
SINGULAR PERTURBATIONS OF DISCRETE SYSTEMS 

TORE M. JONASSEN 

ABSTRACT. We introduce a singular perturbation theory for a class of dynamical systems defined on JR:n x IR:n. 

1. INTRODUCTION 

The Henon system (x, y) f-+ (a- x2 + f3y, x) has been studied by many authors. It was introduced in 
[Hen]. There is numerical evidence for a strange attractor at many different parameter values. The most 
common example is the parameter value a = 1.4 and f3 = 0.3. A mathematical proof of the existence of 
strange attractors for very small f3 is given in [B&C]. 

The Henon system ( x, y) f-+ (a - x2 + f3y, x) may be viewed as a perturbation of the logistic map to a 
diffeomorphism in the plane. In this paper we generalize this construction, and study relations between 
the perturbed and unperturbed system. We will not try to solve the strange attractor problem, but we 
will show by geometrical methods that there is a very close relationship between the dynamics of smooth 
maps f : rn;n ----+ rn;n and a class of diffeomorphisms on rn;n x IRn generated by f. We will do this in two 
steps, first identifying the properties off with properties of the zero lift, and then use 1!31 - C 1-closeness 
on compact sets of the zero lift and the f3 lift of f. 

We have used geometrical arguments, and tried to avoid ad hoc arguments used in [J]. 
At the end of this paper we have given an example with a map f : IR2 ----+ IR2 with a non-wandering 

set topologically equivalent to a one-sided shift on four symbols. The lifted map Fp : IR4 ----+ ]{4 has a 
non-wandering set topologically equivalent to a full shift on four symbols. 

Several computer experiments with n = 1 can be found in [J]. 

2. THE LIFTED DYNAMICAL SYSTEM 

We will generalize the construction used to obtain the HE'mon family from the logistic family. 
Let f3 E !Rn with f3 = (/31, ... , f3n)· We define an-parameter family of maps 

by 

where 
Fp(x,y) = (f(x) + f3y,x) 

Here we think of f3 as a diagonal matrix, and f3y as the transpose of 

The map .Cp(f) = Fp is called the f3 lift of f. If f3 = 0 then F0 is called the zero lift of f. Throughout 
this paper we will use a capital letter for the lifted map. 

We will first state and prove some simple but useful lemmas. 
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Lemma 2.1. Let f E cr(JR?.n,JR?.n) and let Ff3 = .C{3(f). Then Ff3 E Di:ff'"(JR?.n) if and only if f3i i= 0 for 
i = 1, 2, ... , n. The inverse is given by the formula Ff3 1 (x, y) = (y, (3- 1(x- f(y))). Furthermore, the 
derivative of Ff3 has a constant determinant given by 

n 

detDF{3(x,y) = (-1t IJf3i· 
i=1 

Proof Consider the equation (v, w) = (f(x) +(3y, x). We find that x = v and w = f(x) +(3y = f(v) +(3y. 
The equation (3y = w- f(v) has a unique solution y = (3- 1(w- f(v)) if and only if the diagonal matrix 
(3 is invertible, that is f3i i= 0 for any i. Hence the inverse map is given by Ff3 1 ( x, y) = (y, (3- 1 ( x- f (y))). 
Furthermore we observe that the smoothness properties of Ff3 and Ff3 1 depends only on the smoothness 
properties of f. 

The derivative of DFf3 in block matrix form is given by 

DF: = [Df (3] 
f3 I 0 

By the Laplace expansion theorem for determinants we find that 

D 

Let 1r1 denote the projection (x, y) f-) x and 1r2 the projection (x, y) f-f y. Let f : j1;[ __, lvf, 
g : N __, N and h : M __, N be continuous maps. We call f and g semi-conjugate if h o f = g o h. 

Lemma 2.2. f and F0 are semi-conjugate. 

Proof The diagram 

commutes following arrows since 1r1 o F0(x, y) = 1r1 (f(x), x) = f(x) and f o 1r1 (x, y) = f(x). D 

Lemma 2.3. Let K C JR?.n x JR?.n be a compact set contained in the ball {z E JR?.n X JR?.n : llzll :<:; k} for 
some k ~ 1. Then F0 and Ff3 are klf31- C 1-close on K. 

Proof. We will first find the C 0-size of Ff3- F0 on K. Let z = (x, y) E K. Then 

11Ff3(z)- Fo(z)ll = ll(f(x) + f3y- f(x),x- x)ll = ll,i3YII :<:; llf311k. 

Let v denote a vector of norm 1 in the tangent space of JR?.n x JR?.n over some point z = (x, y) inK. Then 

II(DF{3(z)- DFo(z))vll = [~ ~] [ 7] :<:; 11!311· 

V2n 

Hence the C 1-size of Ff3- F0 on K is bounded by max{klf311, 11!311} = kllf311 since k ~ 1. D 
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Lemma 2.4. Let T/m(.A) denote the characteristic polynomial of Dfm(x). Then the characteristic poly
nomial of DFJ:(x, y) is given by ~m(.A) = An7)m(.A). 

Proof. A direct calculation together with the Laplace expansion theorem for determinants shows that 

~m(.A) = det(.AJ- DFJ:'(x, y)) = det [ )..J- ~fm(x) ~I] = det(AI- Dfm(x)) det(AI) = An7)m(.A). 

0 

Let o+ (!, x 0 ) denote the forward orbit of xo under iterations by f. A sequence {Yi}~0 is called a 
a-pseudo-orbit for f if IIYi+I- f(Yi)ll <a for all i:::: 0. An orbit o+(J,xo) /-shadows the sequence 
{Yi}~o if llfi(xo)- Yill < 1 for all i 2 0. 

Lemma 2.5. If o+(Ff3,Po) c K where K is a compact set of size less than k, then o+(Ff3,Po) is 
ki,BI-shadowed by a pseudo-orbit from the system generated by F0 . 

Proof. This is an immediate consequence of lemma 2.3 since Ff3 and F0 are kiiJ3II-CI-close on K. 0 

3. FIXED POINTS AND PERIODIC ORBITS 

Suppose f : JRn ----+ JRn has a fixed point x 0 . It is then easily seen that F0 has a fixed point in 
(x 0 , x0 ). Iff has an-periodic orbit { x0 , XI, ... , Xn- 2 , nn-I}, where the points on the orbit are indexed 
such that f(xi) = xi+l modulo n, we see that the corresponding periodic orbit for F0 is given by 
{(xo, Xn-d, (xi, xo), ... , (xn-2, Xn-3), (xn-I, Xn-2)}. We get the following lemma by the implicit function 
theorem: 

Lemma 3.1. Suppose { Xo' ... 'Xn-I} is a periodic orbit of f. If 1 rt. spec( Dr ( Xo))' then there exists a 
neighborhood B of ,6 = 0 such that Ff3 has at least one n-periodic orbit near then-periodic orbit of the 
zero lift. The stability properties of the periodic orbit may not be preserved. 

If spec( Dr ( Xo)) n S1 = 0 then there exists a neighborhood B of ,6 = 0 such that F{3 has a unique 
n-periodic orbit near then-periodic orbit of the zero lift. Furthermore, if the periodic orbit off is stable 
then the periodic orbit of Ff3 is stable. If the periodic orbit of f is unstable or of saddle type then the 
periodic orbit of Ff3 is of saddle type. 

Proof. Let Fj](x,y) = Fn(x,y,,B) and define 

by 
H(x, y, ,6, n) = Fn(x, y, ,6)- Id(x, y). 

Then H(x,y,O,n) = (r(x)- x,r-I(x)- y) and if {xo, . .. ,Xno-I} is a no-periodic orbit off we have 
H(x0 , Xna-I, 0, no) = (0, 0). We find that the derivative of H(x, y, 0, no) with respect to (x, y) is given 
by 

We find that 

Hence det DH(x,y)(x0 , Xno-I, 0, n0 ) = 0 if and only if 1 E spec(Dr0 (xo)). Now the implicit function 
theorem gives us the first part of the lemma. The second part of the lemma follows from the implicit 
function theorem together with lemma 2.4 and lemma 2.5 noting that Ff3 has at least n eigenvalues close 
to zero for small IIJ311· 0 
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4. THE RELATION BETWEEN SOME INVARIANT SETS FOR THE MAP AND ZERO LIFT 

We call a set A weak !-invariant if f(A) C A. A set A is called !-invariant if f(A) =A. Let 

Q(j,K) = {(x,y) E ~n X ~n: x = j(y),y E K}. 

We have Fa(~n X ~n) = Q(j,~n) of course. 

Lemma 4.1. Suppose r c ~n. Then r is weak !-invariant if and only if 1r;- 1(r) is weak Fa-invariant. 

Proof Suppose r is weak !-invariant. Let (x,y) E 1f11 (r). Then Fa(x,y) = (f(x),x) E 1f11 (r) since 
f(x) E r. 

Suppose1r;- 1(r) is weak Fa-invariant. Letx E r. Now (x,y) E 1r;-1(r) implies that (f(x),xy) E 1f11 (r) 
sof(x)Ef. D 

Corollary 4.1. If A is weak !-invariant then 1r- 1(A) is weak Fa-invariant. In particular, O(Fa) C 

O(f) x ~n. Moreover, we have a one-to-one correspondence between weak !-invariant sets A c Q(j,~n) 
and weak Fa-invariant sets r given by f(A) = Q(j,A). 

If L : ~n ----+ ~n is a linear isomorphism such that spec(L )nS1 = 0 we call La hyperbolic isomorphism. 
If L is a hyperbolic isomorphism then there exists a splitting ~n = E£ EEl E£ in £-invariant subspaces 
such that LIEt is a contraction and LIEL is an expansion. The subspace E£ is called the stable subspace 
of L and E£ is called the unstable subspace of L. The subspace E£ (E£) is the generalized eigenspace 
corresponding to the (possible complex) eigenvalues of norm less than 1 (greater than 1). 

