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Abstract
We find an explicit functional process solution to a stochastic partial differential equa-
tion which arises in nonlinear filtering theory. The solution is constructed using the Hermite
transform.
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1 Introduction.

This paper considers the stochastic Cauchy problem given by

dos(z,w) = (Lype(z,w) — c(t, z)ds(z,w))dt + h(t, z)ds(z,w)dB: (1)

$o(z,w) = po(z) (2)

where L; is an infinitesimal generator associated to an Ito diffusion. B; is a Brownian motion.

We will have a look at a solution concept called a functional process solution, which is a weak

solution concept to this stochastic partial differential equation. We substitute the Ito integral

part of (1) with a Lebesgue integral involving the Wick product together with a white noise
process, and find the solution to this problem instead.

The problem of solving (1) and (2) comes from nonlinear filtering theory. The linear filtering
problem has the well-known Kalman-Bucy filter as its solution, which is an ordinary stochastic
differential equation. The nonlinear case, however, leads to finding the unnormalised probabil-
ity density, which satisfies a stochastic partial differential equation. This equation is in filtering
theory known as the Wong-Zakai equation and equals (1) when L, —c = A*. A* is the adjoint to
the infinitesimal generator associated to the system equation in the filtering problem. Pardoux
[12] and Gydngy & Krylov [5] have worked out general existence and uniqueness results for (1)
and (2). An explicit solution of the problem, however, has, as far as I know, never been found.
In this article, we use the Hermite transform to “translate” our stochastic partial differential
equation into an “ordinary” partial differential equation, which has a stochastic version of its
solution. Invers Hermite transform then produces a solution candidate. In section 4 we demon-
strate how this technique works. The technique has been used for several other problems, see
for instance [7].

We start in section 2 with some mathematical preliminaries which we are going to use trough-
out this paper. We also define the functional process solution concept. Section 3 considers
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expectation in (8)* and some results for the Wick product which will be useful in section 5.
The last section contains the proof of the functional process solution of the stochastic Cauchy
problem.

2 Some Mathematical Preliminaries.

This brief introduction of some aspects of the white noise theory is mostly taken from [4]. For
a more complete account, see [6].

We start by recalling some of the basic definitions and features of the white noise probability
space. As usual, let S’ = S'(R?) denote the space of tempered distributions on R¢, which is the
dual of the well-known Schwartz space S(R?). By the Bochner-Minlos theorem there exists a
measure 4 on S’ such that

/ ei<w,¢>du(w) = e‘%”‘ﬁ”z, ¢ € S(]Rd) (3)
sl
where || - || is the norm in L?(R?). This measure corresponds to the bilinear form
£6,4) = [, #vdsidrb € SR

Let B denote the Borel sets on S'(equipped with the weak star topology). Then the triple
(S'(R%), B, ) is called the white noise probability space.
Definition 1 A white noise process is a map

W:8x8 - R

given by
W(¢,w) = Wy(w) = (w,¢),w €S, €S (4)

Since S is dense in L?, we can define (w, §) for ¢ € L? by
(w’ ¢> = inolo(w’ ¢'n>

n

where ¢, € S’ is a sequence converging to ¢ € L2. In particular, if we define

B () := Bay,....00(w) = (W, Xo,01]x...x[0,2] (-)) (5)

then B, has an x-continuous version B, which becomes a d-parameter Brownian motion.
The d-parameter Wiener-Tto integral of ¢ € L? is defined by

[ $)aB, () = (.9) (6

The left hand side coincides with the Ito integral if supp(¢) C [0, 00). (See [11], p.4). Of special
interest now will be the space L?(S’(R%), 1) or L?(y) for short. The Wiener-Fo chaos ezpansion
theorem says that every F € L?(u) has the form

Fw=3 /( @B () (1)

d)'n.
where f, € L?(R™?) and f, is symmetric in all its nd variables (in the sense that f, (us,, - . ., Us,,) =

fa(¥1,...,unq) for all permutations 0.). The right hand side of (7) are the multiple Ito integrals.
With F, f, asin (7) we have

o
||F“%=(,4) = En!”fﬂ”%?(mnd) (8)
n=0
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There is an equivalent expansion of F € L%(p) in terms of the Hermite polynomials

ha(z) = (—1)”el=£d— e”

2
d:c"( T)n=0,1,2,...

