
ENUMERATIVE GEOMETRY FOR PLANE CUBIC CURVES 

WITH j-INVARIANT 0 IN CHARACTERISTIC 2 

ANDERS H0YER BERG 

A RSTRACT. Consider plane cubic CUI'VeS with j-invariant zero over an algebnica.lly 
closed field of characteristic 2. By blowing u.p the parameter space along the locus of 
the nonreduced curves we obtain a variety B of complete cubics. We then calculate 
the characteristic numbers for the family by intersecting divisors on B. We also obtain 
characteristic numbers for more specialized families, in particular the cuspidal cubics. 

1. Introduction. The problem of finding the characteristic numbers for plane cubic 
curves was originally solved by Maillard and Zeuthen in the early 1870s. It took 
more than a century until these numbers were rigorously confirmed. The articles by 
Kleiman and Speiser [7, 8, 9] and Aluffi [1, 2] give two different ways of attacking the 
problem. Kleiman and Speiser use the classical degeneration method. They specialize 
to degenerate families and use previously obtained results. Aluffis method is more 
direct. By a sequence of five blow-ups of P 9 he constructs a variety of complete 
cubics, and the characteristic numbers are obtained by intersecting certain divisors 
on this variety. These papers assume that the characteristic is different from 2 and 3. 
The only published work dealing with enumerative geometry over characteristic p is 
Vainsenchers "Conics in characteristic 2" [11]. 

In this paper we hope to fill i.."l some of the gap. ¥/e consider plane cubic curves 
with j-inva.riant zero over an algebraically closed field of characteristic 2. These curves 
are parametrized by P 8 , and the nonreduced curves are parametrized by the image 
L of the Segre embedding r: P 2 x P 2 --+ P 8 • To obtain the characteristic numbers 
No,{j for our family (the number of curves passing through a given points and tangent 
to {3 given lines when a+ {3 = 8) we need to intersect a point conditions and {3line 
conditions in P 8 and count the intersection points outside L. By blowing up P 8 along 
L we get a variety of complete cubics, and the characteristic numbers are now equal 
to the intersection numbers of the strict transforms of the point and line conditions. 
These numbers can be found by computing the total Segre class of the normal bundle 
of the inclusion L -+ P 8 • The cuspidal cubics are parametrized by a hypersurface 
of degree 3 in P 8 , so without too much more work we also find the characteristic 
numbers for the cuspidal cubics in characteristic 2. 

Most of the material in this paper is part of the authors cand.scient. thesis written 
under the guidance of R.Piene. It is a pleasure to thank R.Piene for proposing the 
problem and for many helpful suggestions. 

1 



ANDERS H0YER BERG 

2. Plane cubics in characteristic 2. In this and the next two sections we look 
at some elementary properties of plane cubic curves in characteristic 2. 

Proposition 2.1. Let C c P 2 be a nonsingular cubic given by 
F(x,y,z) = ax3 + by3 + cz3 + dxiJ + ex2:z + fxy2 + gy'lz + hxz2 + iyz2 + jxyz. Then 
the following are equivalent: 
(1) Cis projectively equivalent to the curve with equation x 3+ 1/+ z3= 0 
(2) j = 0 in the equation for C 
(3) C has Hasse-invariant 0 
(4) C has j-invariant 0 

Proof. If C ""' D (projective equivalence) and in = 0 then it is easy to verify that 
jc = 0, so we have (1) =? (2). (By jv we mean the coefficient of xyz in the equation 
for D) 
To prove (2)::::} (1) we need to know that C""' {x3 + y3+ z3 + txyz = 0} for some t. 
This is well known when the characteristic is 0. The proof in [3] also works in 
characteristic 2 provided we have at least two points of inflection, but this follows 
from [10], Theorem 9. By the argument used in the proof of (1) =? (2) we see that t 
must be zero, so we have (2)::::} {1) 
(2) {::} (3) is a special case of [6], IV Prop.4.21. 
(3) ¢:? (4) follows from [6], IV.4.23 (note to corollary). 0 

The cubics described in Proposition 2.1 we call j-curves. We next show that the 
cuspidal cubics are degenerate j-curves. First we need some lemmas. 