Suppose x 0 E ~n is a fixed point off and D f(x0 ) is a hyperbolic isomorphism. Then by the inverse 
function theorem f is a local diffeomorphism in some neighborhood Vx 0 of x 0 . By the local invariant 
manifold theorem [P &M] there exist cr -discs, Wz~c (f, Xo) and Wz~c (f, Xo) c Vxo such that 

Wz~c(f, xo) = {x E Vxo : r(x) _, Xo and r(x) E Vxo for all n:;:. 0} 

Wz~c(f, xo) = {x E Vxa : rn(x) _, xo and rn(x) E Vx 0 for all n:;:. 0} 

for some neighborhood Vx 0 of xo. We have dim Wz~c(f, xo) = dim EJJf(xo) = s and dim Wz~c(f, xo) = 

dimE~f(xo) = u. Furthermore the tangent spaces at Xo are given by Tx0 Wz~c(f,xo) = EJJf(xa) and 

Txo Wz~c(f,xo) = E~f(xo)" 
Unfortunately Fa has a singularity in every point of its domain of definition, so the considerations 

above do not carry over directly. We see by lemma 2.4 that rank(DF0 (z)) ~ n for all z E ~n x ~n. 
However, the considerations above are valid if F0 is restricted to g (f, ~n). We give ~n x ~n a trivial 
foliation with sets of form { x} x ~n as the leaves. We note that the F0 -image of each leaf consists of 
a single point (f(x), x) E Q(f,~n). Hence we define local stable and unstable sets at the fixed point 
(xo,xo) of Fa as 

Wz~c(Fa, (xo, xo)) = Wz~c(f, Xo) X ~n 

Wz~c(Fa, (xo, xo)) = Wz~c(f, xo) X ~n 

These local stable and unstable sets are not well-behaved due to the singularity of F0 in (xo, xo) since 

dim Wz~c(F0 , (xo,xo)) +dim Wz~c(F0 , (xo,xo)) = (s + n) + (u + n) = (s + u) + 2n = 3n. 

The unstable set is "too big" as seen later. Trivially we have 

Wz~c(FaiQ(j,J&.n),(xo,xo)) = Q(j, Wz~c(f,xo)) 

Wz~c(FaiQ(j,J&.n),(xo,xo)) = Q(j, Wz~c(f,xo)) 

We find the the tangent space of these sets at (xo,xo) by mapping vectors in EJJf(xo) and E~f(xa) with 
the linear map 

v _, [ Dfyo)] v. 

The above remarks are also true for periodic orbits, replacing f by a power of f. 
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5. SOME REMARKS ON STABLE AND UNSTABLE SETS FOR THE MAP 

VERSUS STABLE AND UNSTABLE MANIFOLDS FOR THE DIFFEOMORPHISM 

5 

We will now discuss the relationship between the stable and unstable sets Wz~c ( F0 , ( x0 , x 0 )) and 
Wz~c ( Fo, ( xo, xo)) and the local invariant manifolds Wz~c ( Ff3, ( xo ((3), Yo ((3))) and Wz~c ( Ff3, ( xo ((3), Yo ((3))) 
when f3i # 0, i = 1, 2, ... , n, and 1!31 is near zero. Before giving all technical details we will give some 
heuristic arguments for the relationship. 

Suppose x 0 E IRn is a hyperbolic non-degenerate fixed point of j, that is spec(D f(x 0 )) n(S1 U{O}) = 0. 
Then by lemma 3.1 F13 has a hyperbolic fixed point ( x 0 ((3), y0 ((3)) for all (3 E B0 , where B0 is some open 
neighborhood of 0 E IRn. If f3i # 0 fori = 1, ... , n, then F13 is a diffeomorphism oflRn xJRn, and by the local 
invariant manifold theorem there exist C,..-discs Wz~c(F,a, (xo(f3), Yo(f3))) and Wz~c(F,a, (xo(f3), Yo(f3))) 
with properties as described in section 4. The dimension of these sets are given by the dimension of the 

stable subspace E'JJFf3(xo(,B),yo(i3)) and the unstable subspace EDFf3(xo(,B),yo(i3)) with 

dim Wz~c(F,a, (xo(f3), Yo(f3))) = dimE'JJFf3(xo(,B),yo(i3)) 

dim Wz~c(F,a, (xo(f3), Yo(f3))) = dimE'DFf3(xo(,B),yo(i3))· 

By lemma 2.4 the characteristic polynomial of DF0 (xo, x0 ) is given by 6 (,\) = ,\ n7]1 (,\) where 7]1 (,\) is the 
characteristic polynomial of D f(x 0 ). Since the eigenvalues vary continuously with (3 it follows that none 
of the zeroes in 6 cross S 1 for lf31 near zero, and we see that 6 has n zeros close to zero (in C). Hence 
we conclude that dimE'JJFf3(xo(,B),yo(i3)) = s +nand dimEDFf3(xo(,l3),yo(i3)) = u where sis the dimension 
of the stable subspace of Df(x0 ) and u is the dimension of the unstable subspace of Df(xo). 

In the case of (3 = 0 the vectors wCll, ... , w(n) E IR2n where w~j) = 0 if i # n + j and w~j) = 1 if 
i = n + j are eigenvectors corresponding to the zero eigenvalue of multiplicity n. We should expect that 
there are n eigenvectors (possible complex) wCll ((3), ... , w(n) ((3) E IR2n such that llw(jl ((3) - w(j) II is 
small. 

Let D~ ( x 0 ) denote the open n-disc of radius E with center at x 0 , From the above remarks together with 
the location of the stable and unstable sets of F0 at ( x 0 , x0 ) we should expect the local stable and unstable 
manifolds at (xo(f3), Yo(f3)) to be 1!31 C 1-close to the sets Wz~c(f, xo) x D~(xo) and Q(j, Wz~c(f, xo)), 
that is 

Wz~c(F,a, (xo(f3), Yo(f3))) ~ Wz~c(f, xo) x D~(xo) 

Wz~c(F,a, (xo(f3), Yo(f3))) ~ Q(f, Wz~c(f, xo)) 

The terms 1!31 C 1-close and approximately equal will be given presice meaning below. 
We will use the following definition for C,.. -closeness of submanifolds. It is taken from [P &M]. 

Definition. Let SandS' be C,..-submanifolds of a manifold M, and let E > 0. We say that SandS' 
are E - cr -close if there exists a cr -diffeomorphism h : s ---+ S' c M such that i' 0 h is E-close to i in 
the C,.. -topology. The maps i : s ---+ M and i' : S' ---+ M denote the inclusion maps. 

Theorem 5.1. Suppose x0 E IRn is a non-degenerate hyperbolic fixed point off E C,..(JRn,JRn) with 
r ~ 1. Suppose f3i # 0 fori = 1, ... , n, and let F,a denote the (3 lift of f. Let 

i: Wz~c(F,a, (xo(f3), Yo(f3))) C JRn X JRn 

i' : Wz~c(f, xo) X D~(xo) C JRn X JRn 

j : Wz~c(F,a, (xo(f3), Yo(f3))) C JRn X JRn 

j' : Q(j, Wz~c(f, xo)) C JRn X JRn 

denote the inclusion maps. Then there exist C,..-diffeomorphisms, h : Wz~c(F,a, (xo(f3),yo(f3))) ---+ 

WtocU, xo) X D~(xo) C JRn x JRn and g : Wz~c(F,a, (xo(f3), Yo(f3))) ---+ Q(f, Wz~c(f, xo)) such that i 
and i' o h are 1!31 - C 1-close, and j and j' o g are 1!31 - C,.. -close. 

Proof. Since F0 is singular we can not apply the local invariant manifold theorem directly. To show 
closeness of the local stable manifolds we use Irwins proof [P&M] of the local stable manifold theorem, 
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this proof is valid also for maps. To show closeness of the local unstable manifolds we use the local 
non-linear graph transform [SJ, which is also valid for maps. The reason for this is that both technics 
involve only forward iterates of the map, which are well-defined. 

By assumption spec(Df(x0 )) n 5 1 = 0. Then by lemma 2.4 spec(DF0 (x0 ,x0 )) n 5 1 = 0. By lemma 
3.1 there exists a neighborhood B of j3 = 0 such that Ff3 has a hyperbolic fixed point z1((3). Hence 
there is a direct sum splitting ltkn x ltkn = E~ EB E~, associated with the derivative at the fixed point, 
depending smoothly on (3, such that DF(3(zt)IE~ is a contraction and DF(3(zt)IE,a is an expansion for 
all j3 E B. Associated with this splitting there are numbers As ((3) < 1 and Au ((3) > 1 such that 
IIDF(3(ZJ )wll < As(f3)11wll if wEE~ and IIDF(3(ZJ )wll > Au(f3)11wll if wEE~. 

Now Irwins proof of the local stable manifold theorem applies where the local stable manifold is 
obtained as a graph of a function obtained by the implicit function theorem for functions on Banach 
spaces observing that the construction of the suitable functions depends only on forward iterates of F0 . 

Moreover, the function we obtain varies smoothly with perturbations of F0 • 

We obtain the unstable manifold as a fixed point from the local non-linear graph transform observing 
again that we use only forward iterates of F0 • Also in this case the fixed point varies smoothly with 
perturbations of F0 . D 

6. SIMPLE BIFURCATIONS 

We will discuss the relationship between bifurcations in the map f and the j3 lift. We will restrict this 
discussion to three types, the saddle-node, the period-doubling, and the Hopf bifurcation. 

The relation between bifurcations for f and the j3 lift will be discussed in terms of transversality theory 
in a suitable jet space. At the end of this paper we give an example with maps f : ltk -----+ ltk lifted to plane 
diffeomorphisms, using the implicit function theorem in a constructive proof for the saddle-node and the 
period doubling bifurcation. Example 2 below provides an alternative proof. The Hopf bifurcation does 
not occur in dissipative plane diffeomorphisms. 

Suppose Xo E Per(!) with period no. We will assume that the derivative D ro (xo) has a single real 
eigenvalue on 5 1 or a single pair of eigenvalues on 5 1 \ { -1, 1}. We also assume that fno is non-singular 
at x 0 . 

Since fno is non-singular at x 0 , with fno ( x 0 ) = x 0 , fno is a diffeomorphism in some neighborhood of 
x 0 . If D fno ( x 0 ) has a single eigenvalue A1 = -1 or A1 = 1 and all other eigenvalues off Sl, then there is 
a one dimensional center manifold tangent to the eigenspace E~0 associated with A1 at Xo. If D fno ( xo) 
has a single pair of eigenvalues A1 = A2 on 5 1 \ { -1, 1} and all other eigenvalues off 5 1, then there is a 
two dimensional center manifold tangent to the eigenspace E~0 associated with A1, A2 at Xo. 

The following two examples show the idea. We then prove the general case. 

Example 1 (Saddle-node and period-doubling for one-dimensional maps). Consider C 3-maps 
f : ltk x ltk -----+ ltk. We view the first coordinate as the state variable, and the second coordinate as a 
parameter. Assume f(x 0 , o:o) = xo and fx(xo, o:o) = 1. Let p = (xo, o:o). Consider the 2-jet extension 

j 2 j : Jtk X Jtk -----+ J 2 (Jtk X Jtk, Jtk). 