We now explain this more closely. Define the Hermite function of order n as &, (z)

bale) = 77 Y4((n — 1)) F hoy(V22) (9)

where z € R,n = 0,1,2,.... {£,}52, forms an orthonormal basis for L?(R). Therefore the
family {eq} of tensor products

€a = €ay,yay 1= €a; ® ... @ €y (10)

(where o denotes the multi-index (y, ..., @4)) forms an orthonormal basis for L?(R?). Assume
that the family of all multi-indices 8 = (By,...,84) is given a fixed ordering

(ﬁ(l)VlB(Z)’ .. ',ﬁ(n)’ b ')
where g*) = (,ng), ceey gk)). Put
en =egm;in=12,...

Let « = (a1,...,am) be a multi-index. It was shown by Ito that
. . . m
[, 6. 0ckmman® = ] hay(6) (11)
(Be)n -

where 6;(w) = [;. €j(z)dBs(w),n = |a| and @ denotes the symmetrized tensor product, so that,
e.g., f®g(:v,y) = 2[f(=)g(v) + f(v)9(z)] if @,y € R and similazly for more than two variables.
If we define, for each multi-index & = (1, ..., am),

= IT P (89) (12)
j=1
then we see that (11) can be written
/ e®2dpelel = Hy(w) (13)
(B4

using multi-index notation: e®* = e2*@...®e8m if e = (e1,ez,...). Since the family
{e®%;|a| = n} forms an orthonormal basis for the symmetric functions in L%((R%)"), we see
by combining (7) and (13) that we have the representation

=) caHa(w) (14)
a
(the sum being taken over all multi-indeces o of nonnegative integers). Morover, it can be proved
that
|F|Zau) = Za!cﬁ (15)
a

where a! = a;!...ap,!. Using the expansion we have developed, the white noise process becomes

Wy(w) = [ $(e)B(0) = S0 ex) B (o) (19)
k=1



where ¢ is the multi-index with 1 on the k’th coordinate, and zeros everywhere else. (-, -) is the
innerproduct in L2.

There is a subspace of L?(u) which in some sense corresponds to the Schwartz subspace
S(R?) of L2(R?). This space is called the Hida test function space and is denoted (S) (see
[6] for the construction of this space). Using a characterization due to Zhang in [13], a simple
description of (S) can be given as follows:

Definition 2 Let F € L%(u) have the chaos ezpansion
F(w) = anﬂa(w)

Then F is o Hida test function, i.e. F € (S), if

sup c2a!(2N)** < co V natural numbers k < co (17)
a
where
m . .
@N)* = [ ...69)% ifa=(a1,...,om) (18)
j=1
|

The topological dual of (S), denoted (S)*, is called the Hida Distribution space. Zhang has
in [13] a nice characterization of this space, too.

Theorem 3 A Hida distibution G is a formal series

G=Y boHa (19)

where
sup b2a!((2N)~*)? < oo for some ¢ > 0 (20)
[ |
If G € (8)* is given by (19) and F € (S) is given by (14), the action of G on F is given by

(G, F) =) albaca (21)

Note that no assumptions are made regarding the convergence of the formal series in (19).
We can in a natural way regard L(u) as a subspace of (S)*. In particular, if X € L%(u)
then by (21) the action of X on F € (S) is given by

(X,F) = E[X - F]

Hence, the triple
(8) C L*(k) C (8)

An important example of an element in (S)* is the singular white noise, defined as

Wi(w) = D er(t)He,(w) = ) er(t)ha(6r)
k=1 k=1

Using estimates on {; from [8, p.571] we can show that W; belongs to (S)*.
The important Wick product of two Hida distributions F, G is defined as



Definition 4 Let F = }_, aoHqy and G = Y 5 bgHp be two elements of (S)*. Then the Wick
product of F and G is the element F o G in (S)* given by

FoG=) aabsHayp (22)
o,

It can be shown that the Wick product is closed in (S), i.e.

f,9€(8) = foge(S)

This is not the case for two elements in L?(1). The Wick product of F, G € L?(x) may fail to
be in L?(u). Hence, the product must be handled with care when applied.
Using the Wick product, we can construct the Wick ezponential. If X € L(u), define

oo
1
EzpX := Z ;XW (23)
n=0

when all the Wick powers of X exist and the series converges in L(u). (For the definition of
the Wick product in L(p), see [4] ). In analogue with the classical exponential, we have the rule

Ezp(X +Y) = EzpX o ExpY (24)

when defined. The so-called positive noise can be constructed by the Wick exponential of a white
noise process, Wy. For such processes there exist a connection between the Wick exponential
and the classical exponential. The identity

for the Hermite polynomials, together with (11) give
1
EapWy = ezp(Wy — 2 [14]*) (25)

