ”squeeze” data tighter for high log values. This means that the uncertainty is driven by qualitative
estimates. Calculating a fit with the smallest possible standard deviation of data would therefore not be optimal
in this case. The error in the exponent was estimated to be within ±10%.
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(a) CM frame. Green is ct = 0.075 [ppm], blue is ct = 5
[ppm].

(b) FF. Green is ct = 5 [ppm], blue is ct = 0.075 [ppm].

Figure 5.12: mad21K. Crossings for ct with known exposure time.

inversely proportional than the opposite side. This may be due to the asymme-
try observed for a majority of the data sets investigated, suggesting a systematic
variation. Since it is unlikely that the plumes are systematically skewed in one
direction of the LIDAR beam, a more likely interpretation implies an error in the
data noise reduction. We believe that the error lies in the correction formula for
the extinction of the laser beam intensity as it propagates through the gas. If this
is true, the LIDAR side concentrations are statistically more representative for the
plume as a whole than the opposite side. This complicates the evaluation of the
skewness of the actual plume.

We note that the uncertainty of the power-law fits in this section is dependent
on the truncation range. This depends on factors such as the noise for high con-
centrations in log space, as well as considerations of statistical independence as
explored in sec.6.4. This means that a simple standard deviation analysis of the
error in the fit would be superficial and misleading. We have therefore decided to
omit that.

5.3 Continuous Spatial Sampling

In addition to sampling along a continuous concentration threshold at a fixed
position, we also sampled the data at positions along the LIDAR line of sight, first
in CM frame, then in FF. This sampling was done at all positions defined by the
MADONA data arrays. Plotting crossings over positions in CM frame for several
ct, we found a change of form for small concentrations, so that the crossings split
into two ”bumps”. Fig.5.12a shows crossings over positions in CM frame. There
is a small ”cleft” for ct = 5 [ppm], noticeable in CM frame near x = R, which
starts dividing as we sample over lower thresholds. Crossings are maximized near
1.5σ for ct = 0.075 in CM frame. In the case of the SO2 plumes in Miyake,
this manifests as a passive pollution for up to 2σ away from the CM, as found
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in sec.1.3. This high fluctuation at the wings becomes a large problem when we
consider deadlier atmospheric contaminants (than SO2). Note that the low level of
crossings measured for ct = 0.075 [ppm] near the CM is due to most concentration
samples being above 0.075 [ppm], while the low number of crossings at the edges
is due to the lower overall concentration here. This is noticeable when comparing
with the FF fig.5.12b, where the ”cleft” in the middle for ct = 0.075 [ppm] is less
pronounced, since the convecting effect of the wind is included. The ”bump” on
the side away from the LIDAR is also significantly larger than the ”bump” on the
opposite side for small ct.

To investigate this ”forking” of crossings for lower concentrations, we plotted
the results in 3D wire frame representation. This allowed us to see the beginnings
of a bifurcation at ct = 3 [ppm] in CM frame, fig.5.13a. In FF, the results are
more spread out, as expected, since in the FF all eddy sizes contribute to the
spreading out, while in the CM frame essentially only turbulent eddies smaller
than or comparable to the width of the cloud will have an effect. There is no clear
bifurcation, but lower ct are dominated by the ”forked” structure. We made the
color coded surface plots seen in figs.5.14a and 5.14b in order to show that the
beginning of the bifurcation itself does not necessarily represent the start of the
interesting structural change of the data. The color plots show that the splitting
occurs in FF as well, but is noticeably more asymmetric. The splitting in FF occurs
near ct = 0.5 [ppm], while the splitting in CM frame occurs near ct = 1.5 [ppm] in
this representation. This representation is therefore better for showing the ”forked”
regions, while the wire frame plots can show the beginnings of bifurcations. These
correspond to different physical interpretations. The small region for low ct nestled
between the two ”forked” legs of the structure represents positions where c is
almost continuous above ct. We see that this regions is ”skewed” from the center
of the structure for FF. This means that if we stand up to 100 [m] away from
what we observe as the center of the plume movement as shown in red, we could
still be in a region guaranteed to have a stable concentration up to c = 0.5 [ppm],
as shown in the nestled green section in the same plot. On the other hand, the
beginning of bifurcation in fig.5.13a is interesting if we know at what concentrations
recommended exposure times drastically increases. If, for instance, this occurs for
concentrations higher than 3 [ppm], we could advise that standing a distance of
about 100 [m] is sufficient to decrease risk of exposure considerably.

Figs.5.15a and 5.15b show the percentage time spent above a given concentra-
tion threshold for the data sample mad21K in CM frame and FF, respectively.
As expected, the peak is at the center of mass for CM frame, while it is skewed
towards the LIDAR side in FF. We also see that the side away from the LIDAR
has higher local variation in %t. We also see that the shape is more spread out in
FF. As we mentioned earlier, this makes concentration fluctuations less predictable
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(a) mad21K -CM frame. Distance measured from R.

(b) mad21K -FF. Distance measured from LIDAR side.

Figure 5.13: Wire frame plot of number of crossings against ct and distance.
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(a) Color coded surface plot of fig.5.13a, seen from above.

(b) Color coded surface plot of fig.5.13b, seen from above.

Figure 5.14: Color coded representation of crossings against ct and distance.
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(a) CM frame. (b) FF.

Figure 5.15: mad21K : Comparison of the percentage time spent above a selection of concentration thresholds.

(a) CM frame. (b) FF.

Figure 5.16: 〈T 〉 above ct.

away from the CM, but we see now that it also results in a smaller percentage of
total time being spent above each ct.
〈T 〉 for a continuous variation of positions is shown in figs.5.16a and 5.16b for

CM frame and FF, respectively. While %t varied regularly with constant spacings
of ct, it is clear from fig.5.16a that 〈T 〉 quickly falls off from low ct. Note that 〈T 〉
is significantly spread out in FF. This makes sense because the crossings were seen
to be less affected by the change in reference frame than %t.
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Chapter 6

Probability
Distribution
Estimates

6.1 Histogram PDFs

PDFs of the form p(c) were created for the data set mad21K, scaled by the Miyake
data, by sampling the concentrations at fixed positions over time into equally
sized bins. Fig.6.1a represents a typical low-resolution PDF. It is ordered in the
sense that the gradual decrease of occurrences of higher concentrations is well
represented, but any local maximum of the PDF not at c = 0 is hidden by the low
resolution. Fig.6.1b represents on the other hand an excessively high resolution
PDF. The local maximum around c = 0.0005 is visible, but the resolution is too

(a) PDF at center of mass using 12 bins. (b) PDF at center of mass using 270 bins.

Figure 6.1
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high compared to the sampling, and artificial fluctuations appear. The tail exhibits
equally tall fluctuations. Evidently, the height is the lowest unit of counting within
the pdf, and a synthetic fit will exhibit larger than necessary errors in the tail.
The over-representation of c = 0 is also artificially created by the high resolution,
as smaller distances between sampled concentration spacings ultimately lead to
concentrations with no possible occurrences. 270 bins was chosen as an example
where the frequency of sampling is guaranteed to exceed the smallest meaningful
concentration distance in the sample.

Figure 6.2: PDF at center of mass using 40 bins. This resolution was found to be good for modeling purposes.

For modeling purposes, a high resolution is less important than the potential
errors from fitting to synthetic errors. Hence a resolution of 40 bins was found
to be good. Fig.6.2 shows p(c) at the resolution which is used for the rest of the
section.

Based on the results from sec.6.4, we try a Gaussian PDF with mean and
standard deviation calculated from the raw data via

〈c〉 =

∑N
i ci
N

σ2 = 〈c2
i 〉 − 〈c〉2 =

∑N
i c

2
i

N
− 〈c〉2,

where N is the number of points in temporal space for the given sample. The
Gaussian model then becomes

p(c) =
1√

2πσ2
e−

(c−〈c〉)2

2σ2 .
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The Gaussian fit is visualized in fig.6.3. In this case, the mean and standard

Figure 6.3: PDF at center of mass using 40 bins, using Gaussian fit with parameters found directly from data.

deviation were found to be 〈c〉 ≈ 4.34 p.p.m. and σ = 3.79 p.p.m. The slope
on the right side of the mean corresponds approximately to the actual slope of
the PDF. It is larger than the actual PDF by a constant number until about 11
p.p.m. Note that the relative weight to the left of the mean is much smaller than
that on the long tail on the right. Because negative concentrations are unphysical,
the curve is truncated at 0. More importantly, the large errors in the PDF closer
to 0 from about 1 standard deviation to the left of the mean are offset by their
relatively small weighting in terms of c. In addition, for practical purposes, the
CDF will be considered, and it stacks cumulatively from left to right. Thus the
large error could in fact serve to minimize error at large distances to the right
of the mean. Thus, one can assume that the CDF will show a good fit from a
distance to the right of the mean and throughout the distribution tail.

It is known that the integral of a Gaussian distribution gives a form propor-
tional to the conjugate error function. To compare the implications of a Gaussian
model, note that

tnorm =

∫ ∞
ct

p(c)dc,

where tnorm denotes the percentage time spent above ct shown in fig.5.4a, made
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(a) Data set mad21K (b) Data set mad21G.

(c) Data set mad15J. (d) Data set mad21F.

Figure 6.4: Integrated Gaussian from infinity to threshold at center of mass compared to fraction of time spent
above thresholds found from raw data, normalized to a unit instead of in terms of percentages. Note that the
integrated Gaussian time fraction does not reach 1 at c = 0. This is a result of the Gaussian fit extending left
beyond ct = 0. Since the numerical integration is performed from ∞ to ct, we must also make sure to create a
Gaussian fit for a large enough range.

unitless by dividing by 100, since the PDF is normalized according to∫ ∞
−∞

p(c)dc = 1.

tnorm is therefore the normalized CDF, corresponding to p(c), of continuous thresh-
old values at a given position. This applies as long as p(c) is sampled along tem-
poral space.

Fig.6.4a shows the fitted CDF compared to %t from for 512 threshold positions
between 0 and 15 p.p.m.

The CDF of three other good sets, mad21G (fig.6.4b), mad15J (fig.6.4c) and
mad21F (fig.6.4d), show that the closeness of the Gaussian fit is not isolated to
the data set mad21K. One could assume that there was something universal for
Gaussian fits of the PDF at the center of mass, at least under the general parame-
ters of the MADONA campaign. This is also a reminder that even when measured
values that depend on the PDF show distributions that seem to fit well with a
known PDF, it is no guarantee that the actual PDF is similar to the synthetic
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Figure 6.5: mad21K : CM frame at x = R. Gaussian fit was reworked here to illustrate how a Gaussian tail for
negative concentrations could be avoided. The tail is terminated at c = 0, where a δ spike is set up instead.
We then recalculate a new mean and standard deviation in order to create a Gaussian function which keeps the
same distribution when integrated from ∞ to 0. This therefore does not change the results of the fits in fig.6.4a
onwards, except that the fitted line would jump suddenly to time = 1 at c = 0.

model. Consider the threshold points close to 0. In the context of this thesis, if a
model was developed that followed a Gaussian distribution because of the generally
promising fit, low concentration values would be chronically underestimated. For
long periods of time, this underestimation could lead to large-scale, slow poisoning
of an entire community.

The Gaussian model can be reworked to get around the negative concentrations.
This requires that negative concentrations manifest as a dirac delta spike at c = 0.
The reworked fit can be seen in fig.6.5.

It should be noted that model fittings of concentration PDFs detected by LI-
DAR have been made before, for instance by (Munro et al., 2003). In their paper,
Munro et al. focused on maximum likelihood fits, which yields the best overall
form. In our case, the philosophy has been to use fits that emphasize the heavier
weighting at concentrations much larger than the mean, but smaller than the single
occurrence fluctuations at the tail of the distribution. This allows for a discussion
of physical implications in section 6.4, and emphasizes the threshold observations
in figs. 6.4a, 6.4b, 6.4c and 6.4d.
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6.2 Gaussian Smoothing

The PDFs created from data have a tradeoff between resolution and realism. In
order to create PDFs with added detail, but smoother than the jaggedness of high
resolution PDFs, synthetic smoothing could be introduced. Arguments here are
that since a high resolution introduces artifacts in any case, a lower resolution
with synthetic smoothing corresponding to the same level of detail as the higher
resolution will only introduce false data on the same order as the errors in the
higher resolution PDF. The main reason is to facilitate visual shape estimation,
since smooth functions mesh better with the human intuition of shapes, and it is
also easier to see whether a given model fit is good if the estimated PDF is smooth.

An important criterium for reducing synthetic errors is the shape of the smooth-
ing function. The method of Gaussian smoothing, mainly attributed to Silverman,
Wand and Jones, does not change the statistical moments of the PDF, and min-
imally interferes with the distribution apart from smoothing out the shape. We
refer to (Silverman, 1986) and (Wand and Jones, 1995) for detailed discussion of
the method. The method has been used in different fields, for instance by our
plasma physics group (Larsen, Hanssen, Krane, Pécseli and Trulsen, 2002). The
idea is to approach each data point as the mean of a Gaussian distribution, and
the distance from a point to the next as the standard deviation, σ. The size of
the Gaussian is normalized in (−∞,∞) so that its area is the same as that of
the bin it represents. The Gaussians superpose when they meet. The result is a
PDF that has the same large-scale statistical properties as the original histogram,
but is locally smooth. Setting σ to the distance, d, between two histogram bins
was found by trial and error to be the best choice. For instance, σ = d

2
results

in a jagged plot. Compare figs. 6.6a and 6.6b, which use σ = d
2
, with figs. 6.6c

and 6.6d, which use σ = d. These 4 plots are for the same histogram, but the
smoothing is noticeably more comfortable in the two latter plots.

Note that the method of scaling is not trivial, and there is a discussion of this
in (Larsen et al., 2002). In the context of this thesis, the easiest normalization has
been used. For a bin of height h and length d,

hd =

∫ ∞
−∞

A

σ
√

2π
e−

(c−〈c〉)2

2σ2 = A,

where A is the scaling parameter.
The Gaussian form has a domain 3 times as large as the histogram, a re-

dundancy that guarantees that the leftmost and rightmost tails of the Gaussian
superposition are included in the final smoothed distribution. The domain can
be shortened if computational expense is too high, and we often truncate it for
visualization. However, the Gaussian domain should be large if we want to use
the Gaussian smoothed form to compute statistical moments. A loop calls up
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(a) Center of mass for σ = d
2

without histogram bins. (b) Center of mass for σ = d
2

with histogram bins.

(c) Center of mass for σ = d without histogram bins. (d) Center of mass for σ = d with histogram bins.

(e) One standard deviation away from center of mass, for
σ = d, without histogram bins.

(f) One standard deviation away from center of mass, for
σ = d, with histogram bins.

Figure 6.6: All figures above were made for the data set mad21K using 40 histogram bins. The small negative
concentration region of the envelope is an unavoidable consequence of the smoothing by the superposition of small
Gaussian pulses.
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and creates a Gaussian for the center of each bin, and the Gaussians are meshed
together directly as they are defined on the same domain. Each Gaussian form
was arbitrarily given number of points equal to 100 times the number of the his-
togram bins to ensure a high relative smoothness. The results in figs.6.6c, 6.6d,
6.6e and 6.6f show that when an appropriate scaling has been chosen, Gaussian
smoothing is a good way to make the PDF more aesthetically pleasing and easier
to visually evaluate, while losing little information in the smoothing process. Note
that for figs.6.6e and 6.6f, at one Gaussian standard deviation to the right of the
CM, smoothing significantly clarifies the form of the distribution.

Given that part of the point with Gaussian smoothing is to enhance the infor-
mation in a systematic manner, certain shortcomings must be pointed out. First,
there is no justification for a locally Gaussian form of the distribution. Often, con-
centrations that are close to each other in density are measured right after each
other, which in a turbulent system implies that they are locally correlated. If many
of the samples in the PDF are made from such points, a locally Gaussian form
of each bin becomes unfeasible, since a Gaussian form requires uncorrelated sub-
groups. For significantly denser PDFs, and when creating PDFs en masse, there
is also computational expense to be considered. Finally, negative concentrations
are unphysical, but unavoidable when using Gaussian smoothing.

6.3 Excess statistics

Studies of excess statistics is a general point of interest of all randomly varying
signals, also space-time varying concentrations. Basic studies of this problem were
carried out by Rice in (Rice, 1944) and (Rice, 1945), with a slightly more acces-
sible disposition by Bendat in (Bendat, 1958). Here, we briefly summarize the
arguments.

Consider the expected number of crossings of a level, c0, in a time interval dt.
Defining α equals the expected amount of time spent in the interval dc for a given
dc/dt in time dt, and β equals the time τ required to cross once for a given dc/dt
in the interval dc. For time stationary random processes,

n(c0|dc/dt) =
α

β
.

Referring to fig.6.9, we can identify β = dc/c′ for the given derivative of the
concentration signal c(t). The value of α is proportional to dc, dc′, and dt, with a
constant of proportionality equaling the joint probability density p(c0, c

′). By this
argument we find

n(c0|dc/dt) =
p(c0|c′)dcdc′dt

dc/c′
= c′p(c0, c

′)dc′dt.
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(a) FF-PDF 40 bins.

(b) Representation of fig.6.7a using Gaussian smoothing. Cutoff points at c=0 [ppm] and c=10 [ppm] and p=0.5.

Figure 6.7: mad21K -CM. Histogram plots without and with Gaussian smoothing, sampled at 10 positions between
x ≈ 260 [m] to x ≈ 502 [m], around the center of measurement, for 40 bins of threshold concentrations between 0
[ppm] and 10 [ppm]. PDF was capped at p=0.5.
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(a) CM-PDF 40 bins.

(b) Representation of fig.6.8a using Gaussian smoothing.

Figure 6.8: mad21K -FF. Histogram plots without and with Gaussian smoothing, sampled at 10 positions between
x = R± 120 [m] for 40 bins of threshold concentrations between 0 [ppm] and 10 [ppm]. PDF cutoff at p = 0.5.
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This result is conditional in the sense that it refers to one specific value of c′.
Results valid for level crossings irrespective of the slope of the signal are obtained
by integrating over all positive c′, i.e. all upwards crossings. Integration over
negative signs would give the same results, since 〈c′〉 = 0 for stationary random
processes. This result becomes

n(c0) = dt

∫ ∞
0

c′p(c0, c
′)dc′.

This result is directly proportional to the time interval. The level crossing fre-
quency is the number of crossings per time unit, giving

ν =

∫ ∞
0

c′p(c0, c
′)dc′.

An average duration 〈T 〉 of excesses can be estimated as the fraction of the
time spent above the selected level, and the expected frequency of level cross-
ings (Kristensen, Casanova, Courtney and Troen, 1991):

〈T (c0)〉 =

∫∞
c0
p(c)dc∫∞

0
c′p(c0, c′)dc′

,

where the fraction of time spent above a selected level is given by
∫∞
c0
p(c)dc. The

conclusion from the analysis summarized here is that the JPDF, p(c, c′), contains
all the necessary information to predict the average level crossing frequency and
average excess time duration, given a prescribed level c0.

Figure 6.9: Basic Idea for how to use JPDF to estimate 〈T 〉. Made by Bjørn Lybekk. c′ = dc
dt
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6.4 Gaussian Concentration Distribution at Cen-

ter of Mass

The neat interpolation result for expectation times 〈T 〉 above a continuously vary-
ing threshold at the center of mass found in fig.5.9 can be explained if the con-
centration PDF at the center of mass is assumed to follow a Gaussian form. The
time expectation above a given concentration threshold can be estimated as the
time spent above the threshold, divided by the number of one-way crossings over
the threshold. Formally, this is expressed through the PDF labeled p(c) and the
JPDF labeled p(c,c’), where c′ = dc

dt
, and where the threshold is given by ct, as

〈T 〉 =

∫∞
ct
p(c)dc∫∞

0
c′p(ct, c′)dc′

. (6.1)

Assuming a Gaussian fit,

p(c) =
1√

2πσ2
e−

(c−〈c〉)2

2σ2 ,

p(c′) =
1√

2πσ′2
e
− (c′)2

2(σ′)2 .

The JPDF is separable:
p(c, c′) = p(c)p(c′),

since for stationary processes,

〈cc′〉 =
1

2

d

dt
〈c2〉 = 0,

and uncorrelated Gaussian variables are statistically independent (Pécseli, 2000).
This simplifies the expression in eq. (6.1) to

〈T 〉 =

∫∞
ct
p(c)dc

p(ct)
∫∞

0
c′p(c′)dc′

.

Inserting for p(c′) explicitly,

〈T 〉 =

∫∞
ct
p(c)dc

p(ct)
σ′√
2π

.

By a change of variables,

t =
c− 〈c〉
σ
√

2
dt =

dc

σ
√

2
,
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〈T 〉 =

1
2
erfc( (ct−〈c〉)

σ
√

2
)

p(ct)
σ′√
2π

.

It is known that the error function and its conjugate may be series expanded (see
e.g. BOAS):

erfc(x) = 1− erf(x) ≈ e−x
2

x
√
π

(1− 1

2x2
+

3

(2x2)2
− 15

(2x2)3
+ . . . ).

The error in the truncation is O( 1
c3t

). Therefore, for | ct−〈c〉
σ
√

2
| >> 1,

erfc(
ct − 〈c〉
σ
√

2
) ≈ e

−(
ct−〈c〉
σ
√
2

)2

ct−〈c〉
σ
√

2

√
π
,

so that

〈T 〉 ≈ σ
√

2

2
√
π(ct − 〈c〉)

/
σ′√
2π
,

and since it is implicitly assumed that ct
σ
>> 〈c〉

σ
, in this limit

〈T 〉 ≈ πσ

σ′ct
,

i.e.

〈T 〉 ∝ 1

ct
.

6.5 Joint Probability Density Function

The joint probability density function (JPDF) of the variables c, ċ can be written

p(c, ċ) = p(ċ|c)p(c) = p(c|ċ)p(ċ).

A method of computational differentiation is to use Fast Fourier Transform (FFT).
Let F and F−1 be the operation for the Fourier transform and its inverse. Let j
be the complex unit, and

F{c(t)} = C(ω) c(t) = F−1{C(ω)}.

Then,

dc(t)

dt
=

d

dt

[
1

2π

∫ ∞
−∞

C(ω)ejωtdω

]
=

1

2π

∫ ∞
−∞

jωC(ω)ejωtdω =
1

2π
F−1{jωF{c(t)}}.
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(a) mad21K -CM: x=R. JPDF constructed using the ’for-
ward’ interpolation from eq.6.2.

(b) mad21K -CM: x=R. JPDF constructed using the
’backward’ interpolation from eq.6.3.

Figure 6.10: We see that the choice of interpolation direction matters noticeably. There is especially a triangular
section without data which flips between the two methods.

However, FFT by its nature jumbles the sampling domain, it can not be used
to track the corresponding concentration c at the point. Instead, we use linear
interpolation between points to assess ċ here. Since ċi is a tangent between the
two sample points, we can make the arbitrary choice of associating it with the
leftmost or rightmost point. We can estimate

ċ(ti) ≈
ci+1 − ci
ti+1 − ti

=
1

3
(ci+1 − ci), (6.2)

or

ċ(ti) ≈
ci − ci−1

ti − ti−1

=
1

3
(ci − ci−1). (6.3)

Using these interpolations, one data point is left blank. We can also use the average
of the two methods, which becomes

ċ(ti) ≈
1

2

[
ci+1 − ci
ti+1 − ti

+
ci − ci−1

ti − ti−1

]
=

1

6
(ci+1 − ci−1). (6.4)

This last option in effect introduces a smoothing by overlap. In theory we could
calculate the speed without overlap, but this would lower the JPDF resolution to
1
4

its original, since valid concentration points would also be halved. The JPDF is
found by looping over all combinations of histogram bins and seeing if combinations
(c(ti), ċ(ti)) fit any of the squares. All JPDFs have been normalized by volume.