We equip J2(Itk X Itk,Itk) with coordinates (x,a,f,fx,fonfxx,fxcnfaa)· Let 

q = (xo, O:o, f(p ), fx(P ), fa (p ), fxx(P ), fxa (p ), fa a (p)) 

In this coordinate system we have 

1 0 
0 1 
fx fa 

D(j2 f)= fxx fxa 
fxa faa 
fxxx fxxa 
fxxa fxaa 
fxaa faaa 
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Hence the space D(j2 f)p(!Ri. x !Ri.) is spanned by 

1 0 
0 1 
1 fa(P) 

Wl= 
fxx(P) and W2 = fxa(P) 
fxa(P) faa(P) 
fxxx(P) fxxa(P) 
fxxa(P) fxaa(P) 
fxaa(P) faaa(P) 

We define the surface B~2;J-l in J2(1Ri. x !Ri.,!Ri.) as the set x = f and fx = 1. This set has codimension 2 

in J2(1Ri. x !Ri.,!Ri.), and a basis for TqB~;.}) is given by 

1 ro 0 ro 0 Ol 
0 1 0 0 0 0 
1 0 0 0 0 0 
0 0 0 0 0 

and v6 = 0 
vl = 0 ' v2 = 0 ' v3 = 

1 ' V4 = 0 ' V5 = 0 ' 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

Let w 1 and w2 be as above. In order to have a stable intersection between j 2 f and B~2;.}) at f(x 0 , a 0 ) = x 0 

and fx(xo,ao) = 1 we must have (j2f) mp B~2;.)-l. As this intersection is non-empty we must have 

Let M B(2,1) be the matrix defined by M B(2,1) = [w1, w2, v1 , v2, ... , v5]. Hence the transversality condition 
SN SN 

is rank(MB(2,1)) = 8, which is equivalent to det(MB(2,1)) f. 0. The matrix MB(2,1) is given by 
SN SN SN 

1 0 1 0 0 0 0 0 
0 1 0 1 0 0 0 0 
1 fa(P) 1 0 0 0 0 0 

MB(2,1) = 
fxx(P) fxa(P) 0 0 0 0 0 0 

SN fxa(P) faa(P) 0 0 1 0 0 0 
fxxx(P) fxxa(P) 0 0 0 1 0 0 
fxxa(P) fxaa(P) 0 0 0 0 1 0 
fxaa(P) faaa(P) 0 0 0 0 0 1 

We find that det(M B(z,l)) = - fa(P)fxx(P), and the transversality condition in terms of conditions on 
SN 

derivatives off is fa(P)fxx(P) f. 0. 
The same calculation may be done in the case when f(xo, ao) = xo and fx(xo, ao) = -1. Here we 

define a surface B);£l by x = f and fx = -1 in J2(1Ri. x!Ri.,!Ri.). It is easily seen that B12£l has codimension 

2 in J2 (!Ri. x !Ri., IRi.) and a basis for TpB);£l is given by { v1 , ... , v6 }, where vi is as above. Let w2 be as 
above and define w1 with f x (p) = -1. The transversality condition 
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becomes that the determinant of the matrix 

1 0 1 0 0 0 0 0 
0 1 0 1 0 0 0 0 

-1 fa(P) 1 0 0 0 0 0 

MBPD = 
fxx(P) fxa(P) 0 0 0 0 0 0 
fxa(P) faa(P) 0 0 1 0 0 0 
fxxx(P) fxxa(P) 0 0 0 1 0 0 
fxxa(P) fxaa(P) 0 0 0 0 1 0 
fxaa(P) faaa(P) 0 0 0 0 0 1 

is non-zero. This determinant is given by det(MBPD) = -(2fxa(P) + fa(P)fxx(P)) so the transversality 
condition in terms off is 2fxa(P) + fa(P)fxx(P) f= 0. 

Example 2. Consider C 3-maps h : illt2 x mt2 --+ mt2 . We view the two first coordinates as the state 
variables, and the third and fourth coordinates as parameters. Assume for simplicity that h(x, y, a, (3) = 

(f(x, a), g(x, a)). Let p = (x0 , y0 , a 0 , 0). Again we consider the 2-jet extension 

Note that Tq(J2 (]]{4 , mt2)) ::::- ]]{34 . Let q = (j 2 h)(p). The tangent map of the 2-jet extension is given by 

The space D(j2h)p(illt4 ) is spanned by the column space of D(j2 h)p· As above we define a set B1]jl by 

the equations x = J, y = g, and 1- Ux + gy)- jygx = 0. The codimension of B1];l in J2(mt2 x mt2 ,mt2 ) 

is 3. Suppose we have f(x 0 , a 0 ) = xo and fx(x 0 , ao) = 1, and that the transversality condition for f in 
J 2 (1Rt2 ,1R'.) above is satisfied, fa(xo, ao)fxx(xo, ao) f= 0. Furthermore jy(p) = gy(P) = 0. Let 

Gl(x,y, ... ,g/3!3) =x-f 

G2(x, y, ... , g1313) = y- g 

G3(x, y, ... , g1313) = fx + gy + jygx- 1 

The tangent space TqB1]jl is given by 

(4,2) - { . - } TqBsN - v .< \JGi(q), v >- 0 

Here 

\JG1 (x, y, ... ,g/313) = (1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, ... , 0) 

\JG2(x,y, ... ,g!3!3) = (0,1,0,0,0,-1,0,0,0,0,0,0, ... ,0) 

\JG3(x,y, ... ,g/3!3) = (0,0,0,0,0,0,1,gx,O,O,fy,1,0, ... ,0) 
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Evaluated in q we have 

vG1(q) = (1, o, o, o, -1, o, o, o, o, o, o, o, ... , o) 

'VG2 (q) = (0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, ... , 0) 

\JG3(q) = (0, 0, 0, 0, 0, 0, 1, gx(P), 0, 0, 0, 1, 0, ... , 0) 

Let e; denote the standard unit basis vectors in rn;.m. From the above we see that 

< 'VGj(q), e; >= 0 for j = 1, 2, 3 and i = 3,4, 9, 10, 11, 13, 14, 15, ... 33, 34. 

From < vel (q), Vl >= 0 we find Vl = (1, 0, 0, 0, 1, 0, ... '0), and from < vG2(q), V2 >= 0 we find 
v2 = (0, 1, 0, 0, 0, 1, 0, ... , 0). In addition from < \JG3(q), v; >= 0 we get 

V3 = (0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1,0, ... , 0) and V4 = (0, 0, 0, 0, 0, 0, -gx(P), 1, 0, 0, ... , 0). 

This is totality a set of 31 linearly independent vectors, and the set 

is a basis for TqB1];l c:':' rn;.31 . 
The transversality condition 

is equivalent to det(M B(4,2)) -/=- 0, where M B(4,2) is given by 
SN SN 

1 0 0 0 1 0 0 0 0 0 0 ol 
0 1 0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
1 0 fa(P) 0 1 0 0 0 0 0 0 0 

MB(4,2) = gx(P) 0 ga(P) 0 0 1 0 0 0 0 0 0 
SN fxx(P) 0 fxa(P) 0 0 0 -1 -gx(P) 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 
fxa(P) 0 faa(P) 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 
gxx(P) 0 gxa(P) 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 0 0 0 0 0 

The determinant of this matrix is det ( M Be •. 2) ) = -fa (p) f xx (p). We observe that this is the same 
SN 

transversality condition on f we had for the corresponding problem in J2 (JR;. 2, JR;.). 

We define Bj;£l by the equations x = f, y = g, and -1 + Ux + gy) - ]ygx = 0. The codimension 

of Bj;£l in J2(JR;.2 x JR;.2, JR;.2) is 3. Suppose we have f(xo, ao) = xo and fx(xo, ao) = -1. The same 
calculations as above can be done here and we obtain that the transversality condition 

D(j2h)p(JR;.2 x rn;.2) +TqBj;£l = Tq(J2(rn;.4,rn;.2)) 
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is equivalent to det(MBc4,2)) -=1- 0, where MBc4,2) is given by 
PD PD 

1 0 0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
-1 0 fo:(P) 0 1 0 0 0 0 0 0 0 

MB(4,2) = 9x(P) 0 9a(P) 0 0 1 0 0 0 0 0 0 
PD fxx(P) 0 fxo:(P) 0 0 0 -1 9x(P) 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 
fxo: (p) 0 f o;o; (p) 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 

9xx(P) 0 9xo:(P) 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 0 0 0 0 

The determinant of this matrix is det(MB(4,2)) = -(2fxa(P) + fo:(P))fxx(p). We observe again that this 
PD 

is the same transversality condition on f we had for the corresponding problem in J2 (JP;2 , JP;). 

The computations above can be pictured in the following diagram 

JP;x:IP;x:IP;x:IP; jzh J2(:rn;4,:rn;2) 

~nj j~ 
JP; X JP; ---------,j"2 ~~· ]2 (JP; 2' JP;) 

Here B(4,2) - B(4 '2) or B(4 '2) and B(Z,l) - B(Z,l) or B(Z,l) 71"1 3 denotes the proJ·ection from first and 
- SN PD ' - SN PD ' , 

third component and 7r denotes the natural projection. It is easily seen that 7r(B(4,2)) ::J B(Z,l). 

We summarize the preceding computations in the following lemma: 

Lemma 6.1. Let j, g : lR x JP; -----+ JR, and let h : JP;2 x JP;2 -----+ JP;2 be defined by the formula h(x, y, a, {3) = 
(f(x,a),g(x,a)). Let B(4•2), B(2,1), Pi and qi be as above. Ifj 2 f(pl) rhq1 B(2,l) then Ph(pz) rhq2 B(4•2). 

We want to find the bifurcation set in the parameter space of h. Consider the following diagram of 
inclusions and maps: 

II 

D(h) C(h) 

n n n 

The bifurcation surface is given in the jet-space by C(h) = Ph(JP;4 ) n B(4 •2). The relevant bifurcation 
set in the parameter space is found by taking the inverse image of C(h) by j 2 h, and then projecting this 
set to the parameter space: 
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Here we see that 
dim(C(h)) = dim((j2h)(JR.4))- codim(B(4 ,2l) = 4- 3 = 1 

since Ph(p2 ) rhq2 B(2,1l. The map j 2 h is injective so dim((j2h)-1(C(h))) = 1, and hence dim(D(h)) = 1. 
Now since j 2h(p2 ) rhq2 B(2,1) we have by Thoms transversality theorem that j 2 hE(p) rhq B(2,1l for 

all small perturbations hE of h. Hence, by the remarks above we have proved that the (3 lift of f, has 
a non-degenerate saddle-node or period doubling bifurcation for small 1!31 iff has one. The dimension 
considerations above is still valid, so the bifurcation set in the parameter space is a curve through the 
point (ao, 0). 

