SINGULAR PERTURBATIONS OF DISCRETE SYSTEMS

TORE M. JONASSEN

ABSTRACT. We introduce a singular perturbation theory for a class of dynamical systems defined on R™ x R™.

1. INTRODUCTION

The Hénon system (z,y) — (o — x2 + By, z) has been studied by many authors. It was introduced in
[Hen|. There is numerical evidence for a strange attractor at many different parameter values. The most
common example is the parameter value o = 1.4 and 8 = 0.3. A mathematical proof of the existence of
strange attractors for very small g is given in [B&C].

The Hénon system (z,y) — (o — 2% + By, z) may be viewed as a perturbation of the logistic map to a
diffeomorphism in the plane. In this paper we generalize this construction, and study relations between
the perturbed and unperturbed system. We will not try to solve the strange attractor problem, but we
will show by geometrical methods that there is a very close relationship between the dynamics of smooth
maps f : R®" — R™ and a class of diffeomorphisms on R™ x R™ generated by f. We will do this in two
steps, first identifying the properties of f with properties of the zero lift, and then use |3| — C*-closeness
on compact sets of the zero lift and the 3 lift of f.

We have used geometrical arguments, and tried to avoid ad hoc arguments used in [J].

At the end of this paper we have given an example with a map f : R? — R? with a non-wandering
set topologically equivalent to a one-sided shift on four symbols. The lifted map Fj : R% — R* has a
non-wandering set topologically equivalent to a full shift on four symbols.

Several computer experiments with n = 1 can be found in [J].

2. THE LIFTED DYNAMICAL SYSTEM

We will generalize the construction used to obtain the Hénon family from the logistic family.
Let 8 € R™ with B8 = (f4,...,0n). We define a n-parameter family of maps

Lp : C"(R™,R™) — C"(R™ x R", R"™ x R™)
by
[ Lp(f)=Fp
where
Fg(z,y) = (f(z) + By, z)

Here we think of 3 as a diagonal matrix, and By as the transpose of
B 01 |wn
0 Bn Yn
The map Lg(f) = Fp is called the 3 lift of f. If 3 = 0 then Fy is called the zero lift of f. Throughout

this paper we will use a capital letter for the lifted map.
We will first state and prove some simple but useful lemmas.

Key words and phrases. bifurcation, horseshoe, hyperbolic structure, shift-map.

Typeset by AAS-TEX



2 TORE M. JONASSEN

Lemma 2.1. Let f € C"(R",R") and let Fig = Lg(f). Then Fg € Diff"(R™) if and only if §; # 0 for
i =1,2,...,n. The inverse is given by the formula Fﬁ"l(:r, y) = (v,87 (z — f(y))). Furthermore, the
derivative of Fjg has a constant determinant given by

n

det DFp(z,y) = (-1)" [ 8-

i=1

Proof. Consider the equation (v,w) = (f(z)+ By, z). We find that z = v and w = f(z)+ 8y = f(v)+By.
The equation By = w — f(v) has a unique solution y = B~ (w — f(v)) if and only if the diagonal matrix
B is invertible, that is §; # 0 for any i. Hence the inverse map is given by Fg Y, y) = (v,87(x - f(v))).
Furthermore we observe that the smoothness properties of Fz3 and FF,T ! depends only on the smoothness
properties of f.

The derivative of DFg in block matrix form is given by

osr= [ 4]

By the Laplace expansion theorem for determinants we find that

det DF = det [DIf ’g] = (—1)"det {DIf 0] =(—1)"detIdet8 = (—1)"H,@i.
i=1

a

Let m; denote the projection (z,y) — z and my the projection (z,y) — y. Let f : M — M,
g: N — N and h: M — N be continuous maps. We call f and g semi-conjugate if ho f = go h.

Lemma 2.2. f and F, are semi-conjugate.

Proof. The diagram
R" x R" Lo, gn x ™

T T1

commutes following arrows since 71 o Fo(z,y) = m1(f(z),z) = f(z) and f omi(z,y) = f(x). O

Lemma 2.3. Let K C R™ x R™ be a compact set contained in the ball {z € R™ x R"™ : ||z|| < k} for
some k > 1. Then F, and Fg are k|3| — C'-close on K.

Proof. We will first find the C%-size of Fjg — F, on K. Let z = (z,y) € K. Then
1Fs(2) = Fo(2)|| = (f (=) + By — f(x),z — =) = Byl < [|BI|%-
Let v denote a vector of norm 1 in the tangent space of R™ x R™ over some point z = (z,y) in K. Then
U1

I(DFs(:) - DRl = | [ 5| 5 || < et

V2n

Hence the C'-size of Fzg — F, on K is bounded by max{k|8|, |3} = k||8|| since k > 1. a



SINGULAR PERTURBATIONS OF DISCRETE SYSTEMS 3

Lemma 2.4. Let n,,(\) denote the characteristic polynomial of D f™(x). Then the characteristic poly-
nomial of DFF*(x,y) is given by &£m(A) = A"nm ().

Proof. A direct calculation together with the Laplace expansion theorem for determinants shows that

A — Df™(z) 0

Em(X) =det(A — DEJ (z,y)) = det 7 AT

=det(A] — Df™(x))det(Al) = A" (N).

O

Let OT(f,zo) denote the forward orbit of o under iterations by f. A sequence {y;}5°, is called a
a-pseudo-orbit for f if ||y;+1 — f(yi)|| < « for all i > 0. An orbit OT(f,zo) y-shadows the sequence

{wi}20 if [|f*(zo) — ysll < v for all i > 0.

Lemma 2.5. If O"(Fg,py) C K where K is a compact set of size less than k, then OF(Fg,po) is
k|B|-shadowed by a pseudo-orbit from the system generated by Fy.

Proof. This is an immediate consequence of lemma 2.3 since Fg and Fy are k|| 8||-C'-close on K. O

3. FIXED POINTS AND PERIODIC ORBITS

Suppose f : R® — IR™ has a fixed point zy. It is then easily seen that Fy has a fixed point in
(z0,0). If f has a n-periodic orbit {zg,21,...,Zn_2,nn_1}, where the points on the orbit are indexed
such that f(z;) = z;11 modulo n, we see that the corresponding periodic orbit for Fy is given by
{(z0s Tn-1), (£1,Z0)s- -+, (Tn—2,Tn—3), (Tn—1,Zn-2)}. We get the following lemma by the implicit function
theorem:

Lemma 3.1. Suppose {xo,...,Zn—1} is a periodic orbit of f. If 1 & spec(Df™(xo)), then there exists a
neighborhood B of B3 = 0 such that Fjg has at least one n-periodic orbit near the n-periodic orbit of the
zero lift. The stability properties of the periodic orbit may not be preserved.

If spec(D f™(z0)) N S* = @ then there exists a neighborhood B of 3 = 0 such that Fg has a unique
n-periodic orbit near the n-periodic orbit of the zero lift. Furthermore, if the periodic orbit of f is stable
then the periodic orbit of Fa is stable. If the periodic orbit of f is unstable or of saddle type then the
periodic orbit of Fj is of saddle type.

Proof. Let Fj(z,y) = F"(z,y,B) and define
H:R"xR"xR"xN— R"” x R”

by
H<x7y7:6>n) = Fn(xayng) - Id(x7 y)

Then H(z,y,0,n) = (f*(z) — z, f*"(z) — y) and if {zq,...,Tn,—1} is a no-periodic orbit of f we have
H(zo,Zng—1,0,m0) = (0,0). We find that the derivative of H(z,y, 0,n¢) with respect to (z,y) is given
by

Dfro(zg)—1 0

DH(a:,y)(.'Iimeno—laOynO) = Df”o"l(mo) I

We find that

det DH ;. (%0, Tno—1,0,710) = det(Df" (x0) — I) det(—I) = (—1)" det(Df"°(zo) — I).
Hence det DH (g y)(20, Zno—1,0,n0) = 0 if and only if 1 € spec(Df™(zo)). Now the implicit function
theorem gives us the first part of the lemma. The second part of the lemma follows from the implicit

function theorem together with lemma 2.4 and lemma 2.5 noting that Fj3 has at least n eigenvalues close
to zero for small ||3]. O
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4. THE RELATION BETWEEN SOME INVARIANT SETS FOR THE MAP AND ZERO LIFT
We call a set A weak f-invariant if f(A) C A. A set A is called f-invariant if f(A) = A. Let
G(f,K)={(z,y) eR" xR" : z = f(y),y € K}.
We have Fy(R™ x R™) = G(f,R™) of course.
Lemma 4.1. Suppose I' C R™. Then T is weak f-invariant if and only if 77 *(T') is weak F,-invariant.

Proof. Suppose T is weak f-invariant. Let (z,y) € 77 }(T'). Then Fo(z,y) = (f(z),z) € 77 *(T) since

f(z) eT.
Suppose 77 *(T") is weak Fo-invariant. Let z € T'. Now (z,y) € m; *(I') implies that (f(z), zy) € 77 *(T')
so f(z) eT. O

Corollary 4.1. If A is weak f-invariant then m=1(A) is weak Fo-invariant. In particular, Q(F,) C
Q(f) x R™. Moreover, we have a one-to-one correspondence between weak f-invariant sets A C G(f,R™)
and weak Fo-invariant sets I' given by T'(A) = G(f, A).

If L : R™ — R™ is a linear isomorphism such that spec(L)NS* = & we call L a hyperbolic isomorphism.
If L is a hyperbolic isomorphism then there exists a splitting R™ = E} @ E} in L-invariant subspaces
such that L|g; is a contraction and L| gy is an expansion. The subspace E} is called the stable subspace
of L and EY is called the unstable subspace of L. The subspace E} (E}) is the generalized eigenspace
corresponding to the (possible complex) eigenvalues of norm less than 1 (greater than 1).