Both eq.6.2 and eq.6.3 were tested, and are shown in fig.6.10a and fig.6.10b.
All the JPDF figures are in CM frame, at x=R. This is because the resolution is

already very bad. Instead, we try to establish grounds for generalization. Further
steps will be suggested in the conclusion.

There is a noticeable difference in the left- and rightmost bottom triangular
sections, corresponding to high speeds and low concentrations. This is because con-
centration can not go below 0[ppm], so a concentration X[ppm] can not be associ-
ated with an immediate rate of change which is more negative than −X/T [ppm/s],
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(a) mad21K -CM: x=R. JPDF constructed using the interpolation from eq.6.4.

(b) mad21K -CM: x=R. JPDF constructed by sampling along abs(dc/dt) for the same resolution. Capped at p
= 0.45.

Figure 6.11: The triangular shape of green histogram points was observed for several data sets.
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(a) mad21K -CM: x=R. Artificial JPDF assuming independence: p(c, dc/dt) = p(c)p(dc/dt).

(b) mad21K -CM: x=R. The absolute value difference between the JPDF shown in fig.6.11a and the artificial
independent JPDF shown in fig.6.12a.

Figure 6.12: Fig.6.12b shows a clear pattern of correlation in the low velocity sections of the JPDF. However, note
that it is barely above the noise level around p = 0.02 in fig.6.11a. Higher velocities show negligible correlation.
This accounts for the fact that the Gaussian, uncorrelated PDF(c) model was successful at higher concentrations.
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where T = 3[s] is the time resolution of the data sets. This is why the triangles are
sharply defined and have a 1:3 ratio on the dc/dt:c dimensions. The blank trian-
gle in fig.6.10a, corresponding to ’forward’ interpolation, is according to the above
interpretation because it is unphysical for a concentration to jump to a negative
concentration, while the blank triangle in fig.6.10b represents the fact that it is
unphysical for a concentration to have been arrived at from a negative concentra-
tion. However, it is not unphysical for the local rate of change to be within these
triangles when measured by two points on either side. If we superpose figs.6.10a
and 6.10b and divide by 2, we get the JPDF according to eq.6.4.

Another problem is the low resolution needed unless we want to introduce
additional noise. PDFs were found to have optimal bin size around 40. For the
JPDF, maximum bin size without introducing too much noise was found to be
around 20. This accounts for the ”grainyness” of the figures. We know of three
ways to improve the resolution based on the existing data sets.

(i) Use the absolute value of the velocity, superposing the left and right side
of fig.6.11a. This allows us to get twice the resolution along dc/dt for half the
domain, but sacrifices information about asymmetricality around dc/dt = 0. This
is shown in fig.6.11b

(ii) Superpose the JPDF of the same position in CM frame for different data
sets. In this thesis, we have assumed that the turbulent diffusion of the data set
concentrations over time is driven by an underlying velocity field which is assumed
to be a stationary process. This is no longer true as wind conditions change. We
have so far assumed that each data set is driven by such a stationary process, but
we might extend this to all data sets from experiments performed on the same day.
Figs. 6.13a and 6.13b show that the JPDF is similar in shape on these days. The
normalized JPDF of the superposed data is shown in fig.6.13c. Since 4 data sets
were used, we used 40 bins along each axis. Each data set was separately scaled
according to the Miyake concentration value used throughout this thesis. This was
done consciously because release concentrations might have been changed between
experiments. The results show more clearly that high concentration oscillations
occur more often at higher concentrations, as expected, and the better resolution
more clearly shows the shape of the JPDF.

(iii) Use Gaussian smoothing. The script written for section 6.4 was modified
to smooth along the c direction of the JPDF. This direction was consciously chosen
over dc/dt because the interpolation method we use already smooths by overlap, as
mentioned earlier. Figs. 6.14a and 6.14b show the Gaussian smoothed histogram
shown in fig.6.11a. Note that Gaussian smoothing does not change the statistics
of the structure. However, the smoothing makes the underlying structure clearly
discernible.

The three methods above all have their drawbacks. Folding the structure (i) re-
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(a) mad21F -CM: x = R. (b) mad21G-CM: x = R.

(c) Superposed JPDF in CM frame: x=R.

Figure 6.13: Figs. 6.13a and 6.13b show JPDFs of mad21F and mad21G respectively. Fig.6.13c shows the JPDF
of the superposed data points from sets mad21K, mad21F, mad21G and mad21H, all measurements performed
on the same day.
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(a) mad21K -CM: x = R. Wireframe plot.

(b) mad21K -CM: x=R. Color plot.

Figure 6.14: JPDF using Gaussian smoothing. The shape of the structure is clearly discernible.
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(a) mad21K -CM: x = R. Wireframe plot.

(b) mad21K -CM: x=R. Color plot.

Figure 6.15: JPDF using Gaussian smoothing. The same amount of bins as previously, 20 by 20, but constrained
along dc/dt = −1 [ppm/s] to dc/dt = 1 [ppm/s].
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(a) mad21K -CM: x = R + 30 [m].

(b) mad21K -FF: x=382.5 [m]. Center of measurement.

Figure 6.16: JPDF using Gaussian smoothing at a distance away from R in CM frame, as well as the center of
measurement in FF.
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moves information about concentration change direction. Using more data sets (ii),
even from the same day, increases the chance of the wind being a non-stationary
process. The Gaussian method (iii) smooths over the local structure. It would
therefore be inadvisable to use several of the methods at the same time without
being aware of what each does to the data. For instance, figs.6.15a and 6.15b show
the JPDF with the same amount of bins, but for dc/dt = [−1, 1] [ppm/s] instead
of dc/dt = [−2, 2] [ppm/s]. It would be tempting to suggest that this shows more
of the JPDF structure than the lower resolution at [−2, 2] [ppm/s] if we did not al-
ready know that 20 by 20 bins is about as good a resolution as we can get without
introducing a lot of noise. Each of the methods also gives us different information.
Folding the structure (i) oversamples the symmetrical parts of the structure, and
a triangular structure with vertices at (0,0), (1,6) and (0,6) is more clearly visible.
The same structure can be seen in the superposition of the 4 JPDFs in fig.6.13c
(ii). The superposition of 4 JPDFs shows the complexity of the problem. It also
separates more clearly the sections that arise from a stationary process, because
the rest will manifest as noise. Finally, the Gaussian smoothing (iii) allows us to
see the structure of the JPDF. We notice three fingers at high concentrations, and
the structure is seen to be more symmetric about dc/dt = 0 than the histogram
JPDF in fig.6.11a seems to suggest. Fig.6.14a also shows the outline of the trian-
gular structure mentioned above. Gaussian smoothing also allows us to estimate
the shape of positions away from R in CM frame, as well as FF positions, as long
as we remember that the actual resolutions here might be bad. Fig.6.16a shows
an example of the former, for the CM frame at x = R + 30 [m], while fig.6.16b
shows an example of the latter, with a JPDF in FF at x = 382.5 [m].

It is useful to know whether the JPDF is independent. As shown in section
6.4, it allows for a simplification in the expression for 〈T 〉, and also means that we
can use FFT to compute p(dc/dt), since we do not have to keep track of position
along the sampling domain. Independence means that p(c, dc/dt) = p(c)p(dc/dt).
One condition of independence is that 〈cdc

dt
〉 = 0. However, for a stationary process

this is automatically fulfilled by 1
2
〈(dc
dt

)2〉 = 0. The other condition is that the un-
derlying distribution is Gaussian. We found p(dc/dt) using eq.6.4. This artificial,
independent JPDF can be seen in fig.6.12a. The absolute value of its difference
with fig.6.11a can be seen in fig.6.12b. There is a clear correlation pattern near low
velocities which decreases for higher concentrations. This means that the indepen-
dence assumption is better for higher concentrations. This argument is backed by
the results of section 5.2, where we found the cumulative distribution (CDF) of a
Gaussian PDF to be a good fit for higher concentrations.

Another reason to find the JPDF is to separate it into p(ċ|c) = p(c, ċ)/p(c).
If this could be generalized, we could use measurements of p(c) alone in other
experiments to generate JPDFs. However, the best resolution of our JPDFs seem
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(a) mad21K -CM frame: t(ct)excess found from p(c) com-
pared to the same value found by direct sampling along
ct.

(b) mad21K -CM frame: ν(ct) found from p(c) compared
to the same value found by direct sampling along ct.

Figure 6.17

insufficient for such a generalization.

6.6 JPDF Estimate of Excess Statistics

Section 6.3 explains the method used to find theoretical estimates of excess statis-
tics. In section 6.1 we showed that a Gaussian fit to the PDF gives a surprisingly
good estimate for time spent above a given threshold. Given the bad resolution
of the JPDF, it is inadvisable to adopt a similar philosophy here as well. Higher
values of both concentration and concentration fluctuations dc/dt have consider-
able fluctuations which is often indistinguishable from the background noise levels.
Instead, we estimate %t and νexcess, the normalized version of crossing frequency,
directly from the normalized p(c) and p(c, c′), where c′ = dc/dt. We have that

t(ct)excess ≈
ci=cmax∑
ci=ct

p(ci)∆c,

for the fractional excess time,

ν(ct) ≈
c′max∑
c′i=0

c′ip(ct, c
′
i)∆(c, c′),

for the frequency of crossings at concentration thresholds, and

〈T (ct)〉 ≈
t(ct)excess
ν(ct)

for the expected excess time at ct. These can be plotted against ct and compared to
earlier results from sampling the data directly through concentration thresholds.
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t(ct)excess is reproduced and compared against the earlier results at the CM in
fig.6.17a. As expected, the fit shows only slight variation from the directly sampled
results, due to the effects of binning. Fig.6.17b shows the reproduced ν made
from the JPDF in fig.6.11b. We chose to use the ”folded” JPDF because the
experimentally obtained p(c, dc/dt) is not perfectly symmetric about dc/dt = 0,
even for CM frame. However, the results show that the estimate does not reproduce
fcross well. Only the general form of increasing towards lower concentrations, and
then decreasing again close to ct = 0, was preserved. The heavy fluctuations are
due to the low resolution of the JPDF, while the generally bad fit can be attributed
to bad dc/dt estimation. This could also mean that ”folding” the JPDF is a bad
idea, since the concentration of a diffusive plume may have a preference for the
direction of its fluctuation at that point.

We have in any case hit a limit in what these LIDAR data sets are capable of
on their own. Ways to extend their usefulness are discussed in sec.7.2.



Chapter 7

Conclusion

Academic disciplines can define
themselves either by their objects
of study or by their style of
inquiry. Physics is firmly in the
second camp. Physicists make it
their business to ask certain kinds
of questions about Nature and to
seek certain kinds of answers...
”thinking like a physicist” is
supposed to mean something...

William Bialek
Biophysics: Searching for

Principles

7.1 Summary and Discussion

The aim of this project has been to study the statistical properties of LIDAR
measured concentration data sets in order to extend them to discussions of re-
leased toxic contaminants diffused within the atmospheric boundary layer. The
analysis was fruitful, although generalization through probability density functions
met limitations. These limitations can be overcome by doing experiments geared
towards the analysis presented in this thesis. The analysis in the present thesis
demonstrates that meaningful results can be obtained by use of LIDAR data ob-
tained from turbulent atmospheres, in spite of the spatial averaging by the laser
pulse and the potentially reduced (compared to point measurements) temporal
sampling frequency. The remote sensing without physical objects disturbing the
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local flow conditions makes the LIDAR technique appealing in many other aspects,
and it is comforting to note the good quality of the resulting data.

7.1.1 Comparison with realistic pollution measurements

Figure 7.1: Miyake residents watching a gas eruption from afar without gas masks. Our analysis suggests that
this can be a bad idea, since large concentration fluctuations can be experienced even at large distances from a
source, even though this happens rarely. 1

Using SO2 concentration and medical data collected on Miyake island, we found
that an approximate CM to CM scaling according to time-averaged point measure-
ment concentrations on the island could be performed. This scaling allowed us to
check that CM concentration measurements regularly exceeded the concentration
threshold at ct = 5 [ppm] corresponding to the 15 [min] exposure limit. According
to results in table 1.2, a 44 [min] stay in the CM of such a plume is sufficient to
damage a person’s lungs. The ”brute force” calculations also predicted high levels
of concentration fluctuations at distances up to 2σ away from the CM for low con-
centration thresholds. According to results in table 1.2, a stay of 5 hours and 25
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minutes as far away as 2σ to the right of the CM is sufficient to exceed the expo-
sure limit. This can easily be achieved by long term residents of the area. Medical
data from Miyake suggested that the residents suffered from long term effects of
SO2 pollution despite competency in using gas masks during SO2 outbreaks. This
suggests that high fluctuations for low concentrations at large distances away from
the CM of the plume may be to blame, and is not something a point measurement
(in space and time) tool could pick up on by itself.

Similar but less dramatic problems, such as smell pollution from farms or in-
dustry, can also be studied by similar methods (Nielsen et al., 2002), (Mikkelsen
and Jørgensen, 2002).

7.1.2 Analytical and Data Processing Tools and Methods

We looked at analytical concepts in fluid dynamics and turbulence and found that
the complexity of the issue requires a statistical approach to the problem. Our an-
alytical survey of correlated and uncorrelated diffusion suggested that turbulent –
unlike classical – diffusion processes, are not easily computationally or analytically
solved, for instance through random walk simulations. Our statistical analysis for
the plume mean square width suggested that at least 4 of the 5 best data sets
we had to choose from, including our primary choice mad21K, corresponded to
turbulent diffusion. We therefore rely instead on experimentally derived statisti-
cal distributions, such as the PDF p(c) and JPDF p(c, dc/dt) found during this
project.

The three quantities of particular interest to us were percentage time (%t)
above ct, crossings (fcross) over ct, and the expected time (〈T 〉) above ct for each
crossing. Tools were developed for visualization and fitting of continuous thresh-
olds and continuous positions. We discussed the effect on %t above ct of linear
interpolation as opposed to simple counting (sec.5.1). We concluded that we had
no basis for using ”fancier” interpolation techniques.

Due to the rough nature of the scaling, and the fact that our ultimate goal is
to generalize our findings, only quantitative results with qualitative significance
were discussed. In particular, we found that the form of 〈T 〉 for the CM in CM
frame and for measurements near the center of measurement for FF had a power-
law scaling close to 〈T 〉 ∝ 1

ct
. This scaling becomes noticeably better for higher

concentration thresholds. We attribute this to statistical independence between c
and dc/dt for higher concentrations. Linear fits in log and log-log space showed
clear sections of flat and linear scaling, as well as noise. Truncations along ct for
upper and lower limits of the fits were evaluated on a case by case basis.

A three dimensional visualization of the crossings showed a ”forking” (e.g.

1http://www.accidental.tv/images/miyakejima watching.jpg



108 CHAPTER 7. CONCLUSION

fig.5.13a) of high fluctuations as the concentration threshold was lowered. This
result confirms earlier suspicions from the ”brute force” calculations at 2σ. The
analysis suggests that future studies should compare against a relation between
continuous concentration thresholds and exposure limit for known contaminants.
These continuous relations can be worked out in a multi-disciplinary effort between
medical expertise and experimentally obtained data of toxic releases carried by
the atmosphere, especially at low average concentrations. The ”forking” structure
was observed for both CM frame and FF. Results in FF had a random asymmetry
as compared to the CM frame, as expected, due to the limited sampling time.
The statistical variability in the FF will always be larger than the moving CM
frame. An illustrative case supporting this argument is a limit where a fixed,
compact plume is moved by a random velocity field: following the plume we will
find no statistical variability, while a fixed observer would find a randomly varying
concentration field.

7.1.3 Generalization and Limitations

We considered limitations of LIDAR measurements of concentration fluctuations.
Our analytical discussion of atmospheric stability and the atmospheric boundary
layer concluded that LIDAR measurements must be done during stable atmo-
spheric conditions and kept as horizontal as possible due to the logarithmic wind
profile in the atmospheric boundary layer, and how it affects local turbulence
fluctuations. This is especially important if we want our concentration samples
over time to reflect the underlying statistical ensemble for constant parameters
throughout the LIDAR line of sight.

We looked at relations between variance, skewness and kurtosis in FF and CM
frame (sec.3.2), and found a systematic relation between skewness and kurtosis.
Data points were constrained by the known relation α4 ≥ α2

3 + 1, where equality
corresponds to a single-concentration release situation known as the ”top hat”
model. Another relation between deviation from α4 = α2

3 + 1 and distance from
center of mass is suggested by the data. Variance and skewness was also found
to be constrained by the single-concentration release model, but no clear relation
was found beyond this. This makes sense because high kurtosis distributions have
a thick tail, and this is related to the skewness of the plot, since an asymmetrical
distribution has a thicker tail on one side. Variance is a measure of the thickness
of the spread, and does not heavily rely on asymmetry.

We put occurrences of different concentrations over time into histogram bins
and treated these as a an estimate of the underlying true PDF of concentrations.
A good resolution was again found through trial and error, and discussions with
supervisor. As a test of our analysis for 〈T 〉 ∝ 1

ct
, we fitted a Gaussian form

of the same mean and standard deviation as found directly from the data. The
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Gaussian fit was bad in PDF space, and also had probability densities associated
with negative concentration, which is unphysical. However, integrating the fitted
PDF in fig.6.3 and comparing against %t yielded surprisingly good fits, especially
for data set mad21F.

In order to facilitate visualization of PDFs, and in anticipation of the JPDFs,
we developed a one dimensional Gaussian smoothing algorithm. It was retroac-
tively fitted to the histograms showing the meandering of the CM in sec.4.5, where
it helped give an ”intuition” that mad15J was the best candidate for reaching the
limiting case of classical diffusion, as established in sec.4.2. Several 3D visualiza-
tions of p(c, x) were generated, using Gaussian smoothing along c. These showed
that the PDF typically peaked close to 0, except for regions close to the CM, and
only in CM frame. For FF, we saw that peak occurrences always occurred for
lower concentrations than in the CM frame.

In order to generalize the results based on our knowledge of excess statistics, we
found the JPDF p(c, dc/dt) by binning according to both c and dc/dt. dc/dt was
found using linear interpolation. The best possible resolution without introducing
considerable noise was found to be 20 by 20 bins. We tried three ways of enhancing
this resolution: considering only absolutes of velocities, using several data sets
from the same day, or using Gaussian smoothing. Again, each method had its own
interpretation. Gaussian smoothing, in particular, gave satisfying representations,
but was capable of misleading someone who did not know the actual resolution
of the binning. We also found that the independence assumption p(c, dc/dt) =
p(c)p(dc/dt) became better as concentration increased.

We were not able to reproduce fcross from the excess statistics. We attribute
this to the fact that our dc/dt calculations are an order worse than the measured
c(x, t). The fcross reproduced through the JPDF was found to loosely follow the
shape made from direct sampling of the data, but oscillated greatly. In comparison,
the reproduced %t, which depends on p(c) only, was a much better fit compared
to direct sampling. We therefore conclude that LIDAR backscatter data alone
are not capable of generalizing p(c, dc/dt), which is needed for a full discussion
of excess statistics. It has, however, proven to be extremely valuable in creating
generalizable statistics on the concentration level, as well as serving as a template
for analysis given point measurements samples. Gaussian smoothing was also
found to be especially useful by facilitating estimation of histogram shapes by the
human eye.

By inspection of data like those in fig.1.6a, we noted a systematic enhancement
of the density downstream of the LIDAR beam, giving rise to a slight ”skewing”
for the concentration profile. We attribute this effect to a slight error in the
correction formula for the LIDAR intensity depletion as a pulse passes through
the scattering cloud. This error has a slight consequence for low concentration
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threshold samplings, because the ”skewing” manifests as artificial fluctuations at
the cloud tail away from the LIDAR. Future use of the experimental setup for these
studies should make corrections for this, with reference to (Jørgensen et al., 1997).

7.2 Future Perspectives

Work on this project has been constrained both by the 1 year allotted to my
Master’s thesis, as well as by the focus on LIDAR data alone. Here, the focus has
been on data set mad21K.

(i) Additional work that could be done in a later project include performing
the same analysis for each of the other 4 good data sets. Based on the results from
sec.4.5, data set mad15J has a plume width closer to the classical diffusion scale.
A random walk simulation could be performed to compare against the data in CM
frame, and extended to account for the wind through comparisons in FF. Model
fittings could be performed for fcross in particular. It would be interesting to find
an analytical explanation for the ”fork” shape found in for instance fig.5.13a. In
this thesis, we have chosen to limit fits to where we could give a testable physical
interpretation. An extension of the project could be to find the mathematically
closest fit (without worrying about physical interpretations) for PDFs and the
quantities fcross, %t and 〈T 〉, and see for instance how the integration of p(c)
for such a fit is compared with %t. Quantities other than fcross, %t and 〈T 〉
can also be interesting for discussions of toxic contaminants. For instance, local
fluctuations, as opposed to fluctuations above a threshold, could be computed
between two variable concentration thresholds. The data could then be sampled
for fluctuations of variable locality. Further analysis of the data sets could also
include conditional sampling. For instance, we can try out thresholds to the JPDF
”hits” to remove noise, or we can sample lower concentrations with smaller bins,
in order to maximize the overall resolution. We can also perform cross-parametric
conditional sampling, setting a minimum dc/dt in order to represent only data
points corresponding to large fluctuations in concentration. This can separate real
combinations of high c and dc/dt from noise in the JPDF. This can also be used
to study the effects of high dc/dt on fcross.

(ii) The main constraint in this project has been the low resolution of the
JPDF. As long as dc/dt must be estimated from c(t), p(dc/dt) will have a reso-
lution one order worse than p(c). The constraint is therefore due to only using
LIDAR backscatter data. It could be interesting to have one Wind LIDAR for
estimating dc/dt through the underlying wind velocity, together with a LIDAR
measuring concentration. LIDAR data seem to also be capable of representing
concentration fluctuations which are usually obtained by point measurements. Lo-
calized detectors could therefore be added as a comparison to such an experiment.
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These could determine the effects of the spatial averaging of the LIDAR pulse, as
well as developing more sophisticated ways to compare LIDAR data with the point
measurement devices normally installed near natural toxic contaminant sites. This
would also ascertain how best to scale concentrations measured by single-positional
measurement devices to LIDAR data of similar plumes. With better resolution in
the JPDF, we could also find the ct where the statistical independence of c and
dc/dt starts to ”branch off”, and see if this is a universal relation.

(iii) Additional experiments could vary height in order to see the effects of the
logarithmic boundary layer on atmospheric diffusion. If several LIDAR scans could
be performed simultaneously at different distances downstream on the same plume,
qualitative changes in the concentration distribution could be found. These can
advise on the viability of LIDAR data fits to specific cases of toxic contaminants
if the distance from the source is known in both cases.

(iv) Sec.3.2 concluded with the skewness and kurtosis of flank positions of con-
centration distributions exhibiting closer fit to the ”top hat” model. Experiments
could find out if this was due to the initial mixed state of the aerosols, or if it is due
to the flank concentrations in fact becoming more ”settled”. Could relationships
between kurtosis, skewness and standard deviation be used to estimate distance
from the CM of a single data point? Such an experiment could be performed
for LIDAR scans in conjunction with point measurement devices. It would also
be interesting to note if especially the relationship between skewness and kurtosis
changes systematically downstream.