We will now apply the construction above to bifurcations of the ,6-lift on JR.n x JR.n. Consider the 
diagram 

JR.n X JR.n X JR. X JR.n j 2 F J2(JR.3n+l,JR.2n) :J B(3n+1,2n) 

rr,pl lrr 

H B (3n+1,2n) _ B(3n+1,2n) B(3n+1,2n) B(3n+1,2n) d B(n+1,n) _ B(n+1,n) B(n+l,l) B(n+1,1) 
ere - SN ' PD or H ' an - SN ' PD or H . 

1rsp denotes the projection on the first n state variables and the parameter space and 1r denotes the 
natural projection. The sets BH is defined below. 

Let Bfl+l,n) be the set in J 2(JR.n+1,lR.n) such that xi= p and det(exp(iB)J- DM) = 0, BE (O,n), 
where DM is the matrix 

Let Bfjn+1'2n) be the set in J 2(JR.3n+l,JR.2n) such that Xi= Ji, Yi = 9i and det(exp(iB)J- DN) = 0, 
BE (0, n), where DN is the matrix 

J];, tL fi, fin 

DM= r:, r::n t;, !;), 
1 1 1 1 

9x 1 9xn 9y, 9yn 

L9~, 9~, 9~, 9~n 

It is easily seen that codim(Bfl+l,n)) = n + 1 and codim(Bfjn+l,Zn)) = 2n + 1 since the determinant 
involves a one-parameter family of a pair of complex conjugate eigenvalues. 

The dimension of the space J2 (JR.n, JR.m) is given by n + m + nm + nm( n + 1) /2. Hence the dimension 
of J2(JR.n+I,JR.n) and J2(JR.3n+l,JR.2n) is given by 

5 n3 
dim(J2(JR.n+l, JR.n)) = 1 + 4n + 2n2 + 2 

dim(J2(JR.3n+1,]]{2n)) = 1 + 9n + 15n2 + 9n3 

We will first compute a basis for the tangent space TqB( 3n+1,2n). Since codim(B(3n+1,2nl) = 2n + 1 

we see that TqB( 3n+1,2n) c:::: JR.7n+ 15n2 +9n3
• We will choose the basis such that as many basis vectors as 

possible are equal to standard unit vectors in ]]{m. In this construction it turns out that we can choose 
1 + 5n + lln2 + 9n3 vectors of this form. Hence there are 4n2 + 2n- 1 in a non-standard form. 
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From the fixed point equation we obtain 2n basis vectors written in a 2n x (1 + 9n + 15n2 + 9n3 )-matrix 
as column vectors: 

In On 
On In 
0 0 

On On 
In On 
On In 
On On 

On On 

From the eigenvalue equation involving the determinant of the Jacobian ofF with respect to the state 
variables we obtain 4n2 - 1 vectors of the form 

(On, On, 0, On, On, On, Aj,l,x, Aj,l,y, 0, On, ... , Aj,n,x, Aj,n,y, 0, On, 

Ag,l,x, Ag,l,y, 0, On, ... , Ag,n,x' Ag,n,y, 0, On, On, On, ... , On) 

Here the symbols A f,n,x means a block of size n. Furthermore there are n + 1 standard unit vectors with 1 
on the parameter coordinates, and 2n2 + 2n standard unit vectors with 1 on the coordinates for derivatives 
with respect to the parameters. Finally there are n(3n + 1)(3n + 2) standard unit vectors with 1 on all 
coordinates representing derivatives of order two. Clearly the set of vectors above is linear independent, 
and contained in the tangent space. Since 2n + (4n2 - 1) + (n + 1) + (2n2 + 2n) + n(3n + 1)(3n + 2) = 
7n + 15n2 + 9n3 the set is a basis for TqB( 3n+l,2n). 

We will also need a basis for TqB(n+l,n). From the fixed point equations we get n basis vectors written 

in a n x (1 + 4n + ~n2 + ; 3 )-matrix as column vectors: 

From the eigenvalue equation involving the determinant of the Jacobian off with respect to the state 
variables we obtain n 2 - 1 vectors of the form 

Furthermore there is one standard unit vector with 1 on the parameter coordinate, and n standard 
unit vectors with 1 on the coordinates for derivatives with respect to the parameter. Finally there are 
n(n + 1)(n + 2)/2 standard unit vectors with 1 on all coordinates representing derivatives of order two. 
Clearly the set of vectors above is linear independent, and contained in the tangent space. By counting 
the number of vectors we see that the set is a basis for TqB(n+l,n). 

We also need a basis for the range of the tangent maps D(j2 F) and D(j 2 f). We find the range from 
the Jacobians, and since j 2 is injective, the set of column vectors is a basis. 

We write down the basis vectors from TqB(n+l,n) and D(j2 f) in a matrix written in block form. After 
3 5 3 

deleting equal columns we obtain the following (1 + 4n + ~n2 + ; ) x (1 + 4n + 2n 2 + ; )-matrix: 
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I 0 0 0 0 I 0 
0 1 0 0 0 0 1 
I 0 0 0 0 Dxf Daf 
0 0 Kl 0 0 D2f1x D2f];a 
0 0 0 1 0 D2f1a D2f1w 

0 0 Kn 0 0 D2 f;}x D2f];a 
0 0 0 0 1 D2 f;}a D 2 f1w 

We write down the basis vectors from TqB(3n+1,2n) and D(j2 F) in a matrix written in block form. 
After deleting equal columns we obtain the following (1 +9n+15n2 +9n3 ) x (1+9n+ 15n2 +9n3)-matrix: 

I 0 0 0 0 0 0 0 0 0 I 0 0 
0 I 0 0 0 0 0 0 0 0 0 I 0 
0 0 1 0 0 0 0 0 0 0 0 0 1 
0 0 0 I 0 0 0 0 0 0 0 0 0 
I 0 0 0 0 0 0 0 0 0 Dxf 0 Daf 
0 I 0 0 0 0 0 0 0 0 Dxg 0 Dag 
0 0 0 0 Al 0 0 0 0 0 D 2 f};x 0 D2f];a 
0 0 0 0 Bl 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 D2f];a 0 D2f~a 
0 0 0 0 0 0 0 I 0 0 0 0 0 

0 0 0 0 An 0 0 0 0 0 D2 f;}x 0 D2 f;}a 
0 0 0 0 Bn 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 D2 f;}a 0 D2 f!;a 
0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 Cl 0 0 0 0 0 D2g;x 0 D2g;a 
0 0 0 0 Dl 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 D2g;a 0 D2g~xa 
0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 en 0 0 0 0 0 D2g~x 0 D2g~a 
0 0 0 0 Dn 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 D2g~a 0 D2g~a 
0 0 0 0 0 0 0 0 I 0 0 0 0 
0 0 0 0 0 0 0 0 0 I Third order block 

There is a hidden identity block in the dots in the "zero-row" in row number seven from the bottom. 
We are interested only in the determinants of these matrices. Hence we can delete columns consisting of 
a single !-block, and the corresponding rows, and vise versa. The reduced matrices take the form: 
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I 0 I 0 
I 0 Dxf Daf 
0 Al D 2 J];x D2 J];a 
0 El 0 0 

I 0 I 0 
I 0 Dxf Daf 

M1 = 
0 An D2f!:x D2 f!:a 

M2= 0 Kl D2 f!:x D2 J];a 
0 En 0 0 
0 cl D2g)cx D2g~a 
0 Dl 0 0 0 Kn D2 f!:x D2 f!:a 

0 en D2g~x D2g~a 
0 Dn 0 0 

We now need the structure of the second block column in the first matrix above. This structure is 
found from the fact that the tangent space of E(3n+l,2n) is determined from a gradient of a determinant. 
Hence we must look at the cofactor matrix of 

[ Dj-AI 0] 
Dg >.I 

A small calculation using the fact that det ( D f (p) - >.I) = 0 shows that the cofactor matrix is of the form 

I >..ncof(Df) Xl l 0 < • 

0 J 

where X is some "ugly" n x n-matrix. Hence the matrix M1 reduces to 

ri 0 I 0 0 0 
I 0 Dxf Daf 0 0 
0 K1 D2 f];x D 2 f];a kl 0 

0 Kn D2 f!:x D2 f!:a Kn 0 
0 0 0 0 E1 E1 

0 0 0 0 Bn En 

where the first column is of size n, the second of size n 2 - 1, the third of size n, the fourth and fifth of 
size 1 and the last column is of size n 2 - 1. All rows are of size n. There is a block of zeroes in the lower 
left corner, and hence the determinant is given by the product of the determinant of M2 , in the upper 
left corner, and the determinant of the n2 x n 2-matrix 

in the lower right corner. This last matrix is easily seen to be non-singular, so we see that M1 is singular 
if and only if M2 is singular. 

By the above we have the following lemma: 
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Lemma 6.2. Let J, g : ]Rn X lR ~ ]Rn be at least C 3 ' and let h : ]Rn X ]Rn X lR X ]Rn ~ ]Rn X ]Rn be 
defined by the formula h(x,y,o:,/3) = (f(x,o:),g(x,o:)). Let B(3n+l,2n), B(n+l,n), Pi and qi be as above. 
Then j 2 f(PI) rhq1 B(n+l,n) if and only if j 2 h(p2) rhq2 B(3n+l,2n). 

The same considerations as above can be done about the bifurcation set in the parameter space of h: 
Consider the following diagram of inclusions and maps: 

D(h) C(h) 

n n n 

The bifurcation surface is given in the jet-space by C(h) = j 2h(JR3n+l) n B(3n+l, 2nl. The relevant 
bifurcation set in the parameter space is found by taking the inverse image of C(h) by Ph, and then 
projecting this set to the parameter space: 

Here we see that 

dim(C(h)) = dim((j2h)(IR3n+l))- codim(B(3n+1,2n)) = 3n + 1- (2n + 1) = n 

since j 2 h(p2 ) rhq2 B(n+l,n). The rqap j 2 h is injective so dim((j2 h)- 1 (C(h))) = n, and hence dim(D(h)) = 
n. 

By Thorn's transversality theorem we have the following theorem. 

Theorem 6.1. Iff undergoes a saddle-node, period-doubling or Hop£ bifurcation, then the {3-lift off 
undergoes a saddle-node, period-doubling or Hop£ bifurcation if 11/311 small. 