Suppose zg € R™ is a fixed point of f and Df(zg) is a hyperbolic isomorphism. Then by the inverse
function theorem f is a local diffeomorphism in some neighborhood V,, of zg. By the local invariant
manifold theorem [P&M)] there exist C"-discs, W} .(f, zo) and W (f, o) C Vz, such that

Wi (f,xo) = {x € Vi = f™(x) — o and f™(x) € V,, for all n > 0}
WE(fyzo) ={z € Vo : fT™(x) — zo and f"(x) € Vy, for all n > 0}

for some neighborhood Vg, of zo. We have dim Wy, (f,z0) = dim E} ;) = s and dim Wiy (f,z0) =
dim B}, .,y = u. Furthermore the tangent spaces at o are given by Tp W} (f,z0) = E}, F(zo) @nd

T Wito(F,20) = B} 100
Unfortunately Fy has a singularity in every point of its domain of definition, so the considerations

above do not carry over directly. We see by lemma 2.4 that rank(DFo(2)) < n for all z € R™ x R™.
However, the considerations above are valid if Fy is restricted to G(f,R™). We give R™ x R™ a trivial
foliation with sets of form {z} x R™ as the leaves. We note that the Fy-image of each leaf consists of
a single point (f(x),z) € G(f,R™). Hence we define local stable and unstable sets at the fixed point
(z0,x0) of Fy as

Wige(Fo, (z0,20)) = Wie(f, o) x R”

Wise(Fo, (w0, o)) = Wi (f, z0) x R”
These local stable and unstable sets are not well-behaved due to the singularity of Fg in (o, xg) since

dim W} .(Fo, (zo,20)) + dim W (Fo, (20, Z0)) = (s +n) + (u+n) = (s + u) + 2n = 3n.

The unstable set is ”too big” as seen later. Trivially we have

I/Vl%c(Folg(f,R")’ (x07 1130)) = g(fa Vvl‘i)c(‘ﬂ 1;0))
I/I/vlq(t)c(‘FO|g(f,IR")’ (130, :EO)) = g(f7 VVl%c(fv on))
We find the the tangent space of these sets at (zo, o) by mapping vectors in E7, F(z0) and EY, F(z0) with

the linear map
s [Df }330)] v

The above remarks are also true for periodic orbits, replacing f by a power of f.
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5. SOME REMARKS ON STABLE AND UNSTABLE SETS FOR THE MAP
VERSUS STABLE AND UNSTABLE MANIFOLDS FOR THE DIFFEOMORPHISM

We will now discuss the relationship between the stable and unstable sets W} .(Fo, (20, %o)) and
W . (Fo, (z0,20)) and the local invariant manifolds W .(Fa, (z0(8),y0(8))) and W (Fa, (z0o(B), y0(B)))
when 8; #0,4=1,2,...,n, and |B| is near zero. Before giving all technical details we will give some
heuristic arguments for the relationship.

Suppose zg € R™ is a hyperbolic non-degenerate fixed point of f, that is spec(D f(zo))N(StU{0}) = @.
Then by lemma 3.1 Fjg has a hyperbolic fixed point (zo(3), yo(8)) for all B8 € By, where By is some open
neighborhood of 0 € R™. If §; # O fori = 1,...,n, then Fp is a diffeomorphism of R™ xIR™, and by the local
invariant manifold theorem there exist C"-discs W} .(Fg, (zo(8),y0(8))) and W (Fa, (zo(B),y0(3)))
with properties as described in section 4. The dimension of these sets are given by the dimension of the
stable subspace Ef, Fa(20(8),30(8)) and the unstable subspace E7, Fa (20(8),90(8)) with

dim Wj,.(Fa, (zo(8), %0(8))) = dim ED g, (208,40 (8))
dim Wiz (Fp, (z0(8), %0(8))) = dim E} g, (30(8) w0(8))-

By lemma 2.4 the characteristic polynomial of DFy(xq, zo) is given by & (A\) = A"n1(\) where 71 ()) is the
characteristic polynomial of D f(z). Since the eigenvalues vary continuously with 3 it follows that none
of the zeroes in &; cross S! for |3| near zero, and we see that £; has n zeros close to zero (in C). Hence
we conclude that dim ESDFﬁ(wo(ﬁ),yo(ﬁ)) = s+ n and dim E%Fﬁ(ffo(ﬁ),yo(ﬁ)) = u where s is the dimension
of the stable subspace of Df(xo) and u is the dimension of the unstable subspace of D f(x).

In the case of B = 0 the vectors wV, ..., w™ € R?" where wz(j) =0if i # n+j and ng) =1if
i =mn+ j are eigenvectors corresponding to the zero eigenvalue of multiplicity n. We should expect that
there are n eigenvectors (possible complex) w®(B),...,w™ (8) € R?** such that ||w?(B) — w?|| is
small.

Let D?(zo) denote the open n-disc of radius e with center at xo, From the above remarks together with
the location of the stable and unstable sets of Fy at (xg, o) we should expect the local stable and unstable
manifolds at (zo(3),y0(8)) to be |B] — Cl-close to the sets W (f,zo) X D(zo) and G(f, W, (f,z0)),
that is

Wite(F, (20(8), y0(8))) = Wie(f, x0) X D¢ (o)
I/Vlch)c(Fﬁ7 (xo(ﬁ)’ yo(ﬁ))) ~ g(fa I/Vl?)c(.ﬂ .’130))
The terms |3| — C'-close and approximately equal will be given presice meaning below.

We will use the following definition for C”-closeness of submanifolds. It is taken from [P&M].

Definition. Let S and S’ be C"-submanifolds of a manifold M, and let ¢ > 0. We say that S and S’
are € — C"-close if there exists a C"-diffeomorphism h : S — S’ C M such that i’ o h is e-close to ¢ in
the C™-topology. The maps i : s — M and i’ : S’ — M denote the inclusion maps.

Theorem 5.1. Suppose o € R™ is a non-degenerate hyperbolic fixed point of f € C™(R"™,R™) with
r > 1. Suppose ; # 0 for i =1,...,n, and let Fjg denote the 3 lift of f. Let

i I/I/l%c(Fﬁv (xﬁ(ﬁ), yo(ﬂ))) C R™ x R™
i/ : I/Vlsoc(fa -TO) X D?(.’L‘O) C R™ x R™
3+ Wise(Fa, (z0(B),%0(B))) C R™ x R™
7'+ G(f, Wige(f,z0)) CR" x R™

denote the inclusion maps. Then there exist C"-diffeomorphisms, h : W (Fg, (zo(B8),v0(B))) —
VV[ZC(]C,.’L‘()) X D?(xo) C R™ x R™ and g: I/Vl%c(Fﬁv(xO(ﬁ)vyO(lB))) - g(fa V[/l%c(f7x0)) such that 1
and i’ o h are || — C'-close, and j and j' o g are |3] — C"-close.

Proof. Since Fy is singular we can not apply the local invariant manifold theorem directly. To show
closeness of the local stable manifolds we use Irwins proof [P&M] of the local stable manifold theorem,



6 TORE M. JONASSEN

this proof is valid also for maps. To show closeness of the local unstable manifolds we use the local
non-linear graph transform [S], which is also valid for maps. The reason for this is that both technics
involve only forward iterates of the map, which are well-defined.

By assumption spec(Df(zo)) N S* = @. Then by lemma 2.4 spec(DFy(zg,70)) N S! = @. By lemma
3.1 there exists a neighborhood B of 8 = 0 such that Fz has a hyperbolic fixed point z¢(3). Hence
there is a direct sum splitting R” x R™ = E; & Eg, associated with the derivative at the fixed point,
depending smoothly on 3, such that DFg(zy)| Ey s a contraction and DFp(zf)|gy is an expansion for
all B € B. Associated with this splitting there are numbers A\;(8) < 1 and A,(B) > 1 such that
| DEs (2wl < Ao(8)|wll if w € B and | DFp(z7)w]| > Au(B)l|w] if w € E4.

Now Irwins proof of the local stable manifold theorem applies where the local stable manifold is
obtained as a graph of a function obtained by the implicit function theorem for functions on Banach
spaces observing that the construction of the suitable functions depends only on forward iterates of Fg.
Moreover, the function we obtain varies smoothly with perturbations of Fj.

We obtain the unstable manifold as a fixed point from the local non-linear graph transform observing
again that we use only forward iterates of Fy. Also in this case the fixed point varies smoothly with
perturbations of Fj. O

6. SIMPLE BIFURCATIONS

We will discuss the relationship between bifurcations in the map f and the 3 lift. We will restrict this
discussion to three types, the saddle-node, the period-doubling, and the Hopf bifurcation.

The relation between bifurcations for f and the 3 lift will be discussed in terms of transversality theory
in a suitable jet space. At the end of this paper we give an example with maps f : R — R lifted to plane
diffeomorphisms, using the implicit function theorem in a constructive proof for the saddle-node and the
period doubling bifurcation. Example 2 below provides an alternative proof. The Hopf bifurcation does
not occur in dissipative plane diffeomorphisms.

Suppose z¢ € Per(f) with period ng. We will assume that the derivative Df™(x() has a single real
eigenvalue on S' or a single pair of eigenvalues on S* \ {—1,1}. We also assume that f™ is non-singular
at xg.

Since f™ is non-singular at xg, with f™(z¢) = zg, f™ is a diffeomorphism in some neighborhood of
zo. If Df™(z0) has a single eigenvalue A\; = —1 or A\; = 1 and all other eigenvalues off S, then there is
a one dimensional center manifold tangent to the eigenspace ES  associated with A\; at zo. If Df"° (o)
has a single pair of eigenvalues A\; = Xy on S*\ {—1,1} and all other eigenvalues off S', then there is a
two dimensional center manifold tangent to the eigenspace Ej associated with A1, A2 at xo.

The following two examples show the idea. We then prove the general case.