(v) Finally, the possibility of extending the analysis to industrial SO2 releases
can be considered. Industrial smog is a large problem in urban centers in for
instance China, and the release of SO2 plumes from factory pipes is a large con-
tributing factor. Such a comparison means we have to take into account urban
roughness levels and/or higher vertical position of plumes. Especially %t(ct) could
be used to compare against medical estimates of exposure limits for continuous
concentration thresholds. %t could then be scaled according to total time under
a toxic plume, and an estimate of the amount of time needed for e.g. 99% of
the medical estimate to be covered by %t curve could be found. This would be a
multi-disciplinary effort, as noted above, and could also be a multi-national effort
countries struggling with pollution could be interested in.
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Appendix A

Python Scripts

All python scripts written to handle the data are appended here for completeness.
Most of the scripts are straightforward, and therefore sparsely commented. I have
tried to comment on what a section does, and why a certain choice was made in
several places (as much as time allowed). Most of the functions have been placed
into the file madona mods.py.

I have used the numpy library for array handling, matplotlib for plotting, and
mpl toolkits for 3D plots. The scripts read the address of the data file in the
command line, and ask for further conditions, such as FF or CM frame. I apologize
in advance for any redundancy in the code which makes it less readable and longer
than necessary. Especially the setup of each script is almost identical. The code
with most of the functions used throughout the data processing part of this project
is at the very end of the appendix.
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A.1 Chapter 1

Listing A.1: A1 datarep.py

# P l o t s raw mad f i l e s in 3 D for e i t h e r FF or CM

f r a m e .

# E n t e r p y t h o n A 1 _ d a t a r e p . py < l o c a t i o n of d a t a

file >

f r o m madona mods i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m numpy i m p o r t ∗
f r o m mpl t o o l k i t s . mplot3d i m p o r t Axes3D

c = s to r e da ta ( )
time = len ( c )
# " t i m e " is a m o u n t of s a m p l e s a f t e r m i s s i n g

s c a n s h a v e b e e n r e m o v e d f r o m d a t a

dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )

frame = ask use r ( )
if 0 == frame :

# f i x e d f r a m e

c work = c
X = l i n spa c e (0 ,511∗dx ,512 )

e l s e :
# CM f r a m e

c work = c r e a t e c en t e r ed ( c , time , dx , R)
X = l i n spa c e (−255∗dx ,256∗dx ,512 )

Y = l i n spa c e (0 , time ∗3 , time )

# M a k e 3 D p l o t

f i g = f i g u r e ( )
ax = f i g . gca ( p r o j e c t i on=’ 3 d ’ )
X,Y = meshgrid (X,Y)
su r f = ax . p l o t s u r f a c e (X, Y, c work , r s t r i d e

=10, c s t r i d e =10, l i n ew idth=1, c o l o r=’ w ’ )
for item in ( [ ax . t i t l e , ax . xax i s . l abe l , ax .

yax i s . l abe l , ax . z ax i s . l a b e l ]
+ ax . g e t x t i c k l a b e l s ( ) + ax .

g e t y t i c k l a b e l s ( ) + ax .
g e t z t i c k l a b e l s ( ) ) :

item . s e t f o n t s i z e (20)
ax . s e t x l a b e l ( ’ x  [ m ] ’ ) # m e t e r s

ax . s e t y l a b e l ( ’ t  [ s ] ’ ) # s e c o n d s

ax . s e t z l a b e l ( ’ c ’ ) # raw d a t a w i t h o u t s c a l i n g

show ( )

Listing A.2: A1 samples.py

# P l o t s of s c a l e d raw d a t a o v e r t i m e w i t h c_t

l i n e s .

f r o m madona mods i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m numpy i m p o r t ∗

c = s to r e da ta ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time ) # a l w a y s

s c a l e d a g a i n s t p r e s e n t d a t a set

o f f s e t = 255 # i n p u t p o s i t i o n x = 0 s h o u l d

c o r r e s p o n d to CM or c e n t e r of m e a s u r e m e n t

frame = ask use r ( )
if 0 == frame :

# f i x e d f r a m e

c work = c∗miyake
e l s e :

# CM f r a m e

c work = c R∗miyake

po s i t i o n = a sk po s i t i o n ( )
t = l i n s pa c e (0 , time ∗3 , time )

# d e f i n e t h r e s h o l d s

c t l ow = ze ro s ( len ( t ) )
c t l ow . f i l l ( 0 . 0 75 )
c t h i gh = ze ro s ( len ( t ) )
c t h i gh . f i l l ( 5 )

# p l o t all s a m p l e s at p o s i t i o n

p lo t ( t , c work [ : , o f f s e t+po s i t i o n ] , ’ b ’ )
hold ( ’ on ’ )
p l o t ( t , ct low , ’ r ’ )
p l o t ( t , c t h igh , ’ g ’ )
show ( )

Listing A.3: A1 avg.py

# P l o t <c > vs t in CM f r a m e or FF .

f r o m madona mods i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m numpy i m p o r t ∗

c = s to r e da ta ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time ) # a l w a y s

s c a l e d a g a i n s t p r e s e n t d a t a set

frame = ask use r ( )
if 0 == frame :

# f i x e d f r a m e

c work = c∗miyake
x = l i n spa c e (0 ,511∗dx ,512 )

e l s e :
# CM f r a m e

c work = c R∗miyake
x = l i n spa c e (−255∗dx ,256∗dx ,512 )

# f i n d m e a n

mean = ze ro s (512) # p o s i t i o n a l d a t a are a l w a y s

512 p o i n t s

for i in r a n g e ( time ) :
for j in r a n g e (512) :

mean [ j ] += c work [ i ] [ j ]
mean = mean/(1 .∗ time )

# p l o t

rc ( ’ x t i c k ’ , l a b e l s i z e =30)
rc ( ’ y t i c k ’ , l a b e l s i z e =30)
rc ( ’ t e x t ’ , usetex=True )
p lo t (x , mean , l i n ew idth=3, l a b e l=’ \ l a n g l e  c  \\

r a n g l e  ’ )
x l ab e l ( ’ x  [ m ] ’ , f o n t s i z e=’ 30 ’ )
y l ab e l ( ’ c  [ ppm ] ’ , f o n t s i z e=’ 30 ’ )
legend ( prop={’ s i z e ’ : 30} )
show ( )

Listing A.4: A1 brute.py

# B r u t e f o r c e c a l c u l a t i o n of \% t , <T > , and

c r o s s i n g s .

# B a s e d on s i m p l e c o u n t i n g for c_t = 0 . 0 7 5 [ ppm

] and 5 [ ppm ] in CM f r a m e .

f r o m madona mods i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m numpy i m p o r t ∗

c = s to r e da ta ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )
o f f s e t = 255
frame = ask use r ( )
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po s i t i o n = a sk po s i t i o n ( )
# t a k e o n l y 1 D a r r a y at the p o i n t t h i s t i m e

if 0 == frame :
c work = c [ : , o f f s e t+po s i t i o n ]∗ miyake

e l s e :
c work = c R [ : , o f f s e t+po s i t i o n ]∗ miyake

# d e f i n e t h r e s h o l d s

c t l ow = 0.075
c t h i gh = 5 .

# c o m p u t e c r o s s i n g s and t i m e a b o v e t h r e s h o l d

# f is 1 - way c r o s s i n g s , pt is t i m e above , ext

is <T >

f l ow = 0
f h i gh = 0
pt low = 0
pt h igh = 0
ext low = 0
ext h igh = 0

pt low , f l ow = t ime cros s wo ( c work , ct low ,
time )

pt high , f h i gh = t ime cros s wo ( c work ,
c t h igh , time )

# f i n d <T > = t i m e _ a b o v e / o n e _ w a y _ c r o s s i n g s [ s ]

# pt m u l t i p l i e d by t i m e b e t w e e n s a m p l e s 3 [ s ]

to t a k e t i m e d i m e n s i o n

# try - e x c e p t in c a s e f is 0

try :
ext low = pt low ∗3 ./ f l ow

e x c e p t :
ext low = 0

try :
ex t h igh = pt h igh ∗3 ./ f h i gh

e x c e p t :
ex t h igh = 0

# m a k e pt i n t o p e r c e n t a g e t i m e a b o v e

pt low = 100∗ pt low /(1 .∗ time )
pt h igh = 100∗ pt h igh / (1 .∗ time )

p r i n t f low , f h i gh
p r i n t ext low , ext h igh
p r i n t pt low , pt h igh

A.2 Chapter 3

Listing A.5: A2 skvar.py

# P l o t a l p h a _ 3 ^2 + 1 a g a i n s t alpha_4 , a l p h a _ 3

a g a i n s t alpha_4 ,

# and a l p h a _ 3 a g a i n s t s i g m a ^2 w i t h

i n t e r p o l a t i o n s .

# L a s t o p t i o n is to p l o t a l p h a _ 3 ^2 + 1 a g a i n s t

a l p h a _ 4

# in r a n g e s of d i s t a n c e f r o m the c e n t e r of

m e a s u r e m e n t or CM .

f r o m madona mods i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m numpy i m p o r t ∗
f r o m math i m p o r t ∗

def a sk p l o t ( ) :
n = int ( r a w _ i n p u t ( " T y p e  0  for  SS +1  vs  K .  

T y p e  1  for  S  vs  K .  T y p e  2  for  

s k e w n e s s  vs  std .  T y p e  3  for  c o l o r  

c o d e  p o s i t i o n s  SK :  " ) )
if n==0 or n==1 or n==2 or n==3:

r e t u r n n
e l s e :

p r i n t " S o m e t h i n g  e l s e  t h a n  0 ,  1 ,  2  or  

3  w r i t t e n . "

e x i t ( )

c = s to r e da t a ( )

time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )
o f f s e t = 255

query = ask use r ( )
if query == 0 :

c work = c∗miyake
x = l i n spa c e (0 ,511∗dx , 512)

e l s e :
c work = c R∗miyake
x = l i n spa c e (−255∗dx ,256∗dx , 512)

mu = get mean ( c work , time )
sigma = get s igma ( c work , time , mu)
skew = get skewness ( c work , time , mu, sigma )
kurt = g e t k u r t o s i s ( c work , time , mu, sigma )

# s c r u b NAN n u m b e r s f r o m l i s t

s k ew l i s t = [ ]
k u r t l i s t = [ ]
s i gma l i s t = [ ]
mu l i s t = [ ]
for i in r a n g e (512) :

if i snan ( skew [ i ] ) == False :
s k ew l i s t . append ( skew [ i ] )
s i gma l i s t . append ( sigma [ i ] )
mu l i s t . append (mu[ i ] )

if i snan ( kurt [ i ] ) == False :
k u r t l i s t . append ( kurt [ i ] )

mu = asarray ( mu l i s t )
sigma = asarray ( s i gma l i s t )
skew = asarray ( s k ew l i s t )
kurt = asarray ( k u r t l i s t )

# L i n e a r i n t e r p o l a t i o n

i n t e r po l an t = skew∗∗2 + 1
A = array ( [ i n t e rpo lant , ones ( len ( i n t e rpo l an t ) )

] )
w = l i n a l g . l s t s q (A.T, kurt ) [ 0 ] # o b t a i n i n g the

p a r a m e t e r s by l e a s t s q u a r e s

l i n e = w[ 0 ] ∗ i n t e rpo l an t + w[ 1 ]

# m o d e l w i t h m o r e p o i n t s

model x = l i n spa c e (0 ,15 ,1000)
new b = w[ 0 ] + w[ 1 ]
model = w[ 0 ] ∗ model x ∗∗2 + new b

# s k e w n e s s - v a r i a n c e p l o t

top hat = ze ro s ( len ( skew ) )
top hat = 1+.5∗(model x ∗∗2 + model x ∗ ( ( model x

∗∗2+1) ∗∗ ( 1 . /2 ) ) )
var = ( sigma ∗∗2) /(mu∗∗2)

sorted skew = [ ]
s o r t ed va r = [ ]

# t r u n c a t i o n for a l p h a 3 a l p h a 2 f i t s

# it is low b e c a u s e the p o i n t s q u i c k l y s p r e a d

p a s t a l p h a 3 = 5

for i in r a n g e ( len ( skew ) ) :
if skew [ i ] < 5 :

sorted skew . append ( skew [ i ] )
s o r t ed va r . append ( var [ i ] )

sorted skew , s o r t ed va r = zip (∗ s o r t e d ( zip (
sorted skew , s o r t ed va r ) ) )

new skew = asarray ( sorted skew )
new var = asarray ( s o r t ed va r )
l i n e a r f i t = p o l y f i t ( new skew , new var , 1 )
quad f i t = p o l y f i t ( new skew , new var , 2 )
svar domain = l i n spa c e (0 ,10 ,1000)
v a r l i n f i t = l i n e a r f i t [ 1 ] + svar domain ∗

l i n e a r f i t [ 0 ]
va r quad f i t = quad f i t [ 2 ] + svar domain ∗ quad f i t

[ 1 ] + quad f i t [ 0 ] ∗ svar domain ∗∗2

# P l o t t i n g

rc ( ’ x t i c k ’ , l a b e l s i z e =30)
rc ( ’ y t i c k ’ , l a b e l s i z e =30)
rc ( ’ t e x t ’ , usetex=True )



124 APPENDIX A. PYTHON SCRIPTS

p l o t f l a g = ask p l o t ( )
if p l o t f l a g==0:

# P l o t S ^2 + 1 vs K

p lo t ( in t e rpo l ant , kurt , ’ bo ’ , l i n ew idth=3)
hold ( ’ on ’ )
p l o t ( in t e rpo l ant , i n t e rpo lant , ’ r ’ , l i n ew idth

=3)
p lo t ( in t e rpo l ant , l i n e , ’ g ’ , l i n ew idth=3,

l a b e l=’ \\ a l p h a  _4  =  \% f  (\\ a l p h a  _3  

^2  +1)  +  \% f ’ \%(w[ 0 ] ,w [ 1 ] ) )
legend ( f o n t s i z e=’ 40 ’ )
x l ab e l ( ’ \\ a l p h a  _3  ^2  +  1 ’ , f o n t s i z e=’ 40 ’ )
y l ab e l ( ’ \\ a l p h a  _4 ’ , f o n t s i z e=’ 40 ’ )
show ( )

if p l o t f l a g==1:
# P l o t S vs K w i t h i n t e r p o l a t e d m o d e l

p lo t ( skew , kurt , ’ bo ’ , l i n ew idth=3)
hold ( ’ on ’ )
p l o t (model x , model , ’ g ’ , l i n ew idth=3,

l a b e l=’ \\ a l p h a  _4  =  \% f  \\ a l p h a  _3  ^2

 +  \% f ’ \%(w[ 0 ] , new b ) )
x l ab e l ( ’ \\ a l p h a  _3  ’ , f o n t s i z e=’ 40 ’ )
y l ab e l ( ’ \\ a l p h a  _4  ’ , f o n t s i z e=’ 40 ’ )
legend ( f o n t s i z e=’ 40 ’ )
ylim (0 ,200)
xlim (0 ,15)
show ( )

if p l o t f l a g==2:
# p l o t c o m p a r i s o n and i n t e r p o l a t i o n of

s k e w n e s s and std .

p lo t ( skew , var , ’ bo ’ , l i n ew idth=3)
hold ( ’ on ’ )
v l i n e s (5 , 0 , 30 , ’ k ’ , l i n ew idth=3)
p lo t (model x , top hat , ’ r ’ , l i n ew idth=3,

l a b e l=’ Top  Hat  M o d e l ’ )
p l o t ( svar domain , v a r l i n f i t , ’ y ’ ,

l i n ew idth=3, l a b e l=’ \\ s i g m a  ^2  /  \\ mu

 ^2  =  \% f  \\ a l p h a  _3  +  \% f ’ \%(
l i n e a r f i t [ 0 ] , l i n e a r f i t [ 1 ] ) )

p l o t ( svar domain , var quad f i t , ’ m ’ ,
l i n ew idth=3, l a b e l=’ \\ s i g m a  ^2  /  \\ mu

 ^2  =  \% f  \\ a l p h a  _3  ^2  +  \% f  \\ a l p h a

 _3  +  \% f ’ \%(quad f i t [ 0 ] , quad f i t [ 1 ] ,
quad f i t [ 2 ] ) )

x l ab e l ( ’ \\ a l p h a  _3  ’ , f o n t s i z e=’ 40 ’ )
y l ab e l ( ’ \\ s i g m a  ^2  /  \ mu  ^2 ’ , f o n t s i z e=’ 40

’ )
legend ( f o n t s i z e=’ 40 ’ )
xlim (0 ,10)
ylim (0 ,30)
show ( )

if p l o t f l a g==3:
# p l o t SS +1 vs K w i t h c o l o r c o d e d p o s i t i o n s

.

b l a c k i n t e r p o l = asarray ( ndarray . t o l i s t (
i n t e rpo l an t [ 0 : 4 9 ] )+ndarray . t o l i s t (
i n t e rpo l an t [ 4 6 2 : 5 1 1 ] ) )

b l ack kur t = asarray ( ndarray . t o l i s t ( kurt
[ 0 : 4 9 ] )+ndarray . t o l i s t ( kurt [ 4 6 2 : 5 1 1 ] )
)

b l u e i n t e r p o l = asarray ( ndarray . t o l i s t (
i n t e rpo l an t [ 5 0 : 9 9 ] )+ndarray . t o l i s t (
i n t e rpo l an t [ 4 1 2 : 4 6 1 ] ) )

b lue kur t = asarray ( ndarray . t o l i s t ( kurt
[ 5 0 : 9 9 ] )+ndarray . t o l i s t ( kurt
[ 4 1 2 : 4 6 1 ] ) )

g r een kur t = asarray ( ndarray . t o l i s t ( kurt
[ 1 0 0 : 1 4 9 ] )+ndarray . t o l i s t ( kurt
[ 3 6 2 : 4 1 1 ] ) )

g r e e n i n t e r p o l = asarray ( ndarray . t o l i s t (
i n t e rpo l an t [ 1 0 0 : 1 4 9 ] )+ndarray . t o l i s t (
i n t e rpo l an t [ 3 6 2 : 4 1 1 ] ) )

y e l l ow i n t e r p o l = asarray ( ndarray . t o l i s t (
i n t e rpo l an t [ 1 5 0 : 1 9 9 ] )+ndarray . t o l i s t (
i n t e rpo l an t [ 3 1 2 : 3 6 1 ] ) )

ye l l ow kur t = asarray ( ndarray . t o l i s t ( kurt
[ 1 5 0 : 1 9 9 ] )+ndarray . t o l i s t ( kurt
[ 3 1 2 : 3 6 1 ] ) )

r e d i n t e r p o l = asarray ( ndarray . t o l i s t (

i n t e rpo l an t [ 2 0 0 : 3 1 1 ] ) )
r ed kur t = asarray ( ndarray . t o l i s t ( kurt

[ 2 0 0 : 3 1 1 ] ) )

# i n t e r p o l a t i o n by c o l o r

# t h i s was d o n e m a n u a l l y for e a c h c o l o r by

c o m m e n t i n g out s e c t i o n

c u r r e n t i n t e r p o l = b l a c k i n t e r p o l
cu r r en t ku r t = b lack kur t
D = array ( [ c u r r en t i n t e r po l , ones ( len (

c u r r e n t i n t e r p o l ) ) ] )
d = l i n a l g . l s t s q (D.T, cu r r en t ku r t ) [ 0 ]
l i n e = d [ 0 ] ∗ i n t e r po l an t + d [ 1 ]

p l o t ( b l a ck i n t e rpo l , b lack kurt , ’ ko ’ ,
l i n ew idth=3)

# p l o t ( b l u e _ i n t e r p o l , b l u e _ k u r t , ’ bo ’ ,

l i n e w i d t h =3)

# p l o t ( g r e e n _ i n t e r p o l , g r e e n _ k u r t , ’ go ’ ,

l i n e w i d t h =3)

# p l o t ( y e l l o w _ i n t e r p o l , y e l l o w _ k u r t , ’ yo ’ ,

l i n e w i d t h =3)

# p l o t ( r e d _ i n t e r p o l , r e d _ k u r t , ’ ro ’ ,

l i n e w i d t h =3)

hold ( ’ on ’ )

p l o t ( in t e rpo l ant , i n t e rpo lant , ’ c ’ , l i n ew idth
=3)

p lo t ( in t e rpo l ant , l i n e , ’ k ’ , l i n ew idth=3,
l a b e l=’ \\ a l p h a  _4  =  \% f  (\\ a l p h a  _3  

^2  +1)  +  \% f ’ \%(d [ 0 ] , d [ 1 ] ) )
x l ab e l ( ’ \\ a l p h a  _3  ^2  +  1 ’ , f o n t s i z e=’ 40 ’ )
y l ab e l ( ’ \\ a l p h a  _4 ’ , f o n t s i z e=’ 40 ’ )
legend ( f o n t s i z e=’ 40 ’ )
show ( )

Listing A.6: A2 skvar all.py

# S a m e as A 2 _ s k v a r , but for 5 d a t a s e t s . No

c o l o r c o d e d r e g i o n s .

f r o m madona mods i m p o r t ∗
f r o m math i m p o r t ∗

f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m numpy i m p o r t ∗

def a sk p l o t ( ) :
n = int ( r a w _ i n p u t ( " T y p e  0  for  SS +1  vs  K .  

