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ABSTRACT. The fourth higher algebraic K-group of the rational integers is the trivial 
group. We prove this using a. convergence result for the spectrum level rank filtration 
in algebraic K-theory, combined with previous calculations of the third stage of this 
filtration. 

We prove the following 

Theorem. K4 (Z) = 0. 

1. INTRODUCTION 

This is in agreement with the value predicted by the Lichtenbaum-Quillen con­
jectures [Li], [Qu3), as extended to the two-primary part [Dw-Fr], [Mit3]. Pre­
viously the group was known to be a finite two- and three-torsion group, with 
three-torsion 0 or Z/3 [Qu2], [Le-Sz2], [Sou]. Our result supplements the known 
computations K 1 (Z) "'Z/2, K 2 (Z) ~ Z/2 [Mil], and K 3 (Z) '""Z/48 [Le-Szl]. 

Our argument relies on two preceding papers by the author. In [Rol] we con­
structed a spectrum level rank filtration {F~cK(R)}k of spectra approximating the 
algebraic K-theory spectrum K(R) of a ring R, for suitable R. Roughly, the kth 
stage of the filtration is the prespectrum built from the category of free finitely 
generated All-modules of rank less than or equal to kc 

In [Ro2] (Theorem 1.1) we calculated the spectrum homology of the third stage 
of this filtration in the case R = Z, obtaining 

where (#14) is a group of order dividing four. 
In [Rol] (Conjecture 12.3) we conjectured that each inclusion F~c- 1 K(R) -> 

F~cK(R) is (2k- 3)-connected for suitable R. In particular F3K(Z) -> K(Z) would 
be five-connected, and the spectrum homology computation would imply K4(Z) = 
0 and K5 (Z) ~ Z EB ( #18), where ( #18) is a group of order dividing eight. In 
Section 4 of this paper we prove enough of this connectivity conjecture to conclude 
that F3K(Z) -> K(Z) is four-connected. Hence the spectrum homology of K(Z) 
begins (Z, O, O, Z/2, 0, ... ). 

A complete calculation of K*(Z) through degree four then follows using the 
Atiyah-Hirzebruch spectral sequence for stable homotopy. The inputs needed to 
determine the differentials and extensions in this spectral sequence through total 
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degree four are the fact that the image of the J-homomorphism injects into K*(Z) 
in low degrees [Qu4], [Mit2], and a comparison with Bokstedt's J K(Z) [Bo]. The 
argument is described in Section 2 of this paper. 

In Section 3 we recall some needed constructions from [Rol]. In Section 5 we 
indicate some applications. 

We hope that our result will assist a sharper evaluation of the plausibility of the 
two-primary Lichtenbaum-Quillen conjectures on the values of the higher algebraic 
K -groups of rings of integers in a number field. 

2. K-THEORY OF THE INTEGERS 

In this section we show how to prove the theorem K4(Z) = 0 by following the 
outline from the introduction. First we recall the rank filtration and stable build­
ings from [Rol], and formulate the connectivity conjecture. Next we show how 
Propositions 1, 2, and 3 of Section 4 about the connectivity of stable buildings for 
the rational numbers imply vanishing results in the spectrum homology spectral 
sequence associated to the rank filtration of K(Z). The outcome is that the inclu­
sion F3K(Z) -+ K(Z) is at least four-connected. Next we recall from [Ro2] the 
computation of H:pec(F3 K(Z)), which determines the spectrum homology of K(Z) 
through degree four. Finally we set up the Atiyah-Hirzebruch spectral sequence in 
stable homotopy for K(Z), and evaluate it through total degree four by comparison 
with the analogous spectral sequence for Bokstedt's J K(Z). 

Recall from [Ro1], Section 3 that the spectrum level rank filtration {FkK(R)h 
is defined for rings R satisfying the strong invariant dimension property [Mitl] that 
Ri split injects into Ri only if i :::; j. This filtration exhausts the free K- theory 
spectrum of R, i.e. that built from the category of free finitely generated R-modules. 
We will denote this spectrum K(R) here, suppressing any extra contribution in 
K 0 (R) from projective modules, which is not present for R = Z. 