Proof. The saddle-node, period-doubling and Hopf bifurcation conditions on fixed points of f are given 
in terms of conditions on the first order derivatives of f together with transversality conditions which 
appear as conditions on the second order derivatives. For the Hopf bifurcation there are some additional 
resonance conditions, but these are closed subsets of the surface Bj;+I,n). Hence the theorem follows by 
lemma 6.2 and Thorn's transversality theorem. D 

7. HOMOCLINIC AND HETEROCLINIC ORBITS 

Let f E cr(IRn,IRn), r :::=: 1, and let x0 E Fix(!). Let w(f,y) denote thew-limit set of the orbit 
through y. Assume that rank(D f(x 0 )) = n, then by the previous sections there exist local stable and 
unstable manifolds, Wz~c(f, x0 ) and W1~c(f,xo), associated with xo. Assume that dim(Wz~c(f,xo)) :::=: 1, 
and that there is a point Xh E Wz~c(f, xo) such that w(f, X h) = xo. We say that f has a homoclinic orbit 
associated with xo. 

There are three cases to consider: 
(1) dim(Wz~c(f,xo)) = n with Xh E Wz~c(f,xo) and ro(xh) = Xo for some no EN. 

(2) dim(Wz~c(f,x0 )) <nwith 

no 

U r(Wz~c(f,xo)) n Wz~c(f,xo) i= 0 
n=O 
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for some n0 E J';f. 

(3) dim(Wz~c(f, xo)) < n with Xh E Wz~c(f, xo) and ro (xh) = Xo for some no E R 
In case (1) we call the homoclinic orbit non-degenerate if rank(Dr0 (xh)) = n. It is easily seen that 

a degenerate homoclinic orbit of this type may disappear under arbitrarily small perturbations of f. 
In case (2) we call the homoclinic orbit non-degenerate if the intersection at some 

no 

X E u r(Wz~c(f, Xo)) n Wz~c(f, Xo) 
n=O 

is transversal. It is easily seen that non-transversal intersections may disappear under arbitrarily small 
perturbations of f. 

In case (3) we call the homoclinic orbit non-degenerate if the intersection of Wz~c(f, Xo) and ro (Wxh), 
where Wxh c wl~c(f, Xo) is a neighborhood of Xh in wl~c(f, xo), is transversal. 

Lemma 7.1. Iff has a non-degenerate homoclinic orbit associated with x 0 E Fix(!) then the corre
sponding image of unstable sets and the local stable manifold of (x0 , x0 ) E Fix(F0 ) have a non-empty 
transversal intersections. 

Proof By assumption f is a local diffeomorphism at x 0 . Hence the leaf x 0 x JR.n intersect the graph off 
transversally in JR.n X JR.n. 0 

Theorem 7.1. Iff has a non-degenerate homoclinic orbit associated with x 0 E Fix(!), then there 
exists a E > 0 such that the stable and unstable manifold of (x(/3), y(/3)) has a non-empty transversal 
intersection for all Ff3 with 0 < I,Bil < E, i = 1, ... , n. 

Proof All transversality conditions above depend only on a finite number of !-iterates. Hence by I,BI-C1-

closeness of F0 and Ff3 on bounded sets, theorem 5.1 and lemma 7.1 the result follows by the weak 
transversality theorem [Ar] applied to the inclusion maps. 0 

Similar results hold for heteroclinc orbits as well. 

8. ONE-SIDED k-SHIFTS IN THEn-DIMENSIONAL MAP 

In this section we discuss some sufficient conditions on a map f E cr(IRn,IRn), r :S: 1, such that f has 
a non-wandering set topologically equivalent to a one-sided shift on k symbols. 

In the following let 11·11 denote the max-norm on JR.n, and let B(Ll) { x E IRn : llxll :S: 6., where fl > 0} 
denote the cube of size 6. with center in 0. We will omit the explicit reference to 6., and simply write B. 

Let f E cr (JR.n, JR.n), r ;:::: 1, with the following properties: 
(1) f is norm-expanding outside B, that is, llf(x)ll > llxll for all x E IRn \B. 
(2) f overflows B, that is, int (f(B)) =.> B. The set B n f- 1 (B) consists of k disjoint connected 

components, K 1, ... , Kk, such that f(Kj) = B, and such that the restriction 

f: Kj c WKj -----+ VKj =.> B 

is a diffeomorphism for some neighborhoods WKj of Kj and VKj of B. 
(3) For each KJ there is a number nj such that 

min{l"l: ,.\ E spec(Drj(x))} > 1. 
xEKj 

We will now look at some consequences of the properties above, starting with property (1). 

Lemma 8.1. f increases the norm along any forward orbit outside B, that is, if xo E JR.n \ B then 

llfk(xo)ll > llfk-l(xo)ll > · · · > llf(xo)ll > llxoll-

Proof Let Yo = f(xo) with xo E JR.n \B. Clearly Yo E JR.n \ B so 

llf2 (xo)ll = llf(yo)ll > IIYoll = llf(xo)ll > llxoll, 

and the result follows by induction. 0 
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Lemma 8.2. O(f) c B. 

Proof. Let xo E rn;.n \ B, and let Vx 0 C rn;.n \ B be a neighborhood of x0 . Define a continuous map 
k: Vxo X Vxo---+ lR?. by k(x, y) = IJJ(x)JJ-JiyJJ. We see that k(xo, xo) = llf(xo)IJ-IIxoll > 0. Hence there 
is a neighborhood W(xo,xo) C Vxo x Vxo such that k(x,y) > 0 for all (x,y) E W(xo,xo)· The neighborhood 
W(xo,xo) contains neighborhoods of the form Ux 0 x Ux 0 , where Ux 0 is a neighborhood of xa. Hence 

inf {IIYII} > sup {llxll} 
yEf(Ux0 ) xEUx 0 

so f(Uxo) n Uxo = 0. By lemma 8.1 llfk(x)ll > llxll for all k ~ 1 with X E rn;.n \ B so 

inf {IIYII} > sup {llxll} 
yEJk(Ux 0 ) xEUx 0 

proving that Jk(Ux0 ) n Uxo = 0 for all k ~ 1. D 

From property (2) we get the following lemma: 

Lemma 8.3. The set 

is a disjoint union of km closed connected sets 

m n ri(B) = U Ki1i2···i= 
i=O l<;_iJ<;_k 

l<;_j<;_m 

with the property that Ki,i2 ... im C Ki,i2 ... i=-" f(Ki1i2 ... i=) = Ki1i2 · .. i=-l and fm(Ki,i2 ... i=) =B. The 
restriction 

is a diffeomorphism for some neighborhoods WK, 1 , 2 ... ;= of Ki1 i2 ... i= and VK, 1 , 2 .. ,= of B. 

Proof. We will prove this lemma by induction. By property (2) the lemma is true form = 1, with the 
obvious modifications in notation. 

Assume the lemma is true for m = l - 1. Then 

homeomorphically. Hence there exist k closed connected and disjoint sets 

such that 

i-1(Ki1 i2 ... iJ = Kil· 

Hence f 1(Ki1i 2 ... i!) = f(j 1- 1 (Ki,i2 ... d) = f(KiJ = B. Furthermore we have by construction that 
f(Ki1i2 ... iJ = Ki1i2 ... i!_ 1. This map extends by the inclusion above to a diffeomorphism of some neigh
borhoods of Ki 1 i 2 ... il and Ki1i2 ... i!_1, and we obtain the diffeomorphism in the lemma by composition. 

Hence the result follows by induction on m. D 

We will prove a simple lemma needed to obtain a Cantor set when intersecting some suitable preimages 
of B. 
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Lemma 8.4. Suppose f E cr(IR!.n,IR!.n), r 2:: 1, and {Ai}~0 is a nested sequence of non-empty closed sets 
such that f(An) = An-1 and A= minxEAo{lspecDf(x)l} > 1. Then there exists a unique point Xf E Ao 
such that 

Proof. Nested intersections of non-empty closed sets are non-empty. Let d be the usual metric on IR!.n, 
and let bn = diamAn = SUPx,yEAn d(x, y). Since the sequence {Ai}~1 is nested it is clear that 0 S:: 
bn:::; bn_ 1 :::; 150 . Hence {15n} has a limit in [0,15o]. By the intermediate value theorem in IR!.n we see that 
Dn+1 S:: A - 18n so by induction dn S:: A -nl5o. Now A > 1 so the sequence converges to 0. 0 

Corollary 8.1. Suppose f E cr(IR!.n, IR!.n) and {Ai}~1 is a nested sequence of non-empty closed sets such 
that f(An) = An-1 and A= minxEAo{lspecDjk0 (x)l} > 1 for some ko EN. Then there exists a unique 
point x 1 E A 0 such that 

Proof. We apply lemma 8.4 to the sequence Ao ::) Aka :J Azko ::) · · · and Jko. 0 

We will now use lemma 8.3 together with property (3) and corollary 8.1 to obtain an /-invariant 
Cantor set. 

We observe from lemma 8.3 that 

such that f(Ki 1 i2 ... i,.J = Kid2 · .. i=-l. By property (3) and corollary 8.1 the intersection of this nested 
sequence of inclusions is a unique point. Let A(!, B) be the union of all such intersections: 

A(!, B)= U ( n Ki1i2 .. ·i=) 
All possible m::0:1 

compinati<ms of 
~l't2'''hn 

ijE{1, ... ,k} 

By construction A(!, B) is weak !-invariant. Let :Et denote the one sided shift space of k symbols, and 
0' the left shift operator on :Et. 
Theorem 8.1. Iff E cr(IR!.n,IR!.n), r 2:: 1, satisfy property (1),(2) and (3) above then there exists a 
!-invariant set A(!, B) c B and a homeomorphism h: A(!, B) ---+ :Et such that the diagram 

A(!, B) __1_ A(!, B) 

hj lh 

commutes. The set A(!, B) is the largest !-invariant set contained in B. 

Proof. By the standard construction where we for p E A(!, B) define the itinerary of p as the sequence 
h(p) = i1k2k3 ... where in= j if f(p) E Kj· 0 

Combining theorem 8.1 and lemma 8.2 we have the following theorem: 

Theorem 8.2. Iff E cr(IR!.n,IR!.n), r;::: 1, satisfy property (1),(2) and (3) above then the non-wandering 
set of j, D.(!), is contained in B, and the restriction off to D.(!) is topologically equivalent to a one-sided 
shift on k symbols. 

