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Preface 
This text constitutes a preliminary version of an introductory textbook of the so­

lution of ordinary differential equations using symmetries, and is primerely aimed for 
third year students of the ISLC college. 

This book is not self-supported (one must know some analysis on manifolds, in­
cluding differential forms) and does not contain references. 

First of all we recommend the study of Sophus Lie's original works (which un­
fortunately are not easy reading), since the the further development of this field of 
mathematics often consisted of the rediscovery of his results, but the main part of his 
results were not exploited. 

We suggest some books which might be useful in order to gain individual under­
standing of this subject: 

1. P. Olver, Applications of Lie groups to differential equations, (Graduate Texts in Mathematics 
107), Springer, New York, 1986. 

2. V. Lychagin, Lectures on geometry of differential equations. Part I, Roma, 1992. 
3. N. Ovsiannikov, Group analysis of differential equations, Academic, New York, 1982. 
4. H. Stephani, Differential equations. Their solution using symmetries, Cambridge University 

Press, Springer, New York, 1990. 
5. N. Ibragimov, Transformation groups applied to mathematical physics, Reidel, Boston, 1985. 
6. B. Komrakov, Primitive actions and Sophus Lie problem, Preprint series, Inst. of Mathematics. 

Univ. of Oslo, 1993. 
7. B. Komrakov, A. Churyumov, B. Doubrov, Two-dimensional homogeneous spaces, Preprint series, 

Inst. of Mathematics. Univ. of Oslo, 1993. 
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CHAPTER I 

DIFFERENTIAL EQUATIONS AND JETS 

§1. GEOMETRICAL INTERPRETATION OF ORDINARY DIFFERENTIAL EQUATIONS 

1.1. Let us consider differential equations of the first order with respect to a real­
valued function defined on llR. They form the simplest class of ordinary differential 
equations. An equation of this kind solvable with respect to a derivative can be written 
as 

y' = F(x, y), (1) 

where x E llR andy= y(x) is a function to be found. 
It is well known that equation (1) can be geometrically interpreted as a directional 

field. In this (standard) interpretation a triple (x, y(x), y'(x)) is interpreted as the 
point (x, y) on the plane together with the straight line passing through this point 
and tangent to the graph of the function y(x) (see Fig. 1). 

y 

y 

y=y(x) 

X 

X 

Fig. 1 Fig. 2 
Thus, at each point (x, y) of the plane, differential equation (1) determines a straight 

line with a slope equal to F(x, y) (see Fig. 2). Under this approach, the procedure of 
solution consists in finding a function y = h( x) such that tangent lines to its graph at 
points ( x, h( x)) coincide with the corresponding straight lines of the given directional 
field. 

Suppose that a differential equation cannot be solved with respect to a derivative 
y', i.e. it has the form 

H (X' y (X)' y' (X)) = 0' (2) 

and the function 8H / 8y', say, vanishes. Then the standard geometrical interpretation 
turns out to be rather awkward, since now at each point of the plane there may be 
several (or even infinitely many) straight lines, their slopes k at a fixed point (x, y) 



6 B. KOMRAKOV V. LYCHAGIN 

being determined from the relation 

H(x, y, k) = 0. (2') 

1.2. Example. Consider the differential equation 

(y') 2 + 2y' + xy = 0. (3) 

In this case, the directional field is defined only on that part of the plane where xy ( 1. 
In addition, on the interior of the domain ( xy < 1) there exist exactly two different 
directions: 

k±=-1±yl1-xy, 

whereas on the hyperbola xy = 1 only one: k = -1. (See Fig. 3.) 

Fig. 3 
In order to simplify the procedure of solution of similar differential equations and 

make it clearer from geometrical point of view, we introduce the space J 1 , which coin­
cides with the three-dimensional arithmetic space, its elements ( x, y, p) being identified 
with pairs: 

[(x,y); l(x,y,p)], (4) 

where l(x, y,p) is the straight line passing through the point (x, y), its slope being 
equal to p (see Fig. 4). 

We shall say that J 1 is the space of 1-jets of functions, and its elements ( 4) will be 
called 1-jets (of functions). 

Differential equation (2) can now be regarded as the surface E in J 1 defined by 

H(x, y,p) = 0, (5) 

and its solutions y = h(x) as curves of the form 

Lh = {y = h(x),p = h'(x)} (6) 

lying on E. 
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Fig. 4 
In the example considered before the surface E is the one~sheet hyperboloid and 

solutions of equation (3) are curves of the form Lh lying on the hyperboloid. 

1.3. We are now going to construct the analogue of a directional field. Preparatory 
to this we shall give an internal (in terms of the space of 1~jets) characteristic of those 
curves in J 1 that have form ( 6) for a certain smooth function h( x). Fix a point 

and consider tangent vectors at the point a to various curves of the form Ln passing 
through a. It is easy to see that these vectors have the form 

v = (1,po, h"(xo)). (7) 

Under the condition that h"(x0 ) be arbitrary, all linear combinations of vectors (7) 
form the 2~dimensional plane C(a) given by the equation 

Y- Yo = Po(x- xo). (8) 

The plane C (a) is called the Cartan plane at the point a. The field of Cartan planes 

C : a f-7 C(a) 

on the space J 1 of 1 ~jets is called the Cartan distribution. Relation (8) shows that 
the Cartan distribution can be given by the following differential form of degree one: 

w = dy- pdx (9) 

in the sense that 
(10) 

The differential form w is called the Cartan form. 
It is immediate from construction of the Cartan distribution that each curve of the 

form Lh in J 1 is an integral curve of the distribution; in other words, for any point 
a E Lh the tangent vector to Ln at a belongs to the Cartan plane C(a). The converse 
is also true. 
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Proposition. Let L be a curve in J 1 such that 
(i) L is an integral curve of the Cartan distribution; 
(ii) L can be "well" projected on the x-axis, i.e. the x-coordinate can be chosen as 

a parameter on L. 
Then there exists a smooth function h = h(x) such that L = Lh. 

Proof. Condition (ii) means that the curve L can be given by equations 

Y = f(x), p = g(x). 

Condition (i) implies that the Cartan form w vanishes on L: 

wiL = df- gdx = (f'(x)- g(x))dx = 0. 

Therefore, g = f' and 
L = LJ = {y = f(x),p = f'(x)}. 

1.4. Now we have everything necessary for construction of a directional field. 
Each solution y = h(x) of equation (2) gives the curve Lh, which lies on the surface 

£. In addition, at each point b E Lh the curve Lh is tangent to the corresponding 
Cartan plane C(b). Now, for each point a of the surface£ consider the intersection of 
the tangent plane Ta £and Cartan plane C(a). We see that the tangent vector to Lh 
at a belongs to the intersection. In general, the planes T a £ and C (a) do not coincide 
and, therefore, their intersection 

l(a) = Ta£ n C(a) (10') 

is a straight line (see Fig. 5). 

Fig. 5 
More exactly, we shall say that a point a E £ is regular if 

Ta £ f- C(a); (11) 

otherwise, we shall say that a is singular. 
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Relation ( 10) determines the directional field l : a ~---+ l (a) at regular points of the 
equation E (see Fig. 6). 

Fig. 6 
A solution of our differential equation is a curve onE with the following properties: 

tangent lines to it coincide with the corresponding straight lines of the directional field 
l (condition ( i) of the proposition above) and it can be "well" projected on the x-axis 
(condition ( ii)). 

Note that the last condition is totally dependent on land does not necessarily hold. 

1.5. Let a E E and let L be a solution passing through a. We shall say that L is 
regular if it satisfies condition (ii). Let us find conditions for a and L to be regular in 
terms of the function H(x, y,p), which gives our differential equation. A point a E E 
is regular if and only if the following differential 1-forms are linearly independent at 
a: 

{ 
dH = Hxdx + Hydy + Hpdp, 

w = -pdx+dy. 

Therefore, a E E is singular if and only if 

Hp = 0 and Hx + pHy = 0 

at the point a. 

(12) 

Further, the fact that a solution L passing through a regular point a E E is regular 
at a means that the projection of the straight line l(a) on the x-axis is other than 
zero. 

Assume the contrary. Then l (a) is spanned by a vector of the form 

(13) 

Since l (a) lies on the Cart an plane C (a), we have 

wa(v)=a=O. 

Therefore, it can be assumed that a= 0 and (3 = 1. Since v is a tangent vector to£, 
we have 

dH(v) = 0 



10 B. KOMRAKOV V. LYCHAGIN 

and therefore 

Hp =0. 

Thus, a curve L passing through a regular point a does not give a regular solution 
if 

Hx + pHy =f 0 and Hp = 0 (14) 

at the point a. Now let a be a regular point of £. After solving the system of linear 
equations Wa = 0, daH = 0, we see that the following vector can always be chosen as 
a generator of the straight line la: 

(15) 

It is easy to see that the vector field Y H is tangent to £. It is called a characteristic 
vector field. 

1.6. Summarizing all the observations above, we can give a geometrical picture that 
accompanies the procedure of solution of differential equation (2). Let £ C Jl be the 
surface corresponding to the given differential equation and let l denote directional field 
(15), which is defined at regular points of£. Then solutions of differential equation (2) 
are integral curves of this directional field. Moreover, these solutions are smooth single­
valued functions at all points except those where condition (14) holds (see Fig. 7). 

Fig. 7 

Let us distract ourselves from singular points of equations for a while and by so­
lutions of the differential equation £ mean integral curves L of the directional field l 
that do not necessarily satisfy condition (ii) of proposition 1.3. This way we arrive 
at the natural geometrical generalization of the concept of a solution of a differential 
equation- a many-valued solution. Indeed, let L be an integral curve that does not 
satisfy condition (ii). The projection of L on the plane (x, y) is a curve with singu­
larities at exactly those points where condition ( ii) does not hold; this projection can 
be regarded as a graph of a many-valued function (see Fig. 8). 
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y 

X 

Fig. 8 

1.7. Example. First, consider the differential equation 

(y') 2 -X= 0, 

which can be easily integrated. The surface £ C J 1 corresponding to the equation is 
the parabolic cylinder 

p2 - X= 0. 

The functions y and p can be chosen as coordinates on £, and £ can be identified with 
the plane ~ 2 (y, p) by means of the mapping 

£ = {(p2, y,p)} ~ ~2(y,p) 

(p2' y' p) f---+ (y' p) 

The corresponding characteristic vector field has the form 

8 2 8 8 
YH = -2p-- 2p -- -. ax oy op 

Therefore, the projection of the directional field l from£ on the plane ~2 (y,p) deter­
mines the directional field on ~ 2 (y, p): 

f: (y,p) f---+ l(y,p), 

where the straight line l(y,p) is spanned by the vector 

~ 28 8 
YH = -2p-- -. 

oy op 

Identifying integral curves of f with graphs of functions y 
following differential equation with respect to g (p): 

g' = 2p2. 

g(p), we obtain the 
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It follows that 

Solutions, regarded as functions of x, have singularities at those points where 

Hp = 2p = 0. 

Finally we obtain 

Thus, solutions of our equation are semicubical parabolas, their cuspidal points lying 
on the y-axis (see Fig. 9). 

y 

X 

Fig. 9 

1.8. Example. Let the function H of differential equation (2) has the form 

H = p2 + 2p + xy. 

The set I; of singular points of the equation can be found from the following relations: 

It follows that 

{ 
H = p2 + 2p + xy = 0, 

Hp = 2p+ 2 = 0, 

Hx + pHy = y + xp = 0. 

X= y, p = -1, y = ±1. 

The projection of the set 2: on the plane (x, y) consists of two points x = y = 1, 
x = y = -1, which are exactly the points of tangency of the hyperbola xy = 1 and 
the directional field (see Fig 3). 

Since Hp = 2p + 2, we have exactly one singular curve: 

{p = -1, xy = 1}. 
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Its projection on the plane (x, y) is the hyperbola xy = 1. Because of this, solutions 
have singularities at the points of this hyperbola and become many-valued there. 

1. 9. Basic constructions considered earlier can be automatically extended to the 
case of an ordinary differential equation of an arbitrary order k (k) 2). 

Each ordinary differential equation of the k-th order can be written as 

H( I (k)) _ 0 x,y,y, ... ,y - . (16) 

For x 0 E lP!. and a smooth function g, consider the (k + 2)-tuple 

(17) 

We shall call it the k-jet of the function g at the point x 0. By Jk denote the set of all 
k-jets at all possible points. We shall call it the space of k-jets. It can be considered 
as the arithmetic (k + 2)-space JPI.k+2 with the natural coordinates (x,po,PI, ... ,Pk) 
where 

(18) 

Thus, the function H is a function defined on the space Jk and equation (16) gives 
the hypersurface £ in Jk defined by 

(19) 

Solutions y = h(x) of differential equation (16) can be considered as curves on 
£ c Jk of the form 

L~k) ={Po= h(x),PI = h'(x), ... ,Pk = h(k)(x)}. (20) 

In order to distinguish curves of this form from other smooth curves in Jk, fix a 
point 

( 0 0 0 0) Jk a= x ,po,Pl, ... ,pk E 

and consider tangent vectors at a to various curves of the form L~k) passing through 
a. Since these tangent vectors have the form 

we see that their linear combinations form the 2-dimensional plane C (a) given by the 
following equations: 

Po- pg = p~(x- x 0 ), 

PI - p~ = pg(x- x 0 ), 

(21) 
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The plane C(a) is called the Cartan plane at the point a, and the distribution C: a f-----+ 

C(a) is called the Cartan distribution in the space Jk of k-jets. From equations (21) 
it follows that the Cartan distribution C can also be defined as the set of common 
zeroes of the following set of differential 1-forms on J k: 

wo = dpo- P1dx, 

w1 = dp1 - P2dx, 

The differential forms Wj, j = 0,. 0., k- 1, are called the Cartan forms. 

(22) 

1.10. Proposition. Let L be a curve in Jk. Tbe curve L bas tbe form L~k) for 
some smooth function h( x) if and only if tbe following two conditions are satisfied: 

( i) L is an integral curve of tbe Cartan distribution; in otber words, for eacb point 
a E L tbe tangent vector to L at a belongs to tbe Cart an plane C (a); 

( ii) tbe curve L can be "well" projected on tbe x-axis. 

Proof. The necessity of these conditions is clear. Let us prove their sufficiency. Con­
dition ( ii) implies that the function x can be chosen as a parameter on the curve L. 
Therefore, L can be given by the following system of equations: 

Po= fo(x), PI= h(x), ... , Pk = fk(x). 

By virtue of condition ( i) we have 

for all j E {0, 0 •• , k- 1}. Thus, fj+I = fj and therefore L = L~k), where h = fo. 

1.110 So, necessary and sufficient conditions for a curve L in Jk to determine a 
solution of differential equation (16) are 

(1) L is an integral curve of the Cartan distribution; 
(2) L lies on the hypersurface £ c Jk; 
(3) L can be "well" projected on the x-axis. 

Conditions (1) and (2) can be unified if we consider the restriction of the Cartan 
distribution to the equation £. For each point a E £ consider the intersection of the 
hypersurface T a £ tangent to £ at a and the Cart an plane C (a). 

We shall say that a point a E £ is regular if C (a) rj. T a£; otherwise, it will be 
called a singular point. 

Then for every regular point a E £ the intersection T a £ n C (a) is a straight line 
l (a) , and the correspondence 

l: a E Ereg f-----+ l(a) = TaE n C(a) 
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gives a directional field on the set of all regular points Ereg C £. 
Thus, from the geometrical standpoint, solutions of the differential equation (16) 

are those integral curves of the directional field l that can be "well" projected on the x­
axis. As earlier, omitting the last condition, we arrive at a geometrical generalization 
of the concept of a solution - a many-valued solution. 

1.12. Let us find a condition for a point a E £ to be regular. The intersection of 
the Cart an plane C (a) and the tangent hypersurface T a £ can be found as the general 
solution of the system of linear equations 

Wo=dpo-p1dx=O, 

w1 = dp1 - P2dx = 0, 

Wk-1 = dpk-1- Pkdx = 0, 

dH = Hxdx + Hp0 dpo + · · · + HPkdpk = 0. 

The differential 1-form dH will be a linear combination of the Cart an forms only at 
singular points of the equation. Therefore, singular points can be found from the 
following equations: 

{ Hx + P1Hpo + · · · + PkHPk-1 = 0, 

HPk- 0. 
(23) 

As a generator of the directional field l (considered at regular points a E £) we can 
choose the vector field 

where by 

( a a a ) dH a 
YH=-Hpk -+p1-+···+Pk +--, 

ax apo aPk-1 dx apk 

dH aH aH aH 
- = -+p1-+···+pk-­
dx ax apo ak-1 

(24) 

we denote the "total" derivative with respect to x. The vector field Y H is called the 
characteristic vector field of equation (16). It can be easily verified that YH is tangent 
to the hypersurface H = 0. 

Let L be a solution passing through a point a E £. Let us consider a condition for 
L to be regular at a, i.e. a condition for L that it can be locally represented as L~k) 
for some smooth function h( x). As in the case of first-order equations, this condition 
has the form 

(26) 

Note that the characteristic vector field YH (regarded as a derivation) can be written 
more briefly in the hamiltonian form: 

dH d dH a 
YH=---+--

dpk dx dx apk ' 
(27) 
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d a a a 
- =- +PI-+···+Pk-­
dx ax apo aPk-I 

is the total derivative operator. 

1.13. Example. Consider the Gauss hypergeometric equation 

x(1- x)y" + (c- (a+ b + 1)x)y'- aby = 0, 

where a, b, c E ~are constants. The corresponding function H has the form 

H = x(1- x)p2 + (c- (a+ b + 1)x)pi- abp0 . 

(28) 

Thus, the equation H = 0 gives a cubic surface in J 2 = ~4 . The characteristic vector 
field of the equation has the form 

d a 
YH = -x(1- x)-d + [ (c + 1- (a+ b + 3)x)p2- abpi]-. 

X ap2 

Singular points can be found from the equations 

( x(1-x)=O, 

~ [ (c + 1)- (a+ b + 3)x ]p2 - (a+ 1)(b + 1)PI = 0, 

l H=O 

and form two straight lines: 

h = {x = 0, abpo- CPI = 0, (a+ 1)(b + 1)PI- (c + 1)p2 = 0}, 

l2 = {x = 1, abpo- (c-a-b- 1)PI = 0, (a+ 1)(b + 1)PI- (c-a-b- 2)P2 = 0}. 

Therefore, solutions of the hypergeometric equation lose their smoothness and become 
many-valued at points (x,p0 ,pi,p2) that belong to the compliment of the straight lines 
h and l2 in the planes 

III= {x = 0, cpi- abpo = 0}, 

Ih = { x = 1, ( c - a - b - 1) PI - abpo = 0}. 

§2. GEOMETRICAL INTERPRETATION OF SYSTEMS OF DIFFERENTIAL EQUATIONS 

In this section we shall apply the approach proposed in § 1 to systems of differential 
equations and give their geometrical interpretation. 

2.1. Fix a natural number m ;:;: 1. A system of ordinary differential equations of 
the k-th order with respect to a vector-valued function Y : ~ ---t ~m such that 

( 
YI(x)) 

Y(x) = : 

Ym(x) 
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can be written as 

{ 
H1(x, Y, Y', ... , y(k)) ~ 0, 

Hs(x, Y, Y', ... , y(k)) = 0. 

(1) 

For each vector-valued function Y ( x) and point x0 E ~ consider the vector 

(2) 

We shall call it the k-jet of the function Y at the point x 0 . The set of all k-jets of 
functions at all possible points is called the space of k-jets. We shall denote it by 
Jk(m). If m = 1 then Jk(1) = Jk. From (2) it follows that Jk(m) is isomorphic to 
the arithmetic space ~N, where N = 1 + m(k + 1). As coordinates in Jk we choose 
the functions 

(x,p6, · · · ,p[{';pi, · · · ,p~; · · · ;p1, · · · ,pk), 

where the coordinate function p~, i = 1, ... , m; j = 0, ... , k, gives the j-th order 
derivative of the i-th component Yi: 

(3) 

The functions H1, ... , Hs involved in system (1) can be regarded as functions on 
Jk(m). The system itself gives the submanifold E in Jk(m) defined by the following 
relations: 

( 
H1(x,p5, ... ,pQ";p), ... , PT; ... ;p)., ... ,pJ:') ~ 0, 

H 8 (x,p6, ... ,p(f;pi, ... ,p~; ... ;pk, ... ,pk) = 0. 

(4) 

If the functions Ht, ... , H8 are functionally independent, then the codimension of E 
in Jk(m) equals s. 

Solutions Y = h(x) of system (1) are curves of the form 

L~k) = {P6 = h1(x), ... ,p[{' = hm(x), ... , 

Pk = (hl)(k)(x), ... ,pk = (hm)(k)(x)} (5) 

lying in E. 
We shall say that a system of differential equations is determinate if codim E = s = 

m and underdeterminate if s < m. 
Let us note that although this book is devoted mainly to determinate systems of 

differential equations, this in no way means that underdeterminate ones are of little 
interest. On the contrary, these systems can be found in non-holonomic mechanics and 
in control theory and have very useful applications. However, their theory requires its 
own presentation and somewhat different approaches. 
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2.2. Construction of the Cartan distribution 

in this case is very similar to that in the case m = 1. It is the distribution of ( m + 1 )­
dimensional subspaces given by the Cart an differential 1-forms 

I _ d I Id m _ d m md . Wo - Po - PI x, · · · , Wo - Po - PI x, 
I _ d I Id m _ d m md . WI - PI- P2 x, ... 'WI - PI - P2 x, 

(6) 
I d I Id m d m md wk-I = Pk-I - Pk x, · · ·, wk-I = Pk-I - Pk x. 

In addition, the following statement is true: 

Proposition. Let L be a smooth curve in Jk(m). It has the form L~k) for a certain 
smooth vector-valued function h(x) = (hi(x), ... , hm(x)) if and only if 

(A) L is an integral curve of the Cartan distribution: 

w] IL = 0, i = 1, ... , m, j = 0, ... , k- 1, 

and 
(B) L can be "well" projected on the x-axis. 

2.3. We shall say that a point a E E is regular if the tangent subspace TaE and 
Cartan subspace C(a) are transversal at this point; otherwise, we shall call it singular. 

The restriction of the Cartan distribution to the equation E 

l: a E E r-+ l(a) = TaE n C(a), 

considered at regular points, determines a distribution of ( m + 1 - s )-dimensional 
subspaces. 

In particular, in the case of determinate systems of ordinary differential equations 
(we shall simply call them differential equations), the distribution l is a directional 
field. 

The following vector field can be chosen as a generator of the directional field l: 

(7) 

Here 

(8) 



SYMMETRIES AND INTEGRALS 19 

IIHij II is the adjoint of the matrix II~:{ II, i.e. 

(9) 

and 

d a 1[) ma 1 a m a () -=-+p1-+···+p1-+···+Pk +···+Pk 10 
dx ax op6 op0 op1_1 opr,::_1 

is the total derivation operator. The vector field Y is called characteristic. 
Thus, a point a E £ is singular if and only if the following conditions hold: 

(11) 

As earlier, the fact that a solution passing through a point a E £ is regular means 
that the characteristic vector field Y has a nonzero component along the x-axis, i.e. 

~ = det II~:{ II# 0. 

2.4. Example. Consider the following linear system of differential equations 

{ xy~ + (1- x)y; + Y1 = 0, 

(1- x)y~ + xy; + Y2 = 0. 