Roughly, using Waldhausen's 5.-construction [Wa) we can take a model for the 
spectrum K(R) with nth space the realization of a simplicial category with objects 
certain n-dimensional cubical diagrams of free R-modules. Then the kth prespec­
trum FkK(Z) is the subspectrum of K(Z) with nth space the realization of the full 
simplicial subcategory of diagrams involving only modules of rank k or less. 

In [Rol), Proposition 3.8 we proved that the kth subquotient FkK(R)/ Fk_ 1 K(R) 
is equivalent to the suspension spectrum on the reduced homotopy orbit space of a 
GLk(R)-space D(Rk) called the rank k stable building. In particular, Fk_ 1 K(R) -+ 

FkK(R) is at least as highly connected as D(Rk). We will recall a precise definition 
of the stable building in Section 3 of this paper. 

By [Rol ], Theorem 12.1, the homology of D(Rk) is concentrated in degrees 
0 through (2k - 2), and the connectivity Conjecture 12.3 asserts that D(Rk) is 
( 2k - 3 )-connected for R local or a Euclidean domain, hence of the homotopy type 
of a wedge of (2k- 2)-spheres. 

We now turn to applying the results of Section 4 of this paper. They provide 
connectivity results for the stable buildings for fields, which we will use in the case 
R = Q, the rational numbers. 
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As a corollary to Proposition 1 we will note that D(Rk) is (k- 2)-connected for 
rings R such that the Tits building B(Rk) is homotopy equivalent to a wedge of 
(k- 2)-spheres. This places the spectrum homology spectral sequence associated 
to the rank filtration 

in the first quadrant. 
In Proposition 2 we will show that if R is a field, and D(Rk) is (k + c- 2)­

connected for some 1 ::; c::; k, then D(Rk+l) is (k + c- 1)-connected. The proof 
exploits the Solomon-Tits decomposition of B(Rk) into a wedge of spheres, and 
[Ro1], Proposition 11.12. This appears as rows of zero groups extending to the 
right in the spectrum homology spectral sequence. 

Lastly we will prove in Proposition 3 that the connectivity conjecture holds for 
R a field, when k = 1, 2 or 3. The argument in the rank three case uses an explicit 
chain complex from [Ro1], Lemma 15.3 for computing the homology of D(R3 ). 

Now note that extension of scalars induces a homeomorphism D( 0}) I"V D( pk) 
when Op is the ring of algebraic integers in a number field F. This will be clear 
once we are given the precise definition of the stable building, as extension of scalars 
induces a bijection between direct sum decompositions into free summands for 0} 
and Fk. 

Thus the conclusions that D( Q?) is one-connected and D( Qk) is k-connected for 
k 2:: 3 imply the same connectivity results for D('Z} ), and hence for the inclusions 
Fk-1 K(Z) -t FkK(Z). 

In [Ro2], Proof of Theorem 1.1, we computed the spectrum homology of the first 
three subquotients of the rank filtration of K(Z), and the d1-differentials terminat­
ing below total degree five in the associated spectral sequence. Combining this with 
our current vanishing results gives the following E 1-term, where the d1-differentials 
originating in bidegrees (2, 4) and (2, 5) are unknovm. 

5 

4 

3 

2 

1 

0 

Z/2 +-

0 

Z/2 +-

0 

Z/2 +-

z 
0 

r- (Z/2)3 

(Z/2)2 

r-- (Z/2)2 +-

Z/6 +-

r-- Z/2 

0 

1 

Z/2 ? ? ? 

Z/2 ? ? ? 

- 7l ? ? ? 

- Z/3 ? ? ? 