T y p e  1  for  S  vs  K .  T y p e  2  for  

V a r i a n c e  S k e w n e s s :  " ) )
if n==0 or n==1 or n==2:

r e t u r n n
e l s e :

p r i n t " S o m e t h i n g  e l s e  t h a n  0  or  1  or  2

 w r i t t e n . "

e x i t ( )

# L o o p t h r o u g h 5 d a t a s e t s s p e c i f i e d by u s e r

query = ask use r ( )
time = 0
dx = 0
s k ew l i s t = [ ]
k u r t l i s t = [ ]
s i gma l i s t = [ ]
mu l i s t = [ ]
for k in r a n g e (5 ) :

c , dx = store data prompt ( )
time = len ( c )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )
o f f s e t = 256
if query == 0 :

c work = c∗miyake
e l s e :

c work = c R∗miyake
mu = get mean ( c work , time )
sigma = get s igma ( c work , time , mu)
skew = get skewness ( c work , time , mu,

sigma )
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kurt = g e t k u r t o s i s ( c work , time , mu,
sigma )

# s c r u b NAN

for i in r a n g e (512) :
if i snan ( skew [ i ] ) == False :

s k ew l i s t . append ( skew [ i ] )
s i gma l i s t . append ( sigma [ i ] )
mu l i s t . append (mu[ i ] )

if i snan ( kurt [ i ] ) == False :
k u r t l i s t . append ( kurt [ i ] )

skew = asarray ( s k ew l i s t )
kurt = asarray ( k u r t l i s t )
sigma = asarray ( s i gma l i s t )
mu = asarray ( mu l i s t )

# L i n e a r i n t e r p o l a t i o n

i n t e r po l an t = skew∗∗2 + 1
A = array ( [ i n t e rpo lant , ones ( len ( i n t e rpo l an t ) )

] )
w = l i n a l g . l s t s q (A.T, kurt ) [ 0 ] # o b t a i n i n g the

p a r a m e t e r s

l i n e = w[ 0 ] ∗ i n t e r po l an t + w[ 1 ]

# m o d e l w i t h m o r e p o i n t s

model x = l i n spa c e (0 ,25 ,1000)
new b = w[ 0 ] + w[ 1 ]
model = w[ 0 ] ∗ model x ∗∗2 + new b

# s k e w n e s s - v a r i a n c e p l o t

top hat = ze ro s ( len ( skew ) )
top hat = 1+.5∗(model x ∗∗2 + model x ∗ ( ( model x

∗∗2+1) ∗∗ ( 1 . /2 ) ) )
var = ( sigma ∗∗2) /(mu∗∗2)

# f i t s

sorted skew = [ ]
s o r t ed va r = [ ]

# t r u n c a t i o n for fit

for i in r a n g e ( len ( skew ) ) :
if skew [ i ] < 5 :

sor ted skew . append ( skew [ i ] )
s o r t ed va r . append ( var [ i ] )

sorted skew , s o r t ed va r = zip (∗ s o r t e d ( zip (
sorted skew , s o r t ed va r ) ) )

new skew = asarray ( sorted skew )
new var = asarray ( s o r t ed va r )
l i n e a r f i t = p o l y f i t ( new skew , new var , 1 )
quad f i t = p o l y f i t ( new skew , new var , 2 )
svar domain = l i n spa c e (0 ,10 ,1000)
v a r l i n f i t = l i n e a r f i t [ 1 ] + svar domain ∗

l i n e a r f i t [ 0 ]
va r quad f i t = quad f i t [ 2 ] + svar domain ∗ quad f i t

[ 1 ] + quad f i t [ 0 ] ∗ svar domain ∗∗2

’ ’ ’

P l o t t i n g

’ ’ ’

rc ( ’ x t i c k ’ , l a b e l s i z e =30)
rc ( ’ y t i c k ’ , l a b e l s i z e =30)
rc ( ’ t e x t ’ , usetex=True )

p l o t f l a g = ask p l o t ( )
if p l o t f l a g==0:

# P l o t S ^2 + 1 vs K

p lo t ( in t e rpo l ant , kurt , ’ bo ’ , l i n ew idth=3)
hold ( ’ on ’ )
p l o t ( in t e rpo l ant , i n t e rpo lant , ’ r ’ , l i n ew idth

=3)
p lo t ( in t e rpo l ant , l i n e , ’ g ’ , l i n ew idth=3,

l a b e l=’ \\ a l p h a  _4  =  \% f  (\\ a l p h a  _3  

^2  +1)  +  \% f ’ \%(w[ 0 ] ,w [ 1 ] ) )
legend ( f o n t s i z e=’ 40 ’ )
x l ab e l ( ’ \\ a l p h a  _3  ^2  +  1 ’ , f o n t s i z e=’ 40 ’ )
y l ab e l ( ’ \\ a l p h a  _4 ’ , f o n t s i z e=’ 40 ’ )
ylim (0 ,200)
xlim (0 ,200)
show ( )

if p l o t f l a g==1:
# P l o t S vs K w i t h i n t e r p o l a t e d m o d e l

p lo t ( skew , kurt , ’ bo ’ , l i n ew idth=3)

hold ( ’ on ’ )
p l o t (model x , model , ’ g ’ , l i n ew idth=3,

l a b e l=’ \\ a l p h a  _4  =  \% f  \\ a l p h a  _3  ^2

 +  \% f ’ \%(w[ 0 ] , new b ) )
x l ab e l ( ’ \\ a l p h a  _3  ’ , f o n t s i z e=’ 40 ’ )
y l ab e l ( ’ \\ a l p h a  _4  ’ , f o n t s i z e=’ 40 ’ )
legend ( f o n t s i z e=’ 40 ’ )
ylim (0 ,200)
xlim (0 ,15)
show ( )

if p l o t f l a g==2:
# p l o t c o m p a r i s o n and i n t e r p o l a t i o n of

s k e w n e s s and std .

p lo t ( skew , var , ’ bo ’ , l i n ew idth=3)
hold ( ’ on ’ )
v l i n e s (5 , 0 , 30 , ’ k ’ , l i n ew idth=3)
p lo t (model x , top hat , ’ r ’ , l i n ew idth=3,

l a b e l=’ Top  Hat  M o d e l ’ )
p l o t ( svar domain , v a r l i n f i t , ’ y ’ ,

l i n ew idth=3, l a b e l=’ \\ s i g m a  ^2  /  \\ mu

 ^2  =  \% f  \\ a l p h a  _3  +  \% f ’ \%(
l i n e a r f i t [ 0 ] , l i n e a r f i t [ 1 ] ) )

p l o t ( svar domain , var quad f i t , ’ m ’ ,
l i n ew idth=3, l a b e l=’ \\ s i g m a  ^2  /  \\ mu

 ^2  =  \% f  \\ a l p h a  _3  ^2  +  \% f  \\ a l p h a

 _3  +  \% f ’ \%(quad f i t [ 0 ] , quad f i t [ 1 ] ,
quad f i t [ 2 ] ) )

xlim (0 ,10)
ylim (0 ,30)
x l ab e l ( ’ \\ a l p h a  _3  ’ , f o n t s i z e=’ 40 ’ )
y l ab e l ( ’ \\ s i g m a  ^2  /  \ mu  ^2 ’ , f o n t s i z e=’ 40

’ )
legend ( f o n t s i z e=’ 40 ’ )
show ( )

Listing A.7: A2 moments.py

# P l o t < c ^ n > ^ ( 1 / n ) for n =1 ,2 ,3 ,4.

f r o m math i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m numpy i m p o r t ∗
f r o m madona mods i m p o r t ∗

c = s to r e da ta ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )

query = ask use r ( )
if query == 0 :

c work = c∗miyake
x = l i n spa c e (0 ,511∗dx , 512)

e l s e :
c work = c R∗miyake
x = l i n spa c e (−255∗dx ,256∗dx , 512)

# M o m e n t s 1 -4.

nu1 = ze ro s (512)
nu2 = ze ro s (512)
nu3 = ze ro s (512)
nu4 = ze ro s (512)
for i in r a n g e ( time ) :

for j in r a n g e (512) :
nu1 [ j ] += c work [ i ] [ j ]
nu2 [ j ] += c work [ i ] [ j ]∗∗2
nu3 [ j ] += c work [ i ] [ j ]∗∗3
nu4 [ j ] += c work [ i ] [ j ]∗∗4

nu1 = nu1 /(1 .∗ time )
nu2 = nu2 /(1 .∗ time )
nu3 = nu3 /(1 .∗ time )
nu4 = nu4 /(1 .∗ time )

# " n o r m a l i z e "

nu2 = nu2 ∗∗ ( 1 . /2 )
nu3 = nu3 ∗∗ ( 1 . /3 )
nu4 = nu4 ∗∗ ( 1 . /4 )

# P l o t
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rc ( ’ x t i c k ’ , l a b e l s i z e =30)
rc ( ’ y t i c k ’ , l a b e l s i z e =30)
rc ( ’ t e x t ’ , usetex=True )
p lo t (x , nu1 , l a b e l=’ < c ( t ) > ’ )
hold ( ’ on ’ )
p l o t (x , nu2 , l a b e l=’ < c ( t ) ^ 2 > * * ( 1 / 2 ) ’ )
p l o t (x , nu3 , l a b e l=’ < c ( t ) ^ 3 > * * ( 1 / 3 ) ’ )
p l o t (x , nu4 , l a b e l=’ < c ( t ) ^ 4 > * * ( 1 / 4 ) ’ )
x l ab e l ( ’ x  [ m ] ’ , f o n t s i z e=’ 30 ’ )
y l ab e l ( ’ c  [ ppm ] ’ , f o n t s i z e=’ 30 ’ )
legend ( prop={’ s i z e ’ : 30} )
show ( )

A.3 Chapter 4

Listing A.8: A3 randwalk.py

# S i m u l a t e 1 D u n o b s t r u c t e d r a n d o m w a l k . C o m p a r e

w i t h G a u s s i a n a n a l y t i c a l s o l u t i o n

i m p o r t sys
f r o m random i m p o r t ∗
f r o m math i m p o r t ∗
f r o m numpy i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗

def gauss ian (D, t , x ) :
# D n o r m e d to 1.

gauss = 1 ./ (2∗ sq r t (D∗ pi ∗ t ) ) ∗exp(−(x∗∗2)
/ (4 .∗D∗ t ) )

r e t u r n gauss

# D e f i n e p a r a m e t e r s

c 0 = 20000 # w a l k e r s at x =0 at all t i m e s

i t e r a t i o n s = 499 # a c t u a l l y i t e r a t i o n s -1 , i =0

in the l o o p is not c o u n t e d

l o o p s a n a l y t i c a l = 1000
dt = 1
time = i t e r a t i o n s ∗dt
D = 1./(24∗ dt ) # d i f f u s i o n c o n s t a n t for u n i f o r m

d i s t r i b u t i o n

l 0 = sq r t ( 2 .∗D∗dt )
p o s i t i o n s = 400
d = po s i t i o n s ∗ l 0 # run at l e a s t d / l_0

i t e r a t i o n s

walkers = [ ]
for i in r a n g e ( c 0 ) :

walkers . append (0)
no walkers = 0

# R u l e s : r o l l < 0 is left , r o l l <= 0 is r i g h t .

If a w a l k e r is at x = - d +1 , r o l l i n g

# < 0 d e t a c h e s him f r o m l i s t .

# If a w a l k e r is at x = d -1 , r o l l i n g >0 d e t a c h e s

him f r o m l i s t .

# The i t e r a t i o n s w e r e not run l o n g e n o u g h for

t h i s to h e a v i l y

# a f f e c t the d i s t r i b u t i o n .

for i in r a n g e ( i t e r a t i o n s ) :
p r i n t i
cap = len ( walkers )
walked = 0
w h i l e walked < cap :

r o l l = uniform ( − . 5 , . 5 )
if r o l l >= 0: # s l i g h t n o n e q u a l i t y h e r e

r o l l = 1
e l s e :

r o l l = 0

if (d−l 0 )==walkers [ walked ] : # if n e x t

to r i g h t s i n k

if 1==r o l l :
walkers . remove (d−l 0 )
cap += −1

e l s e :
walkers [ walked ] += − l 0

e l i f −(d−l 0 )==walkers [ walked ] : # if

n e x t to l e f t s i n k

if 0==r o l l :
walkers . remove(−d+l 0 )
cap += −1

e l s e :
walkers [ walked ] += l 0

e l s e : # e l s e a w a l k e r in h o m o g e n e o u s

s p a c e

if 1==r o l l :
walkers [ walked ] += l 0

e l s e :
walkers [ walked ] += − l 0

walked += 1
x mc = l i n spa c e (−d , d , p o s i t i o n s )
y mc = ze ro s ( p o s i t i o n s )
for j in r a n g e ( len ( x mc ) ) :

for i in r a n g e ( len ( walkers ) ) :
if walkers [ i ]==x mc [ j ] :

y mc [ j ] += 1./ c 0

x an = l i n spa c e (−d , d , p o s i t i o n s +1)
y an = ze ro s ( p o s i t i o n s +1)
for j in r a n g e ( len ( x an ) ) :

y an [ j ] = gauss ian (D, time , x an [ j ] )

# p l o t s

rc ( ’ x t i c k ’ , l a b e l s i z e =30)
rc ( ’ y t i c k ’ , l a b e l s i z e =30)

h i s t ( walkers , b ins=x mc , normed=1)
hold ( ’ on ’ )
p l o t ( x an , y an , l i n ew idth=3, l a b e l=’ C l a s s i c a l

 D i f f u s i o n ’ )
v l i n e s (0 , 0 , 1 )
xlim (−20 ,20)
ylim ( 0 , 0 . 1 )
legend ( )
show ( )

Listing A.9: A3 plumewidth.py

# FF p l u m e w i d t h as 2 s t a n d a r d d e v i a t i o n s

f r o m madona mods i m p o r t ∗
f r o m numpy i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m math i m p o r t ∗

c = s to r e da ta ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)

miyake = miyake sca l e ( c R , time )

c = c∗miyake
c R = c R∗miyake

# f i n d < c ( t ) ^ m > at x = sum ( c ( t ) ^ m at x ) /

t o t a l t i m e

# c e n t e r of m a s s f r a m e

mean 1 cm = zero s (512)
for i in r a n g e ( time ) :

for j in r a n g e (512) :
mean 1 cm [ j ] = mean 1 cm [ j ] + c [ i ] [ j ]

mean 1 cm = mean 1 cm/ f l o a t ( time )

# f i n d m e a n p o s i t i o n : sum ( x * c ( x ) * dx ) / sum ( c ( x ) )

. dx c a n c e l s .

mean pos = 0
sum c = 0
x = l i n spa c e (0 ,511∗dx ,512 )
for i in r a n g e ( len ( x ) ) :

mean pos += mean 1 cm [ i ]∗ x [ i ]
sum c += mean 1 cm [ i ]

mean pos = mean pos / f l o a t ( sum c )

# f i n d s i g m a

sigma = 0
for i in r a n g e ( len ( x ) ) :
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sigma += (x [ i ]∗∗2 ) ∗ mean 1 cm [ i ]
sigma = ( sigma/ f l o a t ( sum c ) ) − (mean pos ∗∗2)
sigma = sqr t ( sigma )

# P l o t

rc ( ’ x t i c k ’ , l a b e l s i z e =30)
rc ( ’ y t i c k ’ , l a b e l s i z e =30)
p lo t (x , mean 1 cm )
hold ( ’ on ’ )
v l i n e s (mean pos , 0 , max (mean 1 cm ) , ’ r ’ ,

l i n e s t y l e s=’ d a s h e d ’ , l i n ew idth=’ 3 ’ , l a b e l
=’ m e a n ’ )

v l i n e s (mean pos + sigma , 0 , max (mean 1 cm ) , ’ g

’ , l i n e s t y l e s=’ d o t t e d ’ , l i n ew idth=’ 3 ’ ,
l a b e l = ’ m e a n  +  s i g m a ’ )

v l i n e s (mean pos − sigma , 0 , max (mean 1 cm ) , ’ g

’ , l i n e s t y l e s=’ d o t t e d ’ , l i n ew idth=’ 3 ’ ,
l a b e l= ’ m e a n  -  s i g m a ’ )

x l ab e l ( ’ x  -  R  [ m ] ’ , f o n t s i z e=’ 30 ’ )
y l ab e l ( ’ c  [ ppm ] ’ , f o n t s i z e=’ 30 ’ )
t i t l e ( ’ S t a n d a r d  d e v i a t i o n  =  \% f  [ m ]. ’ \% (

sigma ) , f o n t s i z e=’ 30 ’ )
legend ( f o n t s i z e=’ 30 ’ )
show ( )

Listing A.10: A3 meandering.py

# M a k e an a r r a y of c e n t e r s of mass , and c r e a t e

a PDF h i s t o g r a m b a s e d on the c e n t e r s .

f r o m madona mods i m p o r t ∗
f r o m numpy i m p o r t ∗

c = s to r e da t a ( )
time = f i n d t o t a l t im e ( )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
R = R∗dx
lower = 0
upper = max (R)
an t a l l = 41
domain = l i n spa c e ( lower , upper ,num=an t a l l )
pdf = histogram (R, b ins=l i n spa c e ( lower , upper ,

num=an t a l l ) , normed=1)
R pdf = ze ro s ( len ( pdf [ 0 ] ) )
p c = ze ro s ( len ( pdf [ 0 ] ) ) # s t o r e s p r o b d e n s i t y

p o i n t s

for i in r a n g e ( len ( R pdf ) ) :
R pdf [ i ] = ( pdf [ 1 ] [ i +1] + pdf [ 1 ] [ i ] ) /2 .
p c [ i ] = pdf [ 0 ] [ i ]

# Do G a u s s i a n s m o o t h i n g

g au s s l e t p o i n t s = ( anta l l −1)∗100 − 1
d i s t ance = R pdf [ 1 ] − R pdf [ 0 ] # s i n c e e q u a l l y

spaced , m i n i m u m 2 p o i n t s for pdf

sma l l gaus s = ze ro s ( ( len ( R pdf ) ,
g a u s s l e t p o i n t s ) ) # t a k e s all s m o o t h i n g

d a t a

# l o o p o v e r all p o i n t s and c r e a t e a r r a y s

for i in r a n g e ( len ( p c ) ) :
l o c a l pd = p c [ i ]
sma l l gaus s [ i ] = gau s s l e t ( upper , R pdf [ i ] ,

d i s tance , l o ca l pd , g a u s s l e t p o i n t s )
meshed gauss = ze ro s ( g au s s l e t p o i n t s )
# m e s h t o g e t h e r

for j in r a n g e ( g a u s s l e t p o i n t s ) : # all m e s h

p o i n t s

for i in r a n g e ( len ( p c ) ) : # no . p o l e s to

m e s h " a r o u n d "

meshed gauss [ j ] += sma l l gaus s [ i ] [ j ]
mesh domain = l i n spa c e (−upper ,2∗ upper ,

g a u s s l e t p o i n t s )

# F i n d the m e a n p o s i t i o n b a s e d on pdf

R mean = 0
de l t a x = mesh domain [ 1 ] − mesh domain [ 0 ]
for i in r a n g e ( len (mesh domain ) ) :

R mean += mesh domain [ i ]∗ meshed gauss [ i ]
R mean = R mean∗ de l t a x

# F i n d s i g m a ^2 = < x ^2 > - <x >^2

sigma = 0

for i in r a n g e ( len (mesh domain ) ) :
sigma += (mesh domain [ i ]∗∗2 ) ∗

meshed gauss [ i ]
sigma = ( sigma ∗ de l t a x ) − R mean∗∗2
sigma = sqr t ( sigma )

# P l o t

rc ( ’ x t i c k ’ , l a b e l s i z e =30)
rc ( ’ y t i c k ’ , l a b e l s i z e =30)
h i s t (R, b ins=domain , c o l o r=’ w ’ , normed=1)
hold ( ’ on ’ )
p l o t (mesh domain , meshed gauss , ’ b ’ , l i n ew idth

=3, l a b e l=’ G a u s s i a n  s m o o t h e d  PDF ’ )
v l i n e s (R mean , 0 , max ( meshed gauss ) , ’ r ’ ,

l i n e s t y l e s=’ d a s h e d ’ , l i n ew idth=’ 3 ’ , l a b e l
=’ m e a n ’ )

v l i n e s (R mean − sigma , 0 , max ( meshed gauss ) , ’

g ’ , l i n e s t y l e s=’ d o t t e d ’ , l i n ew idth=’ 3 ’ ,
l a b e l=’ m e a n  -  s i g m a ’ )

v l i n e s (R mean + sigma , 0 , max ( meshed gauss ) , ’

g ’ , l i n e s t y l e s=’ d o t t e d ’ , l i n ew idth=’ 3 ’ ,
l a b e l=’ m e a n  +  s i g m a ’ )

x l ab e l ( ’ R  [ m ] ’ , f o n t s i z e=’ 30 ’ )
y l ab e l ( ’ p ( R = x )  ’ , f o n t s i z e=’ 30 ’ )
t i t l e ( ’ S t a n d a r d  d e v i a t i o n  =  \% f  [ m ]. ’ \% (

sigma ) , f o n t s i z e=’ 30 ’ )
legend ( f o n t s i z e=’ 30 ’ )
show ( )

A.4 Chapter 5

Listing A.11: A4 interpolation.py

# Use l i n e a r i n t e r p o l a t i o n to c a l c u l a t e \% t .

# A l s o c h e c k s e r r o r of B r u t e F o r c e in \% t as

o p p o s e d to i n t e r p o l a t e d .

f r o m madona mods i m p o r t ∗
f r o m math i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m mpl t o o l k i t s . mplot3d i m p o r t Axes3D
f r o m matp lo t l ib . t i c k e r i m p o r t LinearLocator ,

FormatStrFormatter
f r o m numpy i m p o r t ∗

c = s to r e da ta ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )
o f f s e t = 255
query = ask use r ( )
if query == 0 :

c work = c∗miyake
e l s e :

c work = c R∗miyake

samples = 500 # n u m b e r of c o n c e n t r a t i o n

t h r e s h o l d s

po s i t i o n s = len ( c work [ 0 ] )
upper thre sho ld = 15 .
l owe r th r e sho ld = 0 .

# F i n d t i m e s p e n t a b o v e t h r e s h o l d and c o u n t

f r e q u e n c y of c r o s s i n g

th r e sho ld = l i n spa c e ( l ower thre sho ld ,
upper thresho ld , samples ) # x - a x i s

t ime spent = ze ro s ( samples )
t ime spent wo = ze ro s ( samples )
c r o s s i n g s = ze ro s ( samples )
avg time = ze ro s ( samples )
p o s i t i o n = a sk po s i t i o n ( ) + o f f s e t

for k in r a n g e ( samples ) :
t ime spent [ k ] , c r o s s i n g s [ k ] = t ime c ro s s (

c work [ : , p o s i t i o n ] , th r e sho ld [ k ] ,
time )
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t ime spent wo [ k ] , c r o s s i n g s [ k ] =
t ime cros s wo ( c work [ : , p o s i t i o n ] ,
th r e sho ld [ k ] , time )

if c r o s s i n g s [ k ] != 0 :
avg time [ k ] = t ime spent [ k ] / c r o s s i n g s [

k ]
e l s e :

avg time [ k ] = 0

avg time = avg time ∗ 3 # 3 s i n t e r v a l s b e t w e e n

m e a s u r e m e n t s

t ime spent = 100∗ t ime spent / f l o a t ( time ) # to

get p e r c e n t a g e s

t ime spent wo = 100∗ t ime spent wo / f l o a t ( time )
# to get p e r c e n t a g e s

# P l o t

rc ( ’ x t i c k ’ , l a b e l s i z e =30)
rc ( ’ y t i c k ’ , l a b e l s i z e =30)
rc ( ’ t e x t ’ , usetex=True )

# S e c t i o n for p l o t t i n g I n t e r p o l a t i o n vs B r u t e

F o r c e c o m m e n t e d out b e l o w

# p l o t ( t h r e s h o l d , t i m e _ s p e n t , ’ b ’ , l i n e w i d t h =3 ,

l a b e l = ’ U s i n g L i n e a r I n t e r p o l a t i o n ’)

# h o l d ( ’ on ’)

# p l o t ( t h r e s h o l d , t i m e _ s p e n t _ w o , ’ r ’ , l i n e w i d t h

=3 , l a b e l = ’ U s i n g B r u t e F o r c e ’)

# x l a b e l ( ’ c_t [ ppm ] ’ , f o n t s i z e = ’40 ’)

# y l a b e l ( ’ t [\%] ’ , f o n t s i z e = ’40 ’)

# P l o t e r r o r in B r u t e F o r c e c o m p a r e d to

i n t e r p o l a t i o n .

p lo t ( thresho ld , t ime spent − t ime spent wo ,
l i n ew idth=3, l a b e l=’ L i n e a r  I n t e r p o l a t i o n  

-  B r u t e  F o r c e ’ )
x l ab e l ( ’ c_t  [ ppm ] ’ , f o n t s i z e=’ 40 ’ )
y l ab e l ( ’ \ D e l t a  t  [ \ % ] ’ , f o n t s i z e=’ 40 ’ )
legend ( f o n t s i z e=’ 40 ’ )
show ( )

Listing A.12: A4 thresholds.py

# Can c r e a t e c r o s s i n g s , \% t and <T > a g a i n s t

# c o n t i n u o u s c_t w i t h f i t t i n g s for <T >.

# c u r r e n t l y set to p l o t <T > w i t h f i t t i n g s

f r o m madona mods i m p o r t ∗
f r o m math i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m mpl t o o l k i t s . mplot3d i m p o r t Axes3D
f r o m matp lo t l ib . t i c k e r i m p o r t LinearLocator ,