The corresponding manifold £ in the space 1 1 (2) can be given by the equations 

{ xpi + (1 - x )Pi + PB = 0, 
(1- x)pi + xpi + P5 = 0. 

(12) 

(13) 

Thus, £is a 3-dimensional manifold diffeomorphic to Il{3 . The functions x, pi, Pi can 
be chosen as coordinates in£. 

Restriction of the Cartan forms 

1 d 1 1d Wo = Po- P1 x and 2 d 2 1d Wo = Po- P2 x 

to £ leads to the following differential 1-forms: 
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Although singular points a E E can be found from relations (11), we shall do it using 
the fact that the forms w6 and w5 are linearly dependent at singular points. 

The following determinants must be zero at all points where w6 and w5 are linearly 
independent: 

I 
PI- 2pi 
PI- 2pi 

I 
PI- 2pi 
PI- 2pi 

-x I 1 2 x-1 =p1(2-x)+pl(-1-x), 

X -=-X 1 I = Pi (1 + X) +Pi (-2 + X)' 

I 
-x 

x-1 
x -l~ = 2x -1. 
-X 

Therefore, singular points are points ( x, PB, P6, pi, pi) such that 

X= 1/2, 1 2 
P1 = P1, 1 2 2 1 Po= Po=- P1· (14) 

Thus, the set I: of all singular points of the equation E is straight line (14), lying in 
manifold (13). 

Since 

det II ~:[ II = det Ill ~ x 1 ~ x II = 2x - 1, 

we see that condition (12) does not hold on the plane II given by the equations 

1 2 1( 1 2) x = 1/2, Po= Po= 2 P1- P1 · 

Therefore, at all points a E II\I:, solutions of our system lose their smoothness and 
become many-valued. 

§3. COMPLETELY INTEGRABLE SYSTEMS OF 

DIFFERENTIAL EQUATIONS AND DISTRIBUTIONS 

In this section we shall consider the class of first-order partial differential equations 
which are conceptually close to ordinary differential equations. 

3.1. Consider a system of partial differential equations with respect to a vector­
valued function Y = Y(x1, ... , Xn), Y = (Yl, ... , Ym): 

(1) 

where i = 1, ... , n; j = 1, ... , m. System (1) is called (completely) integrable if its 
right-hand side satisfies the natural condition that mixed derivatives of the second 
order be equal: 

(2) 
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where 
d 8 1 8 m 8 

-=-+Hi-+···+Hi --. 
dxi 8xi 8yl 8ym 

(3) 

Conditions (2) can be written more extensively as 

3.2. Examples. 
1. If n = 1, then conditions (4) are obviously satisfied. Thus, systems of ordinary 

differential equations are completely integrable. 
2. The system of differential equations 

with respect to a real-valued function y = y(x1, x 2 ) is not completely integrable. 
However, we will see it later that in spite of its apparent ineptitude this system plays 
a significant part in theory of ordinary differential equations. 

3.3. Let us give geometrical interpretation of systems of form (1) in accordance 
with approaches proposed in §§1,2. 

Let J 0 (n,m) denote the space of pairs (x,y), where x = (x 1 , ... ,xn) E ~nand 
y E ~m. Each solution y = h(x) of system (1) determines then-dimensional surface 
in J 0 (n, m): 

Lh = {(x,y)iY = h(x)}, 

which is the graph of the function h(x ). 
According to the terminology introduced in the previous sections, we say that 

J 0 ( n, m) is the space of 0-jets of vector-valued functions. For an a E ~n, we shall say 
that the pair 

[h]~ = [a;the tangent plane to Lh at the point (a,h(a))] (5) 

is the 1-jet of the function h(x) at the point a. 
A 1-jet [ h n can analytically be given by the value h( a) together with the values 

of all possible first-order partial derivatives: 

8hj ( ) 
~ a' 
UXi 

i = 1, ... , n; j = 1, ... , m. 

Therefore, from a geometrical standpoint, simultaneous differential equations (1) de­
termine a field of n-dimensional subspaces in J 0 ( n, m): 

E: (x, y) ~ E(x, y), 
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which is called a distribution or differential system. 
Conversely, let E be ann-dimensional distribution in J0 (n, m) such that the projec­

tion of each subspace E(x, y) into the space tangent to the x-space at xis nonsingular. 
Then E determines a system of differential equations of form (1). Indeed, the distri­
bution E can be given by choosing a basis in each E(x, y). Moreover, this basis can 
always by chosen so that its projection into the space tangent to the x-space is the 
standard basis a a 

OX1' ... ' OXn. 

Thus, as a basis of the distribution E we can choose vector fields of the form: 

I Al = _!L + Hll __q_ + ... + Hlm__Q_ axl 8yl 8yrn' 

An = aa + Hnl _aa + ... + H;;" a a . 
Xn Yl Yrn 

(6) 

Conditions for vector fields (6) to be tangent to the graph Lh of a function y = h(x) 
are as follows: 

which is equivalent to simultaneous system of differential equations (1). 
It is easy to verify that in this case conditions ( 4) are equivalent to the condition 

that vector fields (6) commute with each other: 

(7) 

for all i, k = 1, ... , n. 
Let us write vector fields (6) as 

where 
m . a 

Hi= LHl~· 
j=l YJ 

(8) 

Then conditions (7) take the form of "zero curvature conditions": 

8Hi _ 8Hk [H· H ] = O 
!::1 !::1 + ~' k . 
UXk UXi 

(9) 
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3.4. Distributions can also be defined dually, by giving a set of differential 1-forms 
annihilating a given distribution. In our case it can be easily seen that as a basis for 
the space of forms of this sort we can choose the following ones: 

(10) 

It is easy to check that the restrictions of forms (10) to the graph Lh of a function 
y = h(x) vanish if and only if y = h(x) is a solution of system (1). This is exactly 
what we mean when we write system (1) in the form of the Pfaff system: 

el = 0, ... 'em = 0. (11) 

We shall say that system (11) is completely integrable if so is the corresponding 
system of form ( 1). 

3.5. Proposition. Pfaff system (11) is completely integrable if and only if 

(12) 

for all j = 1, ... , m. 

Proof. Conditions (12) are equivalent to the condition that each of the differential 
2-forms dB1 , ... , dBm be a linear combination of 1-forms B1 , ... , Bm, i.e. 

de · = 'V . A e1 + ... + 'V · A e J 1)1 !Jm m (13) 

for all j = 1, ... , m. Conditions (13) are in their turn equivalent to the condition that 
these 2-forms vanish on each subspace E(x, y) of our distribution. It remains to make 
use of the following well known formula 

It follows that for arbitrary vector fields v1 and v2 lying in the distribution, their 
commutator [ v1 , v2 ] also belongs to the distribution (i.e. condition ( 9) holds) if and 
only if dB j vanishes on the distribution. 

3.6. Examples. 
1. Consider the following system of ordinary differential equations: 
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where x E IlR and j = 1, ... , m. The corresponding distribution is a directional field 
(x, y) r-----+ E(x, y) such that E(x, y) is the straight line spanned by the vector 

This is the classical correspondence between vector fields and differential equations. 
The corresponding Pfaff system has the form 

2. Recall the system of differential equations from example 3.2.(2). As a basis of 
the corresponding distribution we choose 

The corresponding differential 1-form has the form 

(15) 

Note that we have obtained nothing but the Cartan distribution (y +--+ p0 , x2 +--+ 

PI, XI+--+ xo). It is called the standard contact distribution in IJR3 (= JI). 

§4. DISTRIBUTIONS 

As we saw in previous sections, the concept of a distribution is one of the most 
useful concepts in theory of differential equations. In this section we shall give basic 
definitions and results connected with distributions. 

4.1. Let M be a smooth manifold of dimension m+n. A distribution (or differential 
system) on M is a field of m-dimensional subspaces: 

E: x EM r-----+ E(x) C Tx V 

such that E is a smooth mapping of M. 
Here the fact that E is smooth means that for any x 0 E M there exist a neighbor­

hood 0 of x0 and m smooth vector fields AI, ... , Am defined on 0 such that at each 
point x E 0 vectors AI (x), ... , Am(x) form a basis of the subspace E(x). 

The number m is called the dimension of the distribution E and is denoted by 
dimE. The number n = dim M- dimE is called the codimension of E and is denoted 
by codimE. 

We say that a vector field A on M lies in a distribution E if A(x) E E(x) for all 
xEM. 

In the sequel, in order to locally define a distribution E, we shall use two methods. 
Firstly, E can be defined by a set of m vector fields AI, ... , Am such that the vectors 
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A 1 ( x), ... , Am ( x) form a basis of the subspace E ( x) for all points x of some neigh­
borhood 0. Secondly (the dual method), it can be defined by a set of n differential 
1-forms fh, ... , en linearly independent at every point X E 0: 

E(x) = {v E Tx Mlel,x(v) = 0, ... , en,x(v) = 0}. (1) 

In the first case we shall denote E by F(A1 , ... , Am), while in the second case by 
F(el, ... , en)· 

4.2. A submanifold L C M is called an integral manifold of a distribution E if 

Tx(L) c E(x) 

for all x E L. 
This definition implies that the dimension of an integral manifold cannot exceed 

the dimension of the distribution. 
A distribution E is said to be completely integrable (or involutory) if for any point 

x E M there exists an integral manifold L such that x E L and dim L = dimE. 

4.3. Example. Let (x, y, z) be coordinates in ~3 (= J 1 ). Consider the distribution 
E = F(w) in ~3 given by the differential 1-form 

w = dz- ydx. (2) 

Each !-dimensional integral manifold of this distribution can be written as a curve of 
the form 

L = { x = x(t), y = y(t), z = z(t)}, 

where t E ~is a parameter on L. 
For all a E L we have Ta(L) C E(a). This means that the form w vanishes on the 

tangent vector v = (x(t), y(t), i(t)) and therefore 

w(v) = i(t)- y(t)±(t) = 0. 

Thus, if we put 

i(t) = J y(t)±(t) dt 

for arbitrary functions x ( t) and y ( t), we shall obtain a !-dimensional integral manifold 
(an integral curve) of the distribution E. 

Let us show that E has no 2-dimensional integral manifolds. First we shall prove 
it by direct calculations. So, assume that L is a 2-dimensional integral surface of E 
and let 

x = x(s, t), y = y(s, t), z = z(s, t) 

be its parametric representation, where s, t E ~ are parameters and the rank of the 
Jacobian matrix 

(
ox 

J = g~ 
ot 

Qy_ 
OS 
Qy_ 
ot 

oz) OS oz 
ot 
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equals 2. 
From the condition that L be integral it follows that the restriction of the form w 

to L equals zero. Thus 

( az ax) (az ax) 0 = w IL = dz(s, t)- y(s, t)dx(s, t) = as - y as ds + at - y at dt = 0 

and therefore 

Using 
a2 z a2 z 

asat atas' 
we obtain 

ay ax- ay ax = 0. 
at as as at 

Now, multiplying equations (3) by fit and ~~ respectively, we obtain 

az ay az ay- 0 
as at - at as - . 

(3) 

(4) 

(5) 

Conditions (4) and (5) contradict the assumption that the rank of the matrix J 
equals 2. Thus, the distribution E has no 2-dimensional integral manifolds and there­
fore is not completely integrable. 

This can be proved in a different way, using the fact that the restriction of the 
differential 2-form dw to the tangent plane TaL must also be zero: 

(dw) IL = d(w IL) = 0. 

But, by reasons of dimension, the plane TaL coincides with E(a). Since the 2-form 
dw = -dy 1\ dx is non-degenerate on E(a), we see that dw does not vanish on TaL. 

This example, which is typical in some sense, shows that every distribution E may 
have integral manifolds of dimension less then dimE (for instance, integral curves). 
However, not all distributions are completely integrable, i.e. may have distributions of 
the maximal dimension equal to dimE. 

Let us find conditions for a distribution E to be completely integrable. Assume 
that E is given by differential 1-forms fh, ... , Bm, i.e. E = F(B1 , ... , Bm), and let 
L C M be an integral submanifold such that dimL =dimE. Then 

for all j = 1, ... , m. 
Thus, for any point a E L, the exterior differential 2-forms dB1,a, ... , dBm,a vanish 

on the subspace 

TaL= E(a) ={vETa Ml B1,a(v) = 0, ... , Bm,a(v) = 0}. 
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Therefore, they can be written as 

(6) 

where j = 1, ... , m and Ajl(a), ... , Ajm(a) E T: Mare some covectors. 
If E is a completely integrable distribution, then relation (6) holds for all points of 

M and therefore the decomposition 

(7) 

j = 1, ... , m, holds for certain differential1-forms Aji· Conditions (7) can be rewritten 
without using Aji: 

(8) 

for all j = 1, ... , m. 
Now assume that E is given by linearly independent vector fields A1 , ... , An, i.e. 

E = :F(A1 , ... , An)· The formula 

dB(X, Y) = X(B(Y))- Y(B(X))- B([X, Y]) (9) 

shows that the 2-forms dBj vanish on the distribution E if and only if 

for all k, l = 1, ... , n. But (9) implies that this is true if and only if the commutators 
[ Ak, Az] also lie in E, so that 

n 

[Ak,Az] = LcizAi (10) 
i=l 

for all k, l = 1, ... , n, and some smooth functions 4z· 
The following theorem shows that each of conditions (7), (8), (10) are sufficient for 

E to be completely integrable. 

4.4. Frobenius' theorem. 
1st variant. A distribution E = :F( 81 , ... , Bm) is completely integrable if and only 

if conditions (7) (or equivalent conditions (8)) are satisfied. 
2nd variant. A distribution E = :F(A1, ... , An) is completely integrable if and 

only if conditions (10) are satisfied. 

We shall first prove the following 

Lemma. Let E = :F( 81 , ... , Bm) be a distribution satisfying conditions (7) and 
(8). Suppose A is a vector field lying in E and { Ft} is the one-parameter group 
of translations along the vector field A. Then for all t E IlR the differential 2-forms 
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Ft (fh), ... , Ft ( Bm) vanish on E and therefore are nnear combinations of the forms 
el,···,em. 

Proof of the lemma. Consider the differential (m + 1)-forms 

j = 1, ... , m. Let us find their derivatives with respect to the parameter t. We have 

But 
LA (Bj) = A..J d()j + d(A...J ()j) = A...J d()j = Ajl (A)B1 + · · · + Ajm (A )em. 

Therefore, 

(11) 

where 

Thus the forms 81 ( t), ... , 8m ( t) satisfy simultaneous linear ordinary differential equa­
tions (11). Since 8j(O) = 0 for all j = 1, ... ,m, from the unique solution theorem it 
follows that 8j(t) 0 for all j = 1, ... , m and t E ~- This concludes the proof of the 
lemma. 

Proof of the theorem. Let L C M be an integral manifold of the distribution E and 
A a vector field such that A lies in E and is not tangent to L. Since by the lemma we 
have 

()j IFt(L) = Ft(Bj) IL = 0, 

we see that the submanifolds Lt = Ft(L) are also integral manifolds of E. In addition, 
for sufficiently small t the set 

L=ULt 
t 

is a smooth submanifold in M (see Fig. 10). 

Fig. 10 
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For a point a E Lt consider the tangent space T a ( L). This space is the sum of 
the space Ta(Lt) C E(a) and the straight line spanned by the vector Aa E E(a). 
Therefore, Lis an integral manifold of the distribution E. 

Thus, if dimL <dimE, then we can construct an integral manifold of dimension 
1 + dim L. Starting from, for instance, the trivial 0-dimensional manifold, we can 
construct an integral manifold of dimension equal to dimE. 

4.5. Example. Distributions of codimension 1. 
A distribution of codimension 1 can be given (locally) by one differential 1-form B. 

This distribution is completely integrable if and only if 

d() 1\ () = 0. (12) 

For example, let M = m. 2 and 

() = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz. 

Then 

d() 1\ () = A - - - - B (_ - - + C - - - dx 1\ dy 1\ dz. [ ( an ac) 1 &A ac) (EJB &A)] 
&z &y \ &z &x &x &y 

Thus, the distribution F( B) is completely integrable if and only if 

A (&B _ &C) _ B (&A _ &C) + C (&B _ &A) = O. 
az &y &z &x &x &y 

(13) 

4.6. Remark. There is a connection between integral manifolds of distributions 
and solutions of systems of differential equations considered in §3. Let E be a dis­
tribution on M. We can choose coordinates x1, ... , Xn, YI, ... , Ym in some neighbor­
hood 0 of a point a E M so that for any x E 0 the restrictions of the differen­
tial 1-forms dx1, ... , dxn to the subspace E(x) are linearly independent. The forms 
dy1, ... , dym considered on the subspaces E(x), x E 0, are linear combinations of the 
forms dx1, ... , dxn. Therefore, E can be given by forms B1, ... , Bm of the form: 

{ 

81 = dy1- H/(x, y)dx1- · · ·- H~(x, y)dxn, 

Bm = dym- H!(x, y)dx1- · · ·- H:;;"(x, y)dxn. 

Now let L be an integral manifold of E passing through a point a E M and suppose 
that dim L = dim E. Then in some neighborhood of a, L has the form of the graph 
Lh for some vector-valued function y = h(x). Conditions for L to be integrable: 

are exactly differential equations (1) from §3, while conditions of Frobenius' theorem 
are exactly conditions ( 4) from §3. 
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§5. JETS OF CURVES 

In final sections of this chapter we shall give an invariant interpretation for basic 
concepts of geometrical theory of ordinary differential equations on manifolds. This 
will enable us to use language free of choice of local coordinate systems and to introduce 
some new and useful structures in spaces of jets. 

5.1. Let N be a smooth manifold of dimension n + 1. A curve in M is a 1-
dimensional submanifold L C N. Suppose that N can be written as a direct product 
of a smooth manifold M and the set of real numbers IPI..: W = M x IPI.. so that the 
projection of Lon IPI.. is a diffeomorphism of L onto some open domain 0 C IPI... Then 
Lis called a parametrized curve in M. (See Fig. 11 and 12.) 

MXIR=N 

Fig. 11 Fig. 12 

The submanifold L determines the smooth mapping 

x:O---+M 

that takes a point t E 0 into x(t) E M so that (x(t), t) E L (see Fig. 12). In other 
words, Lis the graph of the mapping x. 

5.2. Definition. Let L1 and L2 be submanifolds of N, k a natural number, and 
a E L 1 nL2 . We shall say that the submanifolds L1 and L2 have contact (or tangency) 
of order kat the point a if for any smooth function f E C 00 (N) vanishing on L 1 , the 
function f I L 2 has zero of order ): k + 1 at the point a E L2. 

Example. Let N be the plane with coordinates (t, q). Consider the curves L 1 and 
L2 given by 

L1 = {(t,q)lq = 0}, 

L2 = {(t,q)lq = h(t)}, 

where h(t) is a smooth function vanishing at the point t = 0 (see Fig. 13). 
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N q 

Fig. 13 
All functions vanishing on L 1 have the form q · g(t, q) for some g E c=(N). There­

fore, in order to find the order of tangency of L 1 and L2 , it is sufficient to put f = q. 
But qiL2 = h(t). Thus, the order of tangency is determined by the order of zero of 
the function h(t). 

5.3. A condition for parametrized curves 

x : 0 ---7 M and y : O' ---7 M 

to have contact of order k at a point t0 E 0 n 0' can be reformulated as follows: 

Definition. The parametrized curves x(t) and y(t) have contact of order k at the 
point to E 0 n 0' if for any smooth function j E c= ( M), the function 

x* (f) - y* (f) : 0 n O' ---7 IPI., 

(x*(j)- y*(j))(t) = f(x(t))- f(y(t)) 

has zero of order ): k + 1 at t0 . 

Let to E JR. By J1~0 denote the ideal in c= (JR) consisting of all smooth functions 
that have zero of order k at the point t0 . Then the curves x(t) and y(t) have contact 
of order k at t0 if and only if 

x* (f) - y* (f) E J1~o+l 

for all functions j E c= ( M). 

5.4. Note that the definition above has local nature. If functions h1 and h2 coincide 
in some neighborhood of a point to E IPI. and h1 E J1~0 , then h2 E J1~0 • Therefore, 
local coordinates can be chosen as functions f in the definition above. Suppose that 
u 1 , ... , un are local coordinates in a neighborhood of the point x(to) E M and the 
curves x(t) and y(t) have the following form in these coordinates: 
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y(t): u 1 = y1 (t), ... , un = yn(t). 

Then the curves x(t) and y(t) have contact of order kat the point t0 E IP?. if and only 
if 

for all j = 1, ... , n. In other words, vectors 

(x1 (to), ... ,xn(to), (x1)'(to), ... , (xn)'(to), ... , (x1)(k)(to), ... , (xn)(k)(to)) 

(y1 (to), ... , yn(to), (y1 )'(to), ... , (yn)' (to), ... , (y1 )(k) (to), ... , (yn)(k) (to)) (1) 

coincide. 

5.5. Definition. 
1) Curves L1 , L2 C N are said to be k- equivalent at a point a E L 1 n L2 if they have 

contact of order ) k at this point. The k-equivalence class determined by a curve L 
at a point a E L is called the k-jet of the curve L at the point a and is denoted by 
[L]~. 

2) Parametrized curves x : 0-----+ M- andy : 0' -----+ M are said to be k-equivalent at 
a point t 0 E 0 if they have contact of order ~ k- 1 at this point. The k-equivalence 
class determined by a curve x at a point t0 E 0 is called the k-jet of the parametrized 
curve x at the point to and is denoted by [ x ]f0 • 

5.6. By N~ denote the set of all k-jets of curves on N at a fixed point a E N and 
by Nk denote the set of all k-jets: 

Now let J(kt ) (IP?., M) denote the set of all k-jets [x]f of parametrized curves x on o,a o 

M at a fixed t0 such that a = x(t0 ). By Jk(J.P?., M) denote the set of all k-jets of 
parametrized curves on M: 

Jk(J.P?., M) = u J~o,a)(J.P?., M). 
(to,a) 

Let us consider these spaces for small numbers k. If k = 0, then obviously 

N° = N and J 0 (IP?., M) = IP?. x M. 

If k = 1, then each 1-jet [x lf0 can be identified with the tangent vector ±(to). Thus, 

and therefore 
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Correspondingly, each 1-jet [ L ]~ can be identified with a 1-dimensional subspace of 
the tangent space T a N. Thus 

is the projectivisation of the tangent space TaN, and 

NI = IF(T N) 

is the projectivisation of the tangent bundle TN. 

5.7. In order to describe the spaces of k-jets of curves for k ~ 2, consider the 
natural projections 

Trk,s : Jk(~, M)-+ J8 (~, M), 

Trk s : Nk -+ Ns 
' 

generated by reduction of k-jets of curves to s-jets, k ~ s. For example, 

Trk,s([L ]~) = [L ]~. 

The spaces Jk(~, M) and Nk, for k = 0, 1, 2, ... , can be naturally turned into 
smooth manifolds. We shall begin with the space Jk(~, M). Let ui, ... , un be local 
coordinates in some neighborhood U of a point a EM. These coordinates determine 
the local coordinates 

t I n I n I n 
' u ' ... ' u 'PI' ... 'PI ' ... 'Pk' ... 'Pk 

in the neighborhood Trk,6(0 xU) of a point [ x ]~0 E Jk(~, M). Here 0 is some interval 

containing t 0 and the coordinate functions p; are defined by 

The rules for differentiation of composite functions show that the functions 

t j i ,u ,pj, i = 1, ... , n; j = 1, ... , k 

give a local coordinate system on the set Jk (~, M), thereby turning Jk (~, M) into a 
smooth manifold of dimension n(k + 1) + 1. 