0 0 0 0 

0 0 0 0 

2 3 4 5 

The group Z/2 in bidegree (2, 5) was not given in the abovementioned proof, but 
follows immediately from the diagram preceeding Lemma 6.10 of [Ro2], and that 
lemma. 

Hence H;pec(K(Z)) begins (Z,O,O,Z/2,0,ZEB?, ... ) in view of Borel's rational 
result [Bor). Therefore the Atiyah-Hirzebruch spectral sequence 
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looks like : 
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Z/2 

Z/2 

z 
0 

0 

0 

0 

0 

0 

0 

0 

1 

JOHN ROGNES 

0 Z/2 Z/2 ? 

0 0 0 0 

0 0 0 0 

0 Z/2 Z/2 ? 

0 Z/2 Z/2 ? 

0 Z/2 Z/2 ? 

0 Z/2 0 ZEB? 

2 3 4 5 

The terms in the zeroth column through degree five survive toE= as the image 
of J injects into K*(Z) below degree eight [Qu4], [Mit2]. 

To establish the first nonzero differential d2 : n;pec(K(Z)) --+ H?ec(K(Z); 1rf) 
we compare K(Z) with Bokstedt's spectrum J K(Z). The non-triviality of the 
extension in K 3(Z) follows as a by-product. At the prime two, J K(Z) is defined 
in [Bo] as the homotopy fiber of the composite 

,p3 -1 c 
kO bspin --- bsu 

where ,P3 is the Adams operation and c is complexification. One easily finds 
J K*(Z) '"'"' (Z, Z/2, Z/2, Z/16, 0, Z, ... ) modulo odd torsion, and H:pec( J K(Z)) ~ 
(Z, 0, 0, Z/2, 0, Z, ... ). 

There is a canonical map cp: K(Z)~ --+ J K(Z)~ of two-completed [Bo-Ka] spec­
tra, and Bokstedt constructed a section of two-completed looped underlying spaces 

f: OJK(Z)~--+ OK(Z)~ 

with n«P of~ 1. Hence J K3(Z) ~ Z/16 splits off K 3 (Z) and we recover the result 
K3(Z) ""'Z/48 of [Le-Szl]. Thus <I> is at least four-connected. 

Let 77 denote the Hop£ map S 3 --+ S 2 or its stable class in 1rf, and let .A de­
note a generator of K 3(Z) or its image under the Hurewicz homomorphism in 
H?ec(K(Z)). Then .A'= 1r3(cp)(.A) generates JK3(Z), and TJ ·.A'= 0. As multipli­
cation by 77 is well defined on 1r2 , we obtain 77 ·.A = 77 · 1r2 (!)(.A') = 1r3 (f)( 77 ·A') = 0. 
Hence the class TJ • .A E Ei 1 cannot survive to E= . 

• 
Let us remark that <I> thus is an isomorphism on homotopy through degree four, 

and split surjective in degree five, hence is at least five-connected. 
This concludes the proof of our theorem. 

3. THE STABLE BUILDINGS 

In this section we shall review the stable buildings and standard apartments 
from [Ro1 J, as well as the poset (partially ordered set) filtration on these spaces. 

We recall the standard apartment first. Let [q] = {0 < 1 < · · · < q} be a linearly 
ordered set with (q + 1) elements, taken as an object of the simplex category !:l. 
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Equivalently we view [q] as a category with (q + 1) objects and a unique morphism 
from i to j whenever i ::::; j. Let [q]n be its n-fold cartesian product with itself. 
This category can be depicted as ann-dimensional cubical diagram, with sides of 
length q. We also view [q]n as a partially ordered set (poset), with the product 
ordering. 

We have chosen to name the objects of [q]n .sites, calling the maximal object 
( q, ... , q) the top site, and the set of sites ( i 1 , ... , in) with some is = 0 the bottom 
faces. 