FormatStrFormatter
f r o m numpy i m p o r t ∗

def make log ( o ld a r r ay ) :
# t a k e s 1 dim a r r a y and r e t u r n s a r r a y w i t h

n a t u r a l log of its e l e m e n t s

new array = ze ro s ( len ( o l d a r r ay ) )
for i in r a n g e ( len ( new array ) ) :

if o ld a r r ay [ i ] != 0 :
new array [ i ] = log ( o ld a r r ay [ i ] )

e l s e :
new array [ i ] = 0

r e t u r n new array

c = s to r e da ta ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )
o f f s e t = 256
query = ask use r ( )
if query == 0 : # s c a l e d FF f r a m e

c work = c∗miyake
e l s e : # s c a l e d CM f r a m e

c work = c R∗miyake

# D e f i n e s c_t

samples = 500 # n u m b e r of s a m p l e c o n c e n t r a t i o n

t h r e s h o l d s .

po s i t i o n s = len ( c work [ 0 ] )
upper thre sho ld = 15 .
l owe r th r e sho ld = 0 .
upper model = exp ( 1 . 5 )
lower model = 1 ./ exp (1)

# F i n d t i m e s p e n t a b o v e c_t and c o u n t one way

c r o s s i n g s

th r e sho ld = l i n spa c e ( l ower thre sho ld ,
upper thresho ld , samples )

thresho ld mode l = l i n spa c e ( lower model ,
upper model , samples )

t ime spent = ze ro s ( samples )
time model = ze ro s ( samples )
c r o s s i n g s = ze ro s ( samples )
c ro s s ing s mode l = ze ro s ( samples )
avg time = ze ro s ( samples )
avg model = ze ro s ( samples )
p o s i t i o n = a sk po s i t i o n ( ) + o f f s e t

for k in r a n g e ( samples ) :
t ime spent [ k ] , c r o s s i n g s [ k ] = t ime c ro s s (

c work [ : , p o s i t i o n ] , th r e sho ld [ k ] ,
time )

time model [ k ] , c r o s s ing s mode l [ k ] =
t ime c ro s s ( c work [ : , p o s i t i o n ] ,
thresho ld mode l [ k ] , time )

if c r o s s i n g s [ k ] != 0 :
avg time [ k ] = t ime spent [ k ] / c r o s s i n g s [

k ]
e l s e :

avg time [ k ] = 0
if c ro s s ing s mode l [ k ] != 0 :

avg model [ k ] = time model [ k ] /
c ro s s ing s mode l [ k ]

e l s e :
avg model [ k ] = 0

avg time = avg time ∗ 3 # 3 s i n t e r v a l s b e t w e e n

m e a s u r e m e n t s

avg model = avg model ∗ 3
t ime spent = 100∗ t ime spent / f l o a t ( time ) # to

get p e r c e n t a g e s

time model = 100∗ time model / f l o a t ( time )

# do l o g l o g

new thresh model = make log ( thresho ld mode l )
new avg model = make log ( avg model )
# m a k e a l e a s t = s q u a r e s fit

A = array ( [ new thresh model , ones ( len (
new thresh model ) ) ] )

w = l i n a l g . l s t s q (A.T, new avg model ) [ 0 ] #

o b t a i n i n g the p a r a m e t e r s

l i n e = w[ 0 ] ∗ new thresh model + w[ 1 ]
model = exp (w[ 1 ] ) ∗ thresho ld mode l ∗∗(w [ 0 ] )
pos = po s i t i o n − 256
long model = exp (w[ 1 ] ) ∗ th r e sho ld ∗∗(w [ 0 ] )

# P l o t s . C u r r e n t l y p l o t s o n l y <T >

rc ( ’ x t i c k ’ , l a b e l s i z e =30)
rc ( ’ y t i c k ’ , l a b e l s i z e =30)
rc ( ’ t e x t ’ , usetex=True )
# C o m m e n t e d s e c t i o n s b e l o w fit <T >

# l o g l o g ( t h r e s h o l d , a v g _ t i m e , ’ bo ’ , l i n e w i d t h

=3 , l a b e l = ’ l o g l o g d a t a ’)

# h o l d ( ’ on ’)

# p l o t ( t h r e s h o l d _ m o d e l , model , ’ r ’ , l i n e w i d t h

=3 , l a b e l = ’ l i n e a r m o d e l ’)

# l e g e n d ( f o n t s i z e = ’30 ’)

p lo t ( thresho ld , avg time , ’ b ’ , l i n ew idth=3)
hold ( ’ on ’ )
p l o t ( thresho ld , long model , ’ r ’ , l i n ew idth=3,

l a b e l=’ \ l a n g l e  T  \\ r a n g l e  \ p r o p t o  c_ { t

} ^ { % f } ’ %w[ 0 ] )
x l ab e l ( ’ c_t  [ ppm ] ’ , f o n t s i z e=’ 40 ’ )
y l ab e l ( ’ \ l a n g l e  T  \\ r a n g l e  [ s ] ’ , f o n t s i z e=’ 40 ’

)
xlim (0 ,15)
ylim (0 ,300)
legend ( f o n t s i z e=’ 40 ’ )
show ( )
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Listing A.13: A4 stack.py

# P u r p o s e is to c r e a t e s t a c k p l o t s of <T > , % T , #

c r o s s i n g s vs c_t for a s e l e c t i o n of x .

f r o m madona mods i m p o r t ∗
f r o m math i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m mpl t o o l k i t s . mplot3d i m p o r t Axes3D
f r o m matp lo t l ib . t i c k e r i m p o r t LinearLocator ,

FormatStrFormatter
f r o m numpy i m p o r t ∗

# s e t u p

c = s to r e da t a ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )
o f f s e t = 0
query = ask use r ( )
if query == 0 : # s c a l e d FF f r a m e

c work = c∗miyake
o f f s e t = 256

e l s e : # s c a l e d CM f r a m e

c work = c R∗miyake
o f f s e t = 256

# s e t t i n g s

samples = 250 # n u m b e r of s a m p l e t i m e s .

po s i t i o n s = len ( c work [ 0 ] )
upper thre sho ld = 15 .
l owe r th r e sho ld = 0 .

# t i m e a b o v e t h r e s h o l d and c r o s s i n g s

th r e sho ld = l i n spa c e ( l ower thre sho ld ,
upper thresho ld , samples )

t ime spent = ze ro s ( ( po s i t i on s , samples ) )
c r o s s i n g s = ze ro s ( ( po s i t i on s , samples ) )
avg time = ze ro s ( ( po s i t i on s , samples ) )
for j in r a n g e ( p o s i t i o n s ) :

for k in r a n g e ( samples ) :
t ime spent [ j ] [ k ] , c r o s s i n g s [ j ] [ k ] =

t ime c ro s s ( c work [ : , j ] , th r e sho ld
[ k ] , time )

if c r o s s i n g s [ j ] [ k ] != 0 :
avg time [ j ] [ k ] = t ime spent [ j ] [ k ] /

c r o s s i n g s [ j ] [ k ]
e l s e :

avg time [ j ] [ k ] = 0

# <T >

avg time = avg time ∗ 3 # 3 s i n t e r v a l s b e t w e e n

m e a s u r e m e n t s

t ime spent = 100∗ t ime spent / f l o a t ( time ) # to

get p e r c e n t a g e s

# C r e a t e \% t , c r o s s i n g s , and <T > for s t a c k e d

p o s i t i o n s .

# R i g h t now set l e f t of c e n t e r of m e a s u r e m e n t .

# P o s i t i o n s m u s t be set m a n u a l l y .

p l o t pe r c en tage = row stack ( ( t ime spent [0+
o f f s e t ] , t ime spent [−20+ o f f s e t ] ,
t ime spent [−40+ o f f s e t ] , t ime spent [−60+
o f f s e t ] , t ime spent [−80+ o f f s e t ] ) )

# p l o t _ c r o s s i n g s = r o w _ s t a c k (( c r o s s i n g s [0+

o f f s e t ] , c r o s s i n g s [ 2 0 + o f f s e t ] , c r o s s i n g s

[ 4 0 + o f f s e t ] , c r o s s i n g s [ 6 0 + o f f s e t ] ,

c r o s s i n g s [ 8 0 + o f f s e t ]) )

# p l o t _ a v g t i m e = r o w _ s t a c k (( a v g _ t i m e [0+ o f f s e t ] ,

a v g _ t i m e [ 2 0 + o f f s e t ] , a v g _ t i m e [ 4 0 + o f f s e t

] , a v g _ t i m e [ 6 0 + o f f s e t ] , a v g _ t i m e [ 8 0 + o f f s e t

]) )

# P l o t

# Set to p l o t \% t . C o m m e n t e d l i n e s b e l o w p l o t

c r o s s i n g s and <T >.

rc ( ’ x t i c k ’ , l a b e l s i z e =30)
rc ( ’ y t i c k ’ , l a b e l s i z e =30)
f i g , ax = subp lo t s ( )

ax . s t a ckp l o t ( thresho ld , p l o t pe r c en tage )
# ax . s t a c k p l o t ( t h r e s h o l d , p l o t _ c r o s s i n g s )

# ax . s t a c k p l o t ( t h r e s h o l d , p l o t _ a v g t i m e )

x l abe l ( ’ t h r e s h o l d  [ ppm ] ’ , f o n t s i z e=’ 30 ’ )
y l ab e l ( ’ <T >  [ s ] ’ , f o n t s i z e=’ 30 ’ )
xlim (0 ,15)
ylim (0 ,400)
show ( )

Listing A.14: A4 positions.py

# P l o t \% t , c r o s s i n g s and <T > o v e r e a c h

p o s i t i o n in the o r i g i n a l d a t a

f r o m madona mods i m p o r t ∗
f r o m math i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m mpl t o o l k i t s . mplot3d i m p o r t Axes3D
f r o m matp lo t l ib . t i c k e r i m p o r t LinearLocator ,

FormatStrFormatter
f r o m numpy i m p o r t ∗

# l i s t of t h r e s h o l d s to p l o t .

# [ t h r e s h o l d value , f l a g ]

# f l a g is 0 w h e n c_t has not b e e n crossed , and

1 w h e n c r o s s e d .

t h r e s h o l d l i s t = [ [ 0 . 2 5 , 0 ] , [ 0 . 7 5 , 0 ] , [ 5 , 0 ] ]
s i z e = len ( t h r e s h o l d l i s t )

c = s to r e da ta ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )
query = ask use r ( )
if query == 0 : # s c a l e d FF f r a m e

c work = c∗miyake
po s i t i o n s = l i n spa c e (0 ,511∗dx ,512 )

e l s e : # s c a l e d CM f r a m e

c work = c R∗miyake
po s i t i o n s = l i n spa c e (−255∗dx ,256∗dx ,512 )

# s t o r e s c r o s s i n g s and \% t

f r e q s = ze ro s ( ( s i z e , 512) )
t imespent = ze ro s ( ( s i z e , 512 ) )
# c o m p u t e \% t and c r o s s i n g s u s i n g l i n e a r

i n t e r p o l a t i o n

for j in r a n g e (512) :
for k in r a n g e ( s i z e ) :

t imespent [ k ] [ j ] , f r e q s [ k ] [ j ] =
t ime c ro s s ( c work [ : , j ] ,
t h r e s h o l d l i s t [ k ] [ 0 ] , time )

# <T > = 3* t i m e s p e n t / c r o s s i n g s [ s ]

exp t = ze ro s ( ( s i z e , 512 ) )
for j in r a n g e (512) :

for k in r a n g e ( s i z e ) :
if f r e q s [ k ] [ j ] != 0 :

exp t [ k ] [ j ] = 3 .∗ t imespent [ k ] [ j ] /
f r e q s [ k ] [ j ]

e l s e :
exp t [ k ] [ j ] = 0

# p l o t : c u r r e n t l y set to p l o t <T >. Set f r e q s or

t i m e s p e n t to p l o t

# c r o s s i n g s or \% t

rc ( ’ x t i c k ’ , l a b e l s i z e =30)
rc ( ’ y t i c k ’ , l a b e l s i z e =30)
for i in r a n g e ( s i z e ) :

p l o t ( po s i t i on s , exp t [ i ] , l a b e l=’ C_t  =  

\ % . 3 f  [ ppm ] ’ \%th r e s h o l d l i s t [ i ] [ 0 ] )
x l ab e l ( ’ p o s i t i o n  f r o m  R  [ m ] ’ , f o n t s i z e = ’ 30 ’ )
y l ab e l ( ’ <T >  [ s ] ’ , f o n t s i z e = ’ 30 ’ )
legend ( prop={’ s i z e ’ : 30} )
show ( )

Listing A.15: A4 comparegaussian.py

# C o m p a r e \% t f o u n d by l i n e a r i n t e r p o l a t i o n

w i t h CDF of G a u s s i a n fit .
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f r o m madona mods i m p o r t ∗
f r o m math i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m mpl t o o l k i t s . mplot3d i m p o r t Axes3D
f r o m matp lo t l ib . t i c k e r i m p o r t LinearLocator ,

FormatStrFormatter
f r o m numpy i m p o r t ∗

def make log ( o ld a r r ay ) :
# t a k e s 1 dim a r r a y and r e t u r n s a r r a y w i t h

n a t u r a l log of its e l e m e n t s

new array = ze ro s ( len ( o l d a r r ay ) )
for i in r a n g e ( len ( new array ) ) :

if o ld a r r ay [ i ] != 0 :
new array [ i ] = log ( o ld a r r ay [ i ] )

e l s e :
new array [ i ] = 0

r e t u r n new array

def get mean ( c , time ) :
mean = 0
for i in r a n g e ( time ) :

mean = mean + c [ i ]
mean = mean/ time
r e t u r n mean

def g e t s t d ( c , c avg , time ) :
std = 0
for i in r a n g e ( time ) :

std = std + double ( ( c [ i ] − c avg ) ) ∗∗2
std = std / time
std = sq r t ( std )
r e t u r n std

c = s to r e da ta ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )
o f f s e t = 256
query = ask use r ( )
if query == 0 : # s c a l e d FF f r a m e

c work = c∗miyake
e l s e : # s c a l e d CM f r a m e

c work = c R∗miyake

# D e f i n e s c_t

samples = 500 # n u m b e r of s a m p l e c o n c e n t r a t i o n s

.

po s i t i o n s = len ( c work [ 0 ] )
upper thre sho ld = 15 .
l owe r th r e sho ld = 0 .

# F i n d t i m e s p e n t a b o v e c_t and c o u n t one way

c r o s s i n g s

th r e sho ld = l i n spa c e ( l ower thre sho ld ,
upper thresho ld , samples )

t ime spent = ze ro s ( samples )
c r o s s i n g s = ze ro s ( samples )
p o s i t i o n = a sk po s i t i o n ( ) + o f f s e t
for k in r a n g e ( samples ) :

t ime spent [ k ] , c r o s s i n g s [ k ] = t ime c ro s s (
c work [ : , p o s i t i o n ] , th r e sho ld [ k ] ,
time )

t ime spent = t ime spent / f l o a t ( time ) # to get in

f r a c t i o n s of 1

# C r e a t e CDF of g a u s s i a n fit

domain = l i n spa c e (0 ,20 , 512)
mean = get mean ( c work [ : , p o s i t i o n ] , time )
std = ge t s td ( c work [ : , p o s i t i o n ] , mean , time )
cdf = ze ro s ( len ( domain ) )
for i in r a n g e (512) :

cd f [ i ] = e r f c ( ( domain [ i ] − mean) /( std ∗ sq r t
(2 ) ) )

cd f = cdf / ( 2 . )

# P l o t s . C u r r e n t l y p l o t s o n l y <T >

rc ( ’ x t i c k ’ , l a b e l s i z e =30)
rc ( ’ y t i c k ’ , l a b e l s i z e =30)
rc ( ’ t e x t ’ , usetex=True )

p lo t ( thresho ld , t ime spent , ’ b ’ , l i n ew idth=3,
l a b e l=’ By  l i n e a r  i n t e r p o l a t i o n ’ )

hold ( ’ on ’ )
p l o t ( domain , cdf , ’ r ’ , l i n ew idth=3, l a b e l=’

G a u s s i a n  CDF  fit ’ )
x l ab e l ( ’ c_t  [ ppm ] ’ , f o n t s i z e=’ 40 ’ )
y l ab e l ( ’ \ l a n g l e  \% t  \\ r a n g l e  [ s ] ’ , f o n t s i z e=’

40 ’ )
legend ( f o n t s i z e=’ 40 ’ )
show ( )

Listing A.16: A4 crossings3D.py

# 3 D c r o s s i n g s vs t h r e s h o l d s and p o s i t i o n s .

f r o m madona mods i m p o r t ∗
f r o m math i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m mpl t o o l k i t s . mplot3d i m p o r t Axes3D
f r o m matp lo t l ib . t i c k e r i m p o r t LinearLocator ,

FormatStrFormatter
f r o m numpy i m p o r t ∗

# l i s t of t h r e s h o l d s . F i r s t of s u b l i s t is

t h r e s h o l d value , s e c o n d is f l a g .

# f l a g is 0 for not crossed , and 1 w h e n c r o s s e d

.

s i z e = 25
t h r e s h o l d l i s t = ze ro s ( ( s i z e , 2 ) )
for i in r a n g e ( s i z e ) :

t h r e s h o l d l i s t [ i ] [ 0 ] = ( i ∗5 . ) /( s i z e −1.)
t h r e s h o l d l i s t [ i ] [ 1 ] = 0

c = s to r e da ta ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )
o f f s e t = 256
query = ask use r ( )
if query == 0 : # s c a l e d FF f r a m e

c work = c∗miyake
po s i t i o n s = l i n spa c e (0 ,511∗dx ,512 )

e l s e : # s c a l e d CM f r a m e

c work = c R∗miyake
po s i t i o n s = l i n spa c e (−255∗dx ,256∗dx ,512 )

# C o u n t c r o s s i n g s . C r o s s i n g s do not n e e d

i n t e r p o l a t i o n to c o u n t .

f r e q s = ze ro s ( ( s i z e , 512 ) )
for j in r a n g e (512) :

for i in r a n g e ( time ) :
for k in r a n g e ( s i z e ) :

if t h r e s h o l d l i s t [ k ] [ 1 ] == 0 :
if c work [ i ] [ j ] >

t h r e s h o l d l i s t [ k ] [ 0 ] :
f r e q s [ k ] [ j ] += 1
t h r e s h o l d l i s t [ k ] [ 1 ] = 1

e l s e :
if c work [ i ] [ j ] <=

t h r e s h o l d l i s t [ k ] [ 0 ] :
t h r e s h o l d l i s t [ k ] [ 1 ] = 0

# 3 D p l o t

c t = t h r e s h o l d l i s t [ : , 0 ]
f i g = f i g u r e ( )
ax = f i g . gca ( p r o j e c t i on=’ 3 d ’ )
X,Y = meshgrid ( po s i t i on s , c t )
# W i r e f r a m e p l o t

s u r f = ax . p lo t w i r e f r ame (X,Y, f r eq s , r s t r i d e =1,
c s t r i d e =50, l i n ew idth=3, c o l o r=’ b ’ )

# C o m m e n t e d out b e l o w : c o l o r c o d e d p l o t

# s u r f = ax . p l o t _ s u r f a c e ( X , Y , freqs , r s t r i d e

=10 , c s t r i d e =10 , l i n e w i d t h =1 , c o l o r = ’ w ’)

# s u r f = ax . p l o t _ s u r f a c e ( X , Y , freqs , r s t r i d e =1 ,

c s t r i d e =25 , c m a p = cm . jet ,

# l i n e w i d t h =0 , a n t i a l i a s e d = F a l s e )

# fig . c o l o r b a r ( surf , s h r i n k =1 , a s p e c t =1)

for item in ( [ ax . t i t l e , ax . xax i s . l abe l , ax .
yax i s . l abe l , ax . z ax i s . l a b e l ]
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+ ax . g e t x t i c k l a b e l s ( ) + ax .
g e t y t i c k l a b e l s ( ) + ax .
g e t z t i c k l a b e l s ( ) ) :

item . s e t f o n t s i z e (20)
ax . s e t x l a b e l ( ’ x  [ m ] ’ )
ax . s e t y l a b e l ( ’ c_t  [ ppm ] ’ )
ax . s e t z l a b e l ( ’ #  c r o s s i n g s ’ )
show ( )

A.5 Chapter 6

Listing A.17: A5 histogram.py

# p ( c ) of a p o s i t i o n in CM f r a m e

# a l s o p l o t s the g a u s s i a n fit

# and a n a l y t i c a l l c o m p u t e d g a u s s i a n + d e l t a

s p i k e fit .

f r o m madona mods i m p o r t ∗
f r o m math i m p o r t pi as PI
f r o m math i m p o r t e r f
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m numpy i m p o r t ∗

def get mean ( c , time ) :
# 1 dim a r r a y v e r s i o n of the one in

m a d o n a _ m o d s

mean = 0
for i in r a n g e ( time ) :

mean = mean + c [ i ]
mean = mean/ time
r e t u r n mean

def g e t s t d ( c , c avg , time ) :
# 1 dim a r r a y v e r s i o n of the one in

m a d o n a _ m o d s

std = 0
for i in r a n g e ( time ) :

std = std + double ( ( c [ i ] − c avg ) ) ∗∗2
std = std / time
std = sq r t ( std )
r e t u r n std

c = s to r e da t a ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )
po s i t i o n = int ( sys . argv [ 2 ] ) +256
c work = c R [ : , p o s i t i o n ]∗ miyake # s p e c i f i c

p o s i t i o n f r o m c o m m a n d l i n e

# T r u n c a t i o n s and n u m b e r of h i s t o g r a m b a r s .

lower = 0 .
upper = 0 .
a n t a l l =41 # n u m b e r of b a r s + 1

# f i n d u p p e r t r u n c a t i o n of c_t as l a r g e s t c

for i in r a n g e ( time ) :
if c work [ i ] > upper :

upper = c work [ i ]
# if we w a n t to c h a n g e u p p e r t r u n c a t i o n

m a n u a l l y

# u p p e r = 10.

# f i n d p ( c ) by h i s t o g r a m and c e n t e r of e a c h

h i s t o g r a m

# I u s e d t h i s to try out s o m e log and l o g l o g

f i t s t h a t did not w o r k out

domain = l i n spa c e ( lower , upper ,num=an t a l l )
pdf = histogram ( c work , b ins=l i n spa c e ( lower ,

upper ,num=an t a l l ) , normed=1)
c f = ze ro s ( len ( pdf [ 0 ] ) )
for i in r a n g e ( len ( c f ) ) :

c f [ i ] = ( pdf [ 1 ] [ i +1]+pdf [ 1 ] [ i ] ) /2 .