In order to supply the space Nk with a structure of a smooth manifold, let us note 
that the manifold N can be locally represented as the direct product M' x ~. The 
embedding 

Jk (~, M') "----7 Nk, 

corresponding to this representation, together with the smooth manifold structure in 
Jk (~, M') just described determine an atlas on the manifold Nk. 

Projections Trk,s can be regarded as smooth fibrations with respect to the smooth 
manifold structure described. Therefore, the manifold of k-jets can be imagined if we 
successively describe fibres of the fibrations Trn,n-I for n = 2, 3, ... , k. With this in 
mind, we shall digress for a while and consider a new object. 
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§6. DIFFERENTIAL GROUPS 

6.1. Let G denote the group of all diffeomorphisms of a manifold M. We shall 
identify every diffeomorphism rp E G with its graph r rp c M X M, where 

f rp = {(x, y) EM x Mly = rp(x)} 

Definition. Let c.p, 'ljJ E G be diffeomorphisms of M such that rp(a) = '1/J(a) = b for 
some points a, bE M. We shall say that c.p and 'ljJ have contact of order k at the point 
a if the submanifolds f rp and r '1/J have contact of order k at the point (a, b) E r rp n r '1/J. 

In other words, diffeomorphisms c.p and 'ljJ of M have contact of order k at a point 
a EM if cp(a) = '1/J(a) and for any smooth function f E C00 (M) the following condition 
holds: 

c.p* (!) - '1/J* (!) E p~+1. (1) 

M 

M 

Fig. 14 

6.2. Definition. Diffeomorphisms rp, 'ljJ E G are said to be k-equivalent at a point 
a E M if they have contact of order ? k at this point. The k-equivalence class 
determined by rp at a E M is called the k-jet of the diffeomorphism rp at the point a 
and is denoted by [ rp ] ~. 

6.3. The definition of contact of two diffeomorphisms has local nature. Therefore, 
it is sufficient to check condition (1) only for coordinate functions. Let X1, ... , Xn be 
local coordinates in a neighborhood of the point a and Y1, ... , Yn local coordinates in 
a neighborhood of the point b = c.p(a). In these coordinates the diffeomorphisms rp 
and 'ljJ have the form 

{ 

~1 =c.p1(xb···,xn) 

c.p= : 

Yn = t.pn(XI, · · ·, Xn) 

{ 
~1 = 'I/J1(x1, · · · ,xn) 

and 'ljJ = : 

Yn = 'l/Jn(X1, · · ·, Xn) 

Putting f = Yj in (1), we obtain 

am ( c.p j - '1/J j) (a) = 0 
ax a 
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for all j = 1, ... , nand for all multi-indexes(]"= ((]"1 , ... , (J"m) such that m ~ k. Thus, 
the k-jet of rp at a can be identified with the vector 

k arp1 arpn amrpj 
[ rp la = (rp1 (a), ... , rpn(a), -a (a), ... -a (a), ... , -a-(a), ... ), 

X1 Xn X 17 

where j = 1, ... , n, (]" = ((]"1, ... , (J"m), m ~ k. 

6.4. Fix points a, bE M and by G~ b denote the set of all k-jets [ rp ]~ of diffeomor-
phisms rp such that rp( a) = b. ' 

The operation of composition of diffeomorphisms gives the pairing 

taking a pair ([ rp ]~, [ rp ]~) into [ rp o 1jJ ]~. 
In particular, if a = b = c, then this pairing turns the set G~,a into a Lie group. 

For small numbers k this group can be described easily. 
So, if k = 0, then the group G~,a = {[ id ]~} is trivial. If k = 1, then the definition 

of a 1-jet [ rp ]~ actually repeats the definition of a differential. Therefore, [ rp n can be 
identified with the differential 

It is easy to check that each nonsingular linear transformation of the tangent space 
T a M is a differential of some local diffeomorphism at the point a. Thus, the group 
G~,a coincides with the general linear group GL(Ta M). 

6.5. In order to describe the group G~ a for k ~ 2, consider the successive epimor-
' phisms of groups 

r!"k r!"k-1 
1rk,k-1 : 'Ula,a --+ 'Ula,a 

and their kernels IHI~. 

Proposition. For k ~ 2, the group IHI~ is a connected commutative Lie group. More­
over, IHI~ is isomorphic to the tensor product 

where T a = T a M and Sk T: is the k-th symmetric power of the cotangent space T:. 

Proof. Let us first show that the group IHI~ is commutative. The condition that a k-jet 
[ rp ]~ belongs to IHI~ means that 

[ lk-1 = [ 'd]k-1 cpa 1 a ' 

i.e. for every smooth function f E C 00 (M) 

(1- rp*)(f) E p~. (2) 
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If in addition 
(1- cp*)(f) c p,~+ 1 ' 

then [ cp ]~ is the identity element of lHI~. 
Let [ 1/J ]~ E lHI~ and k ?:: 2. Show that 

[cp 0 1/!]~ = [1/! 0 cp]~. 

Note that the following relations are true 

(cp* 0 1/!*)(f) = [(1- cp*) 0 (1 -1/!*)- (1- cp*)- (1 -1/!*) + 1](!), 

(1/!* 0 cp*)(f) = [(1 -1/!*) 0 (1- cp*)- (1- cp*)- (1 -1/!*) + 1](!). 

Therefore 

(cp* 0 ¢* -1/J* 0 cp*)(f) = (1- cp*) 0 (1-1/!*)(f)- (1-1/J* 0 (1- cp*)(f). (3) 

In addition, 

(1- cp*)(f. g)= f(1- cp*)(g) + g(1 -1/!*)(f)- (!- cp*(f))(g- cp*(g)) (4) 

for all functions f, g E c= ( M). 
From (4) it follows that if cp satisfies condition (2), then 

(1- cp*)(p,~) c p,~+l-1 

for all l ?;: 1. 
Since [1/!]~ E lHI~, we have 

(1 -1/J*) o (1- cp*)(f) E (1 -1/J*)(p,~) C p,;k-1 . 

Since 2k- 1 ?;: k + 1 for k ?;: 2, from ( 3) it follows that elements [ cp] ~ and [ 1/J] ~ commute. 
Further, relation ( 4) shows that the mapping 

Xcp : c=(M) -t Sk T:, f f--* (1- cp*)(f) mod p,~+ 1 

is a derivation and therefore can be represented as 

Xcp = Bcp o da, 

where Bcp : T: -t Sk T: is a linear mapping and da : c=(M) -t T: is the differential 
at a point a. Thus, the mapping [cp]~ f--* Bcp is a monomorphism of the groups lHI~ and 
Hom(T:, Sk T:). 

Now show that [cp]~ f--* Bcp is an epimorphism. Indeed, every linear mapping (} : 
T: -t Sk T: can be identified with an element of the space Sk T: ® T a and therefore 
with a k-jet of some vector field Von M. By {At} denote the one-parameter group 
of translations along V. Then 

A;(!)- f =tV(!) mod p,~+ 1 . 

Thus, if we put cp = A1 , then(}= Bcp· 

6.6. Definition. The group rG~ a is called the full differential group of order k (at 
the point a EM). ' 
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Theorem. For k ) 2, the full differential groups !G~ a are successive extensions of the 

group !G~ a = GL(Ta M) by commutative groups IBI~' = Sk T~ 0 Ta: 
' 

6. 7. As an illustration, let us describe coordinate representation of multiplication 
. rf"2 In IUra a· 

Let x 1 , ... , Xn be local coordinates in a neighborhood of a point a E M and x1 (a) = 

· · · = Xn(a) = 0. Then every 2-jet [cp]~ determined by a diffeomorphism cp, cp(a) =a, 
can be given as 

Then the following relation is true for i = 1, ... , n: 

* ( ) ~ acpi ( ) 1 ~ a2 cpi ( ) cp Xi = L.-t -a . 0 Xj + -2 ~ a a 0 XzX 8 
. XJ Xz X8 

J l,s 

mod JL~. 

Therefore, for the composition [cp]~ o [¢]~ we have 

It follows that 

Note that if [cp]~ and [1/J]~ belong to IBI~, then 
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and 

which is in accordance with proposition 6.5. (Here 8ij is Kronecker delta.) 

Remark. The group rr;; a is the semidirect product of the group G~ a rv GL(Ta) and 
the commutative ideal Jill; ~ T a &;;82 T~ with the natural action of G~ a on IHI;. How-

' 
ever, for k ~ 2, G~~1 cannot be represented as the semidirect product of the groups 

' 
G~ a and IHI~+ 1 (i.e. the corresponding exact sequence is not splitting). 

' 

§7. AFFINE STRUCTURES 

7.1. Let us define an action of the full differential group G~ a on the space of k-jets 

N~. For [L]~ EN~ and [<p]~ E G~a' put ' 
' 

(1) 

Since the right-hand side of the equality is determined by the k-jet of the diffeomor­
phism <p and the curve L respectively, we see that the action is well-defined. 

Proposition. The Lie group IBI~ acts transitively on fibres of the projection 

N k Nk-1 
1fk,k-1 : a --+ a · 

Fork ~ 2, the stabilizer of an element [ L ]~ E N~ under this action is the subgroup 

(Ann TaL) o sk- 1 T~ &;;Ta +Sk T~ &;; TaL, 

where Ann T a L C T~ is the annihilator of the straight line T a L and o is the sign of 
symmetric product. 

Proof. It is clear that the action of IHI~ is transitive. Indeed, let L and L' be curves 
such that their (k - 1)-jets at a point a E L n L' coincide. Then there exists a 
diffeomorphism <p such that <p coincides with the identity diffeomorphism up to the 
(k - 1)-th order and the curves L and <p(L') coincide in some neighborhood of the 
point a. Therefore, [ <p ]~ E IHI~ and [ <p ]~ ([ L' ]~) = [ L ]~. 

N 

Fig. 15 
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Let us now describe the stabilizer of an element [ L ]~ under the action considered. 
Let [ cp ]~ be an element of the stabilizer. Then the curves Land cp(L) have contact of 
order? k+l at the point a. Therefore, for every function f E c=(N) vanishing on L, 
the function cp* (f) IL has zero of order ? k + 1 at a. In terms of the operator X'P (see 
6.5)' this is equivalent to the fact that the restriction of the symmetric tensor x'P (f) to 
the straight line TaL equals zero. Thus, X'P maps Ann TaL into (Ann TaL) o sk- 1 T: 
and therefore 

Corollary 1. Let k? 2 and let [L ]~be an element of N~. The fibre of the projection 
7rk,k- 1 : N~ --+ N~- 1 is the affine space associated with the vector space 

where Va = T a N / T a L is the space normal to the curve L at the point a. 

Proof. The commutative group lEI~ acts transitively on the fibre 1r k i-1 ( [ L] ~- 1 ). The 
stabilizer of this action has been calculated earlier. Thus, the abelian group 

Sk T: ®Ta /(Ann TaL o sk-1 T: ®Ta +Sk Ta ®TaL)"' Sk T: ®Va 

acts transitively and effectively on the fibre Jrkk- 1 ([ L ]~- 1 ). , 

Corollary 2. The fibre of the projection 7rk,k- 1 : J~(JR, M) --+ J~- 1 (JR, M) is the 
affine space associated with the tangent space T a M. 

Proof. It is sufficient to indicate the following isomorphisms: 

Remark. Actually, J~(JR, M) is a vector space. As a base point, we can take the k-jet 
of the singular curve JR 3 t r---7 a E M. 

7.2. Definition. The prolongation of order k of a diffeomorphism cp : N --+ N is 
the diffeomorphism cp(k) : Nk --+ Nk defined by 

cp(k)([L]~) = [cp(L)]~. 

The basic properties of prolongations are as follows: 
(i) cp(k) 0 'ljJ(k) = (cp 0 '1/J)(k); 
(ii) (id)(k) = id; 
(iii) for k > s the diagram 

Nk 
'P(k) 

Nk --+ 

1rk,s l l 1rk,s 
Ns --+ Ns 

'P(s) 
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is commutative. 
These properties can be easily verified. 

7.3. For the space of k-jets of parametrized curves consider diffeomorphisms of the 
manifold lPI. x M that preserve the structure of the direct product and parametrization. 
More exactly, let cp : lPI. x M -+ lPI. x M be a diffeomorphism such that cp is in agreement 
with the projection lPI. x M -+ lPI. and induces the identical mapping on the base JPI.; in 
other words, cp is a diffeomorphism such that the diagram 

]Pl. X M 

/ 

is commutative. Then cp is called a gauge transformation. 
It can be easily seen that every gauge transformation cp can be written as 

cp: (t, a) r-+ (t, cpt(a)), 

where { lpt} is a one-parameter family of diffeomorphisms of M. 
Gauge transformations act naturally on parametrized curves in M. If cp is a gauge 

transformation and x : lPI. :::=> 0 -+ M is a parametrized curve, then by cp(x) denote the 
curvet r-+ cpt(x(t)). 

Definition. The prolongation of order k of a gauge transformation cp is a diffeomor­
phism cp(k) : Jk(JPI., M)-+ Jk(JPI., M) defined by 

Prolongations cp(k) are restrictions of prolongations defined in the previous item to 
the open subset Jk(JPI., M) c (JPI. x M)k. Therefore, they satisfy properties (i), (ii), 
and (iii) from 7.2. 

7.4. Let cp : N -+ N be an arbitrary diffeomorphism and 1/J : N -+ N a diffeomor­
phism such that [ 1/J ]~ E IHI~. Then [ cp o 1/J o cp- 1 ]~(a) E IHI~(a) and therefore, fork) 2, 

the diffeomorphism cp(k) induces an affine transformation of fibres of the fibration 

1rk,k-1· 
Summarizing all observations of this section, we obtain the following result: 

Theorem. 
(1) Let k ) 2. Then the fibration 7rk,k-l : Nk -+ Nk-l is an affine fibration and 

prolongations cp(k) : Nk -+ Nk of diffeomorphisms of N are affine automorphisms 
of fibres of this fibration. If k = 1, then fibres of the fibration 1r1,0 : N 1 -+ N are 
projectivisations of spaces tangent to N, while prolongations cp(l) : N 1 -+ N 1 are 
projective transformations generated by the differential cp* : TN-+ TN. 
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(2) Fork;?: 1, the fibration 1fk,k-l : Jk(JJR, M)-----+ Jk- 1 (JJR, M) is a fibration of avec­
tor bundle, and prolongations cp(k) of gauge transformations are linear automorphisms 
of this fibration. 

7.5. As a larger group of transformations of the space Jk(JJR, M), consider diffeo­
morphisms of JJR x M preserving fibres of the projection 1r : JJR x M -----+ JJR. Every 
diffeomorphism cp of this kind determines a parametrization (i.e. diffeomorphism) 
..\ : JJR -----+ JJR such that the diagram 

JJR X M 
l1T 
JJR 

is commutative. Thus, every cp is determined by a one-parameter family of diffeomor­
phisms cpt : M -----+ M, t E JJR, and a parameterization ..\ : JJR -----+ JJR: 

cp: (t, a) r-t (..\(t), cpt(a)). 

In this case the prolongation cp(k) of cp to the space Jk(JJR, M) is defined by 

cp ( k) ( [ X ( t) ] ~0 ) = [ cpt (X (A -l ( t))) ] ~ (to) · 

If k = 1, then cp(l) is determined by the differential cp*: 

cp(1)([x(t) ]i0 ) = (..\'(to))-1cp*,a(±(to)), 

where a= x(to). 

The results of items 7.3 and 7.4 are also true for these, more general, transformations 
cp and their prolongations. 

§8. CARTAN DISTRIBUTIONS 

8.1. Definition. 
(1) Let L be a curve inN. The k-jet Jk(L) C Nk of the curve Lis the curve 

Jk(L) = {[L]~!Va E L}. 

(2) Let x : 0 -----+ M be a parametrized curve. The k-jet Jk(x) : 0 -----+ Jk(JJR, M) of 
the curve x is the curve in the space Jk (JJR, M) defined by 

Jk(x): t r-t [x(t) ]~. 

8.2. In this section we shall describe the basic structure on the space of k-jets of 
curves, namely, the Cartan distribution, which will allow to distinguish k-jets of curves 
among all curves in the space of k-jets. 

Fix a point A E Nk and suppose A = [ L0 ]~ for some curve L0 C N. Consider 
various curves of the form Jk(L) passing through A, i.e. curves Jk(L) such that [L ]~ = 

[ L0 ] ~. By C A denote the linear closure of the set of all tangent lines T A (j k ( L)) to 
curves like this. 
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Definition. The space C A C T A ( Nk) is called the Cartan space. The distribution 
C : A ~--+ C A on the manifold Nk is called the Cartan distribution. 

We can similarly define Cartan spaces and distribution for the manifold Jk (~, M) 
of k-jets of parametrized curves. 

8.3. The Cartan distribution can also be described by means of special differential 
1-forms. 

Definition. A differential 1-form w on Jk(~, M) is called horizontal if w vanishes at 
vectors tangent to all fibres of the projection 1fk : Jk(~, M) -t R 

By AB(Jk(~, M)) denote the set of all horizontal1-forms on Jk(~, M). It is obvious 
that this set is closed under addition and multiplication by smooth functions f E 
coo(Jk(~,M)). 

Note that if w is a horizontal 1-form on Jk(~, M) such that for all parametrized 
curves x in M 

Jk(x)*(w) = 0, (1) 

then w = 0. Thus, horizontal 1-forms are completely determined by their restrictions 
to k-jets of parametrized curves. 

8.4. To every smooth function f E coo(Jk-l(~, M)) we assign a horizontall-form 
dj E A6 ( Jk (~, M)) by means of the following property: 

(jk(x))*(df) = d(Jk-l(x)*(f)). (2) 

for all parameterized curves x : ~ -t M. 

Proposition. The 1-form dj is well-determined by relation (2). 

Proof. The fact that dj is unique follo~s from the property mentioned at the end 
of item 8.3. It remains to prove that df exists. It is sufficient to note that every 
nonvertical vector v E T A ( Jk (~, M)), i.e. a vector such that ( 1fk) * ( v) =/=- 0, can be 
made into a vector tangent to a curve of the form j k ( x), by adding some vertical (with 
respect to the projection 7rk,k-l) vector. But the forms standing in both sides of (2) 
vanish at vectors tangent to all fibres of the projection 1fk,k-l· Therefore, relation (2) 
enables us to calculate the value of dj at v and thereby determines the 1-form dj. 

8.5. Theorem. The mapping f ~--+ df determines the operator 

satisfying the following properties: 
1) d is linear over ~; 
2) dis a derivation: 

(3) 
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Proof. We shall prove only the second property, since the proof of the first one is 
absolutely similar. Let us restrict both sides of equality (3) to an arbitrary curve 
Jk(x ): 

(jk(x))*(d(fg)) = djk-1 (!g) = Jk-1 (f)djk-1 (g)+ J'k-1 (g)djk-1 (!), 

(jk(x))*(7rk,k-1(f)dg + 1fk,k-l(g)df) = 

= J'k-1(f)jk(x)*(dg) + Jk-1(g)jk(x)*(dj) = 

= Jk-1(j)djk-1(g) + Jk-1(g)djk-1(j). 

We see that the restrictions coincide. Since the forms in both sides of (3) are 
horizontal, from the property mentioned in 8.3 it follows that the forms coincide. 

8.6. Consider the action of the operator din local coordinates. Let 

be a smooth function defined on Jk- 1 (J:IR, M). (For the sake of convenience in the 
sequel we shall write it as f = f(t,ui,p{).) From theorem 8.5 it follows that 

(4) 

Thus, in order to calculate dj, it is sufficient to calculate the 1-forms dt, dui, dp{. 
Since all these forms are horizontal, they can be written in the form g ( t, u i, pi) dt, 
where l :S; k. Let us begin with dt and let 

Then from (2) it follows that 

Therefore, A _ 1 and 
dt = dt. 

Further, if 

then from (2) it follows that 
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Therefore, B = p~+ 1 and 

dp~ = p~+ 1 dt. 

Similarly we obtain dui =Pi dt. Finally, 

df = D(f)dt, (5) 

where 

D a """" ~ a """" i a 
= 8t + ~P1 au~ + L.J Pj+1 Bpi. 

~,j(,_k-1 J 

(6) 

is the operator of total differentiation. 

8.7. Definition. Let f E c=(Jk-1(l:Pl.,M)). The following differentiall-form on 
Jk (l:Pl., M) is called the Cartan form determined by f: 

w(f) = d1r'k k- 1 (f)- dj. 
' 

(7) 

Proposition. Cartan forms vanish on curves of the form Jk(x) 

Proof. Since Kk,k-1 o jk(x) = Jk-1(x), we have 

Now, using (2), we obtain 

= d(Jk-1(x)* f)- d(Jk-1(x)* f)= 0. 

8.8. Using representation (5) for the operator d, we see that Cartan forms can be 
written in local coordinates as 

where 

"""" a f i """" a f i w(f) = ~ 8uiw(u) + ~ a i. w(pj), 
· · './k-1 PJ ~ ~,J""' 

w( u 1 ) = du1 - Pidt, ... ' w( un) =dun- prdt, 

w(p;) = dpj - p;+1 dt. 

This calculation immediately leads to the following result: 
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Theorem. 
(1) The Cartan distribution on the manifold Jk (~, M) can be considered as the 

annihilator of Cartan forms w(f) for all f E c=(Jk- 1 (~, M)). 
(2) Let q be a curve in Jk(~, M) that can be parametrized by the function 7rk : 

Jk (~, M) -+ ~. Then q is a k-jet of a parameterized curve in M if and only if all 
Cart an forms vanish on q. 

8.9. In conclusion, we shall give one more description of the Cartan distribution. 
For this purpose note that every A = [ x ]~0 E Jk (~, M) determines the straight line 
l(A) tangent to the curve Jk- 1 (x) at the point A' = 1rk,k-1 (A). The sum of l(A) 
and the space FA' tangent to the fibre 1r;;~ 1 (to) at the point A' gives the whole space 
TA'(Jk- 1 (~, M)) (see Fig. 16). 

Fig. 16 

Consider the operator 

UA: TA(Jk(~, M))-+ FA' 

that takes a vector v E TA(Jk(~, M)) into the projection of (7rk,k- 1)*(v) to FA' along 
l(A). 

Theorem. ker U A = CA. 

Proof. Note that if dimM = n, then dimCA = n + 1 and dimkerUA = n + 1. 
Therefore, it is sufficient to prove that C A C ker U A. But the operator U A vanishes 
on vectors tangent to curves of the form j k ( x). Thus, C A = ker U A. 

8.10. As an illustration consider the simplest case, that is k = 1. In this case the 
fibre of the projection 7ro : M x ~-+ M coincides with M. Therefore, FA' =TaM, 
where a = 7ro (A') = 1r1 (A), and the operator U A has the form: 

UA: TA(T M X~)-+ TaM. 