Example 1 (Saddle-node and period-doubling for one-dimensional maps). Consider C3-maps
f R xR — R. We view the first coordinate as the state variable, and the second coordinate as a
parameter. Assume f(zo,a0) = xo and f,(zg,p) = 1. Let p = (2o, o). Consider the 2-jet extension

P2 RxR — JXR x R,R).
We equip J?(R x R,R) with coordinates (z,q, f, fz, fas fez, fras faa)- Let
q= (:L'(), aO’f(p)v fm(p)v fa(p)7 fa:a:(p)7 f:ta(p)afaa(p))

In this coordinate system we have

0 1
f:l) fOt
D= 1
f:l}:l).’l,‘ f:cza
fmma fxaa
—fwaa fOLOtOL-
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Hence the space D(j2f),(R x R) is spanned by

-1 A -0 7
0 1
) P
zz (P _ za D
D @) | ™ 27 faalp)
zra(D zaalD
—fazacx(p)J -faaa(p)J

We define the surface B(Q’l) in J2(R x R,R) as the set x = f and f, = 1. This set has codimension 2
in J2(R x R,IR), and a basis for T, B( D s given by

1
S OO OO+ O
1
1
1
1
1
1
i
1
OrR O OO OoOOoOOo
1
1
1

v = Vg = V3 = y and Vg =

S OO+ OO OO
OO OO oo
H O OOOoOOoOoOo

S OO OO OO

—
T

Let w; and wy be as above. In order to have a stable intersection between 52 f and Bg ("‘) at f(zg,00) = xo
and f;(zo,0) = 1 we must have (j2f) th, B(2 U As this intersection is non- empty we must have

D(2f)p(R X R) + T,B&GY = T,(J*(R x R,R)) ~ RS,

Let M 52D be the matrix defined by M g = [wy,wa,v1,va,...,vs]. Hence the transversality condition
SN SN
is rank(M g(2,1)) = 8, which is equivalent to det(Mg2,1)) # 0. The matrix M 5,1 is given by
SN SN SN

ro1 0 1 000 0 07

0 1 010000

1 fop)) 1 0 0 0 0 O

M _ | Jos(®)  foalp) O O 0 O 0 O
B T | foa(d)  faalp) 0 0 1 0 0 0
fil?iw:(p) fwxa(p) 000 1 0 O

fmca(p) fma(p) 00 0 010

-fzaa(p) faaa(p) 0 0 0 0 0 14

We find that det(M B 1) = —fa(P)fzz(p), and the transversality condition in terms of conditions on
derivatives of f is fo,( ) faz(p) £0.

The same calculation may be done in the case when f(zo,a0) = zo and fi(xo,0) = —1. Here we
define a surface B( 1) by z = f and f, = —1in J2(R xR, R). It is easily seen that B(2 Y has codimension
2in J2(R x R,R) and a basis for Tpngl) is given by {v1,...,vs}, where v; is as above. Let wy be as
above and define wy with f,(p) = —1. The transversality condition

D(3%f)p(R x R) + T,BEp) = T,(J*(R x R, R))
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becomes that the determinant of the matrix

1 0 100 0 0 07

0 1 01 0000

-1 fa®) 1.0 0 0 0 0

fee(®)  fea(p) 0 0 0 0 0 O

Mzeo fea®) faa®) 0 0 1 0 0 O
fmzm(p) fmza(p) 00 01 0 O

f:ca:a(P) fzaa(p) 0 0 0 0 1 O

f:vaa(p) faaoz(p) 0 0 00 0 1

is non-zero. This determinant is given by det(Mp,,) = —(2fza(P) + fa(P) fzz(p)) so the transversality
condition in terms of f is 2f30(p) + fa (D) fzz(p) # 0.

Example 2. Consider C3-maps h : R? x R? — R2. We view the two first coordinates as the state
variables, and the third and fourth coordinates as parameters. Assume for simplicity that h(z,y, o, 8) =
(f(z,a),9(z,a)). Let p = (z0, Yo, 2,0). Again we consider the 2-jet extension

§2h: C3(R? x R?, R?) — J2(R? x R% R?).
We equip J2(R? x R?,R?) with coordinates

(m,y,a,,@, f)g’ fwafy7faafﬂagxagy)ga,gﬂafxm, e ,fﬂﬁagz‘my cee 7gﬂﬁ)
Note that T, (J2(R* R?)) ~ R34 Let ¢ = (j2h)(p). The tangent map of the 2-jet extension is given by

Tyxa

The space D(j2h),(R*) is spanned by the column space of D(j2h),. As above we define a set B(4 2) by

the equations z = f, y = g, and 1 — (f + gy) — fy9z = 0. The codimension of B(S4N2) in J2(R? x R2 R?)
is 3. Suppose we have f(xo, o) = o and fy(zo, ) = 1, and that the transversality condition for f in
J?(R?,IR) above is satisfied, f(z0,0)fsz(T0,20) # 0. Furthermore f,(p) = gy(p) = 0. Let

Gl(%,y,...,gﬁ,@) :x_f
G2<x7y7"')gﬂﬂ) =Yy—4g
G3(z,y,...,988) = fo + gy + fy9c — 1

The tangent space Ty, B( 2 is given by
T,BSh? = {v :< VGy(q),v >= 0}

Here

VG (z,y,...,988) = (1,0,0,0,—-1,0,0,0,0,0,0,0,...,0)
VGsy(z,y,...,988) = (0,1,0,0,0,-1,0,0,0,0,0,0,...,0)
VGs(x,y,...,98s) = (0,0,0,0,0,0,1,9,,0,0, f,,1,0,...,0)
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Evaluated in ¢ we have

VGi(q) = (1,0,0,0,-1,0,0,0,0,0,0,0,...,0)
VGs(q) = (0,1,0,0,0,—1,0,0,0,0,0,0,...,0)
VGs(q) = (0,0,0,0,0,0,1,g4(p),0,0,0,1,0,...,0)

Let e; denote the standard unit basis vectors in R™. From the above we see that
< VGy(q),e; >=0for j =1,2,3 and i = 3,4,9,10,11,13,14,15,... 33, 34.

From < VGi(q),v1 >= 0 we find v; = (1,0,0,0,1,0,...,0), and from < VGz2(q),v2 >= 0 we find
vy = (0,1,0,0,0,1,0,...,0). In addition from < VGs(q),v; >= 0 we get

vz = (0,0,0,0,0,0,-1,0,0,0,0,1,0,...,0) and v4 = (0,0,0,0,0,0, —g,(p),1,0,0,...,0).
This is totality a set of 31 linearly independent vectors, and the set
{v1,v2,v3,v4, €3, €4, €9, €10, €11, €13, €14, - - - , €33, €34}

is a basis for T,B5r?) ~ R3L,
The transversality condition

D(j%h)p(R* x R?) + T,BG3? = T,(J*(R*, R?))

is equivalent to det(M ,(,2)) # 0, where M g, is given by
SN SN

B
ro1 0 0 01 0 O 0 0 0 0 07
0 1 0 001 O 0 0 0 0O
0 0 1 000 O 0 10 00
0 0 0 1 00 O 0 0 0 0O
1 0 falp) 01 0 0 0 0000
1Y _ | 9® 0 g 00 1 0 0 0000
B T | fox() O faa(p) 0 0 0 —1 —gg(p) 0 0 0 O
0 0 0 0 00 O 1 0 0 0O
fza(P) 0 faa(p) O 0 0 0 0 0100
0 0 0 00 0 O 0 0 010
gzx(p) 0 gwa(p) 000 0 0 0 0 01
L 0 0 0 0 00 1 0 0 0 0 04
The determinant of this matrix is det(M B(s41’v2)) = —fa(p)foz(p). We observe that this is the same

transversality condition on f we had for the corresponding problem in J2(R2,R).
We define Bl(fl’f) by the equations z = f, y = g, and —1 + (fz + gy) — fyg9= = 0. The codimension

of ngz) in J2(R? x R?,R?) is 3. Suppose we have f(ro,a0) = zo and fy(zo,0) = —1. The same
calculations as above can be done here and we obtain that the transversality condition

D(2h),(R? x R?) + T, By = T,(J2 (R4, R?))
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is equivalent to det(M g2 ) # 0, where M (.2 is given by
PD PD

-1 0 0 010 0 0 000 0

0O 1 0 001 0 0 0000

0 0 1 000 O O 1000

0 0 0 100 0 O 0O0O0TO

1 0 fop) 01 0 0 0O 00 0 O
Mocn — | @) 0 ga(p) 001 0 0 0000
Bpb fmm(p) 0 fza(p) 00 0 -1 ga:(p) 0 00O
0 0 0 000 0 1 000 0

foa(®) 0 faa(@) 0 0 0 0 0 0100

0 0 0O 000 O O 0O0T1U0

Gzz() 0 goa(®) 0 0 0 O 0 00 0 1

L o 0 0 000 1 0 00 0 Ol

B

The determinant of this matrix is det(M ,,2) = —(2f3a(p) + fa(P)) f2z(p). We observe again that this
PD
is the same transversality condition on f we had for the corresponding problem in J2(R? R).

The computations above can be pictured in the following diagram

2
RxRxRxRJIL j2mER2) > B4
™13 ™
R xR — JAR2R) > BGY

Here B®2 = B2 or B2 and B@Y = B&Y or B2Y 1) 5 denotes the projection from first and
SN PD SN PD )
third component and 7 denotes the natural projection. It is easily seen that 7 (B (4’2)) > B@1),
We summarize the preceding computations in the following lemma:

Lemma 6.1. Let f,g: RxR — R, and let h : R? x R? — R? be defined by the formula h(z,y,a, §) =
(f(z,a),g(z,)). Let B&?) B2V p, and g; be as above. If 52 f(p;) hy, BV then j2h(py) h,, BX2.

We want to find the bifurcation set in the parameter space of h. Consider the following diagram of
inclusions and maps:

c(h) = (52h(R*) N B4

D(h) (72h)~H(C(h)) C(h)
n n N
R2 . T34 R4 i%h T2 (R4, R?)

The bifurcation surface is given in the jet-space by C(h) = j2h(R*) N B(42). The relevant bifurcation
set in the parameter space is found by taking the inverse image of C(h) by j2h, and then projecting this

set to the parameter space:
D(h) = m34((5°h) " (C(h)))
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Here we see that
dim(C(h)) = dim((52h)(R*)) — codim(B*?) =4 -3 =1

since j2h(p2) thy, B3V, The map j2h is injective so dim((52h)~*(C(h))) = 1, and hence dim(D(h)) = 1.