# F i n d a v e r a g e and std of c o n c e n t r a t i o n s for

G a u s s i a n fit

s i z e = 512
gauss domain = l i n spa c e ( lower , upper , s i z e )
gauss domainlong = l i n spa c e (−upper , upper ,2∗

s i z e )
c mean = get mean ( c work , time )
std = ge t s td ( c work , c mean , time )
gauss = gauss ian ( c mean , std , gauss domainlong

)
alt mean = 4
a l t s t d = 4.25
gau s s a l t e r n a t e = gauss ian ( alt mean , a l t s t d ,

gauss domain )

# D e l t a Bin for r e c a l c u l a t e d G a u s s i a n fit

A = .5∗(1− e r f ( alt mean /( sq r t (2 ) ∗ a l t s t d ) ) )

# P l o t t i n g

rc ( ’ x t i c k ’ , l a b e l s i z e =30)
rc ( ’ y t i c k ’ , l a b e l s i z e =30)
h i s t ( c work , b ins=domain , c o l o r=’ b ’ , normed=1)
hold ( ’ on ’ )
p l o t ( gauss domainlong , gauss , ’ r ’ , l i n ew idth=3,

l a b e l=’ G a u s s i a n  fit ’ )
v l i n e s ( c mean , 0 , max ( gauss ) , ’ r ’ , l i n ew idth=’

3 ’ , l i n e s t y l e s=’ d a s h e d ’ , l a b e l = ’ m e a n ’ )
v l i n e s ( c mean + std , 0 , max ( gauss ) , ’ r ’ ,

l i n e s t y l e s=’ d o t t e d ’ , l i n ew idth=’ 3 ’ , l a b e l
=’ 1  s t a n d a r d  d e v i a t i o n  f r o m  m e a n ’ )

v l i n e s ( alt mean , 0 , max ( g au s s a l t e r n a t e ) , ’ g ’ ,
l i n ew idth=’ 3 ’ , l i n e s t y l e s=’ d a s h e d ’ ,

l a b e l = ’ m e a n  for  r e w o r k e d  fit ’ )
v l i n e s ( alt mean + a l t s t d , 0 , max ( gauss ) , ’ g ’ ,

l i n e s t y l e s=’ d o t t e d ’ , l i n ew idth=’ 3 ’ ,
l a b e l=’ 1  r e w o r k e d  st . d .  f r o m  r e w o r k e d  

m e a n ’ )
v l i n e s (0 , 0 , A, ’ g ’ , l i n ew idth=’ 6 ’ )
p l o t ( gauss domain , gau s s a l t e rna t e , ’ g ’ ,

l i n ew idth=3, l a b e l=’ R e w o r k e d  v e r s i o n ’ )
legend ( )
x l ab e l ( ’ c  [ ppm ] ’ , f o n t s i z e=’ 30 ’ )
y l ab e l ( ’ p ( c ) ’ , f o n t s i z e=’ 30 ’ )
legend ( f o n t s i z e=’ 30 ’ )
xlim (−5 ,25)
ylim ( 0 , 0 . 2 )
show ( )

Listing A.18: A5 gaussian smoothing.py

# G a u s s i a n s m o o t h i n g of the p ( c ) of p o s i t i o n in

CM g i v e n in c o m m a n d l i n e .

f r o m madona mods i m p o r t ∗
f r o m math i m p o r t pi as PI
f r o m math i m p o r t e r f , exp
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m numpy i m p o r t ∗

def get mean ( c , time ) :
mean = 0
for i in r a n g e ( time ) :

mean = mean + c [ i ]
mean = mean/ time
r e t u r n mean

def g e t s t d ( c , c avg , time ) :
std = 0
for i in r a n g e ( time ) :

std = std + double ( ( c [ i ] − c avg ) ) ∗∗2
std = std / time
std = sq r t ( std )
r e t u r n std

c = s to r e da ta ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )
po s i t i o n = int ( sys . argv [ 2 ] ) +255
c work = c R [ : , p o s i t i o n ]∗ miyake

# b i n s
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lower = 0 .
upper = 0 .
a n t a l l =41

# f i n d u p p e r t r u n c a t i o n

for i in r a n g e ( time ) :
if c work [ i ] > upper :

upper = c work [ i ]
# or c h a n g e it m a n u a l l y

# u p p e r = 10.

domain = l i n spa c e ( lower , upper ,num=an t a l l )
pdf = histogram ( c work , b ins=l i n spa c e ( lower ,

upper ,num=an t a l l ) , normed=1)
c f = ze ro s ( len ( pdf [ 0 ] ) ) # s t o r e s

c o n c e n t r a t i o n p o i n t s

p c = ze ro s ( len ( pdf [ 0 ] ) ) # s t o r e s p r o b d e n s i t y

p o i n t s

for i in r a n g e ( len ( c f ) ) :
c f [ i ] = ( pdf [ 1 ] [ i +1]+pdf [ 1 ] [ i ] ) /2 .
p c [ i ] = pdf [ 0 ] [ i ]

# g a u s s l e t s are the G a u s s i a n s of e a c h bin

g au s s l e t p o i n t s = ( anta l l −1)∗100 − 1
d i s t ance = c f [ 1 ] − c f [ 0 ] # s i n c e bin d o m a i n

has c o n s t a n t s p a c i n g

sma l l gaus s = ze ro s ( ( len ( c f ) , g a u s s l e t p o i n t s )
) # the g a u s s l e t s

# l o o p o v e r all p o i n t s and c r e a t e g a u s s l e t s

for i in r a n g e ( len ( p c ) ) :
l o c a l pd = p c [ i ]
sma l l gaus s [ i ] = gau s s l e t ( upper , c f [ i ] ,

d i s tance , l o ca l pd , g a u s s l e t p o i n t s )
meshed gauss = ze ro s ( g au s s l e t p o i n t s )
# m e s h t o g e t h e r in a f i x e d d o m a i n

for j in r a n g e ( g a u s s l e t p o i n t s ) : # all m e s h

p o i n t s

for i in r a n g e ( len ( p c ) ) : # no . p o l e s

meshed gauss [ j ] += sma l l gaus s [ i ] [ j ]
mesh domain = l i n spa c e (−upper ,2∗ upper ,

g a u s s l e t p o i n t s )

# F i n d a v e r a g e and std of c o n c e n t r a t i o n s

s i z e = 512
gauss domain = l i n spa c e ( lower , upper , s i z e )
c mean = get mean ( c work , time )
std = ge t s td ( c work , c mean , time )
gauss = gauss ian ( c mean , std , gauss domain )

# P l o t

rc ( ’ x t i c k ’ , l a b e l s i z e =30)
rc ( ’ y t i c k ’ , l a b e l s i z e =30)
h i s t ( c work , b ins=domain , c o l o r=’ w ’ , normed=1)
hold ( ’ on ’ )
# p l o t ( c_f , p_c , ’ gx ’)

p lo t (mesh domain , meshed gauss , ’ b ’ , l i n ew idth
=3)

# p l o t ( g a u s s _ d o m a i n , gauss , ’ g ’ , l a b e l = ’

G a u s s i a n fit for s a m e m e a n and s t a n d a r d

d e v i a t i o n ’)

# v l i n e s ( c_mean , 0 , max ( g a u s s ) , ’ r ’ , l a b e l = ’

m e a n ’)

# v l i n e s ( c _ m e a n + std , 0 , max ( g a u s s ) , ’ y ’ ,

l a b e l = ’1 s t a n d a r d d e v i a t i o n f r o m m e a n ’)

# l e g e n d ()

x l abe l ( ’ c  [ ppm ] ’ , f o n t s i z e=’ 30 ’ )
y l ab e l ( ’ p ( c ) ’ , f o n t s i z e=’ 30 ’ )
# t i t l e ( ’ PDF at x =\% f ’ \%( p o s i t i o n - 2 5 6 ) )

# l e g e n d ( f o n t s i z e = ’30 ’)

show ( )

Listing A.19: A5 histogram3D.py

# P l o t 3 D h i s t o g r a m in e i t h e r FF or CM f r a m e .

f r o m mpl t o o l k i t s . mplot3d i m p o r t Axes3D
f r o m madona mods i m p o r t ∗
f r o m math i m p o r t pi as PI
f r o m math i m p o r t e r f
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m numpy i m p o r t ∗

c = s to r e da ta ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R) # c e n t e r of

m a s s f r a m e c o n c e n t r a t i o n s .

miyake = miyake sca l e ( c R , time ) # s c a l i n g

a l w a y s d o n e a g a i n s t 21 p o i n t s a r o u n d x = R .

o f f s e t = 256

x samples = 10 # s a m p l e s a l o n g x to m i n i m i z e

c o m p u t a t i o n a l e x p e n s e

query = ask use r ( )
if query == 0 : # FF

c work = c∗miyake
domain x = l i n spa c e ((−80+255)∗dx , (80+255)

∗dx , x samples )
l a r g e x = l i n spa c e (0 ,511∗dx ,512 )

e l s e : # CM

c work = c R∗miyake
domain x = l i n spa c e (−80∗dx ,80∗dx , x samples

)
l a r g e x = l i n spa c e (−255∗dx , 256∗dx , 512)

# t r u n c a t i o n s and b i n s

lower = 0 .
upper = 10 .
a n t a l l =41
x s epa ra t i on = 161./ x samples
domain c = l i n spa c e ( lower , upper ,num=an t a l l )
d i s t ance = domain x [ 1 ] − domain x [ 0 ]
c d i s t = domain c [ 1 ] − domain c [ 0 ]
h i s t = ze ro s ( ( x samples , an ta l l −1) )
for i in r a n g e ( x samples ) :

h i s t [ i ] = histogram ( c work [ : , int (256−80 +
i ∗ x s epa ra t i on ) ] , b ins=domain c ,
normed=1) [ 0 ]

# cap at p = 0 . 5 . T h i s is for e a s i e r

v i s u a l i z a t i o n

for i in r a n g e ( x samples ) :
for j in r a n g e ( an ta l l −1) :

if h i s t [ i ] [ j ] > 0 . 5 :
h i s t [ i ] [ j ] = 0 .5

# c o m p u t e h i s t o g r a m s

temp pdf = histogram ( c work [ : 0 ] , b ins=domain c
, normed=1)

c p l o t = ze ro s ( len ( temp pdf [ 0 ] ) )
for i in r a n g e ( len ( c p l o t ) ) :

c p l o t [ i ] = ( temp pdf [ 1 ] [ i +1]+temp pdf [ 1 ] [
i ] ) /2 .

pdf = ze ro s ( (512 , an ta l l −1) )
for j in r a n g e (512) :

pdf [ j ] = histogram ( c work [ : , j ] , b ins=
domain c , normed=1) [ 0 ]

# cap at 0.5

cap = 0.5
for j in r a n g e (512) :

for i in r a n g e ( an ta l l −1) :
if pdf [ j ] [ i ] > 0 . 5 :

pdf [ j ] [ i ] = 0 .5

# P l o t 3 D b i n s

f i g = f i g u r e ( )
ax = f i g . add subplot (111 , p r o j e c t i on=’ 3 d ’ )
e lements = ( len ( domain c ) − 1) ∗ ( len ( domain x

) − 1)
xpos , ypos = meshgrid ( domain c [ :−1]+0.25 ,

domain x [ :−1]+0.25)
xpos = xpos . f l a t t e n ( )
ypos = ypos . f l a t t e n ( )
zpos = np . z e ro s ( e lements )
dx = c d i s t ∗ o n e s l i k e ( zpos )
dy = d i s tance /2 . ∗ o n e s l i k e ( zpos )
dz = h i s t . f l a t t e n ( )
ax . bar3d ( xpos , ypos , zpos , dx , dy , dz , c o l o r=’

b ’ , z s o r t=’ a v e r a g e ’ , )
ax . s e t z l im ( 0 , . 5 )
ax . s e t x l a b e l ( ’ c  [ ppm ] ’ , f o n t s i z e=’ 30 ’ )
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ax . s e t y l a b e l ( ’x - R  [ m ] ’ , f o n t s i z e=’ 30 ’ )
ax . s e t z l a b e l ( ’ PDF ’ , f o n t s i z e=’ 30 ’ )
for item in ( [ ax . t i t l e , ax . xax i s . l abe l , ax .

yax i s . l abe l , ax . z ax i s . l a b e l ]
+ ax . g e t x t i c k l a b e l s ( ) + ax .

g e t y t i c k l a b e l s ( ) + ax .
g e t z t i c k l a b e l s ( ) ) :

item . s e t f o n t s i z e (30)
show ( )

Listing A.20: A5 histogram3Dgaussian.py

# 3 D p l o t of G a u s s i a n e n v e l o p e p ( c ) for s e v e r a l

p o s i t i o n s x .

f r o m mpl t o o l k i t s . mplot3d i m p o r t Axes3D
f r o m madona mods i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m numpy i m p o r t ∗
f r o m math i m p o r t ∗
f r o m math i m p o r t pi as PI
f r o m math i m p o r t e r f , exp

c = s to r e da t a ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )
o f f s e t = 256
x samples = 10
query = ask use r ( )
if query == 0 : # s c a l e d FF f r a m e

c work = c∗miyake
domain x = l i n spa c e ((−80+255)∗dx , (80+255)

∗dx , x samples )
e l s e : # s c a l e d CM f r a m e

c work = c R∗miyake
domain x = l i n spa c e (−80∗dx ,80∗dx , x samples

)

# s e t u p

lower = 0 .
upper = 10 .
a n t a l l =41
x s epa ra t i on = 161./ x samples
g au s s l e t p o i n t s = ( anta l l −1)∗100 − 1
domain c = l i n spa c e (−upper ,2∗ upper ,

g a u s s l e t p o i n t s )
x d i s t = domain x [ 1 ] − domain x [ 0 ]
c d i s t = domain c [ 1 ] − domain c [ 0 ]
pdf domain = l i n spa c e ( lower , upper ,num=an t a l l )

# c r e a t e s p a c e and p ( c , x ) for G a u s s i a n e n v e l o p e

pdf env = ze ro s ( ( x samples , g a u s s l e t p o i n t s ) )
h i s t = ze ro s ( ( x samples , an ta l l −1) )
g e t c f = histogram ( c work [ : , int (256−80) ] , b ins

=l i n spa c e ( lower , upper ,num=an t a l l ) , normed
=1) [ 1 ]

for i in r a n g e ( x samples ) :
h i s t [ i ] = histogram ( c work [ : , int (256−80 +

i ∗ x s epa ra t i on ) ] , b ins=l i n spa c e ( lower
, upper ,num=an t a l l ) , normed=1) [ 0 ]

c f = ze ro s ( len ( h i s t [ 0 ] ) ) # s t o r e s

c o n c e n t r a t i o n p o i n t s

for i in r a n g e ( len ( c f ) ) :
c f [ i ] = ( g e t c f [ i +1]+ g e t c f [ i ] ) /2 .

# p e r f o r m G a u s s i a n s m o o t h i n g

d i s tance = c f [ 1 ] − c f [ 0 ]
g a u s s l e t p o i n t s = ( anta l l −1)∗100 − 1
for k in r a n g e ( x samples ) :

sma l l gaus s = ze ro s ( ( len ( c f ) ,
g a u s s l e t p o i n t s ) )

for i in r a n g e ( len ( h i s t [ k ] ) ) :
l o c a l pd = h i s t [ k ] [ i ]
sma l l gaus s [ i ] = gau s s l e t ( upper , c f [ i

] , 2∗ dis tance , l o ca l pd ,
g a u s s l e t p o i n t s )

# m e s h t o g e t h e r

for j in r a n g e ( g au s s l e t p o i n t s ) :
for i in r a n g e ( len ( h i s t [ k ] ) ) : # no .

p o l e s

pdf env [ k ] [ j ] += sma l l gaus s [ i ] [ j ]

# c u t o f f b e l o w p = 0.5 and for c <0 and c >0.

cut low = 0
cut h igh = 0
for i in r a n g e ( len ( domain c ) ) :

if domain c [ i ] > 0 and cut low == 0 :
# s m a l l e s t p o i n t o v e r 0

cut low = i
if domain c [ i ] > 10 and cut h igh == 0 :

# s m a l l e s t p o i n t o v e r 10

cut h igh = i
c u t d i f f = cut h igh − cut low
p l o t pd f = ze ro s ( ( x samples , c u t d i f f ) )
p l o t c = ze ro s ( c u t d i f f )
for j in r a n g e ( c u t d i f f ) :

p l o t c [ j ] = domain c [ j+cut low ]
for i in r a n g e ( len ( domain x ) ) :

if pdf env [ i ] [ j+cut low ] > 0 . 5 :
p l o t pd f [ i ] [ j ] = 0 .5

e l s e :
p l o t pd f [ i ] [ j ] = pdf env [ i ] [ j+

cut low ]

# 3 D p l o t

f i g = f i g u r e ( )
ax = f i g . gca ( p r o j e c t i on=’ 3 d ’ )
X,Y = meshgrid ( p lo t c , domain x )
s u r f = ax . p lo t w i r e f r ame (X,Y, p lo t pd f , r s t r i d e

=1, c s t r i d e =10, l i n ew idth=1, c o l o r=’ b ’ )
for item in ( [ ax . t i t l e , ax . xax i s . l abe l , ax .

yax i s . l abe l , ax . z ax i s . l a b e l ]
+ ax . g e t x t i c k l a b e l s ( ) + ax .

g e t y t i c k l a b e l s ( ) + ax .
g e t z t i c k l a b e l s ( ) ) :

item . s e t f o n t s i z e (20)
ax . s e t x l a b e l ( ’ c  [ ppm ] ’ )
ax . s e t y l a b e l ( ’x - R  [ m ] ’ )
ax . s e t z l a b e l ( ’ PDF ’ )
ax . s e t z l im ( 0 , . 5 )
ax . s e t x l im (0 ,10)
show ( )

Listing A.21: A5 jpdf.py

# C r e a t e J P D F p ( c , dc / dt ) by l i n e a r

i n t e r p o l a t i o n for dc / dt .

# P r e s e n t l y set to use the a v e r a g e of the two

m e t h o d s to f i n d dc / dt .

# Can be set to " f o l d " the J P D F by s a m p l i n g

o n l y abs ( d c d t ) .

f r o m mpl t o o l k i t s . mplot3d i m p o r t Axes3D
f r o m madona mods i m p o r t ∗
f r o m math i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m numpy i m p o r t ∗
f r o m math i m p o r t ∗
f r o m math i m p o r t pi as PI
f r o m math i m p o r t e r f , exp

c = s to r e da ta ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )
o f f s e t = 255

frame = ask use r ( )
x 0 = a sk po s i t i o n ( ) + o f f s e t
c work = ze ro s ( time )
if 0 == frame : # s c a l e d FF f r a m e

for i in r a n g e ( time ) :
c work [ i ] = c [ i ] [ x 0 ]∗ miyake

e l s e : # s c a l e d CM f r a m e

for i in r a n g e ( time ) :
c work [ i ] = c R [ i ] [ x 0 ]∗ miyake

# f i n d dc / dt

d c d t l e f t = ze ro s ( time )
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dcd t r i gh t = ze ro s ( time )
t = l i n spa c e (0 ,3∗ time , time )
# a s s i g n g r a d i e n t to c o n c e n t r a t i o n p o i n t on the

l e f t

for i in r a n g e ( time−1) :
d c d t l e f t [ i ] = l i n d i f f ( c work [ i +1] ,

c work [ i ] , t [ i +1] , t [ i ] )
# a s s i g n g r a d i e n t to c o n c e n t r a t i o n p o i n t on the

l e f t

for i in r a n g e (1 , time ) :
d cd t r i gh t [ i ] = l i n d i f f ( c work [ i ] , c work

[ i −1] , t [ i ] , t [ i −1])

# d e f i n e g r i d

dcdt low = −2
dcdt h igh = 2 .
dcdt border s = 21
c low = 0 .
c h igh = 10 .
c bo rde r s = 21

# a r e a of a s i n g l e r e c t a n g l e in the g r i d for

n o r m a l i z a t i o n

area = ( ( c h igh − c low ) /( c bo rde r s − 1 . ) ) ∗ ( (
dcdt h igh − dcdt low ) /( dcdt border s − 1 . )
) # a r e a of e a c h g r i d s q u a r e ( or r e c t a n g l e )

# p ( c ) and a s s o c i a t e d d o m a i n

c h i s t = histogram ( c work , b ins=l i n spa c e ( c low
, c high , c bo rde r s ) , normed=0)

p c = c h i s t [ 0 ]
c domain = ze ro s ( len ( p c ) )
for i in r a n g e ( len ( c domain ) ) :

c domain [ i ] = ( c h i s t [ 1 ] [ i +1]+ c h i s t [ 1 ] [ i
] ) /2 .

# p ( dc / dt ) and a s s o c i a t e d d o m a i n

d c d t l e f t h i s t = histogram ( d cd t l e f t , b ins=
l i n spa c e ( dcdt low , dcdt high ,
dcdt border s ) , normed=0)

d c d t r i g h t h i s t = histogram ( dcdt r i ght , b ins=
l i n spa c e ( dcdt low , dcdt high ,
dcdt border s ) , normed=0)

p d c d t l e f t = d c d t l e f t h i s t [ 0 ]
p dcd t r i gh t = d c d t r i g h t h i s t [ 0 ]
dcdt l e f t doma in = ze ro s ( len ( p d c d t l e f t ) )
dcdt r ight domain = ze ro s ( len ( p dcd t r i gh t ) )
for i in r a n g e ( len ( dcdt l e f t doma in ) ) :

dcdt l e f t doma in [ i ] = ( d c d t l e f t h i s t [ 1 ] [ i
+1] + d c d t l e f t h i s t [ 1 ] [ i ] ) /2 .

dcdt r ight domain [ i ] = ( d c d t r i g h t h i s t
[ 1 ] [ i +1] + d c d t r i g h t h i s t [ 1 ] [ i ] ) /2 .

# C r e a t e the s y n t h e t i c i n d e p e n d e n t J P D F p ( c ) * p (

dc / dt )

i p d f l e f t = ze ro s ( ( c borders −1, dcdt borders
−1) )

i p d f l e f t s i z e = 0 .
i p d f r i g h t = ze ro s ( ( c borders −1, dcdt borders

−1) )
i p d f r i g h t s i z e = 0 .
for k in r a n g e ( c borders −1) :

for i in r a n g e ( dcdt border s −1) :
i p d f l e f t [ k ] [ i ] = p d c d t l e f t [ i ]∗ p c [ k

]
i p d f l e f t s i z e += i p d f l e f t [ k ] [ i ]
i p d f r i g h t [ k ] [ i ] = p dcd t r i gh t [ i ]∗ p c

[ k ]
i p d f r i g h t s i z e += i p d f r i g h t [ k ] [ i ]

# n o r m by n u m b e r * g r i d s i z e .

i p d f l e f t = i p d f l e f t /( i p d f l e f t s i z e ∗ area )
i p d f r i g h t = i p d f r i g h t /( i p d f r i g h t s i z e ∗ area )

# C r e a t e J P D F p ( dc / dt , c )

j p d f l e f t = ze ro s ( ( c borders −1, dcdt borders
−1) )

j p d f l e f t s i z e = 0 .
j p d f r i g h t = ze ro s ( ( c borders −1, dcdt borders

−1) )
j p d f r i g h t s i z e = 0 .
for k in r a n g e ( c borders −1) :

for i in r a n g e ( dcdt border s −1) :
for j in r a n g e ( time ) :

# set abs d c d t b e l o w if we " f o l d "

a l o n g dc / dt = 0

if ( c work [ j ] >= c h i s t [ 1 ] [ k ] and

c work [ j ] < c h i s t [ 1 ] [ k+1] \
# abs h e r e

and d c d t l e f t [ j ] >= (
d c d t l e f t h i s t [ 1 ] [ i ] ) and

d c d t l e f t [ j ] < (
d c d t l e f t h i s t [ 1 ] [ i +1]) ) :
j p d f l e f t [ k ] [ i ] += 1
j p d f l e f t s i z e += 1

if ( c work [ j ] >= c h i s t [ 1 ] [ k ] and

c work [ j ] < c h i s t [ 1 ] [ k+1] \
# abs h e r e

and dcd t r i gh t [ j ] >= (
d c d t r i g h t h i s t [ 1 ] [ i ] ) and

dcd t r i gh t [ j ] < (
d c d t r i g h t h i s t [ 1 ] [ i +1]) ) :
j p d f r i g h t [ k ] [ i ] += 1
j p d f r i g h t s i z e += 1

# j p d f _ s i z e = j p d f _ s i z e *( c _ h i g h - c _ l o w ) /(

c _ b o r d e r s - 1) * ( d c d t _ h i g h - d c d t _ l o w ) /(

d c d t _ b o r d e r s -1)

# n o r m

j p d f l e f t = j p d f l e f t /( j p d f l e f t s i z e ∗ area )
j p d f r i g h t = j p d f r i g h t /( j p d f r i g h t s i z e ∗ area )

# j p d f _ l e f t and j p d f _ r i g h t f o u n d by the two

l i n e a r m e t h o d s in sec . 6 . 5 .