Identifying T a M with the subspace of T A (T M x ~) tangent to the fibre of the pro­
jection T M x ~ -+ M x ~' we obtain the operator field 
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on the manifold of 1-jets. 
It is immediate from the definition of U A that 

(8) 

for all points A E J 1 (~, M). 
Let us describe the operator field U in local coordinates. Suppose t, u 1 , ... , un, 

Pi, ... , P! are coordinates in some neighborhood of a point A E J 1 (~, M). By theorem 
8.9 the operator UA vanishes on CA. Hence 

n 

UA = L vi Q9 w(ui), 
i=l 

where vectors v1 , ... , Vn are linearly independent. By definition 

so that 

(9) 

or 
~ 8 . . 

UA = LJ ~ i Q9 (du~- p~dt). 
i=l upl 

(10) 

Since J 1 (~, M) = ~ x T M, we see that the operator field U can be written as 

U = -v Q9 dt + Uo, 

where v is a vector field on the tangent bundle T M and U0 is on operator field on 
TM. 

The vector field v is called Liouville field. It can be described invariantly as the 
vertical vector field on T M such that the one-parameter group At of translations 
along this field has the form: 

The operator field U0 is called the tangent structure. These operators are also nilpo­
tent: 

u;;B =O 
' 

for all B E T M. 

In contrast to the operator field U, kernel 

KerUo B = ImUo B 
' ' 

coincides with the space tangent to the fibre of the projection T M ~ M for all points 
BETM. 



SYMMETRIES AND INTEGRALS 47 

§9.DIFFERENTIAL EQUATIONS 

In this section we shall once more revert to basic concepts of differential equa­
tions and give their invariant interpretation. We shall consider only spaces of jets of 
parametrized curves, since in the majority of cases extension of the basic concepts to 
the case of spaces Nk can be made automatically. 

9.1. Definition. 
(1) A system of ordinary differential equations of order k on a manifold M is a 

smooth submanifold E C Jk (~, M) of codimension equal to dim M. 
(2) A solution (or more exactly, a classical solution) of this system is a paramet­

rized curve x : 0---+ M such that the image of 0 by the k-jet Jk(x) : 0---+ Jk(~, M) 
lies in E. 

We shall say that the system E is solvable with respect to the derivative of the highest 
order if the mapping 

1rk,k-1 : E ---+ Jk- 1 (~, M) 

is a diffeomorphism. 
If E is solvable with respect to the derivative of the highest order, then to every 

point A E Jk- 1 (~, M) we can assign its inverse image A E E by 1fk,k-1 and therefore 

the straight line l(A) = l(A) C C(A) (see item 8.9). Let XA E C(A) be a vector on 
l(A) such that the projection of XA on~ is the vector field !tt. Then the system E can 
be identified with the vector field X on Jk- 1 (~, M) lying in the Cartan distribution. 
Thus, the following result is true: 

9.2 Proposition. There is a one-to-one correspondence between systems of differ­
ential equations of order k solvable with respect to the derivative of the highest order 
and vector fields on Jk- 1 (~, M) lying in the Cartan distribution. 

9.3. Let k = 2. A system of differential equations of order 2 solvable with respect 
to the derivative of the second order can be identified with a vector field X on the 
manifold J 1 (~, M) = T M x ~. This field can be written as 

(1) 

where {yt} is a one-parameter family of vector fields on the manifold T M. Since X 
lies in the Cartan distribution, we have 

U(X) = U0(X)- v = 0, 

where v is the Liouville vector field on T M. 
Thus, we can identify (see (1)) a system of differential equations of order 2 solvable 

with respect to the derivative of the second order with a one-parameter family of vector 
fields yt on the tangent bundle T M, where {yt} satisfies the additional condition 

Uo(Yt) = v. (2) 
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9.4. The operator field U on J 1 (~, M) gives additional derivations of the algebra 
of exterior differential forms. Consider the inner derivation 

where 

for all differential forms w and vector fields X 1 , ... , Xj on J1 (~, M). 
If j = 0 and f E A 0 ( J 1 (JR!., M)) = c= ( J 1 (~, M)), then by definition put 

iu(f) = 0. 

It can be easily verified that the following result is true: 

Proposition. The inner derivation iu is a 0-degree derivation of the exterior algebra; 
in other words, 

(i) iu is linear over c= (J1 (~, M)); 
(ii) iu( w1/\w2) = iuw1/\w2+w1/\iuw2 for all differential forms WI, w2 on J 1 (~, M). 

Let d be the standard exterior derivation. By du denote the commutator of d and 
the inner derivation iu: 

Using the previous proposition, we obtain the following result: 

Theorem. The operator du is a 1-degree derivation of the exterior algebra; in other 
words, 

(i) du is ~-linear; 
(ii) du(wi /\w2) = duwi /\w2 + (-l)jw1 /\duw2 ifw1 E Aj(J1 (~,M)). 

In addition, do du + du o d = 0 and for an arbitrary function f the following relation 
holds: 

d~(f) + du(f) 1\ dt = 0. 

9.5. Let us now describe the action of du in local coordinates. First, note that 

iu(dt) = iu(dui) = 0 and 

Therefore, for an arbitrary function f we have 

du(f) = iu(df) = ~~ iu(dt) + ~ ( ~f iu(duj) + of iu(dp{)) 
ut ~ uuJ op{ 

J 
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""'8f du(f) = L...J -j wj. 
j 8pl 
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(4) 

Further, since d o du + du o d = 0, we obtain 

du(dt) = -d(du(t)) = 0, du(duJ) = -d(duuj) = 0, du(dp~) = -dwj. (5) 

Relations ( 4) and ( 5) enable us to calculate the value of the operator du at an arbitrary 
differential form. 

9.6. In practice, most of differential equations of the second order appear as Euler­
Lagrange equations of a variational problem. In this item we shall give a brief descrip­
tion of how to obtain equations of this sort. Every function L defined on J 1 (~, M) 
can be regarded as a Lagrangian of a variational problem. 

Consider the functional 

I: x(t) f---7 1b (ji(x))*(L)dt (6) 

defined on the space of smooth curves in M. The problem will remain unchanged if 
we add any linear combination of Cartan forms to the differential 1-form Ldt under 
the integral sign. 

The differential 1-form 
fh = duL + Ldt (7) 

is called the structure form of the variational problem. The Lagrangian L is called 
non-degenerate if the form fh determines a contact structure in J 1 (~, M). 

Consider the kernel of the differential 2-form d() L defined on the odd-dimensional 
manifold J 1 (~, M): 

Its dimension is equal or greater than 1. If the Lagrangian L is non-degenerate, then 
dimKer d()L = 1. 

By ZL denote the vector field on J 1 (~, M) such that ZL forms a basis of Ker d()L 

and its projection on~ is gt. 
Thus, the vector field Z L is uniquely defined by the following conditions: 

i) ZL..J()L = 1; 

ii) ZL..Jd()L = 0. 
(8) 

The fundamental theorem of variational calculus can be reformulated as follows: 

Theorem. Extremals of non-degenerate variational problem ( 6) coincide with trajec­
tories of the vector field Z L. The vector field Z L determines a system of differential 
equations of order 2 on the manifold M, that is a system of Euler-Lagrange equations. 
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CHAPTER II 

SYMMETRIES 

The problem of solution of differential equations or, what is the same, of finding 
integral manifolds of distributions is a problem of transcendental complexity. The 
idea of symmetry turns out to be very constructive in solution of this problem, as well 
as in solution of any mathematical problem though. Such is the case in the study 
of algebraic equations, where solubility (say, by radicals) of an algebraic equation is 
determined by its Galois group or (what is the same) its symmetry group. A similar 
situation takes place in the study of differential equations. However, in the latter case 
it is possible to linearize the problem, i.e. to pass to Lie algebras of symmetries. We 
are now going on to the fundamental concept of this book. 

§1. SYMMETRIES OF DISTRIBUTIONS 

1.1. Let E be a distribution on a manifold M. First, we give a preliminary definition 
of a symmetry. 

Definition. A symmetry of the distribution E is a diffeomorphism tp : M -+ M such 
that 

tp*(E(a)) = E(tp(a)) (1) 

for all elements a E M. 

By sym E denote the set of all symmetries of E. Let us point out some obvious 
properties of symmetries. 

i) The set sym E is a group with respect to composition of diffeomorphisms. 
ii) Let L C M be an integral manifold of the distribution E and tp a symmetry of 

E. Then the manifold tp( L) C M is also integral. Moreover, if L is a maximal integral 
manifold, then so is tp(L). 

Thus, symmetries enable us to construct new integral manifolds, starting from 
already known ones. 

Obviously, symmetries just defined have local nature. So, we can consider local 
symmetries of a distribution, defining them as local diffeomorphisms tp : 0 -+ O' such 
that tp satisfies condition ( 1) for all a E 0. All local symmetries of a distribution form 
a pseudogroup. 

1.2. Assume that E is the distribution given by differential 1-forms w1, .. , Wm: 

E = :F(w1, ... ,wm)· 

In addition suppose that the covectors w1 ,a, ... , Wm,a are linearly independent at all 
points a E M (or at all points of some domain, if local symmetries are involved). 
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It is clear that condition (1) is equivalent to the following condition: 

Therefore, there exists a smooth matrix-valued function A : a 1---t IIAij(a)ff,i,j = 
1, ... , m, such that for all points a 

and 

(3) 

cp*(wm) =Am! WI+···+ AmmWm· 

Relations (3) are very convenient when we use local coordinates. Let q1, ... , qn be 
local coordinates in a neighborhood of a point a E M and q~, ... , q~ local coordinates 
in a neighborhood of cp(a), where cp : M---+ M is a diffeomorphism. 

Then in these coordinates cp has the form: 

Suppose that the forms w1, ... , Wn have the form 

{ 

1V1 wn(q)dql + · · · + Win(q)dqn 

Wm- Wmi(q)dqn + · · · + Wmn(q)dqn 

in a neighborhood of a and 

{ 

1V1 = w;1 (q)dq; + · · · + win(q)dq~ 

Wm = w~1 (q)dq~ + · · · + W~n(q)dq~ 

in a neighborhood of cp(a). Then relations (3) take the form 

It can be written in matrix form as 

n,fJQ =An 
8q ' 

(4) 

(5) 

(6) 

(7) 

(8) 
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where n and S1' are the following matrices: 

In oder to avoid indeterminacy connected with the function A, we rewrite relations 
(3) in the equivalent form: 

{ 
so* ( W1) 1\ W1 1\ · · · 1\ Wm = 0 

SO* ( Wm) 1\ W1 1\ · · · 1\ Wm = 0 

Then relation (7) means that all (m + 1)-th order minors of the matrices 

"""' I 8Qj 
Dj wji 8ql 'Wn, ... 'Wml 

, j = 1, ... ,m, 

are equal to 0. 

1.3. Examples. 

(3') 

1. Let E be the distribution on M = ~2 given by the 1-form w = dq1 (see fig.17). 
Symmetries of this distribution are transformation of the plane preserving the family 
of vertical straight lines. 

Fig. 17 
In this case relations (7) have the form: 

E 

Thus, symmetries of the distribution E are transformations of the form: 

2. Consider the Cartan distribution C on the manifold J 1 

distribution given by the differential 1-form 

w = du- pdt. 

J1 (~,~), i.e. the 
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Symmetries of this distribution are called contact transformations. They have the 
form 

cp: (t,u,p) ~----+ (T((t,u,p),U(t,u,p),P(t,u,p)), 

where 

{ 
~~- p~~ =A, 
au poT A 7ft- 7ft=- p, 
au_ poT= 0 op op · 

Substituting A from the first equation into second one, we obtain 

where 

{ 
dU pdT 0 
dt- rt= ' 
au_ poT_ 0 op op - ' 

.!!__ - !!_ p !!_ 
dt- at+ au 

(9) 

(10) 

is the operator of total differentiation with respect to t. In its turn, system (10) may 
be rearranged to give a single relation on the functions U and T 

assuming that 

dU ar au dT 
------0 
dt ap ap dt - ' 

P=au;ar. 
ap ap 

() 

(12) 

3. Legendre transformations are contact transformations of J 1 (JPS., lPS.) of the form: 

cp : ( t' u' p) 1---+ (-p' u - pi' t) . 

Here T = -p, U = u- pi, P = t and obviously, conditions (11) and (12) are satisfied. 

1.4. Relations (7) can be considered as a system of nonlinear differential equa­
tions on the functions Q1, ... , Qn· In this respect it appears that the procedure of 
finding symmetries of a distribution is hardly simpler than that of finding its integral 
manifolds. However, a system like this has an advantage over an arbitrary nonlinear 
system: it is a Lie system of equations, i.e. a system of nonlinear differential equa­
tions such that its solutions form a group. The problem of finding symmetries can be 
linearized and simplified if we pass to infinitesimal symmetries. 

Definition. A vector field X on a manifold M is called an infinitesimal symmetry of 
a distribution E if the local one-parameter group cpt of translations along X consists 
of local symmetries of the distribution E. 

In the sequel we shall mainly use infinitesimal symmetries. For brevity sake, we 
shall simply call them symmetries. 
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By sym(E) denote the set of all infinitesimal symmetries of a distribution E. By 
D(E) denote the set of all vector fields lying in a distribution E: 

D(E) = {XIXa E Ea \Ia EM}. 

If E = :F(wi, ... , wn), then 

D(E) = {XIwi(X) = · · · = Wm(X) = 0}. 

Theorem. The following conditions are equivalent: 
(1) X E sym(E); 
(2) Lx(wi) = L,"j'=ICijWj, i = 1, ... ,m, where E = :F(wi, ... ,wm) and Cij are 

smooth functions defined on M; 
(3) Lx( wi) 1\ WI 1\ · · · 1\ Wm = 0, i = 1, ... , m; 
(4) ifY E D(E) then [X, Y] E D(E). 

Here by L x we denote the Lie derivative with respect to a vector field X. 

Proof. 
1=?-2. Let X E sym(E) and let IPt be the one-parameter group of translations along 

the vector field X. From relation ( 3) it follows that 
m 

cp;(wi) = LAij(t)wj. 
j=I 

Let us differentiate this equality with respect to t and then put t = 0. This leads us 
to (2), where 

3Aij I 
Cij = [jt t=O· 

293. Both of the conditions mean that covectors Lx(wi) are linear combinations 
of the covectors WI, ... , Wm. 

3=?-1. Consider the differential ( m + 1 )-forms 

Di(t) = cp;(wi) 1\ WI··· 1\ Wm, i = 1, ... , m. 

Let us show that Di(t) = 0. For this purpose note that 

[)0,~?) = cp;(Lx(wi)) 1\ WI··· 1\ Wm = f cp;(cij)Dj(t). 
J=I 

Thus the vector-valued function 

D(t) = (DI(t), ... , Dm(t)), 

is a solution of a homogeneous system of linear differential equations. Since D(O) = 0, 
we see that D(t) = 0. 

294. By iz denote the operator of inner multiplication by a vector field Z. Since 
iy(wj)=Oand 

i[X,Y] = [Lx,iy], 

we obtain 
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Corollary 1. The set sym(E) is a Lie algebra over~ with respect to commutation 
of vector fields. 

Corollary 2. A distribution E is completely integrable if and only if 

D(E) c sym(E). 

1.6. Examples. Let us describe symmetry algebras sym E for distributions con­
sidered in 1.3. 

1. Here w = dq1 . For a vector field X of the form 

condition (3) of theorem 1.5. has the form: 

Therefore, 

a a 
Lx(w) 1\ w = da 1\ dq1 =-a dq1 1\ dq2 = 0. 

q2 

sym E = { a a~1 + b a~2 ~ :~ = 0} . 
2. Let w = du- pdt. Infinitesimal symmetries of the Cartan distribution C = :F( w) 

are also called contact vector fields. If X E sym( C) has the form 

then 

Lx(w) 1\ w = (da- bdt- pdc) 1\ (du- pdt) = 

( - aa + p ac) du 1\ dp + (- aa - p aa + b + p ac + p2 ac) du 1\ dt+ 
ap ap at au at au 

( -p aa + p2 ac) dp 1\ dt = 0. 
ap ap 

Therefore, X E sym C if and only if 

Put 

{ 
aa _ pac _ 0 
ap ap- ' 
aa - pac + p( aa - p ac) - b = 0. at at au au 

f =a- pc. 

(13) 
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Then from relations (13) it follows that 

aj aj 
c = - ap ' b = at ' 

Finally, 

aj 
and a = f -pap. 

sym(C) = X=---+--+ (f- p-)- f E C (J (IR,IR) . { af a aJ a aJ a 1 00 1 } 

ap at at ap ap au (14) 

By Xt denote the contact vector field corresponding to a function f = f(t, u,p): 
aJ a df a aJ a 

X f = - ap at + dt ap + (f - Pap) au . ( 15) 

Thus, the set of contact vector fields is isomorphic to the space coo ( 1 1 (IR, IR)) of 
smooth functions on J 1 (IR, IR). 

Let us now describe a structure of a Lie algebra on sym( C) or, what is the same, 
on C 00 (J1 (IR, IR)). 

It is obvious that 

X>-.1!1 +>-.2h = A.1Xh + >..2Xh 

for arbitrary functions Jr, h E C 00 (J1 (IR, IR)) and constants AI, ).._2 E IR, so that 

X= Xt E sym(C) ~---+ f E C 00 (J1 (IR,IR)) 

is an isomorphism of vector spaces. 
Define the Lagrange bracket [f, g] of two functions f and g by 

[X1, X 9 ] = X[f,gJ· (16) 

From (15) it follows that the Lagrange bracket of functions f and g can be written as 

[f ]=fag_ aJ dfag_dgaf 
' g au g au + dt ap dt ap . (17) 

Relation (16) shows that coo ( J 1 (IR, IR)) is a Lie algebra with respect to Lagrange 
bracket (17). 

Summarizing all that has been said in this example, we obtain the following result: 

Theorem. Let C denote the Cartan distribution on J 1 (IR, IR). Every contact vec­
tor field X = X 1 E symC has form (15). The mapping Xt ~---+ f establishes an 
isomorphism of the Lie algebra sym C onto the Lie algebra coo ( ] 1 (IR, IR)), where 
C 00 (J1 (IR, IR)) is considered as a Lie algebra with respect to Lagrange bracket (17). 

1. 7. Let us now revert to description of symmetries for general differential systems. 
Conditions of Frobenius' theorem, reformulated in terms of symmetries as 

V(E) c sym(E), 

show that a completely integrable distribution E has rather many symmetries, which 
can be found with the use of only linear algebra. 

Note that symmetries X E V(E) let invariant each maximal integral manifold of the 
distribution E. This allows to construct integral manifolds by induction on dimension. 
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Definition. Let E be an arbitrary distribution and X a vector field such that 

X E sym(E) n D(E). 

Then X is called a characteristic vector field of the distribution E. 

The property just mentioned still remains valid for characteristic vector fields of an 
arbitrary distribution: 

Proposition. Let X be a characteristic vector field of a distribution E and L C M 
a maximal integral manifold of E. Then L is invariant under the action of X. 

Proof. Assume that the converse is true. Suppose that the vector field X is not 
tangent to L and let IPt be the one-parameter group of translations along X. Then 
for sufficiently small t E IPI,., the subset 

L = U IPt ( L) c M 
t 

is an integral manifold. Indeed, at each point bE IPt(L) the tangent space Tb(L) is 
the direct sum of the subspace Tb(IPt(L)) and the straight line IPI,.Xb (see Fig. 18). 

Fig. 18 
But IPt is a symmetry and therefore 

Since X is a characteristic vector field, we have Xb E Eb so that 

On the other hand, for dimension reasons dim L > dim L, which is impossible since 
L is a maximal integral manifold. 

1.8. Theorem. (Criterion of characteristicity.) Assume that a distribution E 
is given by differentiall-forms WI, ... , Wm, i.e. E = :F( w1 , ... , wm). A vector field X 
is characteristic for E if and only if the following conditions hold: 

(i) w1(X) = · ·· = wm(X) = 0 and 

(ii) ix(dwj) 1\ w1 1\ ···I\ Wm = 0, j = 1, ... , m. 
(19) 
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Proof. Indeed, condition (i) means that X E V(E) and therefore 

Then condition (ii) is equivalent to the condition that X E sym(E). 

1.9. Conditions (19) can be considered as a system of linear algebraic equations in 
coefficients of a vector field X. By Chara E denote the solution space of this system 
at a point a E M: 

Chara E = {Xa E E(a)I(Xa_Jdwj) 1\ WI/\··· 1\ Wm = 0, j = 1, ... , m}. 

Definition. The codimension of the space Char a E is called the class of the distribu­
tion E at the point a and is denote by cla (E): 

cla (E) = dim M - dim Char a E. 

In the sequel we shall assume that the function 

cl : a t-+ cla (E) 

is locally constant on M. Then the family of vector spaces a ~--+ Char a E determines 
the distribution Char E on M called the characteristic distribution. Its codimension 
is called the class of the distribution E and is denoted by cl(E). 

Theorem (E.Cartan). The characteristic distribution is completely integrable. 

Proof. Let X andY be characteristic vector fields of the distribution E. It is sufficient 
to show that their commutator [X, Y] is also a characteristic vector field belonging to 
E. Since symE is a Lie algebra, we have [X, Y] E symE. Moreover, since Lx(wj) is 
a linear combination of the forms WI, ... , Wm, we obtain 

1.10. Remark. Proposition 1.7 combined with Cartan theorem shows that max­
imal integral manifolds of the characteristic distribution Char E lie in those of the 
distribution E. 

1.11. Examples. Let us describe the characteristic distributions for the distribu­
tions considered in examples 1.6. 

1. Here E = :F(w), w = dqi, and 
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Therefore, 

Char E ={X E sym(E)I w(X) = 0} = {X= b(q1, q2) a~2 }. 
Thus, Char E = E. 

20 C = F(w), where w = du- pdt, and sym(C) = {XJ }. 
If X 1 E V(C), then 

w(XJ) = f = 0. 

Thus, Char E = 0. 

59 

1.12. Let E = F(wi, .. 0, wm)· The class of the distribution E has a simple in­
terpretation: r = cl(E) is the least natural number such that the differential 1-forms 
WI, ... , Wm can be expressed in terms of r variables q1, . 0 • , qr: 

r 

Wj = L Wjs(qi, 0 ° 0 'qr)dqs, j = 1, 0 0 0 'r. (20) 
s=l 

In order to prove this statement, let us choose local coordinates ( q1 , 0 0 0 , qn) so that 
the vector fields a a 

Xr+l = aqr+l' .. 0 'Xn = aqn 

from a basis of the distribution Char E. Suppose that the distribution E is given by 
differential 1-forms of the form: 

m 

w~ = LAij(q)wj, 
j=l 

where i = 1, .. 0, m, ll.\ij II is a non-singular matrix, and 

Lxs ( w~) = 0, s = r + 1,. 0., n. 

Since Char E C E, we see that in the local coordinates ( q1 , ... , qn) 

In addition, 

r 

w~ = L Wij(q)dqj. 
j=l 

Therefore, equations (21) are solvable with respect to unknown functions Aij. 

1.13. Proposition. Char E is an ideal in tbe Lie algebra symE. 

(21) 
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Proof. Let X E Char E andY E symE. Let us show that [X, Y] E Char E. Indeed, 
let w be a differential 1-form annihilating the distribution E. Since ixw = 0 and the 
form Lyw also annihilates E, we have 

i[x,Y]W = -[Ly,ix]w = ixLyw = 0. 