Now since j2h(p2) g, B we have by Thoms transversality theorem that j2h.(p) th, B3 for
all small perturbations h. of h. Hence, by the remarks above we have proved that the g lift of f, has
a non-degenerate saddle-node or period doubling bifurcation for small |3] if f has one. The dimension
considerations above is still valid, so the bifurcation set in the parameter space is a curve through the
point (ayg, 0).

We will now apply the construction above to bifurcations of the B-lift on R™ x R™. Consider the
diagram

R x R™ x R x R" j°F J2(R3mH 20y o B3nt1,2m)
Wsp m

R™ x R —r JHRL R o B(FLn)
J

Here BGntl2n) — gntlin)  p@niln) o pEntlin) opgq pintln) — giufin) pliebl) o glntdl)
msp denotes the projection on the first n state variables and the parameter space and m denotes the
natural projection. The sets By is defined below.

Let BU5™ be the set in J2(R™,R™) such that z; = f and det(exp(i6)] — DM) = 0, 6 € (0,7),

H

where DM is the matrix

1 1
AR
DM = :
1 n
P o

Let BS”H’%) be the set in J2(R3"+1 R2") such that z; = f*, y; = g; and det(exp(if)I — DN) = 0,
6 € (0,7), where DN is the matrix

(o o fa fh o ST

fo o fo fl?“ fl}‘"

DM = |'2 :
Jor o Yza Gy o Gy,

e n n Y£3
Loz, - 98, gy - gy

It is easily seen that codim(BgLH’n)) =n+1 and codim(BgmH’%)) = 2n + 1 since the determinant
involves a one-parameter family of a pair of complex conjugate eigenvalues.

The dimension of the space J2(IR™,R™) is given by n +m + nm +nm(n + 1)/2. Hence the dimension
of J2(R"+1 R™) and J2(R3"*! R2") is given by
3

5
dim(J2(R™,R") = 1+ dn + on® + %

dim(J?(R3"H R?™)) = 1 + 9n + 15n? + 9n®

We will first compute a basis for the tangent space T, B®"+127)  Since codim(BG*+1:20)) = o 4 1
we see that T, BGn+1:20) ~ R7n+15n+9n%  We will choose the basis such that as many basis vectors as
possible are equal to standard unit vectors in R™. In this construction it turns out that we can choose
14 5n + 11n? + 9n3 vectors of this form. Hence there are 4n? + 2n — 1 in a non-standard form.
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From the fixed point equation we obtain 2n basis vectors written in a 2n x (1+9n+15n2 +9n3)-matrix
as column vectors:

L0,
On In
0 0
On On
In Op
On I
O Op
L0n O

From the eigenvalue equation involving the determinant of the Jacobian of F' with respect to the state
variables we obtain 4n? — 1 vectors of the form

(O'Il, 0n> 07 On) On, On>Af,1,cc1 Af,l,y>07 Ona e aAf,n,x, Af,n,yvoa On,
Ag,l,.’ta Ag,l,y, 0, O'm e )Ag,n,ma Ag,n,y, Oa Onv 0717 O'nv e ao’n)

Here the symbols Ay ,, , means a block of size n. Furthermore there are n+1 standard unit vectors with 1
on the parameter coordinates, and 2n2+2n standard unit vectors with 1 on the coordinates for derivatives
with respect to the parameters. Finally there are n(3n + 1)(3n + 2) standard unit vectors with 1 on all
coordinates representing derivatives of order two. Clearly the set of vectors above is linear independent,
and contained in the tangent space. Since 2n + (4n? — 1) + (n +1) + (2n%2 4+ 2n) + n(3n + 1)(3n + 2) =
7n + 1512 + 9n? the set is a basis for 7, BG+1,:2n),

We will also need a basis for 7, B (n+1,7) " From the fixed point equations we get n basis vectors written

. 3 .
inanx(14+4n+ %n2 + % )-matrix as column vectors:

o
offHof

- O

L On |

From the eigenvalue equation involving the determinant of the Jacobian of f with respect to the state
variables we obtain n? — 1 vectors of the form

(0,,,0,0,,A%,0,A4%,0,...,A4™,0,0,,...,0,)

Furthermore there is one standard unit vector with 1 on the parameter coordinate, and n standard
unit vectors with 1 on the coordinates for derivatives with respect to the parameter. Finally there are
n(n + 1)(n + 2)/2 standard unit vectors with 1 on all coordinates representing derivatives of order two.
Clearly the set of vectors above is linear independent, and contained in the tangent space. By counting
the number of vectors we see that the set is a basis for T, B™+1m),

We also need a basis for the range of the tangent maps D(j2F) and D(j2f). We find the range from
the Jacobians, and since j? is injective, the set of column vectors is a basis.

We write down the basis vectors from T, B+ and D(j2f) in a matrix written in block form. After

deleting equal columns we obtain the following (1 + 4n + Sn? + ”—23) x (1+4n+ 5n? + 1’2—3)—matrixz



SINGULAR PERTURBATIONS OF DISCRETE SYSTEMS 13

rI 0 0 O 0o I 0 1
01 0 0 0 0 1

I 0 0 0 0 D,f Duof
0 0 K' 0 0 D2fl D2fl,
00 0 1 0 D2?fl D?fl,
0 0 K 0 --- 0 D%*fr, D?fl
L0 0 0 0 --- 1 D%*fr, D%*fl ]

We write down the basis vectors from T, BG?*+1:2") and D(j2F) in a matrix written in block form.
After deleting equal columns we obtain the following (14 9n+ 1512 4+9n3) x (1+9n+ 15n% + 9n3)-matrix:

7 000 0 O 00 00 I 0 0
0I 00 0 O 0 0 00 o0 I 0
0010 0 0 0 0 00 o0 0 1
00017 0 O 0 0 00 O 0 0
I 000 0 O 0 0 0 0 Dyf 0 Duf
0 I 00 0 O 0 0 0 0 Dyg 0 Dug
000 0 A' o 00 0 0 D2fl 0 D?fl,
0 00 0 BL 0O 00 00 0 0 0
0000 0 1 0 0 0 0 D2fl, 0 D2fL,
0000 0 O 0 I 00 0 0 0
0 00 0 A" 0 0 0 0 0 D2fr, 0 D2fn,
000 0 B 0 00 00 0 0 0
0000 0 O 00 0 0 D2fr, 0 D%fn,
0000 0 O 00 00 0 0 0
0000 C' O 00 0 0 D% 0 D2,
000 0 D' O 00 00 0 0 O
0000 0 O 0 0 0 0 D2, 0 D2gl,
0000 0 O 0 0 00 0 0 0
00 00C* O 00 0 0 D%, 0 D27,
000 0 D* 0 00 00 0O 0 0
0000 0 O 10 0 0 D%, 0 D2gn,
0000 0 0 0 0 I 0 0 0 0
10 0 00 0 O 0 0 0 I Third order block

There is a hidden identity block in the dots in the ”zero-row” in row number seven from the bottom.
We are interested only in the determinants of these matrices. Hence we can delete columns consisting of
a single I-block, and the corresponding rows, and vise versa. The reduced matrices take the form:
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I 0 I 0

I 0 Dif Duf

0 A' D*fl, D?fl,

0 B 0 0 o . 0

(:) A” DQEf" D2Ef" L0 Bed Dot

n

Mi=1g pn 97 0™ M= |0 K D D

0 Cl DZgl D2gl . . . .

oDt o 0. 0 K™ Dfp, D*fr,

0 C™ D%, D%gr,

0 Dn 0 0

We now need the structure of the second block column in the first matrix above. This structure is
found from the fact that the tangent space of B("t1:27) is determined from a gradient of a determinant.
Hence we must look at the cofactor matrix of

Df—XI 0
Dg A

A small calculation using the fact that det(Df(p) — AI) = 0 shows that the cofactor matrix is of the form

{A"COS(Df) )0(}

where X is some ”ugly” n x n-matrix. Hence the matrix M; reduces to
rI 0 I 0 0
I 0 Dyf Daf 0
0 K szzlz D2fz%a K

0 K, D, Dfr K, O
0 0 0 0 By B

L0 0 0 0 B, B,

where the first column is of size n, the second of size n? — 1, the third of size n, the fourth and fifth of
size 1 and the last column is of size n? — 1. All rows are of size n. There is a block of zeroes in the lower
left corner, and hence the determinant is given by the product of the determinant of Ms, in the upper
left corner, and the determinant of the n? x n2-matrix

By B
B, B,
in the lower right corner. This last matrix is easily seen to be non-singular, so we see that M; is singular

if and only if Mj is singular.
By the above we have the following lemma:
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Lemma 6.2. Let f,g:R™ x R — R™ be at least C?, and let h : R® x R"* x R x R” — R™ x R™ be
defined by the formula h(z,y, o, B) = (f(x,a), g(z,a)). Let BE+1L20)  B(n+1n) . and g; be as above.
Then j2f(p1) g, BM5™) if and only if j2h(ps) My, BE 120,

The same considerations as above can be done about the bifurcation set in the parameter space of h:
Consider the following diagram of inclusions and maps:

C(h) — (j?h)(R?ﬂH—l) N B(3n+1,2n)

D(h) (7*)~H(C(h)) C(h)
n n n
.2h
]Rn—H s R3n+1 ] - J2 (R3n+1 , ]R2n)

The bifurcation surface is given in the jet-space by C(h) = j2h(R3"+1) 0 BGr+1.27)  The relevant
bifurcation set in the parameter space is found by taking the inverse image of C(h) by j2h, and then
projecting this set to the parameter space:

D(h) = ((°h)~1(C(h)))
Here we see that
dim(C(h)) = dim((j2h)(R®**1)) — codim(BC™12M) =3+ 1 — (2n+1) =n

since j2h(py) hy, BMTY™. The map j2h is injective so dim((j2h)~*(C(h))) = n, and hence dim(D(h)) =
n.
By Thom’s transversality theorem we have the following theorem.