Then the standard apartment A~ (denoted An,k in [Roll) is the simplicial set 
with q-simplices the ordered k-tuples of sites (Pl, ... ,pk) in (q]n, identified to a base 
point if some p 8 lies in the bottom faces. Such a simplex u is identified with the 
diagram on [q]n of subsets of {1, ... , k} (i.e. a functor from [q]n to the category of 
subsets of {l, ... ,k} and inclusions) which to each site p = (i1 , ... ,in) associates 
the set of sin {1, ... , k} with p 8 ::::; pin the product ordering on [q]n. 

Necessarily this diagram has empty sets along the bottom faces, and the full set 
{1, ... , k} at the top site. Note that not all diagrams on [q]n of subsets of {1, ... , k} 
appear as q-simplices - only those which qualify as n-fold iterated sequences of 
cofibrations in the category of finite sets, in the terminology of [Wa]. Those dia­
grams that do appear characterize the k-tuple (p1 , ... ,pk) they come from, asPs 

will be the minimal site in [q]n for which s is an element of the associated subset 
of {1, ... , k}. 

We call (Ph ... ,pk) the pick .sites of the simplex, and the partial ordering this 
set inherits as a subset of [q]n is the poset associated to this simplex. When given 
this numbering of the pick sites, the associated poset can be viewed as a partial 
ordering on the abstract set {1, ... , k }, and is then denoted w17 • 

We think of a poset as a category with objects the underlying set, and at most 
one morphism between any two objects. In particular we do not insist on reflexivity, 
i.e. there may be distinct elements in the poset, each less than or equal to the other. 

The ith simplicial face map di of Ak' deletes from the diagram all those sites 
where some coordinate is equal to i, when i > 0. The zeroth face map is special, 
but is characterized by sending nondegenerate simplices to the base point, together 
with the simplicial identities. The poset associated to diu is at least as strong as 
that associated to u, i.e. can be obtained from w17 by possibly adjoining some new 
relations. 

The jth simplicial degeneracy map duplicates all those sites where some coordi­
nate is equal to j. Phrased differently, in each pick site Ps = ( i 1 , ••• , i1c) of a simplex 
(PI, ... , Pk) every coordinate greater than j is incremented by one. A degeneracy 
does not alter the poset associated to a simplex. 

We can filter the standard apartment by the posets associated to the simplices. 
Given a partial ordering w on {1, ... , k }, let FwAk' ~ Ak' be the subcomplex of 
simplices whose associated poset is at least as strong as w. This is the poset filtration 
on the standard apartment. 

We now give a description of then-dimensional building Dn(Rk), which stably 
approximates then-fold suspension of the stable building D(Rk). 

Then-dimensional building Dn(Rk) is a simplicial set with q-simplices certain n­
dimensional cubical diagrams of side length q in the category of free submodules of 
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Rk and inclusions. We view such a diagram as a functor from [q]n to this category. 
The diagrams which occur are the ones appearing through the following con­

struction : Let g E GLk(R) be an invertible matrix, with columns (91, ... ,gk) 
forming an R-basis for Rk. The matrix g determines a functor from subsets of 
{1, ... , k} to submodules of Rk by taking a subset I ~ {1, ... , k} to the free R­
module g · R 1 ~ Rk generated by the 9s E Rk with s E I. Left composition with 
this functor maps a q-simplex u of the standard apartment Ak' to a q-simplex gu 
of Dn(Rk). 

Note that for a simplex in Dn(Rk), the R-module occurring at any site is a free 
direct summand of Rk, with free complementary summand. Also note that the 
choice of a common set of basis elements (g1 , ••• ,gk) for the submodules of Rk 
occurring in a simplex is not part of the structure. 

The simplicial face and degeneracy maps in nn(Rk) are defined by deletions and 
repetitions, as for the standard apartment. A simplex will have zero modules along 
the bottom faces, and a copy of Rk at the top site. 

The reader can equate the definition we have given here with Definition 3.9 of 
[Ro1], using Lemma 5.7 and Proposition 6.4 of that paper. 