From Theorem 4.13 in [6], we have that the algebra generated by ezp(aWy), where a € C, is a
subset of (S). Hence it follows directly from the relation between the Wick exponential and the
classical exponential that

EzpWy € (S)

Thus
EzpWy € IP(u) , Vp €< 1,00 >

On the space (S)* there is a transform which enables us to translate stochastic equations
into deterministic equations. This transform is called the Hermite transform, and is defined by:

Definition 5 Let F € (S)* have the chaos ezpansion
F=Y coHs
a

Then the Hermite transform of F is

HF := F := anz“ (26)

where z is a finite sequence in C, i.e. z € C§, and 2® = z{* ... z%m. B



One important property of the Hermite transform is that it changes Wick products into ordinary
products:

Theorem 6 Let F,G € (S)*. Then
H(F oG)=HF -HG (27)
where the product on the right hand side ts the usual compler product. B

, We will in the rest of the article only consider the case when d = 1, ie. § = S(R) and
S =8 (R). Hence, we get
ex(t) = & (t)

We end this section by stating what we will mean by the functional process solution concept:

Definition 7 4 map ¢: C® x [0,T] X R x &' — R is a functional process solution of (1) and
(2) zf¢:/’(m, )= ¢(¥,t,2,-) € LP(u) for ap > 1 and

8@0) = pole) + [ (Lo = et N#@w)ds+ [ haa)sb(@w) oWy, ()ds  (29)

Vi € C2°, where ,(t) = ¥(t — 3). ]

3 Expectation In (S)*.

The proof of the functional process solution of (1) and (2), involves working with expectations
of the Wick product of two processes. In this section, we will consider the problem of “moving
a Wick product outside an expectation”, i.e. investigate under what condodtions the Wick
product commutes with the expectation. This will become easy in the context of expectation in

(8).
In section 5 we will apply these results on

ExpWy ) (w) o Wy (w) € (S) (29)

Note here that v is assumed to be a stochastic variable too, dependent on 7 € &'. W, (;)(w) is
then a map from §’' x &' into R, defined as

(1, @) = Wy (@) = / 21, $)dB, () (30)

For each fixed 7, (29) is in (S) as a function of w. At the end of this section we will show that
(29) is in L%(p) as a function of 7.
Define the expectation of an (S)*-element in the following way:

Definition 8 If F : 8’ — (8)* is such that
(F(n),¥) € L'(u) , V¥ € (S)
then we define the unique (S)*-element E[F(n)] to be
(BLF(n)), %) = B[(F(n), ¥)] (31)

(The existence of E[F(n)] as a (S)*-element can be proven by using the proof in Prop. 8.1,
[6]) . The reader should note that in the case of

F:8 — L*p)

then F is a stochastic variable on the product space 8’ x §', F(n,w). We have the following
situation:

(E"][F(na )]a 1/’) = E‘fl[(F(T’1 ')’ ¢)] = E‘l][Ew[F(n’w) * '()b(w)]]

Now we take a look at some important properties of this expectation:
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Proposition 9 Let F : §' xS — R. Assume F(-,w) € L'(), F(n,-) € L*(u) and E,[F*(n,-)] €

LY(p). Then
Ey[F(n,w)] = Ey[F(n,w)]

Proof: We show that
(En[F(n,w)), ¥) = (By[F(n,w)],9) , V¥ € ()
By the Holder inequality, we have
Eu[(By[|F(n,w)[))*] < Eu[Eq[|F(n,w)|]] < oo

Hence
E,[F(n,.)] € L*(n)

This implies
(EnlF(n, )], ¥) = Bu[By[F(n,w)] - $(w)] = Eu[By[F(n,w) - $(w)]]

We show that
Eu[Ey[F - )] = Ey[Eu[F - ¢]]

The Tonelli theorem and Hélder inequality give

Enol|F - 9") = Ey[Bu[|F - $I°]] < By[Eu[F?] - Bu[4*]]

= [9l122(u) Bn B[ F?]] = |[#]Za() - B [En[F (n,0)*]] < o0
which implies

F(n,w)-(w) € L*(u x p) C L*(u x p)

Hence by the Fubini theorem, we can interchange E, and E,, and get

(Bq[F(n, ")) %) = EgEu[F(n,w) - Y(w)]] = E[(F(n, ), ¥)] = (By[F(n,")], %)

(32)
|

The next propositions and lemmas deal with the problem of moving the Wick product outside

an expectation.