Lemma 2.2. Let C be a cubic with ic = 0. Let H be the matrix ( ~ { ~) . 
Then: e g c 
C is nonsingula.r ¢:? rk( H) = 3 
Cis singular and reduced {::} rk(H) = 2 
G is nonreduced {::} rk( H) = 1 

Proof. Note that F = xFx + yFy + zF&, so the singular locus is precisely the set of 
points (x, y, z) such that all the partial derivatives are zero, or equivalently: (x2 , y2 , z2) 

belongs to the nullspace of H. The lemma now follows by elementary linear alge­
bra. 0 

Lemma 2.3. Let C be a singular cubic with equation ax3+ ... + jxyz = 0. Then: 
Cis cuspidal (possibly degenerate) <==:} j = 0 in the equation for C 

Proof. Choose a B E PGL(2) which sends a singularity of G to (0, 0, 1). Let D = 
B (C) and introduce affine coordinates x' = ; , 'II = ~. The affine equation of D can 
be written as f(x',y') = 0. Let f =fa+ h+ h + /o where j, is homogeneous of degree 
i. Since D is singular at (0, 0) we have h = /o = 0 and h. = evx'2 + gvy'2 + jvx'y' 
is the equation of the tangent cone. D is cuspidal exactly when the tangent cone is 
a double line and that happens exactly when in = 0. Since ic = 0 <=>in = 0 the 
lemma follows. 0 
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Proposition 2.4. Let C c P~ be a cubic with equation ax3 + W+ ... + jxyz = 0. 
Then: C is cuspidal (possibly degenerate) <==> det H = j = 0 

Proof. If C is cuspida.l, then j = 0 by (2.3) and det H = 0 by (2.2). 
det H = j = 0 implies that Cis singular by (2.2) and cu.spidal by (2.3). D 

Let C be a. nondegenerate cuspidal cubic given by F(x, y, z) = ax3+ by3+ ... + jxyz. 
By (2.2) we have that rkH = 2. Then rk(cof(H)) = 1 so that nonzero rows (resp. 
columns) of cof( H) define the same point in P 2• 

( 
be + gi cd + ei dg + be ) 

cof(H) = cf + gh ac + eh ag + ef 
fi + bh ai + dh ab + df 

Let P be the point defined by the columns, and let Q be the point defined by the 
square root of the rows: If (a, (3, -y) -::/= (0, 0, 0) is a row, then Q = ( .ja, ..j"S,..rf). This 
is well defined since there is only one square root in characteristic 2. 

Before we proceed we need to make precise the notions of tangent and flex. A 
tangent is a line intersecting the curve with multiplicity at least two at a point (not 
necessarily nonsingular). If the touching point is nonsingular we call the tangent 
proper. A flex is a nonsingular point where the tangent intersects with at least 
multiplicity three. 

Proposition 2.5. Let C, P and Q be as above. Then Q is the cusp of C, and P 
is the only flex of C. Also P is a strange point, that is: every proper tangent of C 
contains P. 

Proof. Suppose Q = ( ...}bC + gi, .jed+ ei, ...}dg +be) is given by the first row of cofH. 
Remembering that detH = 0 we easily see that F:(Q) = F31 (Q) = Fz(Q) = 0 so Q is 
the cusp of C. Now the last part: The tangent at (Uo, u11 u2) E Cis given by 

(au~+ fu~ + hu~)x + (d~ + bu~ + iu~)y + (eu~ + gu~ + cu~)z = 0 

or equivalently (x y z)H(ug u~ u~)t = 0. We must show that this holds for 
(x, y, z) = P a column in cofH or a row in a<ljH. But this follows immediately 
from the identity (adjH)H = /detH = 0. 

To prove that P E C just note that F = (x y z)H(x2 y 2 z2)t and use the same 
argument. If the tangent at P meets the curve at another pointS then (since Pis a 
strange point) this tangent would be a bitangent which is impossible for cubics. This 
proves that P is a flex. The tangent at other nonsingular points all contain P so there 
cannot be more flexes. D 

3. The parameter space. The set of j-curves (including degenerate curves) are 
parametrized by P 8 when we to a point (a, b, c, .. , i) in P 8 associate the curve with 
equation ax3+by3+ ... +iyz2 • We have seen that the cuspidal cubics are parametrized 
by a hypersurface of degree 3 in P 8 . 
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Proposition 3.1. The cubics with cusp (:resp. flex) on a given line are parametrized 
by a 6-fold of degree 3 in P 8 • 