The pick sites of a simplex u in Dn(Rk) are the same as those of any simplex in 
Ak' mapping to it, but now as an unordered set. This is because the ordering of a 
common R-basis for the modules of u is not well defined. If we are given a choice 
of such an ordered basis (g1 , ... ,gk), the sth pick site p 8 is the minimal site where 
9s is an element of the submodule appearing there. 

Chosing a numbering of the k pick sites of a simplex u, the partial ordering 
they inherit from [q]n induces a partial ordering on {1, ... , k }, which is well defined 
up to isomorphism, i.e. up to permutation of the underlying set. We denote this 
isomorphism class [wu). 

There is a poset filtration on the n-dimensional building, now indexed by iso­
morphism classes of partial orderings on {1, ... , k }. Let F[w]Dn(Rk) ~ nn(Rk) be 
the subcomplex of simplices with associated poset at least as strong as w, up to 
isomorphism. 

We now turn to the stable buildings. 

The standard apartment Ak' is included in nn(Rk) by the embedding induced 
by the identity matrix in GLk(R), i.e. taking a subset of {l, ... ,k} to the free 
R-module it generates, viewed as a sum of coordinate axes in Rk. We call such 
modules axial submodules. The translated subcomplexes g · Ak' of Ak' in nn(Rk), 
where g E GLk(R) acts through the induced action on submodules of Rk, are called 
the apartments in then-dimensional building. It is obvious from our definition that 
the apartments cover nn(Rk). 

By analyzing the connectivity of the iterated intersections in this covering, we 
proved in [Ro1], Sections 10 and 14, that then-dimensional building is stably and 
naturally homotopy equivalent to the join of an n-sphere and the following complex : 

Let 'IJ- 1 D(Rk) be the complex with q-simplices the (q + 1)-tuples {M0 , ••• , Mq} 
of proper nontrivial submodules of Rk having a common R-basis, i.e. there exists 
an R-basis B for Rk for which each M 8 has as subset of B as R-basis. 

We define the stable building of rank k, D(Rk) to be the suspension of the 
complex above, i.e. the join with a zero-sphere. Up to suspensions, the stable 
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building should be viewed as the nerve of the covering of Dn(Rk) by apartmentso 
We can associate a poset up to isomorphism to each simplex of :r;-l D(Rk) as 

follows : Let {M0, 0 0., Mq} be a simplex of :r;-I D(Rk), with M 8 =go R1• for some 
] 8 C {1, 0 •• , k} for all s, and a fixed g E GLk(R)o There is then a unique strongest 
partial ordering w on {1, 0 •• , k} for which these subsets ! 8 are convex, i.eo closed 
under passing to predecessors. Its isomorphism class is well defined irrespective of 
the choice of basis, and is the poset associated to { Mo, o .. , Mq} o 

There is also a &table apartment of rank k, Ak, which is the suspension of the 
sub complex of :r;-l D( Rk) of simplices { M0, ... , Mq} where all the M 8 are axialo 

As above we get a poset filtration {F[wJD(Rk)} of D(Rk), indexed by isomor­
phism classes of partial orderings on {1, ... ,k}, and a po&et filtration {FwAk}k of 
Ak. These filtrations are compatible with the poset filtrations on Ak' and Dn(Rk), 
as F[wJD(Rk) may be viewed as the nerve ofthe covering of .fiwJDn(Rk) by GLk(R)­
translates of FwA, up to suspensions. 

For a fixed rank k, the standard apartments {Ak'}n and buildings {Dn(Rk)}n 
assemble into prespectra ([Ro1], Lemma 3.3), which are stably homotopy equivalent 
to the suspension spectra on Ak and D(Rk) respectively ([Ro1], Theorem l0o9). 
The spectrum structure maps are compatible with all the poset filtrationso Finally, 
both the inclusion of the standard apartment into the n-dimensional building, and 
the stable homotopy equivalences just mentioned, are compatible with the poset 
filtrations. 