Proposition 10 Let F : §' x §' — R. Assume G € (S)* and F(n,-) € L*(u). In addition,

assume that F(-,w) € L*(n), Ey[F?*(n,-)] € L*(u), and F and G have chaos ezpansions

F=) aa(n)Ha,G= bsHp
a 8

such that
) " alEyllagl]leal < oo
a

Z(a + B)'Ep[laa(n)]|bsllcats] < oo
a,B

for allp =3, caHy € (S). Then we have

E,[F(n,w) 0 G(w)] = By[F(n,w)] o G(w)

(33)



Proof: A direct calculation shows:

(Eq[F(n,w) 0 G)],9) = E4[(F 0 G, 9)] = By _(a + B)laa(n)bpca+ts]
a,p

Using the assumptions, we can interchange sums and expectation:

=Y (a+B)\Bylaa(m)bscats = (D Eqlaa(n)]Ha) 0 G, ¥)
a,B a

which equals, by the assumptions and prop.(9):
= (Eﬂ [F(fl, )] G, ¢> = (E"I [F(nv )] °G, "/))

|
The restriction F € L?(u x p) shows up to be sufficient to fulfill the requirements in the

proposition above. To prove this, we need some lemmas:

Lemma 11 Assume
sup a! Ey[a2(n)] < oo
a

Then
X = Z Eyllaa(n)||Ha

will be an (8)*-element. ]

Proof: We must show that
sup Eflaq(n)|?al(2N) ™ < o
a

for a ¢ > 0. By the Holder inequality, we get

sup E[|aq(n)[]?!(2N)~*? < sup E[a2]e!(2N)~*? < sup ! E[a?] < oo

since

(2N)* = 2lel(1%22%2  mom) > 1, Va

|
Lemma 12 Assume F(-,-) € L?(p x p) and G € (S)* have chaos ezpansions
F(nw) = Eaa(n)HQ(w), G= Zbﬁﬂﬁ
a a
Then
> alEyflaa(m)]lcal < oo
a
and
D (e +B)\Eyllaa(n)11bsllcats| < oo
a,B
VY =3 o cala € (S). [

Proof: Since F(-,-) € L?(u x p), the Fubini-Tonelli theorem implies

Ey[Bu[F?]] = Ey[) | alaa(n)’] = ) alEylaa(n)’] < oo



Hence, by the lemma above

X =) Eyllaa(n)[|Ha € (S)°

This gives
0> (X 06, 9) = 3 (e + 6) Eyllaa(n)]lbpllcatsl
a,B
where _
Y= z lca|Ha € (S)
and

G=) |bplHp € (S)"
5

In addition _
00 > (X,P) = Y alEyllaa(n)[]lcal

N

Proposition 18 Assume F(-,-) € L%(u x p) and G € (S)*, then
Ey[F(n,w) o G(w)] = By[F(n,w)] o G(w) (34)
|

Proof: By lemma (12) and the Fubini-Tonelli theorem, the assumptions in prop.(10) are fullfiled.
Hence, the proposition follows. B
We now move on with the problem of showing that

BapWy(s)(w) o Wy () € L*(w)

as a function of 7. The Wick product is taken w.r.t. w. The rest of this section is dedicated to
this problem. We start with stating a preliminary result.

Proposition 14 Assume Y € L?(u) and ¢ € CX. If (s)Y (w) is Skorohod integrable, then
V@) oWy(o) = [ HOY )68, (0) (35)
where supp(y) C [a, d]. ]
Proof: Let Y have the chaos expansion
Y(w)= anHa(w)
o

By (16), we have
Wy(w) = Z(¢’£k)Héh(w)

k
Results from [1] imply

Y(w)oWy(w) = an(¢a €k)Hote, = Z("pcmfk)Haﬁk

k,a k,a

b b b
P(8)cabr(s)ds)Hyte, = P(3)Y (w) o W, (w)ds = P(8)Y (w)éB, (w
g;(/() M) oo, = [ DY (o) oW (w)ds = [ 9(e)Y ()55, @)

a

We state the result which sums up what we need for the theorem in section 5:
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Proposition 15 Given F(-,-) € L*(u x p) by

F(n,w) = BEapWy()(w)
where v(n, 8) is bounded in both variables. Then

F(w)o Wy (w) € I%(u)

as a function of n, where the Wick product is taken w.r.t. w. E

Proof: By the Fubini-Tonelli theorem, it is sufficient to show that
F(n,w) o Wy(w) € L*(u x 1)