Proof. By lemma 8.2 D.(!) c B, and from theorem above we have D.(!)= A(!, B). 0 
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9. FULL k-SHIFTS IN THE DIFFEOMORPHISM 

We will now study what happens to the non-wandering set of f described in the preceding section 
when f is lifted to F13 . We use the same notation as in section 8. We will replace property (1) by a 
stronger condition to gain control of the iterates of F13 and FiJ 1 outside some compact set. This condition 
is only used to show that the non-wandering set is contained in a set S defined by S = B x B, and can 
be replaced by some other conditions. The new condition is 

(1') 
llf(x) + f3YII > llxll if llxll 2 IIYII 

llf3-1(x- f(y))ll > IIYII if IIYII 2 llxll, f3 =/= 0 

for all (x,y) E JRn x )Rn \ S. 
We note that the first part of property (1') implies property (1) in section 8. 
In the following we assume that property (1'), (2) and (3) hold for f E cr(JRn,JRn) with r 2 1. Then 

k 

r 1 (B) n B = U Ki, where J·C n K 1 = 0 if i =/= j. 
i=l 

Furthermore f(Ki) = B fori= 1, ... , k. If x E B then f(x) E B if and only if x E K 1 U · · · U Kk. We 
define a set B13 by 

B13 = {x E JRn: x =v+f3w where v,w E B}. 

B 13 is a closed set and B c B 13 . 

Lemma 9.1. There exists an E > 0 and k disjoint connected sets Ki(f30 ) :=> Ki, i = 1, ... , k, such that 

f(Ki(,6o)) = Bf3o if llf3oll <E. 

Proof. We have Bf3o :=> B with B 0 = B. Then by property (2) f overflows B and the restriction is a 
diffeomorphism in some neighborhoods of Ki and B. D 

By the map x f--+ (f(x), x) we see that there exist k disjoint connected sets iii C S, i = 1, ... , k such 
that 

k 

F0 (S) n S = U iii. 
i=l 

The topological dimension of the sets iii is n, and iii is homeomorphic to B. If (x, y) E S then 
F0 (x, y) E S if and only if x E K1 U · · · U Kk. Hence F0 (x, y) tf_ S if x E 8Ki(f3o), i = 1, ... , kif l,6j I > 0. 

Lemma 9.2. Suppose 1!311 < 1(!30 )11 for j = 1, ... ,n, and C C B. Then 7r1 oF13 (x,y) tf_ B ifx E 

U7=1(int (Ki(f3o))) andy E C. In particular, for fixed Yo E: C there exist k disjoint closed sets Ki(Yo) 

such that 1T1 o Ff3(Ki(Yo), Yo) =B. 

Proof. Let d(x, B) denote the distance between x and the set B, b the radius of Band ,6max the absolute 
A k A 

value of the largest component in f3o. We note that f(8Ki(f3o)) = 8B(f3o). Let Xo E ui=l (int (Ki(f3o))). 
Then d(f(xo),B) 2 b,6max· Since C C Band l/3jl < l(f3o)jl the set 

Cx 0 = {x E lRn: x = f(xo) + j3y where y E C} 

is contained in a ball of radius less than b,6max. Hence Cxo n B = 0. The last statement is easily seen 
from lemma 9 .1. D 

Let T C S. We define the projections 7TH an 7rv by 

7TH: T-----+ B by (x, y) f--+ (x, 0) 

Kv: T-----+ B by (x,y) f--+ (O,y) 
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Definition. A closed connected set T C S = B x B is called a horizontal set if the projection 7rH : 
T --+ B is surjective and the fiber 1r }/ ( x) C T is connected for each x E B. A closed connected set 
T C S = B x B is called a vertical set if the projection 1rv : T--+ B is surjective and the fiber 1r\( 1 (y) c T 
is connected for each y E B. 

Definition. A closed connected set T c S = B x B with a piecewise smooth boundary is called a 
horizontal slice if Tis a horizontal set and the fiber 7r}:/(x) C Tis homeomorphic to B for each x E B. 
A closed connected set T c S = B x B with a piecewise smooth boundary is called a vertical slice if T 
is a vertical set and the fiber 1r\(1 (y) C Tis homeomorphic to B for each y E B. 

Lemma 9.3. Each connected component of F0 (S) n Sis a horizontal set. 

Proof. The connected components have form Hi = {(f(x), x) : x E Ki}· 
f(Ki) = B, and 7r}/(x) = {(f(z), z)} for some unique z E B. 

We have 7rHHi = B since 
D 

Lemma 9.4. Suppose 0 < lf3j I < I (f3o)j I and Tis a horizontal slice. Then Ff3(T) n Sis a disjoint union 
of k horizontal slices. 

Proof. Since T is a horizontal slice we have that 7rH(T) = B and 7r]{1(xo) = Tx0 ~ B. The set Tx0 is 
a closed set of dimension n. Since 7rH(T) = B we see from lemma 9.2 that there are points (x, y) E T 
such that f ( x) + ,6y = x 0 if xo E B. Hence 1r H ( Ff3 (T) n S) = B. Since Ff3 is a diffeomorphism we 
see that Ff3(T) n S is a closed set with a piecewise smooth boundary. By lemma 9.2 we see that for 
each fixed Yo E B there exist k disjoint sets Ki(Yo) such that 7rH o Ff3(Ki(Yo)) = B. We note that 
7rH o F0 (Ki x B) = B, and by the above remark there are k disjoint sets Mi close to Ki x B such that 
7rH o Ff3(Mi) = B, and the sets Mi are vertical slices. Now, since T is a horizontal slice we obtain k 
disjoint sets, MinT, such that 7rH o Ff3(Mi n T) =B. Hence Ff3(Mi n T), i = 1, ... , k, are k disjoint 
horizontal slices. D 

Lemma 9.5. Suppose 0 < lf3jl < l(f3o)jl· Then the set 

m n FJ(S) 
j=O 

consists of km disjoint horizontal slices. 

Proof. We observe that Sis a horizontal slice, and the lemma follows by induction using lemma 9.4. D 

Lemma 9.6. Suppose 0 < lf3jl < l(f3o)jl· Then the set Ffi 1 (S) n S consists of k disjoint vertical slices. 

Proof. From lemma 9.5 we see that Ff3(S) n Sis a disjoint union of k horizontal slices. We find 

k k k 

S n Ffi 1 (S) = Ffi 1 (F{3(S)) n Ffi 1 (S) = Ffi 1 (Ff3(S) n S) = Ff3 1(U Hi)= U Ffi 1 (Hi) U Vi 
i=l i=l i=l 

Hence S n Ffi 1 (S) consists of k disjoint connected components. Consider the image of the set Ly0 

{(x, y) E S : y = y0 } given by Ff3(Ly0 ) = {(x, y) E S : x = f(x) + f3yo, y = x }. It is clear that 
Ff3 ( Ly0 ) n Hi # 0, i = 1, ... , k since there are k disjoint sets in B such that f ( x) + f3yo overflows B on 
each set. Hence the inverse image of Hi intersect every set of the form Ly0 with y0 E B, and therefore 
1rvVi =B. From Ffi 1 (x, y) = (y,j3- 1(x- f(y))) we see that the fiber 1r\(1 (y0 ) C Vi is homeomorphic to 
B. D 

We denote the horizontal slices from lemma 9.5 by 

m k n FJ(S) = U Hi1i1···im. 

j=O ij=l 
j=l, ... ,m 
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Lemma 9.7. Suppose 0 < lf3jl < l(f3o)jl· Then the set 

m 

consists of km disjoint vertical slices. 

Proof. We find that 
m m m 

j=O j=O j=O 

On the other hand, we find as in lemma 9.6 that 

m k 

Fim([~] F~(S)) = Fim( U Hi1i1···i=) = 
j=O ij=l 

j=l, ... ,m 

where each \li1 i1. ··i, is a vertical slice. Hence 

m k n Ff; j ( S) = U Vi1 i1 .. ·i= 
j=O _. i1=1 __ _ 

J=l_,.,.,'ff[, 

ij=l 
j=l, ... ,m 
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D 

Definition. The vertical size dv(H) of a horizontal slice H is the supremum over the diameter of the 
fibers Tr};/(x 0 ) c H taken over x0 E B. The horizontal size dH(V) of a horizontal slice Vis the supremum 
over the diameter of the fibers Trv 1 (y0 ) c V taken over y0 E B. 

A horizontal slice H and a vertical slice V intersects in a set H n V of topological dimension 2n. It is 
clear that the diameter of the setH n Vis less or equal to max(dv(H), dH(V)). 

Lemma 9.8. The vertical size of the horizontal slices in 

m k n F~(S) = U Hiii1···i= 
j=O ij=l 

j=l, ... ,m 

and the horizontal size of vertical slices in 

tends to zero as m ---+ oo. 

m k n F(;j (S) = U Vi1i1···im 
j=O ij=l 

j=l, ... ,m 

Proof. The horizontal slices are nested so the vertical diameter of Hi1i1···i= is less than b/km. Hence it 
tends to zero as m ---+ oo. The same is true for the vertical slices. D 
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Theorem 9.1. Suppose f E cr(IR?.n,lR?.n), r 2 1, satisfy (1'), (2) and (3) such that the restriction off 
to the non-wandering set O(f) is topologically conjugate to a one-sided shift on k symbols. Then there 
exist E > 0 such that the non-wandering set of Ff3 is contained in B x B and the restriction of the lift Ff3 
to O(F{3) is topologically conjugate to a full shift on k symbols for all (3 with I,Bil-/=- 0, i = 1, ... , n, and 

llf311 <E. 

Proof. By property (1') we obtain as in lemma 8.2 that O(Ff3) n U1 = 0 where U1 = {(x, y) E IR?.n x lR?.n: 
llxll ::: IIYII, (x, y) rJ S}, and O(Ffi1) n u2 = 0 where u2 = {(x, y) E Jl{n X Jl{n : llxll ~ IIYII, (x, y) rJ S}. 
Hence O(F{3) C S. 

The maximal invariant set in S is given by 

00 n Ff3(S) 
j=-00 

This set is obtained as a nested intersection of boxes each being an intersection of a horizontal and a 
vertical slice. The diameter of these boxes tends to zero, so in the limit we obtain a unique point. Each 
point is uniquely coded by a hi-infinite sequence on k symbols, and we obtain a symbolic dynamics in 
the usual manner. 

Remark. Property (2) of f is only necessary to obtain a nice invariant set for the dynamical system 
generated by f on Jl{n. It is easy to construct an example on the real line with an interval of fixed points 
such that all except one is destroyed in the lift. 

10. HYPERBOLIC STRUCTURES 

In section 3 we proved that hyperbolic periodic orbits for f had hyperbolic counterparts in the (3 lift. 
We will in this section discuss hyperbolic structures for non-finite /-invariant sets. 

Definition. Let f E cr(IR?.n,lR?.n), and let A be a compact /-invariant set. We call A expanding hyperbolic 
if 

max{I.AI: A E spec(Df(p))} > 1. 
pEA 

Our first result is that expanding hyperbolic invariant sets give a hyperbolic structure on the corre
sponding invariant set in the (3-lift. 