Theorem 6.1. If f undergoes a saddle-node, period-doubling or Hopf bifurcation, then the (-lift of f
undergoes a saddle-node, period-doubling or Hopf bifurcation if || 8| small.

Proof. The saddle-node, period-doubling and Hopf bifurcation conditions on fixed points of f are given
in terms of conditions on the first order derivatives of f together with transversality conditions which
appear as conditions on the second order derivatives. For the Hopf bifurcation there are some additional
resonance conditions, but these are closed subsets of the surface BI(L?-H’"). Hence the theorem follows by
lemma 6.2 and Thom’s transversality theorem. O

7. HOMOCLINIC AND HETEROCLINIC ORBITS

Let f € C"(R™,R™), r > 1, and let o € Fix(f). Let w(f,y) denote the w-limit set of the orbit
through y. Assume that rank(Df(z¢)) = n, then by the previous sections there exist local stable and
unstable manifolds, W2 .(f, o) and W} (f,xo), associated with zo. Assume that dim(W}_ (f, o)) > 1,
and that there is a point x, € W% (f, o) such that w(f,zp) = 9. We say that f has a homoclinic orbit
associated with zg.

There are three cases to consider:

(1) dim(WE.(f,z0)) = n with z, € W (f,z0) and f™(zp) = o for some ng € N.
(2) dim(WE (f,zo)) < n with

U fn(Wl’Léc(f’ 330)) N Wlf)c(f) QZ()) 7& Z

n=0
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for some ng € N.
(3) dim(WpE.(f,z0)) <n with z, € W (f,z0) and f™°(x}) = z¢ for some ng € N.
In case (1) we call the homoclinic orbit non-degenerate if rank(Df™ (z3)) = n. It is easily seen that
a degenerate homoclinic orbit of this type may disappear under arbitrarily small perturbations of f.
In case (2) we call the homoclinic orbit non-degenerate if the intersection at some

no
T e U fn(vvl%c(fv .’L‘o)) N VVli)C(f) :CO)
n=0
is transversal. It is easily seen that non-transversal intersections may disappear under arbitrarily small
perturbations of f.
In case (3) we call the homoclinic orbit non-degenerate if the intersection of Wi .(f,zo) and f™° (W5, ),
where W, C W (f, o) is a neighborhood of x in W% (f, o), is transversal.

Lemma 7.1. If f has a non-degenerate homoclinic orbit associated with xy € Fix(f) then the corre-
sponding image of unstable sets and the local stable manifold of (z¢,xzo) € Fix(F,) have a non-empty
transversal intersections.

Proof. By assumption f is a local diffeomorphism at zy. Hence the leaf zg x R™ intersect the graph of f
transversally in R™ x R™. a

Theorem 7.1. If f has a non-degenerate homoclinic orbit associated with zo € Fix(f), then there
exists a € > 0 such that the stable and unstable manifold of (z(83),y(3)) has a non-empty transversal
intersection for all Fg with 0 < |B;| <€, i=1,...,n.

Proof. All transversality conditions above depend only on a finite number of f-iterates. Hence by |3]—C?-
closeness of F, and Fg on bounded sets, theorem 5.1 and lemma 7.1 the result follows by the weak
transversality theorem [Ar] applied to the inclusion maps. O

Similar results hold for heteroclinc orbits as well.

8. ONE-SIDED k-SHIFTS IN THE n-DIMENSIONAL MAP

In this section we discuss some sufficient conditions on a map f € C"(R™,R™), r < 1, such that f has
a non-wandering set topologically equivalent to a one-sided shift on & symbols.
In the following let ||-|| denote the max-norm on R”, and let B(A) = {z € R™ : ||z| < A, where A > 0}
denote the cube of size A with center in 0. We will omit the explicit reference to A, and simply write B.
Let f € CT(R™,R"™), r > 1, with the following properties:
(1) f is norm-expanding outside B, that is, ||f(z)| > ||z| for all z € R™ \ B.
(2) f overflows B, that is, int (f(B)) D B. The set BN f~1(B) consists of k disjoint connected
components, K1,..., Ky, such that f(K;) = B, and such that the restriction

f:KjCWKj—>VKjDB

is a diffeomorphism for some neighborhoods Wk, of K; and Vk; of B.
(3) For each K there is a number n; such that

;rel}g{|)\| : A € spec(Df"(x))} > 1.

We will now look at some consequences of the properties above, starting with property (1).

Lemma 8.1. f increases the norm along any forward orbit outside B, that is, if o € R™ \ B then
175 (@o)ll > IIF*~*(zo)ll > -+ > | f(zo)ll > l|zoll-
Proof. Let yo = f(zo) with zo € R™ \ B. Clearly yo € R™\ B so
172(zo) | = [1f (wo)ll > llwoll = [1£ (o)l > llzoll,

and the result follows by induction. d



SINGULAR PERTURBATIONS OF DISCRETE SYSTEMS 17

Lemma 8.2. Q(f) C B.

Proof. Let xyp € R™ \ B, and let V;; C R™\ B be a neighborhood of xy. Define a continuous map
k: Vi X Voo — R by k(z,y) = || f(z)]| — ||lyll. We see that k(zo,z0) = || f(zo)|| — ||zo]| > 0. Hence there
is a neighborhood W4, 40) C Vi, X Vi, such that k(z,y) > 0 for all (z,y) € Wiz, o). The neighborhood
Wi(zo,z0) contains neighborhoods of the form Uy, X Ug,, where U, is a neighborhood of zy. Hence

inf > su T
. mo){llyll} EEUPO{II I}

0 f(Uzy) N Uy, = @. By lemma 8.1 || f*(z)|| > ||z| for all k> 1 with z € R™ \ B so

f >
et mo){llyli} P I}

proving that f*(U,,) N Uy, = @ for all k > 1. a
From property (2) we get the following lemma:

Lemma 8.3. The set
BN (BN nfH(B)NB

is a disjoint union of k™ closed connected sets

m .
ﬂ f—z(B) - Kuw im
=0 1<i; <k

ISj m

with the property that K; iy...i,, C Kijigeip_1r f (Kiyigeoi,,) = Kijigeoi,,_, and f™(Kijiy.s,,) = B. The
restriction
— Vi, . . DB

4149 im,

fm : Kiliz"'im Cc Wk

is a diffeomorphism for some neighborhoods W

1142 im

OfKi”‘?...im and VK. . . of B.

i1igrim i1 im

Proof. We will prove this lemma by induction. By property (2) the lemma is true for m = 1, with the
obvious modifications in notation.
Assume the lemma is true for m =1 — 1. Then

F N Kiigeir,) =B D Kjforj=1,...k
homeomorphically. Hence there exist k closed connected and disjoint sets
K¢1¢2...il C Kiliz"'il—l where i, = 1,. .. , k

such that
P (Kiigir) = K-

Hence fY(Kiiy..i) = f(f*" (Kiyiyi,)) = f(K;) = B. Furthermore we have by construction that

f(Kiyigiy) = Kigigiy_,- This map extends by the inclusion above to a diffeomorphism of some neigh-

borhoods of K;,i,...;; and Kj,4,...5,_,, and we obtain the diffeomorphism in the lemma by composition.
Hence the result follows by induction on m. a

We will prove a simple lemma needed to obtain a Cantor set when intersecting some suitable preimages
of B.
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Lemma 8.4. Suppose f € C"(R",R™), r > 1, and {4,}32, is a nested sequence of non-empty closed sets
such that f(A,) = Ap—1 and XA = minge a,{|specD f(x)|} > 1. Then there exists a unique point z; € Ay

such that
ﬂ Ap = {zs}.

n>0

Proof. Nested intersections of non-empty closed sets are non-empty. Let d be the usual metric on R"™,
and let 6, = diamA, = sup, ,c, d(z,y). Since the sequence {A;}{2; is nested it is clear that 0 <
Op, < 6p—1 < 6o. Hence {6,} has a limit in [0, 8p]. By the intermediate value theorem in R™ we see that
Snt1 < X718, so by induction d,, < A™"8p. Now A > 1 so the sequence converges to 0. O

Corollary 8.1. Suppose f € C"(R",R™) and {A;}32, is a nested sequence of non-empty closed sets such
that f(A,) = A,_1 and \ = minge 4,{|specD f*o ()|} > 1 for some ko € N. Then there exists a unique
point x5 € Ag such that

ﬂ An = {xf}

n>0

Proof. We apply lemma 8.4 to the sequence Ay D Ag, D Aok, D --- and fFo. O

We will now use lemma 8.3 together with property (3) and corollary 8.1 to obtain an f-invariant
Cantor set.
We observe from lemma 8.3 that

Ki1 D) Ki”‘? DD Ki1i2~~~im IDERE

such that f(Kiipei,,) = Kijigim_,- By property (3) and corollary 8.1 the intersection of this nested
sequence of inclusions is a unique point. Let A(f, B) be the union of all such intersections:

A(va) = U ﬂ Ki1i2"'im
All possible m>1
combinations of
2122 *lm,
i;€{1,....,k}
By construction A(f, B) is weak f-invariant. Let Ez denote the one sided shift space of k symbols, and

o the left shift operator on X .

Theorem 8.1. If f € C™(R™,R™), r > 1, satisfy property (1),(2) and (3) above then there exists a
f-invariant set A(f, B) C B and a homeomorphism h : A(f, B) — X} such that the diagram

A(f, B) =L+ A(f, B)

g
i i

commutes. The set A(f, B) is the largest f-invariant set contained in B.

Proof. By the standard construction where we for p € A(f, B) define the itinerary of p as the sequence
h(p) = ilkgkg ... where by = j if f(p) (S Kj. O

Combining theorem 8.1 and lemma 8.2 we have the following theorem:

Theorem 8.2. If f € C"(R™,R™), r > 1, satisfy property (1),(2) and (3) above then the non-wandering
set of f, Q(f), is contained in B, and the restriction of f to Q(f) is topologically equivalent to a one-sided
shift on k symbols.