Proof. Assume the line is given by x = 0. By the first part of (2.5) we find the desired 
locus to be given by be+ gi = cf + gh = fi + bh = 0 which the oomputer program 
Macaulay tells us has degree 3 and codimension 2 in P 8 • The case with the flex is 
similar. 0 

Proposition 3.2. Let L c P 8 parametrize the nonreduced cubics. Then L is given 
by rkH = 1 , and equals the image of the Segre embedding r: P 2 x P 2 ---+ P 8 • 

Proof. That Lis given by rkH = 1 is immediate from (2.2). Hence Lis a determinan­
tal variety, and it is well known that such a variety is the image of a Segre embedding, 
in this case r: P 2 x P 2 ---+ P 8 • D 

4. The dual map. Let C be a nonreduced cubic given by F(x,y,z) = ax3 + 
brr+ ... + jxyz. We now want to find an equation for the dual curve C. Introduce 
affine coordinates x' = ; , y' = ~, and consider the affine curve C c A 2 given by 
f(x', y') = F(;, ~' 1) = 0. For each line {y' = mx' + t} c A 2 tangent to C we 
associate the point (m, t) E A2 • We need to find all such points. 

Substitute mx' + t for y' in the affine equation for C and obtain a polynomial 
g(x') = f(x', mx' + t). Now the line y' = mx' +tis a tangent exactly when g(x') has 
multiple roots, and that happens when the discriminant Ag(x') is zero. 

So the affine equation of C in A2 is Ag(x') = 0. In characteristic 2 the discriminant 
of ax3 + bx2 + ex+ d is ad+ be. (m, t) E A2 corresponds to (m, 1, t) E P2 so if we 
use (x, y, z) as homogeneous coordinates for P2 we obtain the following homogeneous 
equation for C: 

(be+ gi)x3 + (ac + eh)y3 + (ab + df)z3 + (cf + gh + ij)x2y 

+(fi + bh + gj)x2 z + (cd + ei + hj)x'Jl + (ai + dh + ej)y2z 

+(dg +be+ f j)xz2 + (ag + ef + dj)yz2 + j 2xyz = 0 

Restricting to the P 8 of j-curves we obtain the dual map d : P 8 -+ P8 associating to 
each j-curve (in fact each reduced curve) its dual. This map is given by 

(a,b,c, ... , i) ~ (bc+gi,ac+eh,ab+df,cf +gh,fi+bh,cd+ei, ai+dh, dg+be,ag+ef) 

5. Characteristic numbers. In this section, which is independent of the charac­
teristic of the base field k, we define the characteristic numbers and give their basic 
properties. Let p}d(d+3) parametrize all curves of degree d, and let pN ~ pjd(d+S) 

be a linear subspace. We will later study the P8 of j-curves inside the P 9 of all cubics. 

Definition. A point condition on pN is a hyperplane H parametrizing the curves 
containing a given point. A line condition is a hypersurface M parametrizing the 
curves tangent to a given line. 
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Let R c pN be a r-dimensional subvariety parametrizing a family of generically re­
duced curves. Suppose we have a points and /3lines in general position, with a+/3 = r. 
Let H, and M; be the corresponding point and line conditions on pN and let L c pN 
parametrize the nonreduced curves. 

Definition. We define the totaJ characteristic numbers for R to be: 

r a,/3 = L i(P, R. Hl ... Ho. Mt ... M/3) 
PePN\L 

that is the weightet number of :reduced curves passing through the a points and 
tangent to the {3 lines. 

The characteristic numbers for R are defined to be: 

Na,f3 = L i(P,R · H1 · · · Ha · M1 · · · Mf3) 
PeQ 

where Q = {x E pN : (singCz) n l; = 0 Yj}. (Cz is the curve parametrized by x, 
and l; is one of the {31ines.) Na,f3 counts the curves passing through the a points and 
properly tangent to the /3 lines. 

It is shown in [4, section 2] that these numbers are well defined and that the curves 
counted by a given characteristic number N a,/3 all appear with the same multiplicity 
m = pe, a power of the characteristic ( m = 1 in characteristic zero). 

Lemma 5.1. Suppose S c pN is an irreducible curve parametrizing generically 
irreducible curves, and let xES be a general point. Then there exist at most finitely 
many point conditions Hp tangent to Sat x. 