Using Prop.(3.1) in [10], we obtain

b
By u[(F(n,w) 0 Wy ())*] = Ep [(/a Y(s)F (1, w)6 B, (w))?]

b b
= B,[B.[( / $(s)F(n,0)8B, (@))?]] < By / $2() B [(BapWy(ny)? + (N BzpW,y)?1ds]

= Wl By[ B [(Eprv(,,))z + (N EzpWy()?]] < o0
where N is the number operator, also called the Ohrnstein-Uhlenbeck operator. ]

4 The Solution Candidate.

We will show how the Hermite transform can be used to produce an explicit solution candidate
to problem (1) and (2). Moreover, we use the singular white noise W, to construct a candidate
(see (40)). However, since W, is a very complicated element to handle, we have not been able
to prove that the candidate (40) is the solution of (1) and (2) in a strong sense. We have only
been able to prove the result for the weaker solution concept involving functional processes. In
the second part of this section, we study some properties of the solution candidate.

We start with formulating a slight modification of th.(5.7.6) from [9], where a stochastic
representation of the solution of a deterministic Cauchy problem is given. In the formulation,
let I be the generator to the Ito diffusion X,, and E%® the expectation taken under the condition
that X, = X%, s > t.

Theorem 168 Assume k : [0,T] X R — R continuous and bounded, po : R — R continuous and
positive. Let u:[0,T] x R — R be of class C1'2([0,T) x R) and satisfy the Cauchy problem

du
= L hu=
3t+ u=Lu

(0, z) = po(z)

as well as the polynomial growth condition

2p
o [u(t, )| < M(1+ [o )

for some M > 0, > 1. Then u(t,z) admits the stochastic representation

T
u(t, z) = ET~4% [po( X )eap{— / B(T — 5, X.)ds}] (36)
T-t
on [0,T] x R. In particular, such a solution is unique. |
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To translate our stochastic partial differential equation into a deterministic problem, we must
write (1) and (2) in integral form:

$¢(z,w) = po(z) +/0 Lo, (z,w) — c(s,2)Ps(z,w)ds + /0 h(s,z)¢,(z,w)dB, (37)

Assuming ¢,(z,w) is Ito integrable, results from [1] imply

/h(s,x)¢,(w,w)dB,:/ h(3,z)ds(z,w) o W,(w)ds
0 0

Differentiation w.r.t. to ¢ gives the problem:

%zii(m, w) = Léy(z,w) — c(t, z)ds(z,w) + h(t, z)de(z, w) © Wi(w)

¢$o(z,w) = po(z)
Invoking the Hermite transform, we get
3$t(z, z)

5 = Léi(z, z) — (c(t, &) — h(t, z)Wi(2))d:(z, 2) (38)

-~

¢o(, 2) = po(z) (39)

where

Wt(z) = Z & (t)zk
k=1

{€x}r=, is the usual orthonormal basis in L?(R), and z € C). Hence, we have translated
our original problem to a deterministic one with parameters 2. Invoking theorem(16) on the
problem (38) and (39), a solution will have the representation:

T
$t(m, 2) = E;f""’[po(XT(n))e:cp(— /T_t (T — 3,X,(n))ds) x

T
eapl /T R(T — 5, Xo(n)) Wr—y (2)ds)]
—t
From [4, p.28] we have
H(EzpW,) = exp(HW,)
where H is the Hermite transform, and EzpW, is the Wick exponential. Hence

T
(e, ) = B7 4 po(Xn(n))eap(= [ o(T =, X,(n))ds)x

T
Ezp( s h(T — 3, X,(n)) o Wr_,(w)ds)]

A change of variables gives

bi(z,w) = ET't'“[po(XT)e:cp(—/ c(s, XT_,)ds)Ea:p(/ h(s, X7r_,) o W,(w)ds)]
0 0

ET-%% js the expectation taken w.r.t. the measure induced by the Ito diffusion X, = XT-te s>
T —t. Note that the Wick product turns into an ordinary product, since h does not depend on
w. Hence

t

BT~ o (X)esp(— [ c(s, Xo-,)do)Bp( | (s, Xn- )W, (w)d)]
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= B%[po(Xz—(r1))ezp(— /0 (8, X — (2—1)-+)ds) Eap( /0 h(s, Xp— (2t Wi ()ds)]

which gives the formula

b4(x,w) = E*[po(Xs)eap(— /0 o(s, X;—)ds) Ep( /0 h(s, Xs—s)W, ()ds)] (40)