1.14. By ME denote the set of all maximal integral manifolds of a distribution E. 
Each symmetry X E symE generates a flow in ME: if {<pt} is the one-parameter 
group of translations along the field X and L E ME, then Lt = 'Pt ( L) E ME. In 
addition, if X E Char E then Lt = L. Therefore, characteristic symmetries generate 
trivial flows in the solution space. With this in mind, elements of the quotient Lie 
algebra 

shuf E = symE/ Char E 

are called shuffling symmetries, and the Lie algebra shuf E itself is called the algebra 
of shuffling symmetries. 

1.15. Examples. For distributions considered in examples 1.11, we have 
1. shuf E ~ {a(q1)-88 }; 

ql 
2. shuf E = symE. 

1.16 Example. Let (qb q2 ) be coordinates on the plane m.2 . Consider the com­
pletely integrable distribution on m.2 given by the differential 1-form 

In this case, the characteristic distribution is generated by the vector field 

Therefore, shuffling symmetries can be identified with vector fields of the form: 

The condition 
Lx(w)/\w=O 

is equivalent to the following differential equation with respect to the function G: 

(22) 

Thus, the Lie algebra shuf E can be identified with the solution space of equation (22). 
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§2. CONTACT GEOMETRY 

In this section we shall consider the simplest distributions - distributions of codi­
mension 1. Each distribution of this kind considered locally has the form E = :F( w) 
for some differential1-form w. The characteristic distribution Char E can be described 
as 

Chara E ={X E E(a)i(X_jdw) 1\ w = 0}. 

In other words, Char a E c Ea is the kernel of the 2-form Oa = dwiEa. Therefore, the 
codimension of Char a E in Ea is an even number, whereas cla(E) is odd. 

2.1. Definition. 
( 1) A distribution E on a manifold M is called a contact distribution if cl (E) 

dimM. 
(2) A differential1-form won a manifold M is said to be contact if the distribution 

:F( w) is contact. 
(3) A manifold M supplied with a contact distribution is called a contact manifold. 

2.2. Examples. 
(1) The Cartan distribution on J 1 (JR., JR.)= JR.3 is contact. Moreover, the form 

on JR.2k+l is contact. 
(2) Let N be an arbitrary 2-dimensional manifold. The Cartan distribution on the 

manifold N 1 is contact. 
( 3) A non-degenerate Lagrangian L E c= ( J 1 (JR., M)) determines the contact form 

fh = duL + Ldt (see 9.6, chapter 1). 

2.3. The condition for a 1-form w to be contact can be reformulated as follows: a 
1-form w is contact if for any point a E M, the restriction of the 2-form dw to the 
hyperplane Ea is non-singular. Therefore, a contact manifold M is odd-dimensional: 
dimM = 2k + 1. 

If dimM = 2k + 1, then the condition that dw be non-singular on Ea is equivalent 
to the condition that 

w 1\ (dw)k =1- 0. 

Thus, a manifold supplied with a contact form is orientable. 

2.4. Definition. Symmetries of a contact distribution are called contact vector 
fields. 

2.5. Let E = :F(w) be a contact distribution and X a contact vector field of E. 
Then 

Lx(w)l\w=O 

or 
Lx(w)) = >.xw 

for some smooth function)...= >.x E c=(M). 

(1) 

(2) 
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Example. Let M be an odd-dimensional manifold and w a differential1-form on M. 
The form dw is singular on M. Therefore, there exists a nonzero vector field Y such 
that 

Y _jdw = 0. 

If w is a contact form, then this field is unique up to multiplication by a function. Let 
us normalize the field Y to be equal to 1 at w. By X 1 denote the field obtained. Then 

Since 
Lx1 (w) = X1_jdw + d(X1_jw) = 0, 

we see that the field X 1 is contact. 

(3) 

2.6. The next theorem is a generalization of results obtained in example 1.3(2) of 
the previous section. 

Theorem. Let w be a contact form on a manifold M. Then each contact vector 
field X on M is uniquely determined by the function f = w(X). In addition, for 
any function f E 0 00 ( M) there exists a unique contact vector field X f such that the 
following conditions hold: 

(i) w(XJ) = f, 
(ii) Lx1 (w) = X 1(f)w, 
(iii) Xf+g = X 1 + X 9 , 

(iv) Xt 9 = f X 9 + gXf- jgX1, 
(v) Xt(g) + X 9 (f) = X1(f)g + X1(g)j. 

Here by X 1 we denote the contact vector field corresponding to the function f = 1 
and determined from relations (3). 

Proof. Let X be a contact vector field on M satisfying condition (2). Let us write X 
as 

X=fX1+Y, 

where Y is a field lying in the distribution E = :F(w), i.e. w(Y) = 0. Using 

w(X) = f and Lx(w) = X_jdw + d(X_jw), 

we obtain 
X _jdw = >..w - df. 

But since f X 1_jdw = 0, we have 

Y _jdw = >..w - df. (4) 

The differential form in the right-hand side of (4) vanishes on X 1 . Therefore, 
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so that 

(5) 

Then relation ( 4) takes the form: 

Y _jdw = X 1 (f)w- df. (6) 

In order to prove the first part of the theorem, it remains to note that the mapping 
E(a) ::1 Y r-----+ Y _jdw E E*(a) is an isomorphism and therefore (6) uniquely determines 
the vector field Y. 

It is clear that relation (iii) is satisfied. So, we shall dwell on proving that (iv) and 
( v) are also valid. From ( 4) it follows that 

Consider the values of both sides of the equality at a vector field X 9 . We obtain: 

(7) 

By the same reasoning, 

(8) 

Adding (7) and (8), we obtain (v). 
By Z denote the right-hand side of relation (iv). Then 

w(Z) = fg 

and 

which implies that Z = Xfg· 

2. 7. Definition. The function f = w(X) is called the generating function of the 
contact vector field X. 

2.8. Let f and g be functions defined on a contact manifold M. The Lagrange 
bracket [f,g] off and g is the generating function of the vector field [Xt,X9 ]: 

(9) 
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Theorem. Lagrange bracket turns c= ( M) into a Lie algebra over the field IP!. and 

[f, gJ = x 1(g)- x1 (f) g. (10) 

Proof. The fact that c=(M) is a Lie algebra with respect to Lagrange bracket is 
immediate from the definition. Let us check that formula (10) is valid. Indeed, 

i[x1 ,x9 ]W = [Lx1 , ix9 ](w) = Xt(g)- X1(f)g. 

2.9. Theorem.[J.Darboux]. Let wand w' be contact forms on a manifold M. 
Then for any point a E M there exists a local diffeomorphism cp such that 

cp(a) =a and cp*(w') = w. 

Proof. Without loss of generality it can be assumed that 

Wa = w~ and daw = daw' 

Consider the one-parameter family of 1-forms 

Wt = tw' + (1- t)w. 

Then w0 =wand w1 = w'. 
We shall be searching for a one-parameter family of local diffeomorphisms 1/Jt such 

that 1/Jt (a) = a, 1/Jo = id, and 
1/J;(wt) = w. (11) 

Differentiation of both sides of (11) gives 

! 1/J;(wt) = 1/J;(LxtWt + Wt) = 0, (12) 

where Wt = dwt/dt = w'- w and {Xt} is a family of vector fields defined on some 
neighborhood of a such that translations along Xt in the time from t = 0 tot coincide 
with 1/Jt· From (12) it follows that 

Xt_jdwt + d(wt(Xt)) = w. (13) 

As in the proof of theorem 2.6, let us write the vector field Xt as 

Xt = ftXi + yt, 
where Wt(Y't) = 0 and Xi is the contact vector field such that Wt(Xi) 
relation (13) can be rewritten as 

1. Then 

(14) 

Let {ft} be a one-parameter family of smooth functions on M such that in some 
neighborhood of the point a 

(w- dft)(xi) = o 
or 

(15) 

Thus, choosing functions ft and the vector field yt so that ft(a) = 0, ft satisfy (15), 
and yt satisfies (14), we see that the vector fields Xt vanish at the point a and the 
family {1/Jt} satisfies condition (11). Therefore, 1/J)_(w') = w. 
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Corollary. Let M be a manifold of dimension 2k + 1, w a contact form on M, and 
a E M. Then it is possible to choose local coordinates (z, XI, ... , Xk, YI, ... , Yk) in a 
neighborhood of a such that z(a) = xi(a) = · · · = Xk(a) = YI(a) = · · · = Yk(a) = 0 
and 

w = dz- Yidx- · · ·- YkdXk· 

Coordinate systems like this are called canonical. 

(16) 

2.10. System of linear equations (6) can be easily solved in canonical local coordi­
nates. This leads us to the following local description of contact vector fields: 

In particular, X I = ffz . 
The Lagrange bracket [j, g] in canonical coordinates has the form: 

8g 8f k d 8g d 8f 
[f,g] = f-- g- + ~(--- --), 

az az 6 dx· 8y· dx· 8y· i= I ~ ~ ~ ~ 

(18) 

where 

2.11. Definition. Let w be a contact form on a manifold M. A diffeomorphism 
rp : M ----+ M is called a contact transformation if 

rp*(w) = A(w) (19) 

for some function A E coo ( M). 

2.12. For the purpose of local description of contact transformations, consider the 
model contact space JP?.2k+I together with standard contact form (16). Each smooth 
function f(xt, ... , Xk) determines the k-dimensional submanifold 

Note that the form w vanishes on Lt. In addition, suppose L C JP?.2k+I is a k­
dimensional integral manifold of the distribution F( w) such that the functions 
xi, ... , Xk can be chosen as coordinates in L; then L has the form L = L 1, where 

f = zlL· 
Further, note that if a vector field Y of the form 
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is tangent to an integral manifold L at a point a E L, then the form 

vanishes on T a L, since 

Therefore, if the forms dxi1, . .. , dxis ( i1 < i2 < · · · < is) are linearly independent on 
T a L, then the forms 

where (ill ... , is, is+l, ... , ik) is a permutation of the indexes (1, ... , k), form a basis 
in T: L. 

In other words, the functions 

corresponding to some permutation of the indexes ( 1, ... , k) can be chosen as local 
coordinates in a neighbor hood of each point a of an integral manifold L (dim L = k). 

Writing was 

W = d(z- X· y · - · · · -X· y · ) - y · dx · - · · · - y · dx · +X· dy · + · · · +X· dy · ~s+l ~s+1 ~k ~k ~1 ~1 ~s ~s ~s+1 ~s+1 ~k ~k 

and using the description of manifolds L f, we see that an integral manifold L in a 
neighborhood of a point a E L can be written as: 

Y. - .EL y· - _£1_ 
~1 - ox·' ... ' ~s - ox· ' 

' 's 

_ of _ of 
Xis+1 - -a-y· '· · · 'Xik - -~y· ' 

"s+1 'k 
(20) 

z- f- y· __!}_1__ - ... - y· _£1_ 
- ~s+1 oy· ~k oy· 

"s+1 'k 

for some smooth function f = f ( xir, ... , Xis, Yis+ 1, ... , Yik). The function f is called 
the generating function of L at the point a. 

2.13. Let us use the just-obtained local description of integral manifolds of a contact 
distribution in order to describe contact transformations. For this purpose, we shall 
establish the association between contact transformations and integral manifolds. 

Consider a contact transformation 

where Xi= Xi(x, y, z), Yi = Yi(x, y, z), Zi = Zi(x, y, z), i = 1, ... , k. Condition (19) 
for zp to be contact has the form: 

k k 

-Aw + rp*(w) = dZ- L YidXi- Adz+ L Ayidxi = 0. (21) 
i=l i=l 
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It can be interpreted as follows. 
Consider the (2(2k + 1) + 1)-dimensional manifold m4k+3 with coordinates 
(Z, xl, ... 'xk, YI, ... 'Yk, A, z, XI, ... ' Xk, Yl, ... 'Yk) together with the contact 1-

form 
K 

() = dZ- L(YidXi- A.yidxi) -Adz. (22) 
i=l 

Each contact transformation c.p determines the (2k + 1 )-dimensional submanifold 
L'P in m4k+ 3 given by the relations 

Z = Z(x, y, z), Yi = Yi(x, y, z), Xi= Xi(x, y, z), A= A(x, y, z), i = 1, ... , k. (23) 

From (21) it follows that L'P is an integral manifold of the distribution :F(e). 
The description of integral manifolds in terms of generating functions (see 2.12) 

enables us to give the complete description of contact transformations of m2k+I. 

2.14. We shall dwell on the case k = 1 (m3 = J 1 (m,m)), which is most important 
for us. Let us choose coordinates (x, y, z) such that the Cartan form has the form: 
w = dz- ydx, i.e. z = u, y = p, x = t. 

The complete description of contact transformations of J 1 (m, m) in terms of gener­
ating functions can be divided into eight types in accordance with types of functions 
that can be chosen as coordinates in the manifold L'P. (By S we denote the corre­
sponding generating function.) 

1) (x 1 ,x2 ,x3 ). Coordinates in L'P are functions (X,z,x). The generating function 
S = S(X, z, x) determines the following contact transformation: 

as as;as 
Y=ax'y=-ax az'Z=S(X,z,x). 

2) (y1 , x 2 , x3 ). Coordinates in L'P are functions (Y, z, x). The generating function 
S = S (Y, z, x) determines the following contact transformation: 

3) (x 1 ,y2 ,x3 ). Coordinates in L'P are functions (X,A,x). The generating function 
S = S(X, A, x) determines the following contact transformation: 

as as _1 as as 
y = ax' z = - aA' y = -A ax' Z =S-A aA. 

4) (x1 , x 2 , y3 ). Coordinates in L'P are functions (X, z, -Ay). The generating func­
tionS= S(X, z, R), where R = -Ay, determines the following contact transformation: 
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5) (x1, Y2, y3). Coordinates in L'P are functions (X, A, -Ay). The generating func­
tionS= S(X, A, R), where R = -Ay, determines the following contact transformation: 

as as as as as 
Y =ax' z =- aA' x =- aR' Y = -R/A, z =s-A a A- R aR· 

6) (y1 , x2 , y3 ). Coordinates in L'P are functions (Y, z, -Ay). The generating function 
S = S(Y, z, R), where R = -Ay, determines the following contact transformation: 

as as as as as 
X=-ay' x=-aR' y=-R/ az' Z=S-YaY-RaR· 

7) (y1 ,y2 ,x3 ). Coordinates in L'P are functions (Y,A,x). The generating function 
S = S(Y, A, x), determines the following contact transformation: 

x as as Y = -A _1 as z = s _ Y as _A as 
= - aY' z = - aA' az' aY a A. 

8) (y1 , y2 , y3 ). Coordinates in L'P are functions (Y, A, -Ay). The generating function 
S = S(Y, A, R), where R = -Ay, determines the following contact transformation: 

as as as _1 as as as 
X = - aY' z = -a A' X = - aR' y = RA ' z = s - yay - A a A - R aR. 

Example. Consider the following generating function of type 1: 

S(X,z,x) = Xz+ 1/2x2 . 

Then S determines the contact transformation 

Indeed, 

-X 
rp: (x, y, z) r-----+ (-, z, 1/2x2 - xzjy). 

y 

rp*(w) = dZ- YdX = d(1/2x2 - xzjy) + zd(xjy) = -xjy(dz- ydx). 

§3. LIE FIELDS AND SYMMETRIES OF CARTAN DISTRIBUTIONS 

Preparatory to considering symmetries of differential equations, consider those 
transformations of spaces of jets that preserve the Cartan distribution. 

3.1. Definition. A diffeomorphism rp of the space Jk (~, M) (or Nk) is called a 
Lie transformation if rp is a symmetry of the Cartan distribution. 

3.2. Let us consider some examples. Let M be then-dimensional arithmetic space 
~n and let k = 1. Then J1 (~, ~n) is the arithmetic space ~2n+ 1 with coordinates 
(t, u 1 , ... , un,pi, ... ,p]:). Suppose rp is a Lie transformation: 

rp: (t,u\ ... ,un,pi, ... ,p~) r-----+ (T,U\ ... ,un,Pf, ... ,Pf), (1) 

where T = T(t, u, P1), Ui = Ui(t, u,p1), P{ = P{(t, u, P1) for i = 1, ... , n. Then the 
inverse images rp* ( w j) = dUi - P{ dT of the Cart an forms w j = duj - p{ dt must vanish 
on the Cartan distribution. 
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Example 1. Transformation of variables. Consider a transformation of depen­
dent and independent variables 

(2) 

Define Pf (t, u, PI) so that the corresponding transformation (1) is a Lie transforma­
tion. We have 

A-.* ( ) - dUj PjdT - '"""' auj d i PJT'd '+' Wj - - I - L__- aui U - I t. 
i 

These forms must vanish if w1 = · · · = Wn = 0. Therefore, 

Thus, the relations 

{ 

T = T(t) 
,; Tjf• 1 n UJ. = U ~r,u , ... ,u) 

P{ = (T')-I 2::: ~~~Pi 
' i 

(3) 

determine a Lie transformation. 

Example 2. Point transformations. Consider an arbitrary transformation of the 
space JO(JK, JP?.n) = ]Kn+I 

where T = T(t, u), UJ = UJ (t, u), j = 1, ... , n. 
Let us prolong ¢ to a Lie transformation. As in the previous example, we have 

A-.* ( ) - dUj PjdT - '""" auj d i auj d j aT '""" j aT d i -
'+' Wj - - I - ~ aui u + 7ft t- PI at - ~PI aui u -

i i 

= ( ~ ~~: p\ + {)~; - Pf ( ~ :~P\ + ~n) dt mod (w., ... ,wn). 

By Jt denote the operator of total differentiation with respect to t: 

(4) 

(5) 

(6) 

Then from relations (5) and the conditions rp*(wj) - 0 mod (wi, ... ,wn) it follows 
that 

pJ = dUJ /dT 
I dt dt ' j = 1' · · · ' n. (7) 
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The Lie transformation defined by ( 4) and (7) is called a point transformation. 
Note that transformation of variables (1) is a partial case of point transformations. 

3.3. Point transformations have a simple geometrical interpretation. As we saw in 
chapter 1, every diffeomorphism 7./J : N -+ N can be prolonged to the diffeomorphism 
1jJ(k) : Nk -+ Nk of the space of k-jets such that 

(8) 

for all curves L in the manifold N. 
Tangent lines to k-jets Jk(L) generate the Cartan distribution on Nk. Therefore, 

prolongations 7./J(k) of diffeomorphisms 7./J : N -+ N are Lie transformations. We shall 
call them point transformations. 

It is obvious that the definition just given is in accordance with that given in the 
previous item. It is sufficient to put N =1m. x 1m.n. 

3.4. Theorem. Every Lie transformation of the manifold Jk (Im., M) (or Nk) is a 
point transformation under the condition that dim M ;?: 2 (dim N ;?: 3). 

We shall first prove a lemma describing the structure of maximal integral manifolds 
of the Cartan distribution. In order to formulate the lemma, we give the following 
definition: 

Definition. An integral manifold S c Jk (Im., M) of the Cart an distribution is called 
infinitesimally maximal if for every point a E S there does not exist any integral 
manifold S' such that a E S', S' is tangent to S at the point a, and T a S ~ T a S'. 

k 
J (IR,M) 

Fig. 19 

Lemma. Let dim M ;?: 2 and k ;?: 1. Then all infinitesimally maximal manifolds in 
Jk (Im., M) are confined to the following ones: 

(i) k-jets Jk(x) of parametrized curves, 
(ii) fibres of the projection 7rk,k-l : Jk(Jm., M)-+ Jk- 1 (Im., M). 

Proof of the lemma. Let S C Jk (Im., M) be a maximal integral manifold of the Cart an 
distribution. Then 

(9) 
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for all i = 1, ... , n and j = 0, 1, ... , k- 1 and therefore 

dw(p~) Is = 0. 

But 
dwj = -dp~+ 1 1\ dt. 

Therefore, all differential 1-forms dp~+ 1 (i = 1, ... , n; j = 0, 1, ... , k- 1) are propor­
tional to dt on S. If dimS ?: 2, then this is possible if and only if dt = 0 on S. 
Then from (9) it follows that dp~ = 0 on S for all i = 1, ... , n and j = 0, 1, ... , k- 1. 
Thus, S lies in a fibre of the projection 1fk,k- 1 and since Sis maximal, we see that S 
coincides with the fibre. If dt Is ¥- 0 and all forms dp~ are proportional to dt, then S 
is one-dimensional and t can be chosen as a coordinate on Sand therefore Sis a k-jet 
of a parametrized curve. 

Proof of the theorem. Let cp : Jk (]]{_, M) -----+ Jk (]]{_, M) be an arbitrary Lie transfor­
mation. This transformation preserves the class of infinitesimally maximal integral 
manifolds. Since the dimension of fibres of the projection 1fk,k-1 equals dim M, 
we see that cp preserves fibres of 1fk,k- 1 and therefore induces the transformation 
rp : Jk-1 (]]{_, M) -----+ Jk-1 (]]{_, M), satisfying the commutative diagram 

Jk(]]{_, M) ~ Jk(IP{_, M) 
1fk,k-1 l l 1fk,k-1 

Jk-1(]]{_,M) -----+ Jk-1(]]{_,M) 
'P 

For a parametrized curve x: 0-----+ M, by Xcp denote the curve defined by 

jk(xcp) = cp(jk (x) ). (10) 

Since for almost all parametrized curves x : 0 -----+ M 

cp(Jk-1(x)) = cp(7rk,k-1(Jk(x))) = 1fk,k-1(cp(jk(x))) = Jk-1(xcp), (11) 

we see that rp is also a Lie transformation. 
Note that relations ( 10) and ( 11) allow to restore the transformation cp starting 

from rp. 
The Lie transformation rp in its turn determines the Lie transformation 

rp: Jk-2(IP{_,M)-----+ Jk-2(]]{_,M) 

and so on. Eventually, we arrive at the point transformation 'ljJ : M x ]]{_ -----+ M x ]]{__ 
Using (11) and (10) in consecutive order, we obtain cp = 'ljJ(k). 

3.5. Let us now describe Lie transformations of the space Jk(IP{_, M) under the 
condition that dim M = 1. There are two possibilities: either M = ]]{_ or M = S1 . We 
shall go into detail only on the first case, for the second one is very similar. 

Note that theorem 3.4 is no longer valid for M = ]]{__ Indeed, the Cartan dis­
tribution on J 1 (]]{_, ]]{_) is a contact distribution and Lie transformations are contact 
transformations of ]]{_ 3 = J 1 (]]{_, ]]{_). The fact that not all contact transformations are 
point transformations follows from the description of contact transformations of ]]{_3 

given in the previous section. 
Let us make some simple observations. 
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Lemma 1. Let F E c= ( Jk (IR, IR)) be an arbitrary function. Then 

where 

mod (w(po), ... ,w(Pk-1)), 

d a a a 
- =- +p1- + ··· +pk-­
dt at apo aPk-1 

is the operator of total differentiation. 

Lemma 2. Let tp : Jk (IR, IR) ---+ Jk (IR, IR) be a Lie transformation of the form: 

Then 
dPj dT 
dt- Pj+ldt = 0, 

for all j = 0, ... , k - 1. 

(12) 

Proof. Lemma 2 follows from Lemma 1, while the latter follows from the following 
relations: 

dpj = Pj+l dt mod (w(po), ... , w(Pk-1)), j = 0, ... , k - 1. 