Proof. LetT be the tangent line to Sat x. Then: Hp is tangent to Sat x =? 

T c Hp => p E Cy Vy E T. Clearly only a finite number of such p can exist. 0 

Proposition 5.2. Suppose R c pN is a subvariety parametrizing a family of genreri­
cally irreducible curves. Then a general point condition will intersect R transversally 
(by transversal we always mean that the scheme theoretical intersection has no nonre­
duced components). 

Proof. Since the set of points p such that Hp does not have the required property 
is closed it is enough to show the existence of one H'P that has. Suppose that all 
point conditions intersect R in a nonreduced component. Then the union of these 
components will cover R. LetS c R be a general curve, and let xES be a general 
point. Since the set of point conditions is 2-dimensiona.l there will be infinitely many 
point conditions tangent to R at x. These will also be tangent to S, contradicting 
the lemma. 0 
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Proposition 5.3. Suppose R c pN is a subvariety parametrizing a family of generi­
cally irreducible curves. Then the characteristic numbers N a,fJ for R will count curves 
with a nondecreasing multiplicity as {3 increases. 

Proof. Let H11 ... , H 01 and M1, ... , MfJ be general point and line conditions. We know 
that the points in R n H1 n .. n Ha n M1 n .. n MfJ counted by Na.,fJ all appear with 
the same multiplicity m. If we remove one of the point conditions, then by (5.2) 
the components containing the above mentioned points will also have multiplicity m. 
When these components are intersected with a line condition we see that all the points 
in the new intersection must have multiplicity at least m. D 

Now suppose that R consists of singular curves and the general curve has exactly one 
singularity. Denote by R1 the curves singular on a given line l, and RP those with 
singularity at a given point p. 

Definition. Suppose o: + {3 = r - 1. Define the following numbers associated to the 
family R: 
r~.fJ =the total characteristic numbers for Rl 
N~.fJ = the characteristic numbers for R1 

Suppose o: + {3 = r - 2. Then define: 
N~.fJ = the characteristic numbers for RP 

6. The variety of complete j-curves. We will now construct the variety of 
complete j-curves parallel to the construction of complete conics in [11]. 

In section 4 we calculated the dual map d.: P 8 -+ P8 associating to each reduced 
curve C (with j = 0) its dual 6. Let B c P 8 x P8 be the closure of the graph of the 
dual map. Then B is the blow-up of P 8 in the ide.A.l (be+ gi, ac + eh, ... ; ag + ef). But 
this is the ideal of L (rkH = 1), soB is the blow-up of P 8 along L. We call B the 
variety of complete j-curves. 

Let E ~ B be the exeptional divisor, and denote by ii and M the strict transforms 
of point and line conditions on P 8 • fi and M will be called point and line conditions 
on B. 

Proposition 6.1. The intersection of all the line conditions on B is empty. 

Proof. Let (a, b, .. , i) x (a, b, .. , I) be coordinates on P 8 x P8 , and let 1r: B -+ P 8 

be the projection on the first factor. Let M c P 8 be the line condition be+ gi = 0 
(corresponding to the line X = 0), and let N c B be given by a = 0 (the inverse 
image of the pointcondition in P8 dual to the line condition M c P 8 ). On B\E we 
have: a= 0 <=>be+ gi = 0 so 1f-1(M\L) c N. Then M = 1f-1(M\L) c N since N 
is closed. N is the inverse image of a point condition on P8 , and the intersection of 
these is empty. Since M c Nit follows that the intersection of the line conditions on 
B is also empty. 0 
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Proposition 6.2. Suppose R c P 8 is a subvariety parametrizing a family of generi­
cally irreducible curves. Then the total characteristic numbers for R are given by 

Proof. Let H 11 ... , Ha and M1, ... , M fJ be general point and line conditions on P 8 . 