In [2], it is proved that (40) solves (1) and (2) in an (S)*-sense. However, the solution concept

does not have any physical implications, and it can not be used in connection with the filtering

problem. The solution concept in (§)* was invoked to cope with the difficulties caused by the

singular white noise W;. As far as the author can see, the methods used in the present paper are

not adoptable to the problem of showing that (40) solves (1) and (2) in a strong L?(u) sense.
Inspired by the above derivation, we will show that

t

¥ (2,w) = E[po(Xs)exp(— / ot — s, X,)ds) Bap( /0 h(s, Xoos) Wy, (0)ds)]  (41)

0

is a functional process solution, where ;(z) = ¥(z — t) for ¢ € C.

After this demonstration of the Hermite transformation technique, let us consider some
properties of our solution candidate (41). First of all we will show that 45? is an L2-process:
Consider the integral

[) h(3, Xt—s)Wy, (w)ds

Put
Fa(8) = Xpo,1(8)h(s, Xi-s(m))
By lemma (3.3) in [15] we get the following:

[ s X W, @is = [ 1@, ) = [ 168,
where the last integral is the Skorohod integral and * is the convolution product defined as
(@ fade = [ (o= wfy(w)n
If we assume that h is bounded, we get f, € L%(ds) and, by Youngs inequality ([3, (8.7)]),

(¥ * fy)s € L?(ds) Y € C°

For each 7, (¥ * fy), is a deterministic function in L2. Therefore

/0 B(s, Xoos () Wy, (w)ds = / (% % £2)0dB, () = W) ()

where
v(m 8) = (Y fn)s
Define

Fln0) = mCEu(n)enp(= [ oo, X, (n)ds) Bor (W) (@)
We have the following easy, but important result:
Proposition 17 Assume pg,c and h are bounded functions. Then
F() € L*(u x p)

and, Vi € C°
¢:p($! ) € Lz(”’)

12



Proof: We use the boundedness of h and the Fubini-Tonelli theorem:
t
Ey u[F?] = Eg[E,[F?]] = Ey[p)(X:)exp(—2 / o(s, X,)ds) - Eu[(BepWy(p)(w))?]] < oo
0

The Hélder inequality together with the Fubini-Tonelli theorem gives the latter result. g
Hence, our solution candidate is a functional process. In order to prove that our 45? satisfies
(28), i.e. that it satisfies the Cauchy problem

4
0 Lg? ~ (cltr2) — h(t,2) Wy, (0)) 0 8 )

83 (2,w) = po(z) (44)
¢}b has to be t-differentiable. To accomplish this, we need the following technical result:

Lemma 18 Suppose 3 € C and h, % are bounded functions. Set

gn(t, 8,u) = 9(s — (t — w))h(t — v, Xu(n))
Then there exists a ¢ € L'(ds) such that

S}

35 oalti )] < a(o)

Proof: We show this by direct calculation:

o | ot s, et = 20antt, 000+ [ 21 (1,5, u)du( | anttss,du)

:2|{zp(s)h(0,Xt)+/(; %(s~(t—u))h(t—u,xu)du+/o gb(s—(t—u))%(t—u,Xu)du}x

([ (e = (= w)he — w, Xu)a)
< M0 X1+ [ 15506 = e u)hle =, Xl [ 1o (=) G 6 v, Xu)ldupx

( / b(s — (¢ — w)h(t — w, Xa)|du)

By restrictions on h:
t , t
< 2{Cul ()| + € [ (s = (= uldu+ Ca [ oo~ (6 - w)ldu}x
0 0
t
c —(t—u))d
1 / (s — (¢ — u))ldu
Recall that ¢ € [0,T]. Consider each term seperately:
t
() / (s — (¢ — w)ldu < A.TJ(s)| € L*(ds)

since ¢ € C°, and hence bounded and in L!. By t-continuity of the integral, and that ¢/ € C,
we get, for a tg € [0,T]

S 6= =i [ 1066 = 6wl < 427 [ 166 - 6w
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< [ " [6(s = (to — w))du

The Tonelli theorem implies that

AT /0 " 19(s = (to — w))du € L (ds)

L[ 1ot = = wpianado = [ ila = tolplzs < oo

The same argument gives

t t to
[ (e = = w)ldu [ 9l — (¢ w)ldu < 4T [ 9(s — (to — w)ldu € 12(ds)
0 0 0
Hence,the lemma follows. =