Let us now show that if k ) 2, then 88T = 0. Indeed, if the converse was true, the 
Pk 

functions (t,p0 , ... ,Pk-b T) could be chosen as (local) coordinates in the domain of 
Jk (IR, IR) where 88T 1- 0. Then relations (12) would take the form: 

Pk 

dP· 
J -0 dt-' 

P _ aPj k 
j + 1 - aT ' j = 0, ... ' - 1. (13) 

Using the relations 

and 

we obtain 

( 

[ d a J (P) _ 8p2 BPj _ O 
dt' aT j - -aT aPk-1 - ' 

[ .!1_ _§_] (P·) - - apj - 0 
dt' Bps J - BPs-1 - ' 

dPj _ 8Pj _ O 
dt - at - ' 

which contradicts the fact that the functions T, P0 , ... , Pk are functionally indepen­
dent. 
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Therefore, 
aT 
8pk = o, j = 0, 1, ... 'k - 1. 

Thus, a Lie transformation rp determines the Lie transformation cp : Jk- 1 (IP?., IP?.) --7 

Jk-1 (IP?.,IP?.), satisfying the commutative diagram 

J k (IP?.' IP?.) 
1 

Jk-1 (IP?., IP?.) 

~ Jk(Jm., IP?.) 
1 

--7 Jk-1 (IP?., IP?.) 
rj5 

Proceeding as in the proof of theorem 3.4, we eventually arrive at a contact transfor­
mation 1jJ : J 1 (IP?., IP?.) --7 J 1 (IP?., IP?.). Moreover, the following result is true: 

3.6. Theorem. All Lie transformations of the space Jk(Jm., IP?.), k): 2, are prolonga­
tions of contact transformations of the space J 1 (IP?., IP?.). In addition, if 1/J : J 1 (IP?., IP?.) --7 

J 1 (IP?., IP?.) is a contact transformation of the form 

1/J: (t,po,P1) ~---t (T, Po, P1), 

then its prolongation 1/J(k) : Jk (IP?., IP?.) --7 Jk (IP?., IP?.) is defined by 

where 

P . _dPj/dT k 1 J+1 - dt dt ' j = 1' ... ' - . 

Example. The prolongation of the Legendre transformation 

1/J: (t,po,P1) ~---t (PbPO- tp1, -t) 

to the Lie transformations of J 3 (IP?., IP?.) has the form: 

1/J(3): (t,po,p1,P2,P3) ~---t (P1,Po- tp1, -t,-: 2, (~3) 3 ) · 

3. 7. An arbitrary Lie transformation of the space Jk (IP?., IP?.n) can be given by for­
mulas analogous to formulas ( 12). Let 

1/J: (t,p6, ... ,p~) ~---t (T, PJ, ... , P!)) 

be a point transformation of the space J 0 (IP?., IP?.n) and 

1/J(k) : (t,p~) ~---t (T, P}), i = 1, ... , n; j = 0, ... , k, (14) 

its k-th prolongation. In order to find the functions PJ, we shall make use of the 
following result, analogous to lemma 1 from 3.5: 
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Lemma. Let F E coo ( Jk (IPl., Jlll.n)) be an arbitrary function. Then 

mod (w(p6), ... , w(P:k-1)), (15) 

where 

Since 
aT 
apk = 0, 

a pi 
apf = 0' s' i = 1' ... ' n; j = 0, 1' ... ' k - 1' 

from the lemma we obtain 

( dPj i dT) 1 n dt - Pj+ 1 dt dt mod (w(p0), ... , w(pk_ 1) ). 

Therefore 
i dPj /dT 

pj+1 = dt dt. (16) 

Starting from the functions Pj = Pj(t,p5, ... ,p~) and using (16), we can find Lie 
transformation ( 14). 

3.8. Let us now consider infinitesimal symmetries of the Cartan distribution. 

Definition. A vector field X on the manifold of k-jets of curves is called a Lie field 
if X is an infinitesimal symmetry of the Cartan distribution. 

Description of Lie vector fields can be divided into two parts, just as the description 
of Lie transformations. 

Let dim M ;? 2. Suppose X is a vector field on the manifold J 0 (IPl., M) = IPl. x M 
and { '¢t} is the one-parameter group of translations along X. Then its prolongation 

{'¢~k): Jk(Jlll.,M)-+ Jk(Jlll.,M)} is also a one-parameter group. By X(k) denote the 

vector field on Jk(Jlll., M) corresponding to the group {'¢~k)}. 

Definition. The vector field X(k) is called the k-th prolongation of the vector field X. 

We shall now describe the procedure of prolongation of a vector field in coordinates, 
using the model M = Jlll.n. 

Every vector field X on J 0 (IPl., IPl.n) can be written as 

X A( i)a B1( i)a Bn( i)a = t, Po -a + t, Po a 1 + ... + t, Po a n . 
t Po Po 

(17) 
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Then the k-th prolongation of X has the form: 

X(k) = A(t pi)~+~ B~~ 
' o at L.....t J a t. ' . . PJ t,J 

(18) 

where i = 1, ... , n, j = 0, ... , k, and B& = Bi. 
Now find the functions B}. Let { r.p 8 } be the one-parameter group of transformations 

along X: 
I.Ps: (t,pb) f--7 (T(s, t,pb), Pd(s, t,pb)), 

and {cp~k)} the k-th prolongation of the group {cp8 }: 

cp~k) : (t,p;) f--7 (T(s, t,pb), PJ(s, t,p~)). 

Since 
T(s, t,pb) = t +sA+ o(s), 

and therefore 

~~I = 1, 
s=O 

using (16), we obtain 

dB} i dA 
= dt- Pj+l dt' 

Thus, we obtain the following recursion equations for the functions B}: 

{ 
Bi - dBj i dA 
~+1 - .dt - Pj+l Tt 

Eo= Bt 

where i = 1, ... , n, j = 0, 1, ... , k- 1. 

3.9. Example. For the first prolongation X(l) we have 

(19) 

3.10. Now let M = ~. Suppose X = Xf is a contact vector field on the manifold 
1 1 (~, ~) and { 1f) s : 1 1 (~, ~) --+ 1 1 (~, ~)} the corresponding one-parameter group of 
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contact transformations. By xjk) denote the vector field on Jk(IP!., Ill?.) corresponding 

to the prolongation {1/J~k)} of the group {1/Js}· The field XJk) is called the (k- 1)-th 
prolongation of X f. 

Let us find the explicit form of x?). Let Xf have the form 

and let 

be the corresponding one-parameter group, so that 

Let xt) have the form: 

aj 
T=t--a s+o(s), 

PI 

Po=Po+ (!-PI:~)s+o(s), 
( af aJ) 

P1 = P1 + at + P1 apo s + o( s). 

(k) aJ a ( af) a (af aJ) a k a X =---+ f-pl- -+ -+pi- -+ Bj-· 
f apl at apl apo at apo apl {; apj 

The components of the corresponding prolongation 

have the form 
Pj = Pj + Bjs + o(s), j = 2, ... , k, 

and can be found from recursive relations (13). Therefore, 

Finally, 

j = 1, ... 'k- 1, 

and 
aj aj 

B1 =-a +p1-a . 
t Po 

(20) 

(21) 

(22) 

(23) 
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3.11. Example. For the first prolongation x?l of the contact vector field Xf, we 
have 

3.12. Examples. In conclusion, let us give several examples of the most useful 
contact vector fields. 
1. Point vector fields are contact vector fields corresponding to functions linear with 
respect to Pl: 

f = B(t,po)- PlA(t,po). 

Here 

8 8 (8B (8B 8A) 2 8A) 8 Xt=A-+B-+ -+PI --- -p1 - -. 
8t 8po 8t 8po 8t 8po 8p1 

The first prolongation of X f has the form: 

(2) 8 8 ( 8B ( 8B 8A \ 2 8A) 8 . 
X =A-+B-+t-+Pl ---)-PI- -+ 

f 8t 8p0 \ 8t 8po 8t 8po 8p1 

(24) 

2. Translations with respect to t. 
The vector field X = gt corresponds to translations along the t-axis: (t, p0 ) 1--7 

( t + s, p0 ). The corresponding generating function has the form: 

The first prolongation (as well as all subsequent ones) has the form: 

X (2) - !!_ (25) 
f - 8t" 

3. Translations with respect to Po· 
The vector field X = cfL corresponds to translations along the p0-axis: ( t, Po) 1--7 

upo 

( t, p0 + s). The corresponding generating function has the form: 

f=l. 
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The first prolongation (as well as all subsequent ones) has the form: 

(26) 

4. Scaling (or similitude) transformations have the form: 

where a and (3 are constant numbers. The corresponding vector field and generating 
function have the form: 

f] f] 
X= at-;:;-+ f3Po-;:;-, 

ut upo 

f = f3po- ap1t. 

The first prolongation has the form: 

(2) f] f] f] f] 
X =at-+ f3po- + ((3- a)p1- + ((3- 2a)p2-· 

J at opo op1 op2 
(27) 

§4. SYMMETRIES OF DIFFERENTIAL EQUATIONS 

4.1. We can look at a system of ordinary differential equations of order k from two 
standpoints: 

i) external standpoint: it is a submanifold E in the space Jk(JR!., M), where Jk(JR!., M) 
is supplied with the Cartan distribution; 

ii) internal standpoint: it is a manifold E supplied with the Cartan distribution 
C(E) of dimension 1. 

From now on, we shall assume that E is a regular system of differential equations; 
in other words, at each point a E 0, the subspaces Ta E and C(a) are transversal and 

C(E)(a) = C(a) n Ta E. 

In accordance with these standpoints, we can consider two kinds of symmetries. 

Definition. Let E be a regular system of ordinary differential equations of order k. 
(1) An internal symmetry of the system E is a transformation of the manifold E 

preserving the Cartan distribution C(E). 
(2) An external symmetry of the system E is a diffeomorphism rp of the manifold 

Jk (JR!., M) such that 
a) rp is a symmetry of the Cart an distribution on Jk (JR!., M), 
b) rp maps the manifold E in itself. 

4.2. We are interested mainly in infinitesimal analogues of the definitions above. 
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Definition. 
( 1) An internal (infinitesimal) symmetry of the system E is a shuffling symmetry 

of the distribution C (E). 
(2) A Lie vector field on Jk (IPl., M) is called an external or classical (infinitesimal) 

symmetry of the system E if it is tangent to the submanifold E c Jk (IPl., M). 

In the sequel by symmetries we shall always mean infinitesimal symmetries. 
By symc(E) denote the Lie algebra of classical symmetries and by shuf(E) the Lie 

algebra of internal symmetries. 
It is obvious that restriction of the classical symmetry to the submanifold E gives 

an internal symmetry of E. Thus, we obtain the homomorphism of Lie algebras 

x: symc(E) --7 shuf(E). 

Elements of ker x are called characteristics of the system E. 

4.3. Example 1. The ordinary differential equation 

y' = F(t, y), (1) 

considered from the external standpoint, is the surface E in J 1 (IPl., IPl.) = J:Pl.3 given by 

PI = F(t,po). (2) 

From the internal standpoint, differential equation (1) is the distribution on E given 
by the differential 1-form 

w = dp0 - F(t,p0 )dt, (3) 

where ( t, p0 ) are coordinates on the surface E. 
A classical symmetry of E is a Lie vector field or a contact field of the form 

tangent to the surface E. The condition that X f be tangent to E means that 

at at at aF ( at) aF Xt(PI-F(t,po))=-+pi-+--- f-pl- -=0 
at apo apl at apl apo 

(4) 

on the surface E. 
Note that condition ( 4) is automatically satisfied for functions f of the form: 

Since every function f(t,po,PI) can be written as 

(5) 
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using the fact that equation ( 4) is linear with respect to f, we obtain the equation for 
g(t,p0 ) describing classical symmetries of equation (1): 

ag ag aF 
-a + F(t,po)-a - g(t,po)-a = o. 

t Po Po 
(6) 

This equation coincides with equation 1.16.(22) describing shuffling symmetries of the 
distribution F(w) on E. Thus, the homomorphism x has the form: 

a 
x: x 1 ~---+ g(t,po)-a . 

Po 
(7) 

The module of characteristics is generated by the contact vector field X fa, where 
fo = -p1 + F(t,p0 ). The restriction of Xfo toE is the already-known characteristic 
vector field of equation ( 1) (see 1.16): 

a a 
-a + F(t,po)-a . 

t Po 

Note that in this case x is an epimorphism. 

Example 2. Let us consider several most popular contact symmetries of equation (1). 
(See also 3.12.) 

a) Suppose that equation (1) is invariant under translations along the t-axis. The 
corresponding symmetry is the classical symmetry with the generating function f = 

-p1 . Substituting f into equation (4), we see that E is invariant under translations 
along the t-axis if 

aF 
at = o. 

b) Suppose that equation ( 1) is invariant under translations along the p0-axis. The 
corresponding symmetry is the classical symmetry with the generating function f = 1. 
From ( 4) it follows that in this case the function F must satisfy the following condition: 

c) Suppose that equation (1) is invariant under scaling transformations. The cor­
responding symmetry is the classical symmetry with the generating function f = 
f3p0 - etp1 t, where et and f3 are similitude exponents. Substituting f into equation ( 4), 
we see that the function F must satisfy the following condition: 

aF aF 
ett- + f3po- = (et- f3)F. 

at apo 

This means that F is a homogeneous function: 
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Therefore, F can be written as 

for some function h = h( x). 

d) Generating functions corresponding to point symmetries have the form f 
B(t, Po) - P1A(t, Po). If we write it in form (5), we obtain 

g(t,po) = B(t,po)- F(t,po)A(t,po) 

and 

J -2ag 
F(t,p0 ) = g(t,po) g at dpo. 

81 

(8) 

(9) 

This formula allows to give an explicit form of first-order differential equations having 
point symmetries. For example, if a symmetry has the generating function g = e-tpo, 

the corresponding differential equation has the form: 

4.4. Let k ): 2 and let E c Jk (m., m.) be a k-th order differential equation with 
respect to a function y : m. ---+ m.. In addition suppose that E is solvable with respect 
to the derivative of the highest order: 

(k) - F(t I (k-1)) y - ,y,y, ... ,y . (10) 

Let us describe symmetries of equation (10). We shall start with internal ones. 
The manifold E is given by 

Pk = F(t, Po, ... ,Pk-1)· 

The Cartan distribution onE can be given by the differential 1-forms 

wo = dpo- P1dt, ... , Wk-2 = dpk-2- Pk-1dt, 

Wk-1 = dpk-1- F(t,p)dt. 
(11) 

In this case the characteristic distribution coincides with the Cartan distribution and 
therefore is generated by a vector field V. The projection of V on the t-axis does not 
vanish. Let the functions t,po, ... ,Pk-1 be coordinates onE, then the field V can be 
written as 

a a a 
V=-+ao-+ .. ·+ak-1 . 

at apo aPk-1 

Since V is characteristic, we have 

wo(D) = -p1 + ao = 0, ... , Wk-2(D) = -Pk-1 + ak-2 = 0, 
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Wk-1(V) = -F + ak-1 = 0. 

Therefore, the field V has the form 

8 8 8 8 
V =- + P1- + · · · + Pk-1 + F-,---

8t 8po 8Pk-2 8Pk-1 
(12) 

and coincides with the operator of total differentiation of the equation. 
For every shuffling symmetry we can choose a representative of the form: 

8 8 8 
X= c:L 1 ~ + ao~ + · · · + ak-1 8 , 

ut upo Pk-1 

where a_1, ... , ak-1 are functions of (t,po, ... ,Pk-1)· Since shuffling symmetries are 
considered up to summands of the form f(t,p0 , ... ,Pk- 1 )V, we see that in each coset 
there exists a unique representative of the form: 

Consider the Lie derivative with respect to X at the forms wi, i = 0, ... , k- 2: 

Since the relation 
dh = V(h)dt mod (w0 , ... , Wk-1) 

is valid for an arbitrary function h = h(t,po, ... ,Pk-1), we obtain 

so that 

Let f denote the function a 0 . Then every internal symmetry of a k-th order differ­
ential equation is determined by f and has the form: 

(13) 

The function f is called the generating function of the symmetry Xf. Note that 
there is an analogy with the case of contact vector fields; namely, the generating 
function of X f can be found from 

f = wo(XJ ). (14) 
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We have so far used only the forms w0, ... , wk_2. For the form Wk_ 1 we have 

Lx(wk-1) = ('D(ak-1)- X(F))dt mod (wo, ... , wk-1)· 

Using (13), we obtain the equation with respect to f: 

k oF k- 1 8F 8F 
Lp(f) = 'D (f)- DPk-1 'D (f)- ... - 8p1 'D(f) - 8po f = O. (15) 

Equation (15) is called the Lie equation, while the operator 

k oF k-1 8F 8F Lp = 'D - 'D - ... - -'D- -
OPk-1 8p1 8po 

(16) 

is called the Lie operator. 
The Lie equation is linear with respect to f. This means that its solutions form a 

vector space over the field l.P?,., Moreover, this space can be turned into a Lie algebra if 
we define a bracket (!,g) ~----+ [ j, g] on the solution space by 

(17) 

From (14) it follows that 

(18) 

It is immediate from definition (17) that the bracket [,] truly turns the solution space 
of equation (15) into a Lie algebra. The bracket [ j, g] is called the Jacobi bracket of 
functions f and g. 

Summarizing all that has been said in this item, we obtain the following result: 

Theorem. Every internal symmetry of differential equation (10) has the form Xi 
(13) for some solution f of the Lie equation. The solution space of the Lie equation 
is a Lie algebra with respect to Jacobi bracket. A symmetry X f is the image of 
some classical symmetry by the mapping x if and only if its generating function f is 
independent ofp2, ... ,Pk-b i.e. f = f(t,po,P1)· In this case, the internal symmetry 
X f is the image of the contact vector field with the same generating function. 

4.5. Let us now give several examples of how to find symmetries of second-order 
differential equations. 

We shall start with equations of the form: 

y" = y' + rp(y). (19) 

Since these equations are invariant under translations along the t-axis, they always 
have the symmetry with generating function f = P1· We shall find out when they 
have at least two point symmetries. 
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Generating functions of point symmetries have the form 

f = B(t,po)- PlA(t,po) (20) 

and satisfy the Lie equation: 

D 2 (f) - D(f) - cp' (f) = 0, (21) 

where 
a a a 

D = at + Pl apo + (Pl + cp) apl . 

Substituting (20) into equation (21), we obtain 

a2 A 3 ( a2 B a2 A a A ) 2 ( a A a A a2 A a2 B ) 
- ap6 Pl + ap6 - 2 atapo - 2 apo Pl + - 3cp apo - at - at2 + 2 atapo Pl + 

( a A aB a2 B aB , ) + -2cp- + cp- + - - - - cp B = 0. 
at apo at2 at 

The left-hand side of the equation obtained is a polynomial in p1 . Therefore, 

From the first equation of the system it follows that 

A(t,po) = a(t)po + b(t). 

Substituting this expression into the second equation of the system, we obtain 

or 

a2B -a 2 = 2a+2a' 
Po 

B(t,po) =(a+ a')p6 + c(t)po + d(t) 

(22) 

for some functions c(t) and d(t). Then the third equation of system (22) reduces to 

3acp = 3(a' + a")po- b"- b'- 2c'. 

Assuming that the function cp = cp(p0 ) is nonlinear (the linear case will be considered 
later), we obtain 

a= 0, 

k- b"- b' 
C=----

2 
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where k is constant. The last equation of system (22) can now be written as 

(cpa+ d)<p'- (c- 2b')<p = (c"- c')po + d"- d'. (23) 

The equation obtained is a first-order linear differential equation with respect to the 
function <p = <p(po). Here the variable t can be considered as a parameter. Under the 
condition that c #- 0, c- 2b' #-, and b' #- 0, the general solution of equation (23) has 
the form: 

_ ( ~) 1- 2(b' I c) c" - c' ( ~) d( c" - c') - c( d" - d') 
<p(Po) - R(t) Po+ c + 2b' Po+ c + c(c- 2b') ' (24) 

where R(t) is an arbitrary function. 
We must pick out those of functions of form (24) that are nonlinear with respect to 

p0 and are independent oft. A function of form (24) satisfies these conditions if and 
only if 

R = a = const, 

d 
- = f3 = const, 
c 

b' 
1 - 2- = 1 = const, 

c 
c" - c' 
--- = const, 

2b' 
d( c" - c') - c( d" - d') 

c( c _ 2b') = const. 

From these relations we obtain 

h k - l-}' E t ll w ere - 3+1' . ven ua y, 

b' = 1 _, c 
2 ' 

- I' 21 + 2 
<p(Po) - o:(po +,B) - (! + 3)2 · (25) 

It remains to consider the cases excluded from the previous considerations. If c = 0 
and b' = 0, then <p is a linear function. If c = 0, then the solution of equation (5) is 
nonlinear: 

2 
<p(Po) = a ef3Po -{3. 

Thus, the following result is true: 

(26) 
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Theorem. Among all second-order nonlinear differential equations of the form 

y" = y' + cp(y), 

the following ones have a two-dimensional Lie algebra of point symmetries: 

i) y" = y' + a(y + {3)'Y - (~~i~2, a, {3, 1 E JH., 1 =f- 1, -3; 

ii) y" = y' + aef3Y -~, a, {3 E JH., {3 =f- 0. 

In addition, the following functions can be chosen as a basis of the space of gener­
ating functions for symmetries of these equations: 

i) fi =PI, f2 = ekt(PI- k!1Po), k = ~~0; 

ii) fi = Pb h = e-t(PI- ~). 

4.6. Let £ C Jk(JH., M) be a system of differential equations on a manifold M, 
dim M ~ 2. Assume that £ is solvable with respect to derivatives of the highest order. 
Then £ can be identified with a vector field D on Jk-l(JH., M) lying in the Cartan 
distribution. The projection of Don lH. is the field Zt. Therefore, D can be written as 

a 
V= at +Do, (27) 

where Do is a 1fk_1-vertical vector field, i.e. a vector field tangent to fibres of the 
projection 1fk-l : Jk(JH., M)-+ JH.. 

The field D generates the characteristic distribution for C ( £). Therefore, shuffling 
infinitesimal symmetries of the system £ can be identified with 'lfk-1-vertical vector 
fields X on Jk- 1(JH., M). 

The condition that a vector field X be a symmetry is equivalent to the condition 
that D and [ D, X] be proportional. Comparing the Zt -components of these two vector 
fields, we obtain the following result: 

Proposition. Shuffling symmetries of the system£ are 1fk_1-vertical vector fields on 
Jk-I (JH., M) satisfying the Lie equation 

X= [X, Do], (28) 
. a 

where X= [ at,X]. 

Proof. It is sufficient to note that 

[D,X] = [ :t +Do,X] =X+ [D0 ,X]. 

4.7. Let us use the results of the previous section in order to describe (in local 
coordinates) shuffling symmetries of the following system of differential equations: 

{ 
Pk ~ pl(t, ... ,p), ... ) (29) 

P"/; = pn(t, .. · ,pj, .. ·) 
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where i = 1, ... , n, j = 0, 1, ... , k- 1. 
The vector field V can be written as 

a'"'"'. a"'. a v = at+ ~Pj+1 a i + L.t pta i . 
. . Pj · Pk-1 t,] t 

(30) 

Let 

(31) 

be a shuffiing symmetry of system (29), where 

Xj=Xj(t, ... ,p[, ... ), r=1, ... ,n, l=0,1, ... ,k-1. 