Since 1r: B ---+ P 8 restricts to an isomorphism 1r IB\E: B\E~P8\L it will be 
sufficient to show that R n til n .. n iLJr n M1 n .. n MfJ does not intersect E. Since 
the general curve in R is reduced we can assume that dim(RnE) ~ r -1. The result 
follows if we can show that a general Jj h1tersects a given irreducible subv-ariety 
V c B properly. (The case with the point conditions ii is simpler.) The set {l E P2 : 

V c .M,} is dosed, and by (6.1) this set is not all of P2 • It follows that the general 
line condition does not contain V, so the intersection is proper. 0 

1. An intersection formula. This section contains the key formula for calculating 
the characteristic numbers. 

Proposition 7 .1. Let L c pn be a nonsingular variety of dimension l, denote by i 
the inclusion, N its normal bundle, and 1r : B ---+ pn the blow up of pn along L. 
Let E be the exceptional divisor, and let H c P" be a hyperplane not containing L. 
Then: 

L[H]0 [E]fJ = 1 s(N)(i*[H])0 (-l)fJ-1 

where a + {3 = n and {3 ~ 1 

Proof. Denote by j the inclusion of E in B, and let p be the restriction of 1r to E. By 
definition of Segre classes [5, section 3.1] we have si(N) = P>~<(c1 (0E(l))n+i-Z-l ), and 
since the ideal sheaf of E in B is OB(l) it follows that j*[E] = c1 (0E(-1)). Also, 
since L ~ H we have 1r*[H] = [H] so that j*[H] = j*1r*[H] = p*i*[H]. 

l[iJ]a[E]fi = Lj*([Ht[E]fi-1) = L(j*[iJ])a(j*[E])fl-1 

= [ p.((j*[iJ])a(j*[E])fl-1) = [ p.((p*i*[H])a(j*[E])fi-1) 

= [ (i*[H]yl<p.((j*[E])fi-1 ) by the projection formula 

= [ (i*[H])0 p.(cl(OE(-l))fl-l) = [ i*[H]0 p.(c1(0E(l))fJ-1)(-l)fi-1 

= [ (i*[H]) 0 BfJ+l-n(N)( -l)fi-l = [ s(N)(i*[H]) 0 ( -1)fJ-l 0 
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8. Characteristic numbers for j-curves. By the results of section 6 we know 
that the characteristic numbers for j-curves are given by No,P = f8 [H] 0 [M].B with 
a+ /3 = 8. First we calculate the degree of M. Without loss of generality we can 
assume that lis the line given by x = 0. A curve C given by ax3+b11+ ... +iyz2 = 0 is 
tangent to l exactly when try3 + gy'l z + iyz2 + cz3 has multiple roots, and that happens 
exactly when the discriminant be + gi is zero. So Mz is given by be + gi = 0 and has 
degree 2. Also note that the singular locus of Mz is given by b = c = g = i = 0, that 
is, the cubics having las a component. In particular Mg is nonsingular along L. 

Lemma 8.1. In the intersection ring A(B) we have: [M] = 2[H]- [E] 

Prooj. We know that degM = 2, Lis nonsingular and is contained in M with multi­
plicity 1. Hence [M] = 1r* [M] - [E] = 1r* (2H] - [E] = 2[H] - [E]. 
In the last equality we have used that L fJ;. H so that ii = 1r-1 H. D 

This reduces our problem to calculate the numbers f8 [H] 0 [E]P with a+ /3 = 8. 
By (7.1) we have 

l [H]0 [E].B = [ s(N)(i*[H]) 0 ( -l)P-1 

where N is the normal bundle of the Segre embedding r : L ~ P 2 x P 2 ~ P 8 and 
/3 2:: 1. The Segre class of this normal bundle is not hard to calculate. By [5], Example 
3.2.15, we find that1 

.N) = c1 + h1)3 (1 + h2r~ 
s( ' (1 + h1 + h2)i0 

= 1-6h1- 6h2 + 21h~ + 2lh~ + 45h1h2 ~ 189h~h2 -189hlh~ + 927hih~ 

where h, = c1 (pri Opa (1)) and pri: P2 x P2 --+ P2 is the projection on the ith factor. 