This ends our review of terminology from [Ro1]. 

4o CONNECTIVITY RESULTS 

In this section we shall introduce a coarser filtration on the stable building than 
the poset filtration, by only counting the number of components of the posets 
appearing. We relate it to Tits buildings to prove Propositions 1, 2 and 3 below, 
which were used in Section 2. 

Let cDn(Rk) be the union of the F[w]Dn(Rk) over the posets w with at most c 
components, i.e. whose realization viewed as a category has at most c path com­
ponents. Let c Dn(Rk) = cDn(Rk)J c-1Dn(Rk) be the filtration subquotient of 
simplices with associated poset having precisely c componentso 

Similarly, write c D(Rk) = cD(Rk)/ c-1D(Rk) for the filtration subquotient of 
simplices in D(Rk) whose associated poset has exactly c components, and cAk = 
cAk' / c-lAk and cAk = cAk/ c-lAk for the corresponding apartment filtration sub­
quotients. 

Two objects in a poset are said to be comparable if there is a morphism from 
one to the other. We say that a poset is it linear if any two of its objects are 
comparable, and a poset is componentwi&e linear if each component forms a linear 
subposet. Note that among the partial orderings on {1, 2, ... , k} with precisely c 
components, the componentwise linear ones form a convex subset, when ordered by 
decreasing strength. 

Assume R is such that the Tits building B( Rk) is homotopy equivalent to a 
wedge V S2k- 2 of (2k - 2)-spheres. This hypothesis is satisfied if R is a field [Sol], 
or of the form Zjpn [Ro3], or a ring of integers in a number field. 
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Let ~B(Rk) denote the suspended Tits building, obtained as the simplicial set 
with q-simplices 0 C V0 ~ V1 ~ • · • ~ Vq ~ Rk, identified to the base point when 
Vq =f. Rk. We will use similar notation when replacing Rk with another finitely 
generated free R-module. 

Proposition 1. There is a natural chain of 2n-connected maps inducing a 2n­
equivalence 

where the wedge sum is over unordered sets {V17 ••• , Vc} of free nontrivial submod­
ules of Rk with EBs V8 = Rk. Hence stably 

with L::B(Vs) ~ vsk.-l where ks = rankR(V.s), and CAc ~ vs?.c-2 • 

Corollary 1. The homology of c D(Rk) is concentrated in degree k + c- 2, for 
1 ::::; c ::::; k, and the homology of D(Rk) is concentrated in degrees k- 1 through 
2k- 2. 

Let St(V) = Hk_ 2 (B(V)) denote the Steinberg module for V ~ Rk, and let 
Wk = H 2 k_ 2 (kAk) be the integral :Ek-representation from [Rol], Definition 11.10. 

Corollary 2. There is a complex {Zq, dq} whose homology computes ii*(D(Rk)), 
with 

where the sum is over all unordered decompositions EBs V11 = Rk, and 1 ::::; c::::; k. 

Proof of Proposition 1. Consider the subcomplex X ~ c Dn(Rk) of simplices with 
poset consisting of precisely c linear components. By [Ro1] Lemma 9.8 and Propo­
sition 11.12, the inclusion is 2n-connected and stably an equivalence. 

The pick sites of a non base-point simplex u in X lie in c linear chains, each 
unrelaied (not comparable) to the others, in then-dimensional indexing cube [q]n. 
Such a simplex is determined by the c flags of submodules of Rk appearing at these 
pick sites, together with the locations of these pick sites. The former amounts to a 
simplex in :EB(V1 ) /\ · • • /\ I:B(Vc), where {V1, ... , Vc} are the maximal submodules 
in the c flags. The latter is homotopy equivalent to the simplicial set of c unrelated 

. k 't • [ ]n • cAn p1c s1 es In q , I.e. c • 

To prove the latter assertion, compare with a bisimplicial construction, or follow 
the argument from [Ro1], Lemma 11.3. D 

Now assume R is a field. The hypothesis of the following proposition is only 
expected to hold for 1 ::::; c < k, but the proof goes through also with c = k. 