Then 

and 

Therefore, the vector field X is a shuffiing symmetry of system (29) if and only if 

{ 
'D(Xj)=Xj+1 , i. 1, ... ,n, j=O, ... ,k-2, 

'T'I(Xi _ "'XrBF' · _ 1 
v k-1 - L... z ~' z- '· · · 'n. 

l pl 
r, 

Put fi =X~. Then from the first equations of system (32) it follows that 

Thus every shuffiing symmetry can be written as 

for some vector-valued function 

Xt = "Lvj(fi) gt 
i,j 

fi=fi(t, ... ,p[, ... ), r=1, ... ,n, j=0,1, ... ,k-1. 

The function f is called the generating function of the symmetry X f. 

(32) 

(33) 
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The rest of the equations of system (32) reduce to the Lie equations for f: 

(34) 

By LF denote the matrix differential operator (the Lie operator) LF = IILirll, where 

(35) 

Then Lie equations (34) can be written in matrix form: 

(36) 

where ft is the transpose of the row vector f. 
The symmetries corresponding to solutions of system (36) form a Lie algebra with 

respect to commutation of vector fields. This operation determines Jacobi bracket 
on the space of generating functions: iff and g are generating functions, then their 
Jacobi bracket is the vector-valued function [ j, g] such that its i-th component [ j, g ]i 
has the form: 

(37) 

Thus, the following result is true: 

Theorem. If E is a system of differential equations resolved with respect to deriva­
tives of the highest order, then its shuffling symmetries can be represented as (33), 
generating functions f satisfying Lie system (34). The solution set of this system is a 
Lie algebra with respect to Jacobi bracket (37). 

§5. LINEAR SYMMETRIES 

In this section we shall consider linear differential equations with respect to func­
tions y : ~ --+ ~ 

Ly = y(k) + a1 (t)y(k-1) + ... + ak(t)y = 0 

and their linear symmetries, i.e. symmetries preserving linear structure of the solution 
space. 

5.1. Consider first the differential equation £ C Jk (~, ~) given by 

Pk = F(t, Po, 0 •• , Pk-1)· (1) 

Let us find a condition for a function j(t,p0 ,. 0 0 ,Pk-1) to be a generating function of 
a shuffling symmetry of E 0 
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Let { rp s} be the one-parameter group of translations along the vector field X 1 and 
let h = h(t) be a solution of (1). Then 

hs =h+sfh+o(s), 

h~ = h' + s(Vf)h + o(s), 

h~k-1) = h(k-1) + s(vk-1 f)h + o(s), 

where for a function G = G ( t, p0 , ... , p k _ 1 ) by G h we denote its restriction to the 
curve Jk- 1 (h) : Gh (t) = G(t, h( t), ... , h(k-1) ( t) ). 

Thus, a function f = f(t,p0 , ... ,Pk-1) is a generating function of a shuffling sym-
metry if the one-parameter family of functions 

hs = h + sfn (2) 

corresponding to an arbitrary solution h(t) satisfies equation (1) up to o(s): 

h (k) - F( h h(k-1)) - ( ) s t,s, ... , 8 -OS. (3) 

5.2. We shall use observations of the previous item in order to describe linear 
symmetries of linear differential equations. 

Consider the linear differential equation 

Ly = 0 (4) 

given by the operator 

(5) 

where a= lt. 
Definition. Shuffling symmetries of differential equation ( 4) are called its linear sym­
metries if their generating functions f are linear: 

(6) 

To a function f of form ( 6) we associate the operator ,6. ( = ,6. f) given by 

(7) 

Let us write the Lie equation for a generating function f in terms of the corresponding 
operator ,6., using relation (3). But first prove the following result: 
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Lemma 1. For an arbitrary differential operator 

(8) 

of order n ;?:: k there exist differential operators N and R of order n - k and k - 1 
respectively such that 

M=NoL+R. (9) 

In addition, the operators N and R are uniquely defined. 

Proof. We shall prove this by induction on the order n of M. If n::::; k- 1, then it is 
obvious that the operators N and R exist. Assume that these operators exist for all 
operators of order ::::; n - 1. For an operator M of order n we have 

where the order of M 1 is not greater than n- 1. Then M1 = N1 o L + R1 and 

Let us prove that N and R are unique. Suppose we are given two representations: 

where N1 I N2 and R 1 I R2. Then (N1 - N2) o L = R2 - R1. But the order of the 
operator (N1 - N2) o Lis not less thank, whereas the order of R2- R1 is not greater 
thank- 1. Therefore, N1- N2 = 0 and R2- R1 = 0. 

Remark. It can be proved similarly that M can be written uniquely as 

M=LoN+R. 

Lemma 2. Let M be a differential operator such that 

M(h) = 0 (10) 

for every solution h = h(t) of the equation L(h) = 0. Then there exists a differential 
operator N such that M =No L. 

Proof. Using Lemma 1, write the operator M as M = No L + R. Then M (h) = R( h) 
for all solutions h(t) and 

Every solution h(t) can be uniquely determined by the set 

ho = h(to), h1 = h'(to), ... , hk-1 = h(k-l)(to), 



SYMMETRIES AND INTEGRALS 91 

where t 0 is an arbitrary point of IPL Since 

R(h)(to) = r1(to)hk-1 + · · · + rk-1(to)ho = 0 

for all sets (to, ho, ... , hk-1), we obtain r1 - 0, ... , rk-1 - 0. 

5.3. Theorem. A differential operator .6. corresponds some shuffling symmetry if 
and only if there exists a differential operator LS. such that 

L o .6. = 3. o L. 

Remarks. 
(1) The order of 3., as well as that of .6., does not exceed k - 1. 
(2) The operator LS. is uniquely defined. 

Proof of the Theorem. Let .6. be an operator corresponding to some shuffling symme­
try. Then 

L(h + s.6.(h)) = s(L o l:l)(h) = o(s) 

for all solutions h of the equation L(h) = 0. Therefore, (Lol:l)(h) = 0 for all solutions 
h. Then from lemma 2 it follows that there exists an operator LS. such that Lol:l = lioL. 

It is obvious that the converse is also true. 

5.4. Definition. 
(1) Let M be an operator of the form: 

M = mo(t)Er + · · · + mn-1(t)a + mn(t) 

The operator 
Mt = ( -1) nan o m 0 + · · · + ( -1) a o mn -1 + mn, 

operating as follows 

Mt(h) = ( -1)n(moh)(n) + · · · + ( -1)(mn-1h)' + mnh, 

is called (formally) adjoint toM. 

(12) 

(13) 

(2) A differential operator M of form (12) is called self-adjoint if Mt = M and 
anti-self-adjoint if Mt = -M. 

It is easy to verify that a self-adjoint operator always has even order n = 2r and 
can be written as 

r 

M(h) = L)fj(t)h(j))(j). (14) 
j=O 

Correspondingly, an anti-self-adjoint operator always has odd order n = 2r + 1 and 
can be written as 

r 

M(h) = L[(fj(t)h(j))(j+1) + (fj(t)h(j+1))(j)]. 
j=O 

(15) 
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Theorem. [J .Lagrange]. Let M be an arbitrary differential operator of form (12) 
and u(t), v(t) two functions. Then 

(16) 

where 
n k-1 

PM(u,v) = I:2.::)-1)j(8k-j-1u,8j(mn-kv)). (17) 
k=1j=O 

5.5. Let V be a finite-dimensional vector space and Aj :Ill!,-----+ Hom(V, W) functions 
defined on Ill!,, 

Consider the differential operator 

M = Ao(t)on + · · · + An(t), 

operating on vector-valued functions u: Ill!,-----+ V. The operator 

Mt = ( -1) nan o A& + · · · + A~, 

operating on vector-valued functions w :Ill!,-----+ W*, is called adjoint toM. Here by At 
we denote the operator adjoint to A in sense of linear algebra: 

(Au, w) = (u, Atw) 

for all u E V, w E W*, where <, > is the natural pairing of the spaces W and W*. 

Theorem.[J.Lagrange]. For an arbitrary operator M and any two vector-valued 
functions u : Ill!, -----+ V, v : Ill!, -----+ W* the following relation holds: 

where 

(Mu, v)- (u, Mtv) = oPM(u, v), 

n k-1 
PM(u,v) = LL(-1)j(ak-j- 1 u,8j(A~_kv)). 

k=1j=O 

Proof. It is easy to check that 

k-1 
(Boku,v)- (u, (-1)kokBv) = 8L(-1)j(ak-j-1u,8jBtv). 

j=O 

It remains to apply this formula to every term of the operator M. 

5.6. Examples. 



SYMMETRIES AND INTEGRALS 93 

(1) Every anti-self-adjoint operator of order 1 has the form: 

M(h) = (f(t)h)' + f(t)h' = 2f(t)h' + J'(t)h 

or 
M = 2f(t)8 + f' (t). (18) 

(2) Every self-adjoint operator of order 2 has the form: 

M(h) = (!I(t)h')' + fo(t)h = !I(t)h(2) + f{(t)h' + fo(t)h, 

or 
M =!I (t)82 + f{ (t)a + fo(t). (19) 

(3) Anti-self-adjoint operators of order 3 have the form: 

M(h) = (!I(t)h(2))' + (!I(t)h')(2) + fo(t)h' + (Jo(t)h)' = 

= 2f h (3) + 3 f' h (2) + ( f~' + 2 J' )h' + -'' h 1 u 1 '" ~ J 0 J 0 ' 

or 
M = 2fi83 + 3f{h2 + (!{' + 2fo)8 + fb· (20) 

The corresponding Lagrange formula have the form: 
(1') uM(v) +vM(u) = aPM(u,v), where PM(u,v) = 2fuv; 
(2') uM(v)- vM(u) = aPM(u,v), where PM(u,v) = fi(u'v- uv'); 
(3') uM(v) + vM(u) = aPM(u,v), where PM(u,v) = 2fi(u"u- u'v' + uv") + 

ff(u'v + uv') + 2fouv. 
(4) If M = A0 (t)8 + A1 (t) is a matrix differential operator, then Mt = -8A6 + 

A~ - A68- (A6)' +A~. Therefore, M is self-adjoint if W = V* and 

so that A1 = 1/2A~ + B 1 , where B 1 is symmetric, i.e. B 1 = Bf. Thus, the formula 

(24) 

where A0 is skew-symmetric and C1 is symmetric, gives a complete description of 
self-adjoint operators of order 1. The corresponding Lagrange formula has the form: 

(Mu,v)- (u,Mv) = 8PM(u,v), (25) 

where PM(u, v) = (u, A6v). 
If M is anti-self-adjoint, then A6 = A0 and (A6)'- A~ = A1 . Thus, the formula 

(26) 
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where A0 is symmetric and C1 is skew-symmetric, gives a complete description of 
anti-self-adjoint operators of order 1. The corresponding Lagrange formula has the 
form: 

(Mu,v) + (u,Mv) = 8PM(u,v), 

where PM(u,v) = (u,Agv). 

(27) 

5. 7. By II = IT(L) denote the set of pairs (.6., LS.) of differential operators of order 
~ k - 1 such that .6. and LS. satisfy conditions of theorem 5.3. Note that II(L) is a 
vector space over JRl., and if (.6., LS.) E II(L), then (LS.t, .6.t) E II(Lt). 

In particular, if Lis self-adjoint or anti-self-adjoint, then the operation of adjoining 
operators generates the involution 

(28) 

of the space II(L). Thus, if an operator .6. corresponds to some shuffling symmetry of 
the equation Lh = 0, then so does LS. t. Using the involution just defined, we write II 
as a direct sum: 

where 

in other words, 

II ( L) = II0 ( L) EB II 1 ( L), 

Ilo ( L) = { ( .6., LS.) E II ( L) I ( .6., LS.) t = - ( .6., LS.)} , 

II1(L) = {(.6.., LS.) E II(£)1(.6., LS.)t = -(.6.., LS.)}; 

ITo ( L) = { ( .6., - .6. t) E II ( L)} , 

II1(L) = {(.6.., .6.t) E II(L)}. 
(29) 

Theorem. Let L be a self-adjoint or anti-self-adjoint operator. Then the set of 
operators corresponding to linear shuffling symmetries of the equation Lh = 0 can be 
written as the direct sum of the solution spaces of the following equations: 

(ITo) : L o .6. = -.6.t o L, 

(II1) : L o .6. = .6.t o L. 
(30) 

5.8. Let us indicate some algebraic constructions related to the questions under 
consideration. Omitting the condition that operators .6., LS. have order ~ k - 1, we 
obtain a new space of pairs of operators. We denote it by IT(L). The space IT(L) 
can be supplied with some additional algebraic structures. Let (.6..1, LS.1) E IT(L) and 

(.6..2, LS..2) E IT(L). Since 

we have (.6.1 o .6.2 , LS. 1 o 3.2 ) E IT(L). Thus, we obtain multiplication in IT(L), and this 
operation turns IT(L) into an associative algebra. 
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If L is self-adjoint or anti-self-adjoint, the space TI(L) is closed with respect to 
involution (28) and, as before, 

(31) 

In addition, TI1 (L) is closed with respect to anticommutator: 

(3) 

whereas TI0 ( L) is closed with respect to commutator: 

[(.6.1, b.1), (.6.2, b.2)] = (.6.1 0 .6.2- .6.2 0 .6.1, b.1 0 b.2- LS.2 0 LS.1)· (33) 

Let (.6.1,LS.1) E llo(L) and (.6.2,b.2) E TI1(L). Then formula (33) gives an action of a 
Lie algebra on a vector space. Thus, TI0 (L) is a Lie algebra, TI1 (L) is a Jordan algebra, 

and the Lie algebra TI0 ( L) acts on fi 1 ( L). 

as 
Now let (.6., LS.) E TI(L) be an arbitrary pair. The operators .6. and b. can be written 

.6. =No L + R(.6.), 

b.= L oM+ S(b.), 

where the orders or R(.6.) and S(b.) do not exceed k- 1. Since L o ..6. = Li o L, we 
obtain 

L o (N- M) o L = S(b.) o L- L o R(..6.). 

If N f. M, then the order of the operator standing in the left-hand side of the equality 
must be greater than 2k. Therefore, M =Nand 

(R(..6.), S(b.)) E II(L). 

Thus, the mapping 

TI(L) 3 (..6., b.) f---7 (R(..6.), S(LS.)) E II(L), 

which is obviously an epimorphism, establishes a connection between TI(L) and the 
space of shuffling symmetries. 

Example. [J .Dixmier]. The differential operator 

commutes with the operator 

L = 86 + 3(t3 + a)84 + 18t283 + (3t6 + 6at3 + 45t + 3a2)82+ 
+ (18t5 + 18at2 + 27)8 + (t9 + 3at6 + 33t4 + 3a2t3 + 21at + a 3 ), 
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where a E lR is some constant number. 
Thus, the equation Lh = 0 has a shuffling symmetry of order 4. Its generating 

function has the form: 

5.9. Operators of the form 
(34) 

are called Hill operators. The function f = f ( t) is called the potential. 
Let us find linear shuffling symmetries of the equation Lh = 0. We shall first 

describe the space II(L ), using the fact that L is self-adjoint. 
Let .6. = x +yo; then .6.t = (x- y')- yo and 

L o .6. = (82 + f)(x +yo)= y83 + (x + 2y')82 + (y" + 2x' + yf)o + x" + fx, 

.6.t o L = (x- y'- y8)(82 +f)= -yo3 + (x- y')o2 - yfo- yf'- y' f + fx. 

Therefore, if .6. E II0 ( L), then L o .6. + .6. t o L = 0 so that 

{ 
2x + y' = 0, 

2x' + y" = 0, 

x" + 2xf- yf'- y' f = 0. 

From the first equation we obtain 

X= -lj2y1 • 

Substituting this into the last equation, we obtain 

y"' + 4fy' + 2!' y = 0. (35) 

If .6. E II 1 ( L), then L o .6. - .6. t o L = 0, so that y = 0 and x' = 0. Thus, .6. E II 1 ( L) 
if and only if .6. (h) = ch for some constant number c E JR. 

Consider equation (35). The corresponding operator 

M = 83 + 4fo + 2j' (36) 

is anti-self-adjoint. The solution space of the equation is 3-dimensional. As a solution 
space of a Lie equation, this space is a Lie algebra with respect to bracket 

(37) 

reduced from Jacobi bracket. 
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Let {Y1, Y2, Y3} be a fundamental system of solutions of equation (35); in other 
words, at some point t0 E ~' the solutions Y1 , Y2 , and Y3 satisfy the following initial 
conditions: 

{ 
Y3(to) = 0, 

Y~(to) = 0, 

Y~' (to) = 1. 

(38) 

Commutators of these solutions are also solutions and from (35) and (38) it follows 
that 

[Y1, Y2](to) = l,[Y1, Y2]'(to) = O,[Y1, Y2]"(to) = -4f(to), 

[Y1, Y3] (to) = O,[Y1, Y3]' (to) = l,[Y1, Y3]" (to) = 0, 

[Y2, Y3] (to) = O,[Y2, Y3] 1 (to) = O,[Y2, Y3]" (to) = 1. 

Therefore, for all t E ~ we have 

{ 
[Y1, Y2](to) = -Y1- 4f(to)Y3, 

[Y1, Y3](to) = -Y2, 

[Y2, Y3](to) = -Y3. 

Thus, the solution space of equation (35) is isomorphic to the Lie algebra .s((2, ~). 
Iff= 0, then equation (35) takes the form: 

y"' = 0. 

The corresponding realization of .s[(2, ~) in terms of vector fields on~ has the form: 

Note that a shuffling symmetry 

of the Hill equation Lh = 0 belongs to .s((2, ~)if and only if the potential f(t) satisfies 
the condition 

(y2 f)' = 0, 

so that 
c 

f(t) = ()qt2 + )..2t + )..3)2 (39) 

for some constant numbers c, >..1, >..2, A3. 
The relation f = cy-2 , connecting the potential with symmetries, can be general­

ized if we consider an arbitrary relation 

f = H(y) ( 40) 
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for some function H. In this case, Lie equation (35) takes the form: 

y"' + 2y' (yH' + 2H) = 0. (41) 

In particular, if 

f = Y + c1, 

where c1 Em is a constant number, we obtain the following equation for f: 

!"' + 6f !'- 2c1!' = 0. (42) 

This equation coincides with the Korteweg-de Vries equation for travelling waves and 
can be solved explicitly in terms of elliptic functions. Indeed, integrating ( 42), we 
obtain 

( 43) 

where c2 E m is a constant number. Multiplying both sides of ( 43) by f' and integrat­
ing, we obtain 

1 ( ')2 2 3 2 f = cd + c2 f - f + c3, (44) 

C3 Em being the integrating constant. From (44) it follows that 

f(t) = -2g;J(t) + cl/3, ( 45) 

where tJ(t) is the Weierstrass elliptic function with invariants 

(46) 

Thus, Hill equations with potential f(t) of form (45) have shuffiing symmetries 
corresponding to operators of the form: 

6. = (!- c1)8- ~!' = (-2g;J(t)- ~c1)8+ tJ'(t) 
2 3 

(47) 

Definition. A potential f(t) is called integrable if equation (35) has at least one 
nontrivial solution. 

Motivations for this definition can be found in chapter 3. 
Consider equation (35) as an equation with respect to f(t). Then we obtain 

2(y2 !)' + y"' y = 0. 

This implies that all potentials of the form 

toE m, (48) 
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where y(t) is an arbitrary function, are integrable. For example, putting y(t) 
asin(wt) + bcos(wt) in (48), we obtain integrable potentials of the form: 

w2 c 
!=4+ (asin(wt)+bcos(wt))2 ' w,a,b,cEIPL ( 49) 

If y(t) = ae>-.t + be->-.t, then 

),2 c 
f(t) = -4 + (ae>-.t + be->-.t)2' .A, a, b, c E IPt (50) 

In conclusion, let us show a procedure that allows to obtain new integrable poten­
tials from already-known ones. For this purpose, we apply the Lagrange formula to 
operator (36): 

yM(z) + zM(y) = 8(yz"- y' z' + y" z + 2fyz). 

Putting z(t) = -y(t), for every solution y(t) we obtain 

2yy" - (y') 2 + 2fy2 = c, c E JR. (51) 

This relation can be rewritten as 

Therefore, putting 

3 (y') 2 1 f =- - + -fo 
2 y 2 

(52) 

we obtain the equation for y(t): 

(53) 

This equation can be solved if fo(t) is an integrable potential. 
Relations (52) and (53) enable us to construct new integrable potentials starting 

from already-known ones. The procedure of construction can be described as follows. 
1) Let f 0 (t) be an integrable potential and z(t) a nontrivial solution of the Hill 

equation 
z" + fo(t)z = 0. 

2) Then the potential 
1 3 z' 

f(t) =- fo(t) + -(-)2 
2 8 z 

is also integrable and the operator 

1 z' 
~=v-za---. 4vz 

(54) 

(55) 
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determines a shuffling symmetry of the corresponding equation. 
If we start with the trivial integrable potential fo = -v2 , v =f. 0, then after the first 

iteration we obtain the following integrable potential: 

f( ) _ 2 2 c1 e - c2e 1 3 
( 

vt -vt) 2 
t - --v + -v 

2 8 cl evt + c2evt 
(56) 

If fo- 0, then we obtain potentials (39). 

Remarks. 
1) Note that finding symmetries of Hill equations or, what is the same, finding 

solutions of equation (35) is equivalent to solving the Hill equations themselves. Thus, 
we obtain a nontrivial correspondence between differential equations of order 2 and 3. 

2) As a matter of fact, every anti-self-adjoint operator of the form M = 83 + 
a(t)8+ b(t) has form (36). Therefore, the solution space of the corresponding equation 
M(h) = 0 is closed with respect to Jacobi bracket (37) and is isomorphic to the Lie 
algebra .s[(2, .IPS.). A slight improvement of this construction shows that this is also true 
for every anti-self-adjoint operator of the third order. 
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CHAPTER III 

INTEGRALS 

§1. INTEGRALS OF COMPLETELY INTEGRABLE DISTRIBUTIONS 

1.1 Let E be a completely integrable distribution on a manifold M. 

Definition. 

101 

1) A function H E c=(M) is called a first integral of the distribution E if H is 
constant on all integral manifolds of E. 

2) A function H E c= ( Jk (JR, M) is called a first integral of a system of differential 
equations E C Jk (JR, M) if the restriction of H to the manifold E is a first integral of 
the restriction C(£) of the Cartan distribution. 

If E is given by differential 1-forms WI, ... , Wm, i.e. E = :F(wi, ... , wm), then 
H E c= ( M) is a first integral of E if 

(1) 

for some functions AI, ... , Am E c= ( M). This condition can be rewritten without 
resorting to functions A1 , ... , Am: 

dH 1\ WI 1\ · · · 1\ Wm = 0. (2) 

Suppose H1, ... , Hk are first integrals of E and j(x1, ... , Xk) is an arbitrary smooth 
function of k variables. Then the function H = f(HI, ... , Hk) is also a first integral 
of E. Therefore, it makes sense to seek only functionally independent first integrals. 
From (1) it follows that their number does not exceed m. 

We say that a system of first integrals HI, . .. , Hm of the distribution E is complete 
if HI, ... , Hm are functionally independent and m = codimE. 

Given a complete system of first integrals, it is possible to find all maximal integral 
manifolds of E by solving a functional system of the form: 

where ci, ... , Cm are constant numbers. 