Proposition 8.2. Let Ip = J8 [H] 0 [E].B. Then 

/o = 1 I3 = 0 Is = -132 
It = 0 !.4 = -6 h = -378 
/2 = 0 Is =-36 Is= -927 

Proof. Io = f8 [H] 8 = Ns,o, which is clearly 1. 
For /3 2:: 1 we have 

1 Note the mistake on top of page 61 in [5]. c(N) should be a(N) or the formula has to be inverted. 
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The rest is simple calculation. For example 

Ia = - [ (1 - 6h1 - 6h2 + 21h~ + 2lh~ + 45h1h2)(h~ + ~ + 2h1h2) 

=- [ (21 +21 +oo)Mh~ = -132 

We have used h~ = 0 and JL h~~ = 1 0 

Proposition 8.3. The characteristic numbers for j-curves are: 

Ns,o = 1 Ns,3 = 8 N2,s - 4 
N1,1 = 2 N4,4 = 10 N1.1 = 2 
Na,2 = 4 N3,s = 8 No,s = 1 

and all the numbers above count curves with multiplicity 1. 

Proof. We use (8.1) and the numbers from (8.2). For example: 

N3,s = l [Hf~(M)5 = l [H]3 (2[H] - [E])5 

= l32[H]8 + 10[H]4 [E]4 - [H]3 [E]5 = 32 + 10 · ( -6) - ( -36) = 8 

Since the last number1 No,s, clearly counts curves with multiplicity 1, it follows from 
(5.3) that all the other numbers will also count curves with multiplicity 1. D 

9. Cubics with cusp at a given point. Let P c P 8 parametrize curves v.rith cusp 
at a given point. If this point is (0, 0, 1) we see that P is given by c = h = i = 0, so 
P ~ P 5• We now wish to calculate the characteristic numbers for P: 

(In the last expression H and M are conditions on P.) 

Proposition 9.1. P is the blow up of P along L' = L n P, and L' is the image of 
the Segre embedding r: P 2 x p 1 ---+ ps ~ p. 

Proof. The first assertion follows from the theory of blow-ups. Suppose P is given by 
c = h = i = 0 as above. Then L' c P 8 is given by 

So L' c P 5 is a determinantal variety and equals the image of the Segre embedding 
r: p2x pl---+ ps. D 
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The rest of this section is analogous to the calculation of the characteristic numbers 
for j-curves. We just give the results: 

Let N be the normal bundle of r: P 2 x P 1 -+ P 5 • Then: 

s(N) = 1 - 3hl - 4h2 + 6h~ + l8h1h2 - 4Bh~h2. 

Let TtJ = f_p[H] 01 [E]~. As in (8.2) we find that: 

To= 1 Ts = -10 
T1 = 0 T4 = -24 
T2 =-3 Ts = -48 

As in (8.1) we have [M] = 2[H]- [E] in A(P). 

Proposition 9.2. The characteristic numbers for P are: 

Ns,o = 1 N2,3 = 0 
N4,1 = 2 N1,4 = 0 
N3 2 = 1 No s = 0 0 

' ' 

10. Characteristic numbers for cuspidal cubics. Our aim in this section is to 
make a complete list of the numbers r o.,~, Na,fJ, r~.fJ' N!,fJ and N!,fJ associated to 
the cuspidal cubics. 

Let K ~ P 8 parametrize the cuspidal cubics. From (2.4) we know that K is given 
by det H = 0 and has degree 3. By computing the partial derivatives of det H we see 
that the singular locus of K is exactly L. Let m be the multiplicity of K along L. As 
in (8.1), we see that [k] = 3[H]- m[E] in A(B), where k is the strict transform of 
K. Also, by direct computation or using Macaulay we find that K is nonsingular. 

Lemma 10.1. The multiplicity m of K along L is 2. 

Prooj. No cuspidal cubic can be tangent to 5 given lines in general position (each 
tangent must contain either the cusp or the flex). It follows that r2,5 = 0. But 

r2,s = L(K][H]2 [M]5 = k (3[H]- m[E])[H]2(2[H]- [E])5 

= 96/o + (30 + 40m)/4- (3 + lOm)Is + mls = 24- 12m 

We have used the numbers I~ from (8.2). It follows that m = 2. 0 

Proposition 10.2. The total characteristic numbers for cuspida.l cubics are: 

r1,o = 3 r3,4 = 6 
r 6,1 = 6 r 2,s = o 
rs,2 = 12 r1,6 = 0 
r4,3 = 12 ro,7 = 0 

Proof. The calculation goes as in the lemma. For example 

r4,s = l[k][H]4[M]3 = l (3[ii]- m[E])[ii]4(2[H]- [E])3 = 24/0 + 214 = 12 o 
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Let M be aline condition on K. Then M has two components, F and G, where F 
parametrizes the curves properly tangent to the line and G the curves with the cusp 
on the line. 