# j p d f is set as the m e a n b e t w e e n t h e m .

# i n d e p c h e c k s for i n d e p e n d e n c e b e t w e e n p ( c )

and p ( dc / dt ) .

j pd f = ( j p d f l e f t + j p d f r i g h t ) /2 .
i pd f = ( i p d f l e f t + i p d f r i g h t ) /2 .
indep = abs ( jpd f − i pd f )

# c r e a t e c u t o f f s for v i s u a l i z a t i o n

for i in r a n g e ( c borders −1) :
for j in r a n g e ( dcdt border s −1) :

if j pd f [ i ] [ j ] > 0 . 2 :
jpd f [ i ] [ j ] = 0 .2

if indep [ i ] [ j ] > 0 . 2 :
indep [ i ] [ j ] = 0 .2

# P l o t

f i g = f i g u r e ( )
ax = f i g . gca ( p r o j e c t i on=’ 3 d ’ )
X,Y = meshgrid ( dcdt l e f t domain , c domain )
s u r f = ax . p l o t s u r f a c e (X, Y, jpdf , r s t r i d e =1,

c s t r i d e =1, cmap=cm. j e t ,
l i n ew idth=0, a n t i a l i a s e d=False )

f i g . c o l o rba r ( sur f , shr ink=1, aspect=10)
for item in ( [ ax . t i t l e , ax . xax i s . l abe l , ax .

yax i s . l abe l , ax . z ax i s . l a b e l ]
+ ax . g e t x t i c k l a b e l s ( ) + ax .

g e t y t i c k l a b e l s ( ) + ax .
g e t z t i c k l a b e l s ( ) ) :

item . s e t f o n t s i z e (20)
ax . s e t x l a b e l ( ’ dc / dt  [ ppm / s ] ’ )
ax . s e t y l a b e l ( ’ c  [ ppm ] ’ )
ax . w zax i s . l i n e . s e t lw ( 0 . )
ax . s e t z t i c k s ( [ ] )
show ( )

Listing A.22: A5 jpdf4.py

# S a m e as A 5 _ j p d f . py , but for 4 d a t a s e t s t h a t

I m a n u a l l y i n p u t w h e n p r o m p t e d .

f r o m mpl t o o l k i t s . mplot3d i m p o r t Axes3D
f r o m madona mods i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m numpy i m p o r t ∗

query = ask use r ( )
time = 0
dx = 0
x 0 = a sk po s i t i o n ( )
c l i s t = [ ] # c o n t a i n s s c a l e d c at s a m p l e

p o s i t i o n for 4 d a t a s e t s

for k in r a n g e (4 ) :
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c , dx = store data prompt ( )
time = len ( c )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )
o f f s e t = 256
if query == 0 : # s c a l e d FF f r a m e

for i in r a n g e ( time ) :
c l i s t . append (miyake∗c [ i ] [ x 0 +

o f f s e t ] )
e l s e : # s c a l e d CM f r a m e

for i in r a n g e ( time ) :
c l i s t . append (miyake∗c R [ i ] [ x 0 +

o f f s e t ] )
c work = asarray ( c l i s t )
time = len ( c work )

# f i n d dc / dt

d c d t l e f t = ze ro s ( time )
dcd t r i gh t = ze ro s ( time )
t = l i n spa c e (0 ,3∗ time , time )
for i in r a n g e ( time−1) :

d c d t l e f t [ i ] = l i n d i f f ( c work [ i +1] ,
c work [ i ] , t [ i +1] , t [ i ] )

for i in r a n g e (1 , time ) :
d cd t r i gh t [ i ] = l i n d i f f ( c work [ i ] , c work

[ i −1] , t [ i ] , t [ i −1])

# d e f i n e g r i d

dcdt low = −2
dcdt h igh = 2 .
dcdt border s = 41
c low = 0 .
c h igh = 10 .
c bo rde r s = 41

# d e f i n e a r e a of e a c h s q u a r e for n o r m a l i z a t i o n

area = ( ( c h igh − c low ) /( c bo rde r s − 1 . ) ) ∗ ( (
dcdt h igh − dcdt low ) /( dcdt border s − 1 . )
) # a r e a of e a c h g r i d s q u a r e ( or r e c t a n g l e )

# p ( c )

c h i s t = histogram ( c work , b ins=l i n spa c e ( c low
, c high , c bo rde r s ) , normed=0)

p c = c h i s t [ 0 ]
c domain = ze ro s ( len ( p c ) )
for i in r a n g e ( len ( c domain ) ) :

c domain [ i ] = ( c h i s t [ 1 ] [ i +1]+ c h i s t [ 1 ] [ i
] ) /2 .

# p ( dc / dt )

d c d t l e f t h i s t = histogram ( d cd t l e f t , b ins=
l i n spa c e ( dcdt low , dcdt high ,
dcdt border s ) , normed=0)

d c d t r i g h t h i s t = histogram ( dcdt r i ght , b ins=
l i n spa c e ( dcdt low , dcdt high ,
dcdt border s ) , normed=0)

p d c d t l e f t = d c d t l e f t h i s t [ 0 ]
p dcd t r i gh t = d c d t r i g h t h i s t [ 0 ]
dcdt l e f t doma in = ze ro s ( len ( p d c d t l e f t ) )
dcdt r ight domain = ze ro s ( len ( p dcd t r i gh t ) )
for i in r a n g e ( len ( dcdt l e f t doma in ) ) :

dcdt l e f t doma in [ i ] = ( d c d t l e f t h i s t [ 1 ] [ i
+1] + d c d t l e f t h i s t [ 1 ] [ i ] ) /2 .

dcdt r ight domain [ i ] = ( d c d t r i g h t h i s t
[ 1 ] [ i +1] + d c d t r i g h t h i s t [ 1 ] [ i ] ) /2 .

# p ( dc / dt ) * p ( c )

i p d f l e f t = ze ro s ( ( c borders −1, dcdt borders
−1) )

i p d f l e f t s i z e = 0 .
i p d f r i g h t = ze ro s ( ( c borders −1, dcdt borders

−1) )
i p d f r i g h t s i z e = 0 .
for k in r a n g e ( c borders −1) :

for i in r a n g e ( dcdt border s −1) :
i p d f l e f t [ k ] [ i ] = p d c d t l e f t [ i ]∗ p c [ k

]
i p d f l e f t s i z e += i p d f l e f t [ k ] [ i ]
i p d f r i g h t [ k ] [ i ] = p dcd t r i gh t [ i ]∗ p c

[ k ]
i p d f r i g h t s i z e += i p d f r i g h t [ k ] [ i ]

# n o r m

# n o r m by n u m b e r * g r i d s i z e .

i p d f l e f t = i p d f l e f t /( i p d f l e f t s i z e ∗ area )
i p d f r i g h t = i p d f r i g h t /( i p d f r i g h t s i z e ∗ area )

# J P D F

j p d f l e f t = ze ro s ( ( c borders −1, dcdt borders
−1) )

j p d f l e f t s i z e = 0 .
j p d f r i g h t = ze ro s ( ( c borders −1, dcdt borders

−1) )
j p d f r i g h t s i z e = 0 .
for k in r a n g e ( c borders −1) :

for i in r a n g e ( dcdt border s −1) :
for j in r a n g e ( time ) :

# set abs d c d t b e l o w if we c a l p the

s i d e s

if ( c work [ j ] >= c h i s t [ 1 ] [ k ] and

c work [ j ] < c h i s t [ 1 ] [ k+1] \
# abs h e r e

and d c d t l e f t [ j ] >= (
d c d t l e f t h i s t [ 1 ] [ i ] ) and

d c d t l e f t [ j ] < (
d c d t l e f t h i s t [ 1 ] [ i +1]) ) :
j p d f l e f t [ k ] [ i ] += 1
j p d f l e f t s i z e += 1

if ( c work [ j ] >= c h i s t [ 1 ] [ k ] and

c work [ j ] < c h i s t [ 1 ] [ k+1] \
# abs h e r e

and dcd t r i gh t [ j ] >= (
d c d t r i g h t h i s t [ 1 ] [ i ] ) and

dcd t r i gh t [ j ] < (
d c d t r i g h t h i s t [ 1 ] [ i +1]) ) :
j p d f r i g h t [ k ] [ i ] += 1
j p d f r i g h t s i z e += 1

# j p d f _ s i z e = j p d f _ s i z e *( c _ h i g h - c _ l o w ) /(

c _ b o r d e r s - 1) * ( d c d t _ h i g h - d c d t _ l o w ) /(

d c d t _ b o r d e r s -1)

# n o r m

j p d f l e f t = j p d f l e f t /( j p d f l e f t s i z e ∗ area )
j p d f r i g h t = j p d f r i g h t /( j p d f r i g h t s i z e ∗ area )

# C h e c k i n d e p e n d e n c e

j pd f = ( j p d f l e f t + j p d f r i g h t ) /2 .
i pd f = ( i p d f l e f t + i p d f r i g h t ) /2 .
indep = abs ( jpd f − i pd f )

# c r e a t e c u t o f f s

for i in r a n g e ( c borders −1) :
for j in r a n g e ( dcdt border s −1) :

if j pd f [ i ] [ j ] > 0 . 2 :
jpd f [ i ] [ j ] = 0 .2

if indep [ i ] [ j ] > 0 . 2 :
indep [ i ] [ j ] = 0 .2

# 3 D p l o t

f i g = f i g u r e ( )
ax = f i g . gca ( p r o j e c t i on=’ 3 d ’ )
X,Y = meshgrid ( dcdt l e f t domain , c domain )
s u r f = ax . p l o t s u r f a c e (X, Y, jpdf , r s t r i d e =1,

c s t r i d e =1, cmap=cm. j e t ,
l i n ew idth=0, a n t i a l i a s e d=False )

f i g . c o l o rba r ( sur f , shr ink=1, aspect=10)
for item in ( [ ax . t i t l e , ax . xax i s . l abe l , ax .

yax i s . l abe l , ax . z ax i s . l a b e l ]
+ ax . g e t x t i c k l a b e l s ( ) + ax .

g e t y t i c k l a b e l s ( ) + ax .
g e t z t i c k l a b e l s ( ) ) :

item . s e t f o n t s i z e (20)
ax . s e t x l a b e l ( ’ dc / dt  [ ppm / s ] ’ )
ax . s e t y l a b e l ( ’ c  [ ppm ] ’ )
ax . w zax i s . l i n e . s e t lw ( 0 . )
ax . s e t z t i c k s ( [ ] )
show ( )

Listing A.23: A5 jpdf gaussian.py

# c r e a t e G a u s s i a n S m o o t h e d c o a t i n g for J P D F

f r o m mpl t o o l k i t s . mplot3d i m p o r t Axes3D
f r o m madona mods i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m numpy i m p o r t ∗
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f r o m math i m p o r t ∗
f r o m math i m p o r t pi as PI
f r o m math i m p o r t e r f , exp
i m p o r t sys

# S e t u p

c = s to r e da ta ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )
o f f s e t = 255
frame = ask use r ( )
x 0 = a sk po s i t i o n ( ) + o f f s e t
c work = ze ro s ( time )
if 0 == frame : # s c a l e d FF f r a m e

for i in r a n g e ( time ) :
c work [ i ] = c [ i ] [ x 0 ]∗ miyake

e l s e : # s c a l e d CM f r a m e

for i in r a n g e ( time ) :
c work [ i ] = c R [ i ] [ x 0 ]∗ miyake

# dc / dt

d c d t l e f t = ze ro s ( time )
dcd t r i gh t = ze ro s ( time )
t = l i n spa c e (0 ,3∗ time , time )
for i in r a n g e ( time−1) :

d c d t l e f t [ i ] = l i n d i f f ( c work [ i +1] ,
c work [ i ] , t [ i +1] , t [ i ] )

for i in r a n g e (1 , time ) :
d cd t r i gh t [ i ] = l i n d i f f ( c work [ i ] , c work

[ i −1] , t [ i ] , t [ i −1])

# D e f i n e g r i d

dcdt low = −2
dcdt h igh = 2 .
dcdt border s = 21
c low = 0 .
c h igh = 10 .
c bo rde r s = 21
area = ( ( c h igh − c low ) /( c bo rde r s − 1 . ) ) ∗ ( (

dcdt h igh − dcdt low ) /( dcdt border s − 1 . )
) # a r e a of e a c h g r i d s q u a r e ( or r e c t a n g l e )

# p ( c )

c h i s t = histogram ( c work , b ins=l i n spa c e ( c low
, c high , c bo rde r s ) , normed=0)

p c = c h i s t [ 0 ]
c domain = ze ro s ( len ( p c ) )
for i in r a n g e ( len ( c domain ) ) :

c domain [ i ] = ( c h i s t [ 1 ] [ i +1]+ c h i s t [ 1 ] [ i
] ) /2 .

# p ( dc / dt )

d c d t l e f t h i s t = histogram ( d cd t l e f t , b ins=
l i n spa c e ( dcdt low , dcdt high ,
dcdt border s ) , normed=0)

d c d t r i g h t h i s t = histogram ( dcdt r i ght , b ins=
l i n spa c e ( dcdt low , dcdt high ,
dcdt border s ) , normed=0)

p d c d t l e f t = d c d t l e f t h i s t [ 0 ]
p dcd t r i gh t = d c d t r i g h t h i s t [ 0 ]
dcdt l e f t doma in = ze ro s ( len ( p d c d t l e f t ) )
dcdt r ight domain = ze ro s ( len ( p dcd t r i gh t ) )
for i in r a n g e ( len ( dcdt l e f t doma in ) ) :

dcdt l e f t doma in [ i ] = ( d c d t l e f t h i s t [ 1 ] [ i
+1] + d c d t l e f t h i s t [ 1 ] [ i ] ) /2 .

dcdt r ight domain [ i ] = ( d c d t r i g h t h i s t
[ 1 ] [ i +1] + d c d t r i g h t h i s t [ 1 ] [ i ] ) /2 .

# p ( dc / dt , c )

j p d f l e f t = ze ro s ( ( c borders −1, dcdt borders
−1) )

j p d f l e f t s i z e = 0 .
j p d f r i g h t = ze ro s ( ( c borders −1, dcdt borders

−1) )
j p d f r i g h t s i z e = 0 .
for k in r a n g e ( c borders −1) :

for i in r a n g e ( dcdt border s −1) :
for j in r a n g e ( time ) :

# set abs d c d t b e l o w if we c a l p the

s i d e s

if ( c work [ j ] >= c h i s t [ 1 ] [ k ] and

c work [ j ] < c h i s t [ 1 ] [ k+1] \
# abs h e r e

and d c d t l e f t [ j ] >= (
d c d t l e f t h i s t [ 1 ] [ i ] ) and

d c d t l e f t [ j ] < (
d c d t l e f t h i s t [ 1 ] [ i +1]) ) :
j p d f l e f t [ k ] [ i ] += 1
j p d f l e f t s i z e += 1

if ( c work [ j ] >= c h i s t [ 1 ] [ k ] and

c work [ j ] < c h i s t [ 1 ] [ k+1] \
# abs h e r e

and dcd t r i gh t [ j ] >= (
d c d t r i g h t h i s t [ 1 ] [ i ] ) and

dcd t r i gh t [ j ] < (
d c d t r i g h t h i s t [ 1 ] [ i +1]) ) :
j p d f r i g h t [ k ] [ i ] += 1
j p d f r i g h t s i z e += 1

# n o r m

j p d f l e f t = j p d f l e f t /( j p d f l e f t s i z e ∗ area )
j p d f r i g h t = j p d f r i g h t /( j p d f r i g h t s i z e ∗ area )
jpd f = ( j p d f l e f t + j p d f r i g h t ) /2 .

# S m o o t h a l o n g c

g au s s l e t p o i n t s = ( c borders −1)∗100 − 1
domain c = l i n spa c e (−c high ,2∗ c high ,

g a u s s l e t p o i n t s )
c d i s t = domain c [ 1 ] − domain c [ 0 ]
pdf domain = l i n spa c e ( c low , c high ,num=

c borde r s )
pdf env = ze ro s ( ( g au s s l e t po i n t s , dcdt borders

−1) )
d i s t ance = c domain [ 1 ] − c domain [ 0 ]
for k in r a n g e ( dcdt borders −1) :

sma l l gaus s = ze ro s ( ( len ( c domain ) ,
g a u s s l e t p o i n t s ) )

for i in r a n g e ( c borders −1) :
l o c a l pd = jpd f [ i ] [ k ]
sma l l gaus s [ i ] = gau s s l e t ( c high ,

c domain [ i ] , 2∗ dis tance , l o ca l pd
, g a u s s l e t p o i n t s )

# m e s h t o g e t h e r

for j in r a n g e ( g a u s s l e t p o i n t s ) :
for i in r a n g e ( c borders −1) : # no .

p o l e s

pdf env [ j ] [ k ] += sma l l gaus s [ i ] [ j ]

# c u t o f f b e l o w p = 0.5 and for c <0 and c >0.

cut low = 0
cut h igh = 0
for i in r a n g e ( len ( domain c ) ) :

if domain c [ i ] > 0 and cut low == 0 :
# s m a l l e s t p o i n t o v e r 0

cut low = i
if domain c [ i ] > 10 and cut h igh == 0 :

# s m a l l e s t p o i n t o v e r 10

cut h igh = i
c u t d i f f = cut h igh − cut low
p l o t pd f = ze ro s ( ( c u t d i f f , dcdt borders −1) )
p l o t c = ze ro s ( c u t d i f f )
for j in r a n g e ( c u t d i f f ) :

p l o t c [ j ] = domain c [ j+cut low ]
for i in r a n g e ( dcdt borders −1) :

if pdf env [ j+cut low ] [ i ] > 0 . 5 :
p l o t pd f [ j ] [ i ] = 0 .5

e l s e :
p l o t pd f [ j ] [ i ] = pdf env [ j+cut low

] [ i ]

# 3 D p l o t

f i g = f i g u r e ( )
ax = f i g . gca ( p r o j e c t i on=’ 3 d ’ )
X,Y = meshgrid ( dcdt l e f t domain , p l o t c )
s u r f = ax . p lo t w i r e f r ame (X,Y, p lo t pd f , r s t r i d e

=10, c s t r i d e =1, l i new idth=1, c o l o r=’ b ’ )
# C o m m e n t e d out b e l o w : if we w a n t s u r f a c e c o l o r

p l o t s i n s t e a d .

# s u r f = ax . p l o t _ s u r f a c e ( X , Y , p l o t _ p d f , r s t r i d e

=1 , c s t r i d e =1 , c m a p = cm . jet ,

# l i n e w i d t h =0 , a n t i a l i a s e d = F a l s e )

# fig . c o l o r b a r ( surf , s h r i n k =1 , a s p e c t = 1 0 )
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for item in ( [ ax . t i t l e , ax . xax i s . l abe l , ax .
yax i s . l abe l , ax . z ax i s . l a b e l ]

+ ax . g e t x t i c k l a b e l s ( ) + ax .
g e t y t i c k l a b e l s ( ) + ax .
g e t z t i c k l a b e l s ( ) ) :

item . s e t f o n t s i z e (20)
ax . s e t x l a b e l ( ’ dc / dt  [ ppm / s ] ’ )
ax . s e t y l a b e l ( ’ c  [ ppm ] ’ )
ax . w zax i s . l i n e . s e t lw ( 0 . )
ax . s e t z t i c k s ( [ ] )
show ( )

Listing A.24: A5 compare.py

# C o m p a r e <T > and f _ c r o s s by s a m p l i n g raw d a t a

and a g a i n s t u s i n g J P D F and PDF .

f r o m madona mods i m p o r t ∗
f r o m math i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m mpl t o o l k i t s . mplot3d i m p o r t Axes3D
f r o m matp lo t l ib . t i c k e r i m p o r t LinearLocator ,

FormatStrFormatter
f r o m numpy i m p o r t ∗

c = s to r e da t a ( )
time = len ( c )
dx = f ind dx ( )
R = f ind c en t e r mas s ( c , time )
c R = c r e a t e c en t e r ed ( c , time , dx , R)
miyake = miyake sca l e ( c R , time )
o f f s e t = 255

query = ask use r ( )
x0 = a sk po s i t i o n ( ) + o f f s e t
if query == 0 : # s c a l e d FF f r a m e

c work = c [ : , x0 ]∗ miyake
e l s e : # s c a l e d CM f r a m e

c work = c R [ : , x0 ]∗ miyake

po s i t i o n s = len ( c work )
samples = 500 # n u m b e r of s a m p l e c o n c e n t r a t i o n

t h r e s h o l d s

upper thre sho ld = 20 .
l owe r th r e sho ld = 0 .

# \% t and c r o s s i n g s by i n t e r p o l a t i n g d a t a

th r e sho ld = l i n spa c e ( l ower thre sho ld ,
upper thresho ld , samples ) # x - a x i s

t ime spent = ze ro s ( samples )
c r o s s i n g s = ze ro s ( samples )
p o s i t i o n = a sk po s i t i o n ( ) + o f f s e t
for k in r a n g e ( samples ) :

t ime spent [ k ] , c r o s s i n g s [ k ] = t ime c ro s s (
c work , th re sho ld [ k ] , time )

# n o r m

t ime spent = t ime spent / f l o a t ( time ) # to get in

u n i t s of 1

c r o s s i n g s = c r o s s i n g s /(3∗ time ) # in t e r m s of

u n i t s of 1

# dc / dt

d c d t l e f t = ze ro s ( time )
dcd t r i gh t = ze ro s ( time )
t = l i n spa c e (0 ,3∗ time , time )
for i in r a n g e ( time−1) :

d c d t l e f t [ i ] = l i n d i f f ( c work [ i +1] ,
c work [ i ] , t [ i +1] , t [ i ] )

for i in r a n g e (1 , time ) :
d cd t r i gh t [ i ] = l i n d i f f ( c work [ i ] , c work

[ i −1] , t [ i ] , t [ i −1])

# g r i d

dcdt low = 0
dcdt h igh = 3 .
dcdt border s = 41
c low = 0 .
c h igh = 20 .
c bo rde r s = 41
area = ( ( c h igh − c low ) /( c bo rde r s − 1 . ) ) ∗ ( (

dcdt h igh − dcdt low ) /( dcdt border s − 1 . )

) # a r e a of e a c h g r i d s q u a r e ( or r e c t a n g l e )

# p ( c )

c h i s t = histogram ( c work , b ins=l i n spa c e ( c low
, c high , c bo rde r s ) , normed=0)

p c = c h i s t [ 0 ]
c domain = ze ro s ( len ( p c ) )
for i in r a n g e ( len ( c domain ) ) :

c domain [ i ] = ( c h i s t [ 1 ] [ i +1]+ c h i s t [ 1 ] [ i
] ) /2 .

# p ( dc / dt )

d c d t l e f t h i s t = histogram ( d cd t l e f t , b ins=
l i n spa c e ( dcdt low , dcdt high ,
dcdt border s ) , normed=0)

d c d t r i g h t h i s t = histogram ( dcdt r i ght , b ins=
l i n spa c e ( dcdt low , dcdt high ,
dcdt border s ) , normed=0)

p d c d t l e f t = d c d t l e f t h i s t [ 0 ]
p dcd t r i gh t = d c d t r i g h t h i s t [ 0 ]
dcdt l e f t doma in = ze ro s ( len ( p d c d t l e f t ) )
dcdt r ight domain = ze ro s ( len ( p dcd t r i gh t ) )
for i in r a n g e ( len ( dcdt l e f t doma in ) ) :

dcdt l e f t doma in [ i ] = ( d c d t l e f t h i s t [ 1 ] [ i
+1] + d c d t l e f t h i s t [ 1 ] [ i ] ) /2 .

dcdt r ight domain [ i ] = ( d c d t r i g h t h i s t
[ 1 ] [ i +1] + d c d t r i g h t h i s t [ 1 ] [ i ] ) /2 .

p dcdt = ( p d c d t l e f t + p dcd t r i gh t ) /2 .