Theorem 10.1. Suppose f E cr(lR?.n,IR?.n), r 2 1, satisfy (1'), (2) and (3), and that f is expanding 
hyperbolic on the non-wandering set. Then there exists E > 0 such that O(F{3) has a hyperbolic structure 
for all (3 with 11!311 < E and ,Bi i- 0 fori = 1, ... , n 

Proof. Theorem 9.1 gives the existence of a non-wandering set A such that the restriction of Ff3 to this 
set is topologically conjugate to a full shift on k symbols. 

The assumption that f is expanding hyperbolic implies that there exists a constant k' > 1 such that 
IIDfvvll 2 k'llvll for all v E lR?.n and all p E 0(!). The set O(f) is compact so the inequality 

liD fvvll 2 kllvll where k > 1 

holds on a neighborhood of O(f). 
In the following let 11·11 denote the Euclidean norm, and< ·, · >the Euclidean inner product on lR?.m. The 

tangent space Tq (lR?.n x Jl{n) is given by IR?.n x Jl{n. For w E Tq (lR?.n x Jl{n) we write w = ( u, v). We define cones 
C1(q) and C2(q) by C1(q) ={wE Tq(lR?.n xlR?.n): llull 2 llvll} and C2(q) ={wE Tq(lR?.n xlR?.n): llull ~ llvll}. 
In order to establish a hyperbolic structure on A we must show that DF{3(q) maps C1 (q) to C1(F{3(q)), 
DF(i 1 (q) maps C2 (q) to C2 (Ffi 1 (q)) and that they expand the cones. See [New]. 

If q E Jl{n X Jl{n we write q = (p, r). 
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Suppose wE C1(q). We note that 

Cauchy-Schwarz inequality and the fact that f is expanding hyperbolic implies that 

We find 

I< Dfpu,{3v >I :S 11Dfpu[fllf3vll :S kflf31111ullllvll :S kflf31111ull 2 

IIDfpu + {3v[[ 2 =< Dfpu + {3v, Dfpu + {3v >= 11Dfpu[[ 2 + 2 < Dfpu, {3v > +llf3v[[ 2 

2': liD fpu[[ 2 + 2 < D fpu, f3v >2 liD fpu[[ 2 - 2kflf31111ull 2 

2': k2[[u[[ 2 - kflf31111ull 2 = (k2 - 2kflf311)1fu[[ 2 > llull 2 

23 

if (k2 - 2kflf311) > 1. Hence DFf3 maps the cone C1(q) to the cone C1(F(3(q)). To see that the restriction 
of DFf3 to C1(q) is an expansion we simply note from the above that 

lfDFf3(q)w[[ 2 = IIDfpu + f3vll 2 + llull 2 > 2ffull 2 2': lfu[[ 2 + llvll 2 = llwll 2 · 

Suppose wE C2(q). Consider 

Then 

Now 

so 

if 

[[f3z[[ 2 = [[u- D frv[[ 2 =< u- D frv, u- D frv > 

= [[u[[ 2 - 2 < u,Dj',-v > +f[Dfrv[[ 2 2': [[Df~v[[ 2 - 2f[Dfrvlllfu[[ + lfu[[ 2 

= ([[Dfrv[[-[[u[[) 2 2': ([[Dfrv[[ -[[v[[) 2 

2': (kffvll -lfv[[) 2 = (k- 1)2 [[v[[ 2 

k-1 
1611 > 1 

Hence DFf3 1 maps the cone C2 (q) to the cone C2 (Ff3 1(q)). To see that the restriction of DFf31 to C2 (q) 
is an expansion we simply note from the above that 

D 

From the results on homoclinic orbits together with the Smale-Birkhoff homoclinic theorem we get the 
following theorem: 

Theorem 10.2. Suppose f E cr(JR.n,JR.n), r 2: 1, has a non-degenerate homoclinic orbit associated with 
a fixed-point (or a periodic orbit). Then there exists E > 0 such that Ff3 has a hyperbolic invariant set 
for all {3 with 11!311 < E and f3i -=/= 0 fori= 1, ... , n, on which f is topologically conjugate to a subshift of 
finite type. 

Proof We simply note that iff has a non-degenerate homoclinic orbit then Ff3 has a transversal homo
clinic point for 11!311 small. Hence the Smale-Birkhoff homoclinic theorem [G&H] applies. D 
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11. AN EXAMPLE 

We will give an example of a map fa : JR.2 -----+ JR.2 where the non-wandering set is a Cantor set A(! a) 
such that fa restricted to A(! a) is topologically conjugate to a one-sided shift on four symbols for a> 2. 
The lift of fa, F(a,{3) : JR.4 -----+ JR.4 has a non-wandering set A(F(a,{3)) such that the restriction of F(a,f3) to 
A(F(a,{3)) is topologically conjugate to a full shift on four symbols. 

In the following let II · II denote the max-norm on rn;n, let :Et denote the space of all infinite sequences 
of four symbols equipped with its usual metric, let :E4 denote the space of all hi-infinite sequences of four 
symbols equipped with its usual metric and let O" denote the shift map on :Et and :E4 . 

Let fa: JR.2 -----+ JR.2 be defined by (x,y) ~---+(a- y2,a- x2). Let p E JR.2. We see that the fiber J;; 1(p) 
generically is empty or consists of four points. Let a> 2, RaE ((1 + v1 +4a)/2,a) and S(Ra) = 
[-Ra, RaP· We find that if p E lR.2 \ S(Ra) then llf~(P)II ----+ oo as n----+ oo, and fa(S(Ra)) ::) S(R,J. 
Hence the non-wandering set of fa is contained in the square S(Ra)· 

We see that J;; 1 (S(Ra)) n S(Ra) consists of four disjoint rectangles Li, i = 1, 2, 3, 4. Let En = {p E 

S(Ra) : f~(p) E S(Ra) for 0:::; k:::; n but f~(p) rj_ S(Ra)}. The non-wandering set of fa is given by 

A(fa) = S(Ra) \ U En. 
n21 

A(fa) is non-empty and is a Cantor set. For p E A(fa) we define the itinerary of p as the sequence 
h(p) = k0 k1k2 ... where kn = j if fa(P) E Lj. By the standard method we find that h is a map 
h: A(! a) -----+ :Et, and it is not hard to establish that his in fact a homeomorphism such that hofa = O"oh. 

Consider the lift Fa,{3 : JR.2 X JR.2 -----+ JR.2 X JR.2 defined by (x, y) ~---+ (fa(x) + (3y, x). It can be shown 
that there is an ao(f3) such that for a > ao(f3) there is a Ra,{3 > 0 such that llfa(x) + f3YII > llxll and 
IIY- fa(x)ll > lf3111xll if llxll > Ra,B· 

Let 
S(Ra,f3) = {p E lR.4 : llvll < Ra,f3} 

K1 = {p = (x,y) E lR.2 x lR.2 : llxll :::0: IIYII} 

K2 = {p = (x, y) E lR.2 X lR.2 : llxll :::; IIYII} 

Mi = (JR.4 \ S(Ra,f3)) r1 Ki where i = 1, 2. 

We find that Fa,{3(Ml) C M1 and F;;,1(M2) C M2. Furthermore we find that if p E M1 then IIF~,{3(P)II ----+ 

oo when n----+ oo and if p E M2 then IIF;;,~(P)II----+ oo when n----+ oo. We conclude that the non-wandering 
set of Fa,f3 is contained in the cube S(Ra,{3)· 

Consider S(Ra,{3) n Fa,{3(S(Ra,f3)). We claim that this set consists of four topological cubes cutting 
completely through S(Ra,f3)· To see this let 

Then 

Let ~i be the four solutions of the two equations a-e -lf31Ra,f3 = Ra,f3 and a- e + lf31Ra,f3 = -Ra,f3, 
and 7]i be the four solutions of the two equations a- 7]2 -lf31Rc,,f3 = Ra.,f3 and a- 7]2 + lf31Ra,{3 = - Ra,{3· 
These points define four disjoint rectangles in the ~7]-plane such that if (~0 , 7]o) is not in any of these 
rectangles then there is topological cube defined by 

where J1 = (~o -E, ~o+c) x [-Ra,f3, Ra,{3] and J2 = [-Ra,f3, Ra,f3] x (7]o -E, 7]o+c), such that S(Ra,f3)nC1 = 
0 or S(Ra.,{3) n C2 = 0 for some E > 0. 
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Similarly we find that S(Ra,f3) n F;;,1(S(Ra,(3)) consists of four topological cubes cutting completely 
through S(Ra,(3)· 

We see that 
n 

Pn = n F~,f3(S(Ra,f3)) 
i=-n 

is 4n disjoint topological cubes whose diameter tends to zero for increasing n. The non-wandering set of 
Fa,(3 is given by 

00 

i=-00 

and the construction of a homeomorphism h: A(Fa,f3) ----+ "E4 such that h o Fa,(3 = CJ o his standard like 
for Smale's horseshoe as in [Dev]. 

12. BIFURCATIONS IN MAPS OF THE LINE LIFTED TO THE PLANE 

This section contains a constructive proof for the existence of saddle-node- and periode doubling 
bifurcations in the lifted system in the case n = 1. This is an alternative method of those applied in 
section 6. 

We first state the period doubling bifurcation- and the saddle-node bifurcation theorem for maps on 
the real line. For a proof see [G&H]. 

Period doubling bifurcations for one dimensional maps. Let JJL : JR; ----+ JR; be a one-parameter 
family of mappings such that f JLo has a fixed point x 0 with eigenvalue -1. Assume 

(A1) 

and let 

( 1 ( 8 2 f) 2 1 ( 83 f)) L 

s = \2 8x2 + 3 \ 8x3 aL(xo, tto). (A2) 

Then there is a smooth curve of fixed points off JL passing through ( x 0 , p,0 ), the stability of which changes 
at (x0 ,p,0 ). There is also a smooth curve'/ passing through (x0 ,p,0 ) so that'/- {(x0 ,p,0 )} is a union of 
hyperbolic period 2 orbits. The curve '/ has quadratic tangency with the line JR; x {p,0 } at ( x 0 , p,0 ). The 
sign of s determines the the stability and direction of the bifurcation of the orbit of period two. If s > 0 
the orbits are stable, and if s < 0 the orbits are unstable. 

Saddle-node bifurcations for one dimensional maps. Let f'" : JR;----+ JR; be a one-parameter family 
of mappings such that f JLo has a fixed point x 0 with eigenvalue 1. Assume 

(A3) 

8j 
op, =/= 0 at (xo, tto). (A4) 

Let 
82! 8f 

s = ox2 (xo, tto) op, (xo, tto). 