Lemma 10.3. In the intersection ring A(K) we have: 
(1) [GJ3 = [F]3 = 0 
(2) [P] = [Gj2 
(3) [MJ = [F] + [G] 
Proof. (1) The intersection of three general G' sis obviously empty outside E. Since 
the general line condition on k, and in particular G, intersects every subvariety prop­
erly (see the proof of 6.2), there cannot be any intersection inside E (the dimension 
will be too small). TrJs shows that [GJ3 = 0, and similarily we have [.Fr~ = 0. 
(2) [P] = [G] 2 follows if we can show that two G' s intersect transversally outside 
E (as above the intersection cannot have any components inside E), or equivalently 
that two G' s intersect transversally outside L. But for this it is sufficient to show 
that M1 n M2 n K is transversal for points in G1 n G2 ( G;, ~ Mi n K) where M1 

and M2 are line conditions on P 8 corresponding to lines lt and 12 • Without loss of 
generality we can assume that lt and l2 are given by x = 0 and y = 0 respectively. 
As in section 8 we find that Mt and M2 are given by be + gi = 0 and ac + eh = 0. 
It is now easy to calculate the tangent planes for points in G1 n G2 outside L (these 
points satisfy c = h = i = 0), and we find these planes to intersect transversally, so 
we have [P] = [G]2 . 

(3) [M] = [F] + [G] follows since M = F U G in K. 0 

Lemma 10.4. The following relations hold: 

r a,fJ = Na,fJ + {3N!,fJ-l + (fJN!,fJ-2 
nl _ f,rl + {3N'P 
.1.. a,{:J - va,{J a,{J-1 

Proof. This is simple calculation using (10.3) and that P is the condition of being 
properly tangent. For example: 

r a,{3 = L[K](H] 01 [M]{:J = k[H] 0 [M]{:J = LrnrJt([F] + [G]) 13 

= k[fi]a([P]tJ + !3[P]tJ-l[G] + (~) [P]f3-2[G]2) 

= Na,f3 + {jN~.fJ-1 + (~) N!,fJ-2 0 

Now look at r~.f3 which is defined by 

r~.fJ = I: i(P, G · H1 · · · Ha · M1 · · · M13) with o: + ,8 = 6 
PeP8 \L 

When a ?:: 5 only reduced curves will appear in the intersection and we can use Bezout: 

r6o = 3 fst = 6 , ' 
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Since [F]3 = [GJ3 = 0 we have that 

Na,/3 = 0 when {3 > 3 
r~./3 = 0 when {3 > 4 
N~,/3 = 0 when {3 > 3 

We now have enough information to fill in the table below. Start by filling in the 
numbers r o,/3 and N!,/3 already calculated. Then add all the zeros and the two 
numbers r 6,0 and r 5 ,1 from above. The table is then completed by repeatedly using 
(10.4). 

Proposition 10.5. The following table summarizes the results of this section, and 
all the numbers count curves with multiplicity 1. 

a,{3 I'a,/3 No,/3 r~ . .e-1 N~ • .B-1 N!,/3-2 
7,0 3 3 
6,1 6 3 3 3 
5,2 12 1 6 5 1 
4,3 12 0 6 2 2 
3,4 6 0 3 0 1 
2,5 0 0 0 0 0 
1,6 0 0 0 0 0 
0,7 0 0 0 0 0 

Proof. We only need to show the last part. By (5.3) this holds for Na,,8 and N~.f3· 
If we can show that Nl 2 count two different curves the proposition will be true for 
N~,/3 and then by (10.4) also for r o,/3 and r~.f3· 

Nj 2 cou.'1ts the curves passing through 4 given points, with the flex at another 
given 'point p (the intersection of the two lines) and with cusp on a given line l. The 
curves counted by N! 1 have the same description with cusp and flex interchanged. 
Suppose p = (0, 0, 1) ~d lis given by z = 0. Let C be a curve counted by Nf 1 • Let H 

' be its matrix and let ct be the cuspidal cubic given by Ht. Since cof(Ht) = ( cof H)t 
it follows from (2.5) that ct has a flex at panda cusp on l. So ct is counted by N! 2 . 

Since N! 1 counts different curves then also Nj 2 must count different curves. D ' 
' ' 
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