# p ( c , dc / dt )

j p d f l e f t = ze ro s ( ( c borders −1, dcdt borders
−1) )

j p d f l e f t s i z e = 0 .
j p d f r i g h t = ze ro s ( ( c borders −1, dcdt borders

−1) )
j p d f r i g h t s i z e = 0 .
for k in r a n g e ( c borders −1) :

for i in r a n g e ( dcdt border s −1) :
for j in r a n g e ( time ) :

# set abs d c d t b e l o w if we c a l p the

s i d e s

if ( c work [ j ] >= c h i s t [ 1 ] [ k ] and

c work [ j ] < c h i s t [ 1 ] [ k+1] \
# abs h e r e

and d c d t l e f t [ j ] >= abs (
d c d t l e f t h i s t [ 1 ] [ i ] ) and

d c d t l e f t [ j ] < abs (
d c d t l e f t h i s t [ 1 ] [ i +1]) ) :
j p d f l e f t [ k ] [ i ] += 1
j p d f l e f t s i z e += 1

if ( c work [ j ] >= c h i s t [ 1 ] [ k ] and

c work [ j ] < c h i s t [ 1 ] [ k+1] \
# abs h e r e

and dcd t r i gh t [ j ] >= abs (
d c d t r i g h t h i s t [ 1 ] [ i ] ) and

dcd t r i gh t [ j ] < abs (
d c d t r i g h t h i s t [ 1 ] [ i +1]) ) :
j p d f r i g h t [ k ] [ i ] += 1
j p d f r i g h t s i z e += 1

j p d f l e f t = j p d f l e f t /( j p d f l e f t s i z e ∗ area )
j p d f r i g h t = j p d f r i g h t /( j p d f r i g h t s i z e ∗ area )
jpd f = ( j p d f l e f t + j p d f r i g h t ) /2 .

# c a l c u l a t e p d f _ c r o s s , w h i c h is n o r m a l i z e d

c r o s s i n g s f r e q u e n c y

# f o u n d f r o m the J P D F

c h i s t = histogram ( c work , b ins=l i n spa c e ( c low
, c high , c bo rde r s ) , normed=1)

p c = c h i s t [ 0 ]
pd f c r o s s = ze ro s ( len ( p c ) )
d c d t l e f t h i s t = histogram ( d cd t l e f t , b ins=

l i n spa c e ( dcdt low , dcdt high ,
dcdt border s ) , normed=1)

d c d t r i g h t h i s t = histogram ( dcdt r i ght , b ins=
l i n spa c e ( dcdt low , dcdt high ,
dcdt border s ) , normed=1)

p d c d t l e f t = d c d t l e f t h i s t [ 0 ]
p dcd t r i gh t = d c d t r i g h t h i s t [ 0 ]
dcdt l e f t doma in = ze ro s ( len ( p d c d t l e f t ) )
dcdt r ight domain = ze ro s ( len ( p dcd t r i gh t ) )
for i in r a n g e ( len ( dcdt l e f t doma in ) ) :

dcdt l e f t doma in [ i ] = ( d c d t l e f t h i s t [ 1 ] [ i
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+1] + d c d t l e f t h i s t [ 1 ] [ i ] ) /2 .
dcdt r ight domain [ i ] = ( d c d t r i g h t h i s t

[ 1 ] [ i +1] + d c d t r i g h t h i s t [ 1 ] [ i ] ) /2 .
p dcdt = ( p d c d t l e f t + p dcd t r i gh t ) /2 .

dc = ( c h igh − c low ) /( c bo rde r s − 1)
dcc = ( dcdt h igh − c low ) /( c bo rde r s −1)
dcdt = d c d t l e f t h i s t [ 1 ] [ : − 1 ]

# t _ e x t a k e s n o r m a l i z e d % t c a l c u l a t e d f r o m pdf .

for i in r a n g e ( len ( p c ) ) :
for j in r a n g e ( len ( p dcdt ) ) :

pd f c r o s s [ i ] += dcdt [ j ]∗ j pd f [ i ] [ j ]
t ex = ze ro s ( len ( p c ) )
# " i n t e g r a t e " f r o m l a r g e s t to c ’ _i

for i in r a n g e ( len ( p c ) ) : # l o o p c_t f r o m s m a l l

to h i g h

for j in r a n g e ( len ( p c ) − i ) :
t ex [ i ] += p c [ len ( p c ) −j −1]

t ex = t ex ∗dc
pd f c r o s s = pd f c r o s s ∗ area
t exp = t ex / pd f c r o s s
c domain = c h i s t [ 1 ] [ : − 1 ]

# P l o t c u r r e n t l y set to c r o s s i n g s .

# C h a n g e to t _ e x p and t i m e _ s p e n t for % t

rc ( ’ x t i c k ’ , l a b e l s i z e =30)
rc ( ’ y t i c k ’ , l a b e l s i z e =30)
rc ( ’ t e x t ’ , usetex=True )
p lo t ( thresho ld , c r o s s i ng s , ’ b ’ , l i n ew idth=3,

l a b e l=’ U s i n g  L i n e a r  I n t e r p o l a t i o n ’ )
hold ( ’ on ’ )
p l o t ( c domain , pd f c ro s s , ’ r ’ , l i n ew idth=3,

l a b e l=’ U s i n g  J P D F ’ )
legend ( f o n t s i z e=’ 40 ’ )
show ( )

A.6 General Functions

Listing A.25: madona mods.py

# c o n t a i n s all g e n e r a l f u n c t i o n s c a l l e d d u r i n g

d a t a p r o c e s s i n g

i m p o r t sys
f r o m numpy i m p o r t ∗
f r o m matp lo t l ib . pyplot i m p o r t ∗
f r o m math i m p o r t pi as PI

# f u n c t i o n s b e l o w for r e a d i n g mad d a t a f i l e s .

# t h e s e are the raw d a t a f i l e s B j o r n L y b e k k

h e l p e d me get o v e r to p l a i n t e x t f o r m a t .

# f u n c t i o n s w i t h _ p r o m p t o n l y r e a d w h e n

p r o m p t e d .

# t h e s e are for c o d e s t h a t a w a i t i n p u t of

s e v e r a l d a t a f i l e s in s u c c e s s i o n .

def f i n d t o t a l t im e ( ) :
# " r e c o r d s " w e r e the n u m b e r of s a m p l e s in

t i m e in o r i g i n a l d a t a s e t s

g = o p e n ( sys . argv [ 1 ] , ’ r ’ )
for l i n e in g :

l i n e . s t r i p ( )
words = l i n e . s p l i t ( )
if str ( " r e c o r d s " ) in words :

t o t a l = int ( words [ 3 ] )
g . c l o s e ( )
r e t u r n t o t a l

def f i nd dx ( ) :
h = o p e n ( sys . argv [ 1 ] , ’ r ’ )
for l i n e in h :

l i n e . s t r i p ( )
words = l i n e . s p l i t ( )
# " b e r e i c h " g a v e a c o d e for dx

# in the o r i g i n a l d a t a f i l e s

if str ( " b e r e i c h :: " ) in words :
cha ra c t e r s = l i s t ( words [ 1 ] )
if int ( cha ra c t e r s [ 0 ] ) == 3 : #

b e r e i c h 300

s c a l i n g = 0 .6
e l i f int ( cha ra c t e r s [ 0 ] ) == 7 : #

b e r e i c h 750

s c a l i n g = 1 .5
e l s e :

p r i n t ’ S o m e t h i n g  w e n t  wrong ,  

c a n t  r e a d  b e r e i c h . ’

b r e a k

h . c l o s e ( )
r e t u r n s c a l i n g

def f i nd to ta l t ime prompt ( address ) :
g = o p e n ( address , ’ r ’ )
for l i n e in g :

l i n e . s t r i p ( )
words = l i n e . s p l i t ( )
if str ( " r e c o r d s " ) in words :

t o t a l = int ( words [ 3 ] )
g . c l o s e ( )
r e t u r n t o t a l

def f ind dx prompt ( address ) :
# R e a d s ’ b e r e i c h ’ f r o m f i l e

h = o p e n ( address , ’ r ’ )
for l i n e in h :

l i n e . s t r i p ( )
words = l i n e . s p l i t ( )
if str ( " b e r e i c h :: " ) in words :

cha ra c t e r s = l i s t ( words [ 1 ] )
if int ( cha ra c t e r s [ 0 ] ) == 3 : #

b e r e i c h 300

s c a l i n g = 0 .6
e l i f int ( cha ra c t e r s [ 0 ] ) == 7 : #

b e r e i c h 750

s c a l i n g = 1 .5
e l s e :

p r i n t ’ S o m e t h i n g  w e n t  wrong ,  

c a n t  r e a d  b e r e i c h . ’

b r e a k

h . c l o s e ( )
r e t u r n s c a l i n g

def s t o r e da ta ( ) :
# r e a d s d a t a i n t o a two - d i m e n s i o n a l a r r a y

of c [ t i m e ][ p o s i t i o n ]

f = o p e n ( sys . argv [ 1 ] , ’ r ’ )
t o t a l t ime = f i n d t o t a l t im e ( )
c = ze ro s ( ( t o ta l t ime , 512 ) )

# T E S T w i l l be set to the v a l u e of the

f i r s t n u m b e r of e a c h s e n t e n c e

# ( if it is a n u m b e r )

# o n l y the f i r s t time - s e r i e s of d a t a h a v e ’

s e n t e n c e s ’ s t a r t i n g

# w i t h 0 , and t h i s is the c o n d i t i o n for

s t a r t i n g to r e a d

t e s t = 1
# F L A G a c t i v a t e s o n c e T E S T has d o n e its job

, and m a k e s s u r e

# we c o n t i n u e r e a d i n g w i t h o u t c h e c k i n g for

s e n t e n c e s s t a r t i n g w i t h 0.

f l a g = 0
po s i t i on c oun t e r = 0
t ime counter = 0
empty arrays = 0 # k e e p s c o u n t of no . e m p t y

s u b a r r a y s

for l i n e in f :
l i n e . s t r i p ( )
numbers = l i n e . s p l i t ( )
if f l a g == 0 :

try :
t e s t = int ( numbers [ 0 ] )
if t e s t == 0 :

# s t a r t p r o c e s s i n g

f l a g = 1
c [ 0 ] [ 0 ] = f l o a t ( numbers

[ 2 ] )
p o s i t i o n c oun t e r += 1

e x c e p t :
f l a g = 0

if f l a g == 1 :
# c o n t i n u e p r o c e s s i n g

c [ t ime counter ] [
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po s i t i on c oun t e r ] = f l o a t

( numbers [ 2 ] )
p o s i t i o n c oun t e r+=1

if po s i t i on c oun t e r ==512:
# i n c r e m e n t t i m e . c h e c k for

e m p t y d a t a set .

test sum = 0
po s i t i on c oun t e r= 0
for j in r a n g e (512) :

test sum += c [ t ime counter
] [ j ]

if test sum != 0 : # not e m p t y

d a t a set

t ime counter+=1
e l s e :

# e r a s e d a t a set and k e e p

c o u n t

empty arrays += 1

# c o n d i t i o n for e n d i n g r e a d

if t ime counter == to t a l t ime :
b r e a k

f . c l o s e ( )
# c l e a n a w a y e m p t y s u b a r r a y s

if empty arrays != 0 :
for i in r a n g e ( empty arrays ) :

c = de l e t e ( c , ( t o ta l t ime−i −1) ,
ax i s=0)

r e t u r n c

def s tore data prompt ( ) :
# r e a d s d a t a i n t o a two - d i m e n s i o n a l

a r r a y of c [ t i m e ][ p o s i t i o n ]

# t h i s v e r s i o n p r o m p t s the r e a d e r to

g i v e the l o c a t i o n of the d a t a

address = r a w _ i n p u t ( " E n t e r  l o c a t i o n  

d a t a  is  s t o r e d  in :  " )
f = o p e n ( address , ’ r ’ )
t o t a l t ime = f ind to ta l t ime prompt (

address )
c = ze ro s ( ( t o ta l t ime , 512 ) )
dx = find dx prompt ( address )
t e s t = 1
f l a g = 0
po s i t i on c oun t e r = 0
t ime counter = 0
empty arrays = 0 # k e e p s c o u n t of no .

e m p t y s u b a r r a y s

for l i n e in f :
l i n e . s t r i p ( )
numbers = l i n e . s p l i t ( )
if f l a g == 0 :

try :
t e s t = int ( numbers [ 0 ] )
if t e s t == 0 :

# s t a r t p r o c e s s i n g

f l a g = 1
c [ 0 ] [ 0 ] = f l o a t (

numbers [ 2 ] )
p o s i t i o n c oun t e r += 1

e x c e p t :
f l a g = 0

if f l a g == 1 :
# c o n t i n u e p r o c e s s i n g

c [ t ime counter ] [
p o s i t i o n c oun t e r ] = f l o a t

( numbers [ 2 ] )
p o s i t i o n c oun t e r+=1

if po s i t i on c oun t e r ==512:
# i n c r e m e n t t i m e . c h e c k for

e m p t y d a t a set .

test sum = 0
po s i t i on c oun t e r= 0
for j in r a n g e (512) :

test sum += c [ t ime counter
] [ j ]

if test sum != 0 : # not e m p t y

d a t a set

t ime counter+=1
e l s e :

# e r a s e d a t a set and k e e p

c o u n t

empty arrays += 1

# c o n d i t i o n for e n d i n g r e a d

if t ime counter == to t a l t ime :
b r e a k

f . c l o s e ( )
# c l e a n a w a y e m p t y s u b a r r a y s

if empty arrays != 0 :
for i in r a n g e ( empty arrays ) :

c = de l e t e ( c , ( t o ta l t ime−i −1) ,
ax i s=0)

r e t u r n c , dx

# ask a b o u t r e f e r e n c e f r a m e

def a sk use r ( ) :
f = o p e n ( sys . argv [ 1 ] , ’ r ’ )
n = int ( r a w _ i n p u t ( " T y p e  0  f i x e d  f r a m e .  

T y p e  1  for  CM  f r a m e :  " ) )
if n==0 or n==1:

f . c l o s e ( )
r e t u r n n

e l s e :
p r i n t " S o m e t h i n g  e l s e  t h a n  0  or  1  

w r i t t e n . "

e x i t ( )

# b e l o w are f u n c t i o n s r e l a t e d to CM

def f i nd c en t e r mas s ( c , time ) :
# W i l l f i n d the c e n t e r of m a s s R ( t ) .

uR = 0 # w i l l s t o r e u n n o r m a l i z e d c e n t e r of

m a s s

newtime = len ( c )
R = ze ro s ( newtime ) # w i l l s t o r e c e n t e r of

m a s s of e a c h time - s p o t

sum c = 0 # t o t a l c o n c e n t r a t i o n

for dt in r a n g e (0 , newtime ) :
for dx in r a n g e (0 ,512) :

uR += c [ dt ] [ dx ]∗ dx
sum c += c [ dt ] [ dx ]

R[ dt ] = uR/ f l o a t ( sum c )
uR = 0
sum c = 0
try :

R[ dt ] = int (R[ dt ] )
e x c e p t ValueError :

R[ dt ] = 0
r e t u r n R

def c r e a t e c en t e r ed ( c , time , dx , R) :
# W i l l c e n t e r a r r a y s a r o u n d the c e n t e r of

m a s s .

newtime = len ( c )
conc com = zero s ( ( newtime , 512 ) )
s h i f t = 0
for i in r a n g e ( time ) :

s h i f t = 256 − R[ i ]
for j in r a n g e (512) :

try :
conc com [ i ] [ j ] = c [ i ] [ j−s h i f t ]

e x c e p t :
# m a k e 0 s a w a y f r o m c e n t e r of

m a s s

conc com [ i ] [ j ] = 0
r e t u r n conc com

# b e l o w f u n c t i o n s c a l e s c o n c e n t r a t i o n to M i y a k e

v a l u e s

def miyake sca l e ( c R , time ) :
c mean center = 0 # t h i s w i l l h o l d the m e a n

c o n c e n t r a t i o n of the c e n t e r of m a s s

for j in r a n g e (21) :
for i in r a n g e ( time ) :

c mean center += c R [ i ][256−10+ j ]
c mean center = c mean center /( time ∗21 . )
measured maximal = 4.27 # or 17.25 , t h e s e

are 5 min a v g s .

s c a l i n g r a t i o = 4.27/ c mean center #

m e a s u r e d / d a t a

r e t u r n s c a l i n g r a t i o

# a s k s a b o u t a r r a y p o s i t i o n f r o m CM or c e n t e r

of m e a s u r e m e n t

def a s k po s i t i o n ( ) :
n = int ( r a w _ i n p u t ( " How  far  in  a r r a y  u n i t s  



140 APPENDIX A. PYTHON SCRIPTS

f r o m  c e n t e r  of  a r r a y ?  " ) )
r e t u r n n

# b e l o w are f u n c t i o n s for f i n d i n g m o m e n t s t h e i r

r e l a t e d p r o p e r t i e s

def get mean ( c , time ) :
mu = ze ro s (512)
for j in r a n g e (512) :

for i in r a n g e ( time ) :
mu[ j ] += c [ i ] [ j ]

mu = mu/(1 .∗ time )
r e t u r n mu

def get s igma ( c , time , mu) :
sigma = ze ro s (512)
for j in r a n g e (512) :

for i in r a n g e ( time ) :
sigma [ j ] += c [ i ] [ j ]∗∗2

sigma [ j ] = sigma [ j ] / ( 1 . ∗ time )
for i in r a n g e ( len ( sigma ) ) :

sigma [ i ] += − mu[ i ]∗∗2
sigma [ i ] = sq r t ( sigma [ i ] )

r e t u r n sigma

def get skewness ( c , time , mu, sigma ) :
skew = ze ro s (512)
for j in r a n g e (512) :

for i in r a n g e ( time ) :
skew [ j ] += c [ i ] [ j ]∗∗3

skew = skew/time
skew += − mu∗∗3
skew = skew /( sigma ∗∗3)
skew += − 3∗mu/sigma
r e t u r n skew

def g e t k u r t o s i s ( c , time , mu, sigma ) :
kurt = ze ro s (512)
for j in r a n g e (512) :

for i in r a n g e ( time ) :
kurt [ j ] += ( c [ i ] [ j ] − mu[ j ] ) ∗∗4

kurt = kurt / time
kurt = kurt /( sigma ∗∗4)
r e t u r n kurt

def get moment ( c , time , mean , power ) :
moment = ze ro s (512)
for j in r a n g e (512) :

for i in r a n g e ( time ) :
moment [ j ] = moment [ j ] + ( c [ i ] [ j ] −

mean [ j ] ) ∗∗power
moment = moment/ time
r e t u r n moment

def f ind max ( c ) :
maximum = 0
for i in r a n g e (512) :

if (maximum < c [ i ] ) :
maximum = c [ i ]

r e t u r n maximum

# l i n e a r i n t e r p o l a t i o n c a l c of c r o s s i n g s and

t i m e a b o v e

def t ime c r o s s ( s i gna l , l im i t , time ) :
# u s i n g l i n e a r i n t e r p o l a t i o n

# t a k e s a 1 - dim a r r a y ’ s i g n a l ’ , f i n d s t o t a l

t i m e s p e n t a b o v e t h r e s h o l d s

# and n u m b e r of c r o s s i n g s

t o t a l t ime = 0 .
t o t a l c r o s s = 0
f l a g t ime = 0
temp = 0
for i in r a n g e ( time ) :

if f l a g t ime == 0 :
if s i g n a l [ i ] > l im i t :

f l a g t ime = 1
t o t a l c r o s s += 1
temp = 1− i n t e r p o l t h r e s h (

f l o a t ( s i g n a l [ i ] ) , f l o a t (
s i g n a l [ i −1]) , l im i t )

t o t a l t ime += temp
e l s e :

if s i g n a l [ i ] <= l im i t :

f l a g t ime = 0
temp = in t e r p o l t h r e s h ( f l o a t (

s i g n a l [ i ] ) , f l o a t ( s i g n a l [
i −1]) , l im i t )

t o t a l t ime += temp
e l s e :

t o t a l t ime += 1
r e t u r n t o ta l t ime , t o t a l c r o s s # in t e r m s

of 3 s u n i t s

def i n t e r p o l t h r e s h ( c f , c 0 , c t ) :
# R e t u r n s f r a c t i o n of 1 u n i t of t i m e

a c c o r d i n g to two - p o i n t l i n e a r

i n t e r p o l a t i o n of c r o s s i n g .

t ime c ro s s ed = ( c t − c 0 ) /( c f − c 0 )
r e t u r n t ime c ro s s ed

# b r u t e f o r c e c a l c . of c r o s s i n g s and t i m e a b o v e

def t ime cros s wo ( s i gna l , l im i t , time ) :
# w i t h o u t u s i n g l i n e a r i n t e r p o l a t i o n

# t a k e s a 1 - dim a r r a y ’ s i g n a l ’ , f i n d s t o t a l

t i m e s p e n t a b o v e t h r e s h o l d s

# and n u m b e r of c r o s s i n g s

t o t a l t ime = 0 .
t o t a l c r o s s = 0
f l a g t ime = 0
for i in r a n g e ( time ) :

if f l a g t ime == 0 :
if s i g n a l [ i ] > l im i t :

f l a g t ime = 1
t o t a l c r o s s += 1
to t a l t ime += 1

e l s e :
if s i g n a l [ i ] <= l im i t :

f l a g t ime = 0
e l s e :

t o t a l t ime += 1
r e t u r n t o ta l t ime , t o t a l c r o s s # in t e r m s

of 3 s u n i t s

# f u n c t i o n s b e l o w are n e e d e d for G a u s s i a n

S m o o t h i n g

def gauss ian ( c mean , sigma , domain ) :
f = ze ro s ( len ( domain ) )
for i in r a n g e ( len ( f ) ) :

f [ i ] = exp(−( double ( domain [ i ] − c mean
) ) ∗∗2/(2∗ sigma ∗∗2) )

f = f ∗ ( 1 . / ( sq r t ( 2 .∗ PI ) ∗ sigma ) )
r e t u r n f

def gau s s l e t (max c , mean , d , height ,
g a u s s l e t p o i n t s ) :
gaus s a r ray = ze ro s ( g au s s l e t p o i n t s )
# d o m a i n is a l w a y s f r o m 1 pdf d o m a i n to the

l e f t to 1 pdf d o m a i n

# to the r i g h t of the a c t u a l pdf d o m a i n

x = l i n spa c e (−max c , 2∗max c ,
g a u s s l e t p o i n t s )

sigma = d
for i in r a n g e ( g a u s s l e t p o i n t s ) :

gaus s a r ray [ i ] = exp (−((x [ i ]−mean) ∗∗2)
/ (2 .∗ sigma ∗∗2) )

gaus s a r ray = gaus s a r ray ∗ he ight ∗d/( sigma∗
sq r t (2∗PI ) )

r e t u r n gaus s a r ray

# l i n e a r g r a d i e n t as u s e d for f i n d i n g dc / dt

def l i n d i f f ( c R , c L , t R , t L ) :
temp=(c R − c L ) /( t R − t L )
r e t u r n temp