Proposition 19 Assume po € CZ and c, %, h, % bounded. Then ¢1” 18 t-differentiable. B

Proof: Let
fn(8) = Xpo,yy(s)h(s, Xi-s(m))
and, as before,
v(n,8) = (¥ * fn)s
Then

Bap( || hls, Xee)W,ds) = Bop(i, ) = eon( [ 1(s)dB, = 1/201")
= ea:p(/m('(p * fn)sdBs — 1/24(1# * fy)2ds)

= e:cp(/o h(s, X¢—s)Wy,ds) - exp(—1/2 /]J/o (s — w)h(u, Xi—y)du)?ds)

Under change of variables, this will be equal to
t t
= eap( / Bt — s, X,)Wy,_.ds) - ezp(—1/2 / ( / $(s — (t — w)h(t — u, Xy)du)?ds)
0 R Jo

Now define A; = po(X:), Rt = exp(— f; c(t—s,X,)ds), S: = emp(fg h(t—s, X,)Wy,_, (w)ds) and
Vi = ezp(—1/2 fm(fg 9y (¢, s, w)du)?ds), where g,(t,s,u) = P(s — (t — u))h(t — u, Xy). The idea
now is to write these processes as stochastic integrals, and use the Ito-formula and lemma(7.8)
in [14]. By (7.20) in [14], A; can be written as a stochastic integral. The conditions on c give the
same result for R;, by a direct differentiation w.r.t. . S; and V; need a more careful examination:

The conditions on h, and the result ZW,,_, (w) = —W¢:_,(w), justify the following direct

calculation:

" t
id‘%:emp(/ h(t—s,Xs)Waﬁe-,ds)(h(O,Xt)W%+/ gz(h(t—s,xs)Ww.)ds)
0 0

which implies

t oh
dS; = S, - {h(0, X)Wy, + / (2t~ 3, X)Wy, = h(t = 9, X)Wy )ds}dt
0 8

14



Since ¢ € S and h, 2L are bounded, the lemma above gives
at

5[ anttss, 0’| < a(e) € 2(d)
Th.(2.27) in [3] then implies:

P t ) ¢ s
5 m(/o gn(t, 8, u)du) ds_A(Bt(A gn(t, 8, u)du)*)d

and hence

d;; = ezp(— 1/2/(/ gy (t, s, u)du)?ds) - _( 1/2/(/0t9q(t,s,u)du)2ds)

= eap(~1/2 /m ( / 0ot 5, w)du)?ds) - (=1/2 / (2 / gn(t, 3, u)du)?)ds)

= cop(-1/2 [ ([ aatt,srw)uas(-1/2 [ / Gt 3, u)du) (g t, o, )+ / %14, u)du)ds)

0
Hence

V=V ( /m « /O gn(ts 3, w)du) (g (8, 5, 2) + /0 %"(t, s, w)du)}ds)dt

All 4 processes can then be written as stochastic integrals, and lemma(7.8) in [14] gives the
differentiability. E

5 The Functional Process Solution.

We are now in the position to prove the main result of this paper:

Theorem 20 Assumepo € C§ and c, h, 3¢, 2E are bounded. In addition, assume that c(t,-), h(t, )
are continuous. Then

t t
¢:/’(:c,w) = E,‘;’[po(Xt)ea:p(—/ c(t — s,X,)ds)E:cp(/ h(s, Xs—s) Wy, (w)ds)] (45)
0 0
is an L%-functional process solution of the stochastic Cauchy problem (1) and (2). B
Proof: We prove that ¢? satisfies (28). A change of variables gives

t t
0 0

Now

%(E’[%(Xu)] ¢:(z)) = —(E“ [E*~[po(-)ezp(.) Bzp(.)]] - ¢4(z))
The Markov Property implies

L (E oXeesp(= [ clt =, X,pu)ds)Bop( | Bt =, X,0) W, ,ds)] - (o)

A change of variables

l t+u
E(E“[po(Xt.'.u)emp(—f c(t +u— s, X,)ds)x
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t+u
E:z:p(/; h(t+u— s, X,)Wy,,._.ds)] — ¢:(z))

t4u t+u
= %(Ew[po(XHu)ea:p(—/ c(t+u-—s, X,)ds)E:cp(/ h(t+u—s,X,)Wy,,,_,ds)x
0 0

ewp(/ou c(t+u—s,X,)ds)o Exp(— /ou h(t +u— 8, X)Wy, ,_,ds)] — ¢:(z))
t+u
= %(EQ[PO(XHu)ea:p(—/O c(t +u— s,X,)ds)x