Proof. By lemma 8.2 £(f) C B, and from theorem above we have Q(f) = A(f, B). O
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9. FULL k-SHIFTS IN THE DIFFEOMORPHISM

We will now study what happens to the non-wandering set of f described in the preceding section
when f is lifted to Fg. We use the same notation as in section 8. We will replace property (1) by a
stronger condition to gain control of the iterates of Fjg and Fg ! outside some compact set. This condition
is only used to show that the non-wandering set is contained in a set S defined by S = B x B, and can
be replaced by some other conditions. The new condition is

(1)
I1f () + Byll > ll=[ if llz]| > [lyll
187 @ = f)Il > Nyl if llyll > ll=]l, B#0

for all (z,y) e R™ x R™\ S.
We note that the first part of property (1’) implies property (1) in section 8.
In the following we assume that property (1°), (2) and (3) hold for f € C"(R™,R™) with > 1. Then

k
FUB)NB = | Ki, where K, NK; = @ if i # j.
i=1
Furthermore f(K;) = B fori=1,...,k. If z € B then f(z) € Bifand only if z € K; U--- U K. We

define a set Bg by
Bg = {z € R" : = v 4 Bw where v,w € B}.

Bg is a closed set and B C Bg.

Lemma 9.1. There exists an € > 0 and k disjoint connected sets IAQ(BO) D K;,i=1,...,k, such that
f(Ki(Bo)) = Bg, if | Boll <€

Proof. We have Bg, D B with By = B. Then by property (2) f overflows B and the restriction is a
diffeomorphism in some neighborhoods of K; and B. d

By the map = — (f(z),z) we see that there exist k disjoint connected sets H; C S, i =1,...,k such
that

k
Fo(S)nS = J .
i=1

The topological dimension of the sets H; is n, and H; is homeomorphic to B. If (z,y) € S then

Fo(z,y) € Sifand only if x € K3 U---U K}. Hence Fo(z,y) € Sifz € affi(ﬁo), i=1,...,kif |3;] > 0.
Lemma 9.2. Suppose |3;| < |(Bo);| for j = 1,...,n, and C C B. Then m o Fg(z,y) ¢ B if x €
Ule(int (Ki(Bo))) and y € C. In particular, for fixed yo € C there exist k disjoint closed sets K;(yo)

such that 71 o Fg(K;(yo),v0) = B.

Proof. Let d(x, B) denote the distance between x and the set B, b the radius of B and S, the absolute

value of the largest component in By. We note that f(9K;(80)) = dB(By). Let zo € Uf;l(int (K:(Bo))).
Then d(f(z0), B) > bBmae. Since C C B and |B;| < |(Bo);| the set

Cypo ={z € R : 2 = f(x0) + By where y € C}

is contained in a ball of radius less than b8,4,. Hence Cp, N B = @. The last statement is easily seen
from lemma 9.1. O
Let T' C S. We define the projections 7y an 7y by
7+ T — B by (z,y) - (2,0)
Ty : T — B by (z,y) — (0,y)
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Definition. A closed connected set ' C S = B x B is called a horizontal set if the projection 7 :
T — B is surjective and the fiber 75! (z) C T is connected for each z € B. A closed connected set
T C S = Bx B is called a vertical set if the projection 7y : T' — B is surjective and the fiber W;l(y) cT
is connected for each y € B.

Definition. A closed connected set T C S = B x B with a piecewise smooth boundary is called a
horizontal slice if T" is a horizontal set and the fiber 75'(z) C T is homeomorphic to B for each = € B.
A closed connected set ' C S = B x B with a piecewise smooth boundary is called a vertical slice if T
is a vertical set and the fiber 7r‘71(y) C T is homeomorphic to B for each y € B.

Lemma 9.3. Each connected component of F(S) NS is a horizontal set.

Proof. The connected components have form H; = {(f(z),z) : z € K;}. We have g H; = B since
f(K;) = B, and 7' (z) = {(f(2), 2)} for some unique z € B. a

Lemma 9.4. Suppose 0 < |3;| < |(Bo);| and T is a horizontal slice. Then Fg(T')N S is a disjoint union
of k horizontal slices.

Proof. Since T is a horizontal slice we have that mx(T) = B and 75" (7o) = Ty, ~ B. The set Ty, is
a closed set of dimension n. Since 7y (T') = B we see from lemma 9.2 that there are points (x,y) € T
such that f(z) + By = xo if 2o € B. Hence mx(Fa(T)NS) = B. Since Fp is a diffeomorphism we
see that Fg(T') N S is a closed set with a piecewise smooth boundary. By lemma 9.2 we see that for
each fixed yo € B there exist k disjoint sets K;(yo) such that 7z o Fg(K;(yo)) = B. We note that
g o Fo(K; x B) = B, and by the above remark there are k disjoint sets M; close to K; x B such that
7y o Fg(M;) = B, and the sets M; are vertical slices. Now, since 7" is a horizontal slice we obtain &k
disjoint sets, M; N T, such that g o Fg(M; NT) = B. Hence Fg(M; NT), i =1,...,k, are k disjoint
horizontal slices. a

Lemma 9.5. Suppose 0 < |B;| < |(Bo);|. Then the set

F3(S)

3

0

J
consists of k™ disjoint horizontal slices.
Proof. We observe that S is a horizontal slice, and the lemma follows by induction using lemma 9.4. O
Lemma 9.6. Suppose 0 < |8;| <|[(Bo);|- Then the set Fg 1(S) N S consists of k disjoint vertical slices.
Proof. From lemma 9.5 we see that F3(S) N S is a disjoint union of k horizontal slices. We find

k k k
SNFFY(S) = F3' (Fa(S)) N Fy'(S) = Fy ' (Fa(S)n 8) = Fy (U ) = U F5 ' (i) = U W

i=1 i=1 i=1
Hence S N Fg 1(S) consists of k disjoint connected components. Consider the image of the set L,, =
{(z,y) € S :y = yo} given by Fg(Ly,) = {(z,y) € S : z = f(z) + Byo, y = x}. It is clear that
Fg(Ly,) N H; # @, i =1,...,k since there are k disjoint sets in B such that f(z) + Byo overflows B on
each set. Hence the inverse image of H; intersect every set of the form L,, with yo € B, and therefore
myV; = B. From Fﬁ_l(:c, y) = (y,87 z — f(y))) we see that the fiber 7' (yo) C V; is homeomorphic to
B. O

We denote the horizontal slices from lemma 9.5 by

m k
NES) = U Hiiin

3j=0 ij=1
j=1l,...m
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Lemma 9.7. Suppose 0 < |B;| < |(Bo);|- Then the set

consists of k™ disjoint vertical slices.

Proof. We find that

m m

F™(F4(8) = (3 ™(S) = () F57(S).
Jj=0 J

j=0 j=0

On the other hand, we find as in lemma 9.6 that

m k k
BV =Fz™ U Huiei) = U Visiroin
j=0 ij=1 ij=1
j=1,....m j=1,....m
where each Vj,;,...;,, is a vertical slice. Hence

m ) k

m F—J(S) = U ‘/;1i1"'im

7=0 ij=1

j=1,....m

O

Definition. The vertical size dy (H) of a horizontal slice H is the supremum over the diameter of the
fibers 75" (zo) C H taken over =g € B. The horizontal size dg (V') of a horizontal slice V is the supremum

over the diameter of the fibers my;! (yo) C V taken over y, € B.

A horizontal slice H and a vertical slice V intersects in a set H NV of topological dimension 2n. It is
clear that the diameter of the set H NV is less or equal to max(d,(H),dg(V)).

Lemma 9.8. The vertical size of the horizontal slices in

tends to zero as m — 0.

Proof. The horizontal slices are nested so the vertical diameter of Hj,;,...s

tm

tends to zero as m — oo. The same is true for the vertical slices.

is less than b/k™. Hence it
g



22 TORE M. JONASSEN

Theorem 9.1. Suppose f € C"(R™,R"), r > 1, satisfy (1’), (2) and (3) such that the restriction of f
to the non-wandering set Q(f) is topologically conjugate to a one-sided shift on k symbols. Then there
exist € > 0 such that the non-wandering set of Fjg is contained in B x B and the restriction of the lift Fg
to Q(Fp) is topologically conjugate to a full shift on k symbols for all 3 with |3;| #0,1=1,...,n, and

I8l <e.

Proof. By property (1’) we obtain as in lemma 8.2 that Q(Fg) NU; = @ where Uy = {(z,y) € R" x R™ :
Izl > llyll, (z,y) & S}, and Q(F5') N Uz = @ where Uy = {(z,y) € R" xR : |lz| < [lyll, (z,v) & S}
Hence Q(Fg) C S.

The maximal invariant set in S is given by

() Fs(s)

j=—o0

This set is obtained as a nested intersection of boxes each being an intersection of a horizontal and a
vertical slice. The diameter of these boxes tends to zero, so in the limit we obtain a unique point. Each
point is uniquely coded by a bi-infinite sequence on k symbols, and we obtain a symbolic dynamics in
the usual manner.

Remark. Property (2) of f is only necessary to obtain a nice invariant set for the dynamical system
generated by f on R™. It is easy to construct an example on the real line with an interval of fixed points
such that all except one is destroyed in the lift.

10. HYPERBOLIC STRUCTURES

In section 3 we proved that hyperbolic periodic orbits for f had hyperbolic counterparts in the 3 lift.
We will in this section discuss hyperbolic structures for non-finite f-invariant sets.

Definition. Let f € C"(R™,R"™), and let A be a compact f-invariant set. We call A expanding hyperbolic
if

max{|A| : A € spec(Df(p))} > 1.

pPEA

Our first result is that expanding hyperbolic invariant sets give a hyperbolic structure on the corre-
sponding invariant set in the G-lift.