Proposition 2. Suppose D(Rk) is (k+c-2)-connected, for some 1::::; c::::; k. Then 
D(Rk+l) is (k + c- 1)-connected. 

Proof. The reader may wish to think of cD( Rk) as the ( k + c - 2 )-skeleton of a 
complex to keep track of connectivities. By hypothesis and induction the inclusions 

and 
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are null homotopic. Recall from [Qu2] the description of the homotopy type of 
B(Rk) as a wedge of suspended copies of B(Rk-l ), one for each line (rank one 
summand) L C Rk transverse to Rk-l C Rk. By induction, each B(Rk-l) is 
homotopy equivalent to a wedge of spheres, and B(Rk) is a wedge of spheres, one 
for each sphere in B(Rk-l) and each such line L. We refer to the wedge summands 
corresponding to L as arising by suspension in the £-direction 

We obtain a decomposition of c D(Rk+l) into a wedge of spheres by the argument 
above, Proposition 1, and [Ro1], Proposition 11.12. Fix any (k + c- 1)-sphere in 
this decomposition of some summand 

with EBs V8 = Rk+1 • As c :S k some Vs has rank greater than one, say V1 = U1 EEl L 
where rankR L = 1, and let U8 = V8 for s > 1. Our sphere is then the suspension 
in the £-direction of a (k + c- 2)-sphere inc D(U) for some decomposition Rk+ 1 = 

U EB L, with U = EBsUs. 
Because D(U) is assumed (k + c- 2)-connected, such an inclusion sk+c- 2 --> 

c D(U) lifts over cD(U) --> c D(U), and extends null homotopically into D(U). Pre­
cisely, we have a lifting of the left vertical map to the middle vertical map in the 
diagram below 

~ 
~~ 

c D(U) - cD(U) --=-- D(U) 

where the top horizontal map collapses a hemisphere to a point. 
Suspending these chosen null homotopies in the £-direction, we obtain a lifting 

and null homotopy of the original sphere summand in c D(Rk+l) : 

Since this applies to every (k + c- 1)-sphere summand of c D(Rk+l ), the inclu­
sion cD(Rk+l) --> D(Rk+l) is null homotopic, and hence D(Rk+l) is (k + c- 1)­
connected. D 

We are still assuming R is a field. 
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Proposition 3. D(Rk) ~ V S 2k- 2 fork= 1, 2 and 3. 

Proof. The cases k = 1 and k = 2 are trivial (cf. [Ro1], Lemma 15.2), and D(R3 ) 

is two-connected by Proposition 2. By Corollary 2 it suffices to show that the 
complex 

is exact at z3. 
Here Z2 = St(R3 ) is the Steinberg module, Z3 = E9 St(V) where the sum is 

over all splittings R 3 = V E9 L of R 3 into submodules V and L of rank two and 
one respectively, and Z4 = E9 W3 where the sum is over all unordered splittings 
R 3 = L1 E9 L2 E9 Ls of R3 into lines. 

Consider the diagram 

f 

ZGLs(R)/Ts = ZGLs(R)/T3 

~ 

where Ts C GL3(R) is the diagonal torus, U3R C GL3 (R) is the group of strictly 
upper triangular matrices, and 

The reader may wish to draw a diagram in RP2 to visualize these and the following 
formulas. 

The map i is induced by the inclusion of U3 R into GL3 (R). A coset in GL3 (R)/T3 

is interpreted as a triple of lines (L1,L 2 ,L3), and the homomorphism WI takes a 
coset xTs in GLs(R)/T3 to xTs 0 WI in ZGLs(R)/Ts 0~3 Ws = z4. A point Ll in 
B(V) corresponding to a decomposition V E9 L 3 = R3 is denoted (L1 C V, L 3 ), and 
a one-simplex in B(R3 ) is denoted by a flag £ 1 C V. 