Bep( [ b+ u = 0, X)Wy, )]~ 1(2)

t+u

1 t+’ll-
+;—E“[p0(Xt+u)e.'cp(— / c(t+u—s, X,)ds)Ea:p(/ h(t+u— 8, X,)Wy,,,_,ds)o
0 0

U U
{e:cp(/ c(t+u—s, X,)ds)Ea:p(—/ h(t+u—s8,X,)Wy,,,_,ds) —1}]
0 0
Considering the first term we see that this can be written on compact form as
1
5 (#t+u(2) = ¢1(2))

By prop.(19) above, this converges to %‘%‘(m) when u | 0.
The second term can be written as

t+u t+u
Ez[po(Xt_,_u)ea:p(—/ c(t+u-—sX, )ds)Ea:p(/ h(t+u—s,X,)Wy,,,_,ds)o
0 0

%{emp(/ et +u — s, X,)ds)Ea:p(-—/ ht+u—s, X, )Wy,,,_,ds) — 1}] (46)
0 0
which we claim converges to

¢t(w1 w) ° (C(t, :1:) - h(t’ .’E)W¢¢ (w))

when u | 0:
Define

U u
G(u) = ea:p(/ c(t+u—sX, )ds)E:cp(—/ h(t+u— s, X,)Wy,,._.ds)
0 0

Then
lim = (eop(.. ) Bop(...) — 1) = lim (G {u) — G(0)) = (- G(u))huso

= (G(u) o {c(t, Xu) + /Ou %(c(t +u—3,X,))ds — (h(t, Xu)Wy,+

/u au(h(t u 3, 5) “+"‘f—l)ds)})|u—0
0
= C(t, $) - h(t, :Z:)[qu)t(W)

Hence, (46) converges to

E®[po(X¢)ezp(— /ﬁ et — s,X,)ds)E:cp(/O h(t — 8, X, )Wy,_, (w)ds) o (c(t, &) — h(t, )Wy, (w))]
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Prop.(15) ensures that the integrand in this expectation is an element of L?(u) as a function of
7. Invoking prop.(17) in prop.(13), we can move the Wick product outside the expectation, Ey,
and hence the claim follows.

Since

Lu(e) = lim © (B [9u(X.)] — $u(2))

the proof is complete. B
We end this paper by looking at the connection to filtering theory. Consider the system
process

dZs = b(Zt)dt + O'(Zt)dUt (47)
where U; is a Brownian motion. The observation process is given by
dY: = h(t, Z;)dt + dV; (48)

where V; is a Brownian motion independent of U;. For this filtering problem, the Wong-Zakai
equation is

déi(z,w) = Asdi(z,w) + h(t, z)ds(z, w)dYi(w) (49)
$o(z, ) = po(2) (50)

In the context of filtering theory, ¥; is a Brownian motion. A is the adjoint operator to the
infinitesimal generator A; associated to the system process Z;. A, considered as a differential
operator equals { in one-dimensional space)

d 1, ,d
Ay = b(w)ﬂ + 29 (w)m
Under appropriate differential hypotheses on b, o this yields

A= ()2 1+ 102@) L) — efe) = L — ele) (51)

where
o(2) = b (2) - (o"(2))? — o(&)o (2) (52
and
(z) = 20(2)o"(2) - () (53)
Hence, (49) and (50) can be formulated

be(x,w) = po(z) + /0 (Lot (2,0) — c(2)ds(2, w)}ds + h(z) /0 by(2,0)dY,(w)  (54)

The functional process version of this equation is (28), with ¢ and h as above.
For the special case of nonlinear observation of Brownian motion, i.e. Z; = U;, we have

since b = 0 and o = 1. Of course, ¢ = 0. Then

8 (a10) = B po(B)Bap( [ (s, Bucs) Wy, (0)ds) (55)

is a functional process solution of the Wong-Zakai equation

be(e, w) =po(a:)+% /0 Doty (2,w)ds + /0 h(s, 2)¢s () 0)dY, () (56)

17



Note that the stochastic partial differential equation (1) and (2) also can be considered as a
noisy heat transfer model. For the case h = 1,¢ =0 and L, = %A the solution takes the nice
form

#¢ (2,w) = E*[po(B:)] - Bep( / Wy, (w)ds) (57)
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