Theorem 10.1. Suppose f € C™(R™,R"), r > 1, satisfy (1’), (2) and (3), and that f is expanding
hyperbolic on the non-wandering set. Then there exists € > 0 such that Q(Fp) has a hyperbolic structure
for all B with ||B|| <eand p; #0 fori =1,...,n

Proof. Theorem 9.1 gives the existence of a non-wandering set A such that the restriction of Fjz to this
set is topologically conjugate to a full shift on k£ symbols.

The assumption that f is expanding hyperbolic implies that there exists a constant k' > 1 such that
|Dfpv|l > K'||v]| for all v € R™ and all p € Q(f). The set Q(f) is compact so the inequality

I|D fpv|| > kl||v|| where k& > 1

holds on a neighborhood of Q(f).

In the following let ||-|| denote the Euclidean norm, and < -, - > the Euclidean inner product on R™. The
tangent space T,(R™ x R™) is given by R™ xR™. For w € T,(R™ xIR"™) we write w = (u,v). We define cones
Ci(q) and Cs(q) by C1(q) = {w € Ty(R" xR™) : [[u]| > [[v]|} and Cz(q) = {w € To(R" XR") : [Ju|| < [|v]}.
In order to establish a hyperbolic structure on A we must show that DFz(q) maps C1(q) to C1(Fa(q)),
DFg 1(q) maps Cx(q) to Cy (Fg '(q)) and that they expand the cones. See [New].

If ¢ € R™ x R™ we write ¢ = (p, 7).
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Suppose w € Ci(gq). We note that

DFs(qw = [lep ﬂ M _ {Dfpourﬁv] |

Cauchy-Schwarz inequality and the fact that f is expanding hyperbolic implies that
| < Dfypu, B > | < (I Dfpulll|Boll < KlIBNullllv] < klIBHIu)?
We find
IDfpu+ Bu]|? =< Dfyu+ Bv, Dfpu + Bv >= ||Dfyull® +2 < D fyu, Bv > +[|Bv]?
> || Dfpull® +2 < Dfpu, Bv >> ||Dfpul® — 2k||B|l||u]?
> k|ull® — klIBIlllull® = (&2 — 2k BI)[ull® > [[ull?

if (k? —2k||8]|) > 1. Hence DF maps the cone Ci(q) to the cone C1(Fp(q)). To see that the restriction
of DFg to C4(q) is an expansion we simply note from the above that

IDEa(@)w|* = | Dfpu+ Bol* + [ull® > 2|jull® > [lul® + [[v]|* = [Jw]|*.

Suppose w € C3(q). Consider

DF;* (q)w = ﬁgl _g—gpfp] [Z] - [B‘l(uﬁDfrv)] - [z]

Then
18212 = ||lu — Dfov||* =< u — Dfrv,u — Dfov >
= [[ul® =2 <u,Dfpv > +[|Dfpo]|* > | Dfrvl|* = 2| D frolflfu]l + [ul®
= (IDfoll = lull)® = (1D foll = [|v])?
> (ko] = [[v])? = (k — 1)?|jv|?
Now
181112112 > 182)* = (k — 1)*||v)?
SO 9
k-1
2 > 2 2
2] > (—” i ) oll? > o]
if 1
e 1
e

Hence DF; ' maps the cone Cs(q) to the cone Ca(F51(g)). To see that the restriction of DF3 ' to Cy(q
B B B
is an expansion we simply note from the above that
IDEg (@)wl® = [lo)® + 187" (w = Dfr0) |2 > 2||ol|* 2 Jul® + [[v]]* = [Jw]*.
O
From the results on homoclinic orbits together with the Smale-Birkhoff homoclinic theorem we get the
following theorem:

Theorem 10.2. Suppose f € C"(R™,R"™), r > 1, has a non-degenerate homoclinic orbit associated with
a fixed-point (or a periodic orbit). Then there exists € > 0 such that Fg has a hyperbolic invariant set
for all B with ||B|| < € and ; # 0 for i =1,...,n, on which f is topologically conjugate to a subshift of
finite type.

Proof. We simply note that if f has a non-degenerate homoclinic orbit then Fa has a transversal homo-
clinic point for ||3|| small. Hence the Smale-Birkhoff homoclinic theorem [G&H] applies. O
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11. AN EXAMPLE

We will give an example of a map f, : R? — R? where the non-wandering set is a Cantor set A(fy)
such that f, restricted to A(f,) is topologically conjugate to a one-sided shift on four symbols for o > 2.
The lift of fo, Fla,) : R* — R* has a non-wandering set A(F{(4,g)) such that the restriction of F, g to
A(F(q4,p)) is topologically conjugate to a full shift on four symbols.

In the following let || - || denote the max-norm on R”, let .} denote the space of all infinite sequences
of four symbols equipped with its usual metric, let ¥4 denote the space of all bi-infinite sequences of four
symbols equipped with its usual metric and let o denote the shift map on EI and Y4.

Let f, : R? — R? be defined by (z,y) — (o — y%,a — 22). Let p € R2. We see that the fiber f*(p)
generically is empty or consists of four points. Let oo > 2, Ry € ((1 + v1+4a)/2,a) and S(R,) =
[~Ra, Ro)?. We find that if p € R?\ S(R,) then | f2(p)|| — oo as n — oo, and fo(S(Ra)) D S(Rya).
Hence the non-wandering set of f, is contained in the square S(R,,).

We see that f;1(S(Rq)) N S(Ra) consists of four disjoint rectangles L;, i = 1,2,3,4. Let E, = {p €
S(Rs) : fE(p) € S(Ry) for 0 < k < n but f¥(p) & S(R,)}. The non-wandering set of f, is given by

A(fa) = S(Ra)\ U E,.

n>1

A(fa) is non-empty and is a Cantor set. For p € A(f,) we define the itinerary of p as the sequence
h(p) = kokiks... where k, = j if fo(p) € L;. By the standard method we find that h is a map
h:A(fo) — EI, and it is not hard to establish that A is in fact a homeomorphism such that ho f, = ooh.

Consider the lift Fj, 5 : R? x R? — R? x R? defined by (z,y) — (fa(z) + By, ). It can be shown
that there is an ag () such that for o > ao(F) there is a R, g > 0 such that || fo(z) + Byl > ||z|| and
ly = fa@)] > |Bll2] i l2]] > Ra,s.

Let
S(Ra,ﬂ) ={p € R": [ip|l < Ra,p}
={p=(z,9) e R* xR?: |lz| > |ly|l}
={p=(z,9) €R* xR*: ]| < ly|}}
M; = (R*\ S(Ra,p)) N K; where i = 1,2.
We find that F, g(M1) C My and F ﬁ(M2) C M. Furthermore we find that if p € M; then [|F7 5(p)|| —

co when n — co and if p € M> then [|F, 3 (p)|| — oo when n — co. We conclude that the non- Wandering

set of Fy, g is contained in the cube S(Rq p).
Consider S(Rqa,5) N Fo,g(S(Ra,3)). We claim that this set consists of four topological cubes cutting
completely through S(Rq,g). To see this let

T(&,m) = {€} x {n} X [~Ra,, Ra,p)>-
Then

Fag(T(§m) = la =1 = |B|Ra,p,00 = 0* + |B|Ra,p] X [o = € ~ |B|Ra,8, 0 = € + Bl Ra 6] x {€} x {n}

Let &; be the four solutions of the two equations o — 2 —|B|Ra,p = Rap and a — 2 + |B|Ras = —Ra g,
and 7; be the four solutions of the two equations a —1? — |3|Ra,g = Ra g and @ — 02+ |8|Ra,p = —Ra,p-
These points define four disjoint rectangles in the &n-plane such that if (£,70) is not in any of these
rectangles then there is topological cube defined by

U Fap@En)orCo= |J Fap(T(n))
(E’U)EJI (6777)6‘]2

where J; = (§o—¢€,&0+€) X [—Ra,p, Ra,p) and Jo = [— R4 g, Ra,p] X (No—€, mo+€), such that S(R,,g)NCy =
@ or S(Ry,p) N Cy = @ for some € > 0.
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Similarly we find that S(Ra,g) N F,, 2;,(5 (Ra,3)) consists of four topological cubes cutting completely
through S(Rq ).
We see that

P, = ﬂ Fé,ﬂ(S(Ra,ﬂ))

is 4™ disjoint topological cubes whose diameter tends to zero for increasing n. The non-wandering set of
Fy, g is given by

AFap)= () Fap(S(Rap)),

1=-—00

and the construction of a homeomorphism h : A(Fy, g) — X4 such that ho Fy g3 = o o h is standard like
for Smale’s horseshoe as in [Dev].

12. BIFURCATIONS IN MAPS OF THE LINE LIFTED TO THE PLANE

This section contains a constructive proof for the existence of saddle-node- and periode doubling
bifurcations in the lifted system in the case n = 1. This is an alternative method of those applied in
section 6.

We first state the period doubling bifurcation- and the saddle-node bifurcation theorem for maps on
the real line. For a proof see [G&H].

Period doubling bifurcations for one dimensional maps. Let f, : R — R be a one-parameter
family of mappings such that f,, has a fixed point ¢ with eigenvalue —1. Assume

of °f . O*f \ _0fO0*f (of 82 f
(Grer *2aua) = e~ (o3 1) o #0 ¢ o) .