The differentials d4 and d3 are given by [Ro1], Lemma 15.3 as 

ds(Ll c V, Ls) = +(Ll C V)- (L1 c L1 E9 Ls) + (Ls c L1 E9 £3) 

d4wi(L1,L2,Ls) = -(L1 c L1 E9 L2,Ls) + (L2 c L1 E9 L2,Ls) 

- (L1 c L1 E9 L3,L2) + (Ls C L1 EB Ls,L2)· 



K4(Z) IS THE TRIVIAL GROUP 11 

In particular d3g = f. By definition g(L1 , L2, L3) = -g(L2, L11 L3), and in view 
of d4 w1(L1,L2,L3) = -g(L1,L2,L3) + g(L3,L11L2) we see that g(L1,L2,L3)"" 
sgn( 1r) · g(L1r(l), L1r( 2), £71"( 3)) modulo im( d4) for any 1r E :E3. 

By the Solomon-Tits theorem the composite fi is an isomorphism, whence 
(gi)(fi)- 1 is a section for d3 • The image of gi is the summand of Z3 corresponding to 
V = R2. The remainder of Z3 is generated by g( L1, L2, L3) with V = L1 EB L2 # R2 , 

L 1 ct. R 2, L 2 = R 2 n V, L3 ct. R 2 , and V EB L3 = R 3. Motivated by Quillen's proof 
[Qu2] of the Solomon-Tits theorem we observe that : 

with M = (L 1 EB L 3 ) n R 2 , where the right hand side is lying in the image of fi. 
Hence the kernel of d3 is generated by expressions 

g(L 1 , L 2, L3)- (g(R1, M, L1) - g(Rl, L2, LI)- g(R1 , M, L3) + g(R1 , L2, L3 )) 

= g(L1,L2,L3)- g(L2,M,LI) + g(L2,M,L3) 

for L1, L2, L3, Mas above. Using L1 EB M = L1 EB L3 = L3 EB M, we compute 

which exhibits each generator of the kernel of d3 as lying in the image of d4 • This 
proves exactness at Z 3 , and D(R3 ) is three-connected. 0 

5. REMARKS 

<I>: K(Z)~ -t J K(Z)~ is five-connected, so H?ec( <I>) is onto, and we can choose 
a f3 E H?ec(K(Z)) mapping to the integral generator (3' of H?ec(JK(Z)). Hence 
there are differentials d2 (f3) = 7J ·.A, d2(77 · (3) = 772 ·..X, d~ 2 = 0, and d5 (772 . (3) = v2 

' in the Atiyah-Hirzebruch spectral sequence for K*(Z) of Section 2, as is seen by 
comparison with the corresponding spectral sequence for J K(Z). 

By the graded algebra structure on K*(Z), there must be differentials hitting 
v·.\ E Ei,3 and v 2 ·A E Ei,6 , as v·.\ = 2.\2 = 0 in K6{Z). In particular H:pec(K(Z)) 
must contain some two-torsion for some 5 :::; * :S 7. 

Conjecturally K*(Z) begins (Z, Z/2, Z/2, Z/48, 0, Z, 0, Z/240, 0, ZEBZ/2, ... ); see 
[Mit3]. 

Because D(Z4 ) is four-connected, the GL4 (Z) poset spectral sequence from [Rol] 
and [Ro2] describes how the homology of GL4 (Z) is generated through degree four 
from its parabolic subgroups, and similarly for all GLk(OF) through degree k for 
k 2: 3. In general, the stable buildings are candidates for quite highly connected 
finite GLk(R)-complexes, from which some of the group homology of GLk(R) can 
be determined from that of the stabilizer subgroups which appear. 

To prove the full connectivity conjecture, it would suffice to prove exactness of 
the complex in Corollary 2 in degree (2k- 3) for every k. This would be feasible 
given a description of the differentials extending Lemma 15.3 of [Rol]. 
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