Then there is a smooth curve '/ of fixed points of f JL passing through ( x 0 , p,0 ), the stability of which 
changes at ( x 0 , tto). The curve '/ has quadratic tangency with the line JR; x {tto} at ( xo, tto). If s < 0 then 
there exist an E > 0 such that f has no fixed point near (x0,p,) for p, E (tto- E,P,o) and two hyperbolic 
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fixed points near (x 0 , p,) for f.L E (p,0 , f.Lo + E). If s > 0 then there exist an E > 0 such that f has two 
hyperbolic fixed points near ( xo, f.L) for f.L E (p,0 - e, p,0 ) and no fixed point near ( x0 , p,) for p, E (p,0 , p,0 +E). 

Let 

Fa,b(x,y) = F(x,y,a,b) = (FI(x,y,a,b),F2(x,y,a,b)). 

Suppose F is independent of y at b = 0, that is F(x, y, a, 0) = G(x, a). Clearly all iterates ofF at b = 0 
is independent of y, and all fixed-points and periodic points ofF are determined by G1 (x,a). Taylor 
expansion of of each component in F with respect to b at b = 0 gives 

where i = 1,2 and 0 < ~i(b) < b forb> 0 and b < ~i(b) < 0 forb< 0. We write 

and 

and therefore 

F(x, y, a, b)= G(x, a)+ H(x, y, a)· b + K(x, y, a, b)· b2 . (1) 

Let 

M(x, y, a, b)= F(x, y, a, b)- IdlR\2(x, y). (2) 

Then 

8M1] [ 8F1 _ 1 
ay - ax 8M2 - 8F2 
-- --

ay ax 

8F1 l ay 
8F2 . 
--1 
ay 

We will use M and its derivative throughout this section. 

The period doubling bifurcations. 

. 8F1 8G1 
Suppose F(xo, Yo, ao, 0) = (xo, Yo) Wlth ax (xo, Yo, ao, 0) = ax (xo, ao) = -1, and that Gl has a 

period doubling bifurcation at (x0 , a0 ) viewed as a one-dimensional system. Then M(xo, Yo, ao, 0) = (0, 0) 
and 

aM [ -2 
det a(x, y) (xo, yo, ao, 0) = 8Jx2 

By the implicit function theorem there exist neighborhoods U(ao,O) of (ao, 0) and Vcxa,yo) of (xo, Yo) and a 
map \f!: Ucaa,O) -+ Vcxo,yo) with \f!(ao, 0) = (xo, Yo) such that M(\f!(a, b), a, b)= M(x(a, b), y(a, b), a, b)= 
(0, 0). We will return to the problem of estimating the size of the neighborhood U(ao,O). 

We define p by the equation 

[
.A_ 8F1 

p(x, y, a, b, .A) = det -at: 
ax 

8F1 l - ay = (>- _ 8F1) (>- _ 8F2) _ 8F1 8F2. 
.A _ 8 F2 ax ay ay ax 

ay 
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By using (1) we find the following formula for p: 

( b .A)= .A2 _ (aF1 aF2) aF1 aF2 _ aF1 aF2 
p X' y' a, ' ax + ay + ax ay ay ax 

= .A 2 _ (aG1 + (aH1 + aH2). b + (aK1 + aK2). b2 ) .A 
ax ax ay ax ay 

+ (aG1 aH2 _ aG2 aH1). b 
ax ay ax ay 

+ ( aH1 aH2 _ aH1 aH2 + aG1 aK2 _ aG2 aK1) . b2 

ax ay ay ax ax ay ax ay 

+ (aH1 aK2 _ aH2 aK1 + aH2 aK1 _ aH1 aK2). b3 

ax ay ax ay ay ax ay ax 

+ (aK1 aK2 _ aK1 aK2) . b4 
ax ay ay ax 

Therefore p has the form 

2 (aG1 ) p(x,y,a,b,.A)=.A- ax (x,a)+~(x,y,a,b)·b .A+7](x,y,a,b)·b. (3) 

We now define a map q: U(ao,O) ~ l1li. by the formula 

(a, b) f--7 q(a, b)= p(\f!(a, b), a, b, -1). 

We note that a point (a, b) is in the zero-set of q if and only if \f!(a, b) is a fixed-point ofF and -1 is an 
eigenvalue of DF at the fixed-point. In particular we have that 

q(ao, 0) = p(\f!(ao, 0), ao, 0, -1) = p(xo, Yo, ao, 0, -1) = 1 + ( -1) = 0. 

From the expression for p we see that 

aG1 
q(a, b)= 1 + ax (x(a, b), a)+ (7J(x(a, b), y(a, b), a, b)- ~(x(a, b), y(a, b), a, b)). b. 

We find that 

aq a ( aGl I \ a2Gl ax a2Gl 
aa (ao, 0) = aa ax (x(a, b), a) a=ao) = ax2 (xo, ao) aa (ao, 0) + aaax (xo, ao). 

We want to apply the implicit function theorem to the equation q(a, b) = 0 to obtain a function a= 1/J(b) 
with 1/J(O) = a0 . In order to apply the theorem we must show that 

a2G1 ax EPG1 
ax2 (xo, ao) aa ( ao, 0) + aaax (xo, ao) -1- 0. 

At a fixed point on the line b = 0 we have x(a) = G1(x(a),a). We find 

ax aG1 ax aG1 
aa = ax aa + aa . 

At (xo, ao) we find 
ax aG1 
2-=-

aa aa 
so 

a2 G1 ax a2 G1 1 a2 G1 aG1 a2 G1 
ax2 (xo, ao) aa (ao, 0) + aaax (xo, ao) = 2 ax2 (xo, ao) aa (xo, ao) + aaax (xo, ao) -1- 0 

from (Al) in the period doubling theorem. Now by the implicit function theorem there exists neigh
borhoods W0 and Wa 0 with Wa 0 x Wo C U(ao,O) and a function a = 1/J(b) with 1/;(0) = ao such that 
q('I/J(b), b)= 0. 
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The saddle-node bifurcations. 

EJF1 ac1 
Suppose F(xo, Yo, ao, 0) = (xo, Yo) with ox (xo, Yo, ao, 0) = ox (xo, ao) = 1 and that G1 has a 

saddle-node bifurcation at (x0 , a0 ) viewed as a one-dimensional system. 
Let p = p(x, y, a, b, ..\) be as in (3). We define a map r : ][{4 ----+][{by the formula 

(x, y, a, b) c----+ r(x, y, a, b)= p(x, y, a, b, 1). 

oF 
We note that r has a zero at (xo,yo,ao,O), and that EJ(x,y) (x,y,a,b) has an eigenvalue 1 if and only if 

(x,y,a,b) is in the zero-set ofr, but r(xl,Y1,a1,b1) = 0 does not imply M(x1,y1,a1,b1) = 0 in (2). (3) 
implies that r has the form 

ac1 
r(x,y,a,b) = 1- ox (x,a)- ~(x,y,a,b) · b+ry(x,y,a,b) ·b. 

The partiai derivative of r with respect to x at (x, y, a, b) = (x0 , y0 , a0 , 0) is given by 

By (A3) we have 
82G1 or 
EJxZ (xo, ao) #- 0 so ox (xo, Yo, ao, 0) #- 0, 

so the implicit function theorem implies that there exist neighborhoods U(yu,au,O) of (Yo, ao, 0) and Vx 0 , 

and a function r: U(yo,ao,O)----+ Vxo with r(yo,ao,O) = Xo and r(f(y,a,b),y,a,b) = 0. 
Consider the map Min (2). We define a map N: U(yo,ao,O) ----+ ][{2 by the formula 

(y,a,b) c----+ N(y,a,b) = M(f(y,a,b),y,a,b). 

We note that N(yo, ao, 0) = M(f(yo, ao, 0), yo, ao, 0) = M(xo, yo, ao, 0) = 0. The Jacobi matrix of N with 
respect to (y, a) is given by 

8N1 l [ 8M1 of + 8M1 
oa - ox oy oy 

fJNz - fJMz of fJMz 
- ---+-
oa ox oy oy 

EJM1 ar + EJM1] 
ox oa oa 

8M2 ar EJMz · 
---+--

OX oa oa 

We want to show that this matrix is non-singular at (y0 , a0 , 0). Using the definition of M we find 

EJM1 EJF1 ac1 
ox (xo, Yo, ao, 0) = ox (xo, yo, ao, 0)- 1 = ox (xo, ao)- 1 = 0 

8M1 EJF1 
----ay(xo,Yo,ao,O) = oy (xo,Yo,ao,O) = 0 

EJM1 EJF1 ac1 
Da(xo,Yo,ao,O) = oa (xo,Yo,ao,O) = oa (xo,ao) #- 0 

8M2 EJF2 
----ay(xo,Yo,ao,O) = oy (xo,Yo,ao,O) -1 = -1. 

Furthermore we have r(f(y,a,b),y,a,b) = 0 so 

or ar +or= 0. 
ax oy oy 
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Evaluating at (yo, ao, 0) we see that ~~ (y0 , a0 , 0) = 0. We find by the above that 

8N [ 0 
B(y,a)(Yo,ao,O)= _ 1 

aN 
so B(y, a) (yo, ao, 0) is non-singular since 

Now, by the implicit function theorem there exist neighborhoods Zo of 0 and Z(yo,ao) and a map 1 
Zo ----+ Z(yo,ao) with 1(0) = (yo, ao) and N(J(b), b)= 0. Define 

¢ = 7r2 o I : Zo ----+ Zao' 

where 1r2 is the projection on the second component. Then for (b, a) E Graph(¢) there exists a non
hyperbolic fixed point for F near (x0 , y0 ) with an eigenvalue 1. 

The above may be formulated in the following theorem: 

Theorem 12.1. Suppose Fa,b(x,y) = F(x,y,a,b) is in cr(ID?.2 x ID?.2 ,ID?.2 ) such that 

Fa,b0 (x,y) = F(x,y,a,bo) = G(x,a), 

and Fa,b E Diff2(ID?.2 ) for all b cl b0 • Ifx f--.+ G 1(x,a) has a saddle-node- or period doubling bifurcation at 
(xp, ap), (then G has a saddle-node- or period doubling bifurcation at (xp, yP, ap) where Yp = G 2 (xp, ap)), 
then there exist an Ep > 0 and a cr function¢= ¢(b) defined in (bo- Ep, b0 + Ep) with ap = ¢(b0 ) such 
that Fq,(b),b has a saddle-node- or period doubling bifurcation. 
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