1/82f\> 1 /8%f
=z = == t : A2
Then there is a smooth curve of fixed points of f,, passing through (zo, tt0), the stability of which changes
at (zo,po). There is also a smooth curve + passing through (zq, o) so that v — {(zo, po)} is a union of
hyperbolic period 2 orbits. The curve y has quadratic tangency with the line R x {uo} at (zo, o). The

sign of s determines the the stability and direction of the bifurcation of the orbit of period two. If s > 0
the orbits are stable, and if s < 0 the orbits are unstable.

and let

Saddle-node bifurcations for one dimensional maps. Let f, : R — R be a one-parameter family
of mappings such that f,, has a fixed point xo with eigenvalue 1. Assume

2
% # 0 at (xo, o) (A3)
% # 0 at (xo, o). (A4)

Let
Of of
s = W(wo,uo)gﬁ(io,ﬂo)-

Then there is a smooth curve «y of fixed points of f,, passing through (zo, po), the stability of which
changes at (zo, po). The curve v has quadratic tangency with the line R x {uo} at (xo, o). If s < 0 then
there exist an € > 0 such that f has no fixed point near (zo,u) for p € (o — €, pto) and two hyperbolic
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fixed points near (xg,p) for p € (po, o +€). If s > 0 then there exist an € > 0 such that f has two
hyperbolic fixed points near (xq, ) for i1 € (uo — €, o) and no fixed point near (xg, ) for p € (uo, po +€)-

Let
Fa,b(m,y) = F($7y7a’7b) = (Fl(way7a7b)aF2(xay’a>b))'

Suppose F' is independent of y at b = 0, that is F(z,y,a,0) = G(z,a). Clearly all iterates of F' at b =0
is independent of y, and all fixed-points and periodic points of F' are determined by Gi(z,a). Taylor
expansion of of each component in F' with respect to b at b = 0 gives

16%F;

OF;
Fi<xay7a7 b) = Gi(l”a') + —-($7yaa70) b+ 5—87)2_(‘177 Y, a, £z<b)) ’ b2

0b

where ¢ = 1,2 and 0 < &;(b) < b for b > 0 and b < &;(b) < 0 for b < 0. We write

: 2
O (0,9,0,0) = Hi(w,,0) and 20TV a,0,6,0) = Kila,y,0,0)
and therefore
F(z,y,0,b) = G(z,a) + H(z,y,a) - b+ K(z,y,0a,b) - b, (1)
Let
M(z,y,a,b) = F(z,y,a,b) — Idge(z, y). (2)
Then
oM OMy) [OR | OR
oM _| oz oy | _ | Oz Oy
o) |0y OMy| T | OF OB
ox Oy ox Ay
We will use M and its derivative throughout this section.
The period doubling bifurcations.
OF: oG
Suppose F'(zo, Yo, 20,0) = (x0,y0) with %l—(xo,yo,ao,o) = —é;l(xo,ao) = —1, and that G; has a

period doubling bifurcation at (zg, ag) viewed as a one-dimensional system. Then M (zo, yo, ag,0) = (0,0)

and

-2 0

OFy =2#0.
=2 1

o

oM
det m(iﬂo,yo,ao,o) =

By the implicit function theorem there exist neighborhoods U0y of (a0,0) and V(g 4, of (z0,%0) and a
map ¥ : Uigg0) — V(wo,yo) With ¥(ag,0) = (2o, yo) such that M(¥(a,b),a,b) = M(z(a,b),y(a,b),a,b) =
(0,0). We will return to the problem of estimating the size of the neighborhood U\, 0)-

We define p by the equation

A 8F1 aFl
_ S 0x dy | _(,_ 0\ (,_ 0\ _0nok
p(z,y,a,b,A) = det LOF OB | T (’\ oz )\’ " By 0y Oz
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By using (1) we find the following formula for p:

p(z,y,a,b,)) = A2 — (3F1 8F2> OF, OF, OF, OF,

oz "oy )t ar oy Oy oz

8G, (OH, OH, K  0Ky\
(ax (aﬂay)"’*(‘é?w—y)"’ A

+

= \?

090Gy 0Hy  0G, 0H; b

or 0y ox Oy

<8H1 OH, 0H,0Hy 0G,10K; 0G, 8K1) b2

+

ox Oy Oy Ox dr Oy Oz Oy

OH, 0K, 0H; 0K,  0Hy0K: 0H; 5‘K2> b3
ox Oy ox Oy oy Ox oy Ox

0K, 0Ky 0K, 8K2> bt

-

_|_

ox Oy Oy Oz
Therefore p has the form
oG
plonat ) =3 = (2 (0,0) + €loiant) - b) A+ i@, b 3)

We now define a map ¢ : U(y,,0) — R by the formula
(a,b) — q(a,b) = p(¥(a,b),a,b,—1).
We note that a point (a,b) is in the zero-set of ¢ if and only if ¥(a,b) is a fixed-point of F' and —1 is an
eigenvalue of DF at the fixed-point. In particular we have that
q(ao,0) = p(¥(ao,0), ap, 0, —1) = p(zo, Yo, a0, 0, ~1) =1 + (~1) = 0.
From the expression for p we see that

ala,h) = 1+ S (a(a,),0) + (n(a(a,b), (a,b), 5) — E(a(a, ), y(a,b), 0,) -

We find that

dq e
%(CLO,O) ~ 9a < oz (x(a,b),a)

2G4 oz 9G4
) = Tan (70 00) 5, (00, 0) % gy (7o o)

We want to apply the implicit function theorem to the equation ¢(a,b) = 0 to obtain a function a = ¥(b)
with ¢(0) = ag. In order to apply the theorem we must show that

2 2
B (0, 00) g (a0,0) + -2 (50, 00) 0,
At a fixed point on the line b = 0 we have z(a) = G1(z(a),a). We find
ox 8G1 ox 8G1
%a 8z da  da
At (x9,a0) we find

205 _ 96
da  Oa
SO
82G1 or 8 G1 1 8201 8G1 32

W(iro,ao)%(ao,o) Sadm ———(%0,a0) = zw(ﬂﬁo,ao)g(l‘o,ao) a0 —— (20, a0) # 0

from (Al) in the period doubling theorem. Now by the implicit function theorem there exists neigh-
borhoods Wy and Wy, with Wy, x Wy C Ulqy,0) and a function a = 1(b) with 9(0) = ao such that

q(3(b),b) = 0.
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The saddle-node bifurcations.
. a}'?1 8G1
Suppose F(zo, Yo, a0,0) = (zg,yo) with 8—x(x0,yo,ao,0) = %—(xo,ao) = 1 and that Gy has a

saddle-node bifurcation at (xo, ap) viewed as a one-dimensional system.
Let p = p(z,y,a,b,\) be as in (3). We define a map r : R* — R by the formula

(z,y,a,b) — r(z,y,a,b) = p(z,y,a,b,1).

oF
We note that r has a zero at (zo,yo,a0,0), and that ﬂ(x,y, a,b) has an eigenvalue 1 if and only if
"L"

(z,y,a,b) is in the zero-set of r, but r(z1,y1,a1,b1) = 0 does not imply M (z1,y1,a1,b1) = 0in (2). (3)
implies that r has the form
0G4

7"(37731,(1» b) =1- %(xaa) - E(x,y,a, b) b+ U(ﬂf,y,aab) - b.

The partial derivative of r with respect to = at (z,y,a,b) = (o, Yo, @0, 0) is given by

or 82G1 (JI a )
- = ——— (%0, 00)-
Oz (20,Y0,20,0) Oz

By (A3) we have

82G1 or
—5.36—2(1’0700) # 0 so %(mo,yo,ao,O) #0,

so the implicit function theorem implies that there exist neighborhoods Uy, 4,,0) of (%0, a0,0) and Vg,
and a function I' : U(yy 40,00 — Vizo With T'(30, ao,0) = 2o and r(T'(y, a,b),y,a,b) = 0.
Consider the map M in (2). We define a map N : Uy, 49,00 — R? by the formula

(ysa7 b) = N(y>a7 b) = M(F(yaa, b)ayaaa b)

We note that N (yo, a0, 0) = M(T'(yo, ao,0), ¥o, a0, 0) = M (o, Yo, a0,0) = 0. The Jacobi matrix of N with
respect to (y,a) is given by

ON; 0N oM, or n oM, oM, oT N oMy
ON | oy da | _ | Oz Oy Ay Oz Oa da
d(y,a) | ON2 ONz | = | OM, O 4 OM,  OM, oT' N M,
dy Oa oz Oy Oy Or Oa oa

We want to show that this matrix is non-singular at (yg, ag,0). Using the definition of M we find

oM OF oG

—a.’E—l(xO, yO;CLO,O) = E}];(x()ay()aaﬂyo) —1= a—xl(xo,ao) —-1=0
oM. oF

*871@0,?/0,@0,0) = gyl(wo,yo,ao,o) =0

OM- OF; oG

El‘(mo,yo,ao,o) = 8—;(560,%,&0,0) = %E(ﬂfo,ao) #0

OM.

8—;(3?0,%,@0,0) = %(x07y0,a0,0) -1=-1

Furthermore we have r(I'(y, a,b),v,a,b) = 0 so

war o
oz dy Oy
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or
Evaluating at (yo, ag,0) we see that %—(yo, ag,0) = 0. We find by the above that

oG
BN ( 0) 0 aal (113(), aO)
a7~ \Yo, Go, = )
a(y)a) -1 8_]\/:%
80 (y07a0a0)
so ON (Yo, ap,0) is non-singular si
a(y? ) Yo, o, -simgular since

ON e
det m(yo’amo) - a—a(wo,ao) #0.

Now, by the implicit function theorem there exist neighborhoods Zy of 0 and Z(y, 4,) and a map 7 :
Zo — Z(yy,a0) With ¥(0) = (yo,a0) and N((b),b) = 0. Define

¢=ma0y: Zy — Ly,

where g is the projection on the second component. Then for (b,a) € Graph(¢) there exists a non-
hyperbolic fixed point for F' near (zg,yo) with an eigenvalue 1.

The above may be formulated in the following theorem:

Theorem 12.1. Suppose F, y(z,y) = F(z,y,a,b) is in C"(R? x R2,R?) such that
Fa,bo(x’ y) = F("ana a, bO) = G(J;a a’)a

and F, , € Diff?(R?) for all b # by. If z — G1(z,a) has a saddle-node- or period doubling bifurcation at
(p,ap), (then G has a saddle-node- or period doubling bifurcation at (xp, yp, ap) where yp, = Ga(zp, ap)),
then there exist an e, > 0 and a C" function ¢ = ¢(b) defined in (by — €, bo + €p) With a, = ¢(bo) such
that Fy),, has a saddle-node- or period doubling bifurcation.
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