Example. Consider the differential equation E C JI (JR, JR) given by 

(y + tcosy)y' + siny = 0 

and the function 
( ) . 1 2 

H t,po = tsmpo + 2Po· 
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Since the differential 2-form 

dH 1\ wo =((Po+ tcospo)dpo + sinpodt) 1\ (dpo- Pidt) = 

= (PI (Po + t cos Po) + sinpo)dt 1\ dpo 

vanishes on £, we see that H is a first integral of £. 

1.2. Let g be a finite-dimensional Lie algebra of shuffling symmetries of a com­
pletely integrable distribution E. Suppose that XI, ... , Xm E sym(E) and that the 

corresponding shuffling symmetries XI, ... , Xm E shuf(E), given by 

Xi= Xi mod Char(E), 

form a basis of g. Furthermore, assume that at every point a E M the vector fields 
XI,a, ... , Xm,a generate the subspace of TaM complementary to E(a) and that E = 
F(wi, ... , wm), where the 1-forms WI, ... ,, Wm are linearly independent at each point 
of l'vf. Then the differential forms WI, ... , Wm giving the distribution E can be chosen 
so that 

(3) 

Indeed, let E = :F(ei, ... 'em) and let the desired forms WI, ... ' Wm have the form 

(4) 

for some nonsingular matrix A= llaijll, aij E C 00 (M). By S denote the matrix 

(5) 

The conditions imposed on the vector fields XI, ... , Xm imply that the matrix Sis 
nonsingular. Further, relations (1) are equivalent to the equality A· S =I, so that 

A= s-I (6) 

and 

(7) 

1.3. Theorem. Let g be a Lie algebra of shuffling symmetries of a completely 
integrable distribution E, {XI, ... , Xm} its basis, and w1 , ... , Wm differentiall-forms 
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such that E = :F(wi, ... ,wm)· Suppose that all these objects satisfy conditions ofthe 
previous item and that C~,f3' 1 ~ i, a, f3 ~ m, are structure constants of g: 

m 

[X en Xf3] = L c~,f3xi· 
i=I 

Then the forms WI, ... , Wm satisfy the Maurer-Cartan equations: 

Proof. By Frobenius' theorem 

m 

dwi = L {ij 1\ Wj 
j=I 

(8) 

(9) 

(10) 

for some differential1-forms rij, 1 ~ i,j ~ m. Substituting Xa in (10), we obtain 

But 

m 

Xa.JdWi = L rij(Xa)Wj- ria· 
j=l 

Lxa (dwi) = Xa.JdWi· 

Therefore, the differential 1-forms Xa.JdWi are linear combinations of the 1-forms 
WI, ... , Wm, SO that 

m 

{ij = L -A~(3Wf3 
(J=I 

for some smooth functions A~f3' 1 ~ i, a, f3 ~ m. Thus, 

This equality implies that 

But on other hand, 

dwi = L A~(3Wa 1\ Wf3· 
a<f3 

= -wi (L c~f3Xj) = -C~f3. 
j 

1.4. As a corollary of theorem 1.3, we obtain the following result: 
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Theorem. Suppose that a distribution E and a Lie algebra g of shuffling symmetries 
of E satisfy conditions of the previous theorem and, in addition, g is commutative. 
Then the differential 1-forms w 1 , ... , Wm are closed: dwj = 0, and therefore first 
integrals H1 , ... , Hm of E can be found by quadratures: 

X 

Hj(x) = j Wj, j = 1, ... ,m. (11) 

a 

Here integration is carried out along arbitrary paths in M connecting a point x E M 
with a fixed point a E M. 

Remark. In the case of simply connected manifolds M (or manifolds with trivial de 
Rham cohomology 1-group), first integrals ( 11) are well-defined. In the general case, 
formula (11) gives "many-valued" first integrals. 

1.5. Let us now revert to the general case considered in 1.3. By g(l) = [g, g] denote 
the commutator subalgebra of the Lie algebra g. Suppose g(l) =f. g. Then a basis of g 
can be chosen so that 

where r = codimg g(1). 

Since [Xi, Xj] E g(l) (1 ~ i, j ~ m), we have 

c:j = 0, s ~ r. 

Therefore, from the Maurer-Cartan equations it follows that 

dwj = 0, j ~ r. (12) 

By H1 , ... , Hr denote the first integrals (which may be many-valued) corresponding 
to the 1-forms w1, ... , Wr, i.e. dHj = Wj· Note that these integrals can be found from 
(11). 

Let c = ( c1, ... , Cr) E JR.r and by Me denote the common level surface of the integrals 
Hl, ... ,Hr: 

From linear independence of the 1-forms w 1 , ... , Wr and the implicit -function theorem 
it follows that Me is a manifold. In addition, since 

for i ~ r and j ?: r + 1, we see that Me is invariant with respect to the commutator 
subalgebra. 
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So, since E(a) C Ta(Mc), we see that the restriction Ec of the distribution E to the 
manifold Me has dimension equal to that of E and can be given by the differential 1-
forms Wr+l, ... , Wm· Moreover, the subalgebra gCl) determines an algebra of shuffling 
symmetries of the distribution Ec, and the pair (gCl), Ec) satisfies conditions of item 
1.2. Therefore, if the subalgebras g(2) = [gCl), gCl)] and g(l) do not coincide, then 
the procedure just described can be repeated, and so on. Note that at every new 
step the codimension of the distribution obtained coincides with the dimension of the 
corresponding commutator subalgebra. 

Define by induction the sequence of derived subalgebras g(l), l = 0, 1, 2, ... , where 

g(l+l) = [g(l), g(l)] and g(o) =g. 

It is clear that g(l+l) C g(l), l = 0, 1, 2, .... 

Definition. A Lie algebra g is called solvable if there exists a natural number n ;?: 1 
such that g(l) = 0 for all l ;?: n. 

Now suppose that the Lie algebra g of shuffling symmetries is solvable. Then the 
procedure described above enables us to find all first integrals of the distribution E in 
consecutive order and thereby to find maximal integral manifolds of the distribution. 
Finally, we obtain the following result: 

Theorem. Let E be a completely integrable manifold and g c shuf (E) a finite­
dimensional solvable Lie algebra of shuffling symmetries of E. Suppose that E and 
g satisfY the conditions of item 1.2. Then the complete system of first integrals of E 
can be found with the use of the following two procedures: 

a) integration of closed differentiall-forms and 
b) solving functional equations (i.e. equations of the form F(x,y) = 0). 

§2. LIE-BIANCHI THEOREM 

In this section we are going to apply theorem 1.5 to system of ordinary differential 
equations. 

2.1. First consider systems £ of differential equations of order 1. Let 

{ 
Pl = F'(t,pA, ... ,pQ) 

PI= Fn(t,p5, · · · ,p()) 

(1) 

be a system of this kind and g C shuf £ a finite-dimensional Lie algebra of shuffling 
symmetries of system ( 1). Suppose that the vector fields 

---- [) [) 
X 1 = cpn op6 + · · · + 'Pnl Dp() 

(2) 
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form a basis of g. 
In order that E and g satisfy conditions of item 1.2, it is necessary that m =nand 

the matrix 

be non-singular. Here fh, ... , Bn are arbitrary 1-forms that determine the restriction 
of the Cart an distribution to the system E. 

Let 81, ... , Bn be the Cartan forms: 

Then 

and therefore 

s = IISij II = llctJij II· (3) 

In this case the forms W1, ... , Wn satisfying conditions (3) of item 1.2 can be found 
from 

(4) 

Theorem. [Lie, Bianchi]. Suppose that system (1) has a solvable Lie algebra of 
shuffling symmetries such that its basis has form (2) for k = n and det llctJij II # 0. 
Then the general solution of the system can be found by quadratures. 

2.2. Let us describe a procedure of integration of system (1) possessing a solvable 
Lie algebra g of shuffling symmetries. 

1) Since g is solvable, there exists a sequence of subalgebras 

go = g ::) g1 ::) · · · ::) gi ::) gi+1 ::) · · · ::) gn = {0} 

such that codim11 (gi) = i, i = 0, ... , n, and each subalgebra gi+1 C gi is an ideal in 
gi. A sequence like this can be constructed as follows. 

Let g(l) = [ g, g] be the commutator subalgebra. Then every vector subspace g of g 
containing g(l) is an ideal in g. Therefore, any subspace of codimension 1 containing 
g(l) can be chosen as g1. Replacing g by g1, we can similarly construct a Lie algebra 
g2, and so on. 

2) Let { X1, ·;_., Xn} ~be a basis of g such that 
the vectors ~2, ... , ~n form a basis of the subalgebra g1 , 

the vectors X3 , ... , Xn form a basis of the subalgebra g2 , 
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~ ~ 

the vectors Xi+1 , ... , Xn form a basis of £li, 

~ 

the vector Xn forms a basis of gn-1· 

3) Using the Cartan forms fh, ... , Bn and relation (4), we find the differential 1-

forms w1 , ... , Wn corresponding to the basis { X1, ... , Xn}, i.e. the forms such that 

wi(Xj) = Dij, i,j = 1, ... ,n. 

4) The differential 1-form w1 is closed and the function 

a 

is a first integral of system (1). The form w2 is closed on the level surface Me1 of H1 
corresponding to a number c1 E Jlll.. and thereby determines the following first integral 

x 

H2(x) = J w2IMq, a, x E Meu 

where the integration is carried out along a path lying in the manifold Me1 , and so 
on. 

2.3. Let us give some examples of how to use the procedure. 

Example 1. Consider first-order differential equations of the form: 

y' = F(t, y). (5) 

Here n = 1. Therefore, it is sufficient to require that the equation have a shuffling 
symmetry of the form: 

Then the differential 1-form 

is closed and the function 

is a first integral of equation (5). 

~ a 
X= A(t,po)-8 . 

Po 

1 
w = A (dp0 - Fdt) 

( t,po) 

H(t,po) = j w 

(tO ,pg) 

(6) 

(7) 

Note that the condition that w be closed means that the function 1/ A is an inte­
grating factor for the Cartan form 

B = dp0 - F(t,po)dt. 

In the case of homogeneous equations, i.e. equations that have a scaling symmetry, 
the generating function has the form j3p0 - cxtp1 . Therefore, the integrating factor 
equals (j3p0 - ext F) - 1 . 
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Example 2. Consider linear systems of differential equations of the form: 

A vector field 

{ 
vl = F 11 (t)v5 + · · · + F 1"(t)pg + ft(t), 

PI= pnl(t)pB + ... + pnn(t)pg + fn(t). 

8 8 
X= rp1(t)- + · · · + rpn(t)-

8pB 8p0 

is a shuffling symmetry of system (8) if the vector-valued function 

rp(t) = ( rp1 (t), ... , rpn(t)) 

is a solution of the system 

{ 
l.fJI (t) = F11rpl + ... + plnrpn, 

ciJn(t) = pnlrpl + ... + pnnrpn. 

(8) 

(9) 

(10) 

Indeed, in this case system (10) coincides with the Lie equations, which can be easily 
seen without calculations though: transformations corresponding to field (9) have the 
form 

rp: (t,p6, ... ,p~) r---+ (t,p6 + srp1(t), ... ,p~ + srpn(t)), 

and they are symmetries of equations (8) if and only if rp is a solution of system (10). 
Suppose that vector-valued functions rp 1 (t), ... , rpn(t) form a fundamental system 

of solutions of system (10) and rpi(t) = (rpli(t), ... , rpni(t)). Let M = llrpij(t)ll be the 
matrix of this fundamental system. It is obvious that the vector fields X1, ... , Xn 
corresponding to the solutions rp1 , ... , rpn, respectively, commute. 

Therefore, the Lie algebra g generated by them is commutative and the differential 
1-forms w1 , ... , Wn are closed. The first integrals determined by these forms correspond 
to solution of system (8) by the method of variation of constants. 

2.4. Let us now found out how theorem 1.5 can be modified in the case of ordinary 
differential equations. We shall start with equations£ of the second order: 

(11) 

In this case the Cartan forms have the form: 

(12) 

Every shuffling symmetry has the form: 

8 8 
Xf = !--;:;- + D(f)-;:;-, 

upo up1 
(13) 
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where 
a a a 

V=-+pi-+F-
8t 8po 8pi 

and f = f(t,po,PI) is an arbitrary function. Then 

(14) 

Let g C shuf(£) be a two-dimensional Lie algebra of shuffling symmetries of E and 
{X h, X h} its basis. In order to apply theorem 1.5, it is necessary that the following 
matrix be non-singular: 

s [ h fz ] - V(JI) V(fz) . (15) 

(This matrix is called the generalized Wronski matrix.) If det S f- 0, then the forms 
WI and w2 can be found from 

so that 

or 

( WI) _ 1 [ V(fz) 
W2 - det S -V(fi) 

V(fz)fh- JzB2 
WI = V(fz)fi - fzV(fi)' 

-V(JI)BI + JIB2 
w2 = -V--,--(f-2 )-f--'-I ---f-2 V_(_h_) ' 

_ V(fz)d fzd + Ffz- PIV(fz)dt 
WI - -d- Po - d PI d ' 

__ V(fi) d + fi d + -Ffi- PIV(fi) dt 
w2 - d Po d PI d ' 

where d = det S = fiV(fz)- fzV(fi). 
There are two types of 2-dimensional Lie algebras: 

a) commutative Lie algebras: [X h, X h ] = 0, and 

(16) 

(17) 

b) solvable but not commutative ones and it can be assumed that (18) 

[Xfi,Xh] =Xh. 

Therefore, in the case of second-order differential equations theorem 1.5 takes the 
following form: 

Theorem. [Lie, Bianchi]. Suppose that second-order equation (11) has a two­
dimensional solvable Lie algebra g of shuffling symmetries such that Wronski matrix 
(15) is non-singular. Let {X h, X h} be a basis of g such that one of conditions (18) 
is satisfied. Then 
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a) if g is commutative, then the differentiall-forms WI and w2 (see (17)) are closed 
and give two independent B.rst integrals: 

b) if g is solvable but not commutative, then the differentiall-form WI is closed and 
gives the B.rst integral 

HI(x) = j wi; 

the 1-form w2 is closed on a level surface of HI and gives an independent B.rst integral 
of equation (11). 

2.5. Example 1. Consider linear differential equations of the second order: 

P2 = A(t)PI + B(t)po + C(t). (19) 

Then, as in example 2.3.(2), a function f = f(t) is a generating function of a symmetry 
if and only iff satisfies the homogeneous differential equation 

!" = A(t)f' + B(t)f. (20) 

Let {!I, h} be a fundamental system of solutions of equation (20). It is obvious 
that the vector fields X h and X h commute and therefore form a two-dimensional 
commutative Lie algebra of symmetries of (19). Hence, the differential 1-forms 

_ f~ d _ h d + (A- f~)PI - Bpoh + C h dt 
WI - d Po d PI d ' 

_ _ f{d + hd + (!{- A)pl- Bpofi- Cfidt 
w2 - d Po d PI d ' 

where 

is the Wronski determinant, are closed. Thus, the complete system of solutions of a 
non-homogeneous equation is determined by a fundamental system of solutions of the 
corresponding homogeneous equation. This well-known fact can also be proved by the 
method of variation of constants. 

2.6. Example 2. Consider the Hill equation: 

y"- F(t)y = 0. (22) 

This is a homogeneous linear equation. Therefore, it always has the scaling symmetry 
( t, p0 ) ~-------+ ( t, A.p0 ). The generating function of the corresponding infinitesimal scaling 
symmetry has the form: 

(23) 
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Assume that equation (22) has a linear symmetry with a generating function of the 
form: 

h = A(t)p1 + B(t)po. (24) 

Then 
[/I,h]=O 

and the Lie algebra g generated by the vector fields X h and X h is commutative. 
Hence, the differential 1-forms 

_(A' +B)p1 + (B' +FA)pod _ Ap1 +Bpod 
w1- d Po d P1+ 

FBp6- B'P1Po- (A'+ B)pid 
+ d t, 

__ Pl d + Pod + - Bp6 - Ap1Po +Pi dt 
w2 - d Po d P1 d ' 

where d = (B' + F A)p6 + A'p0p1 - Api is the Wronski determinant corresponding to 
the given symmetries, are closed and therefore give a complete system of first integrals 
for equation (22). 

Using the results of item 5.9, chapter 2, we obtain the following result: 

Theorem. 1) The Hill equation is integrable by quadratures for the following poten­
tials: 

(,;) F(t) c m " = (alt2+a2t+a3)2' al,a2,a3,cE.m.; 

c 
(ii) F(t) = -2p(t) + 3' c E lR; 

w 2 c 
(iii) F(t) =- + ( . ( ) ( ))2, 4 asm wt + bcos wt 

a, b, c, >.., w E lR; 

(iv) F(t) - 2 + 2 1 2 1 3 (cevt_ce-vt) 2 

- 2v Sv cl evt +c2 e-vt ' 

The following functions can be chosen as a function h in these cases: 

and 

(i) h = (a1t2 + a2t + a3)P1- ( a1t + ~2 ) Po; 

(ii) h = ( -2p(t)- ~c)p1 + p'po; 

w 
(iii) h = (asin(wt) + bcos(wt)p1 - 2 (acos(wt)- bsin(wt))Po 
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2) If a potential F(t) is integrable by means of symmetries (24), then the potential 

FH(t) = -F(t) +- ~ ' 1 3 ( ')
2 

2 8 z 

where z(t) is a nontrivial solution of the Hill equation with potential F(t), is also 
integrable and the following function can be chosen for fz: 

1 z' 
fz = VZPI- --po. 

4y'z 

2. 7. Example 3. Consider second-order equations of the form: 

y" = y' + c.p(y), (25) 

where functions c.p(y) are those listed in item 4.5, chapter 2. Shuffiing symmetries with 
generating functions !I and fz described in that theorem form solvable Lie algebras: 

(i) 

[!I, fz] = kfz in case (i) and 
[!I, fz] =- fz in case (ii). 

Choosing a new basis: 
- I - . . 
h = kh' fz = fz m case (z); 
fi =-JI, fz = fz in case (ii), 

we arrive at the situation described in theorem 2.4. 
Thus, the differential 1-forms 

(ii) 
(ii) = - fz + ( c.p +PI) e-t d _ _h_d + -c.pfz -PI ( c.p +PI) e-t dt 

WI d( ii) Po d( ii) PI d( ii) 

are closed in cases ( i) and ( ii), respectively, and give the first integrals Hi i) and Hi ii) 

of equation (25). The differential 1-forms 
(i) 
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(ii) 
(ii) (Pl +cp) P1 

w2 = - d( ii) dpo + d( ii) dp1 

are closed on level surfaces of the first integrals Hii) and Hiii) respectively. Here d(i) 
and d( ii) are the Wronski determinants corresponding to cases ( i) and ( ii) respectively. 

2.8. For k-th order ordinary differential equations 

(k) - F(t ' (k-1)) y - ,y,y, ... ,y ' (26) 

Lie-Bianchi theorem takes the following form: 

Theorem. Suppose that differential equation (26) has a k-dimensional solvable Lie 
algebra g of shuffling symmetries and let { cp1 , ... , 4?k} be a basis of g. Now suppose 
that the determinant of the corresponding Wronski matrix 

W= det 

1)k-1 4?1 1)k-1 
Vk 

(27) 

does not vanish. Then equation (26) has k independent first integrals that can be 
found by means of the method described in 2.2. 

Proof. It is sufficient to note that if 

Bo = dpo- P1dt, ... , Bk-2 = dpk-2- Pk-1dt, Bk-1 = dPk-1 - Fdt, 

then 

where 
8 8 8 8 

1) =- + P1- + · · · + Pk-1 + F--::----
at 8po 8Pk-2 8Pk-1 

is the operator of total differentiation. Therefore, the matrix S involved in 2.1 coincides 
with Wronski matrix ( 27). 

2.9. Remark. Usually-suggested methods of solving differential equations with the 
use of symmetries consist in lowering of the order of a differential equation to be 
integrated and assume that first integrals are already known. 

More exactly, let X be a point symmetry, i.e. a vector field on lR x M. Suppose 
that there exist local coordinates such that 

a 
X= 8p6' 
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Then equations, say, first-order equations possessing this symmetry can be written as 

{ F1(t,p5, ... ,piJ,PL ... ,p,u = o 
Fi(t,p5, ... ,p0,pi, ... ,p;) = 0, i = 2, ... , n. 

Therefore, it is sufficient to integrate the last n -1 equations with respect to P5, ... , p; 
and then turn back to the first equation and find y1 . 

Similarly, for a single ordinary differential equation possessing a contact symmetry 
X f, there exists a canonical coordinate system such that f = 1 and 

Therefore, a k-th order differential equation possessing this symmetry can be written 
as 

The last equation can be reduced to a ( k - 1 )-order differential equation. 

§3. INTEGRALS OF DISTRIBUTIONS (THE GENERAL CASE) 

In this section we are going to generalize results of §1 to the case of arbitrary 
transitive actions of Lie algebras of shuffling symmetries. 

3.1. Let E = F(w1 , ... ,wm) be a completely integrable distribution on a manifold 
M and g C shu£ E a Lie algebra of shuffling symmetries, dimg = k. Let X E g be 
a shuffling symmetry. The value Xa of X at a point a E M is the element of the 
factor space TaM IE( a) determined by the value of any representative of X in the Lie 
algebra sym(E) of infinitesimal symmetries. 

Definition. We say that the Lie algebra g acts transitively on the set of maximal 
integral manifolds of the distribution E if for any basis {X1 , ... , Xk} of g the values 
xl,a, ... 'Xk,a of the vector fields XI, ... ' xk at each point a EM generate the factor 
space T a M IE (a). 

Note that if g acts transitively, then dim g ;?: co dimE. 
At each point a E M, by 9a denote the set 

9a = {X E g I X a = 0} · 

Thus, an infinitesimal symmetry X generates a shuffling symmetry lying in 9a if and 
only if Xa E E(a). This observation shows that the following statement is true: 

3.2. Proposition. 9a is a subalgebra of g. 

Proof. Let X, Y E 9a and let X, Y E sym(E) be representatives of X andY respec­
tively. 
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We have 

for some 1-forms {ji· Then since 

(1) 

we obtain 
Wj([X, Y]a) = 0 

if WI (X a) = · · · = Wm(X a) =WI (Ya) = ... Wm(Y a) = 0. Therefore, 

[X, Y]a E E(a), 

so that [X, Y] E 9a· 

The subalgebra 9a is called the stability subalgebra of the point a. 

3.3. Suppose that the action of g is transitive. Then at each point a E 1\1 the 
following conditions hold: 

Hence, 

9/9a =TaM/ E(a), 

(TaM/E(a))* = AnnE(a), 

(g/ga)* = Annga. 

AnnE(a) = Annga C g*. 

Denote by V an arbitrary subspace of g transversal to 9a, so that 

9 = 9a EB V. 

(2) 

(3) 

(4) 

Let {X I, ... , X m} be a basis of V. Then for every point b E M lying in some neighbor­
hood 0 of the point a, the values XI,b, ... , Xm,b generate the factor space Tb M/ E(b). 
As in 1.2, let us choose the differential1-forms WI, ... , Wm determining the distribution 
E so that 

wi(Xj) = Dij, i,j = 1, ... ,m 

in the neighborhood 0. Then 

{ 
dwi(Xz,Xr) =wi([Xr,Xz]) 

dw(ZI, Z2) = 0 

dwi(Xz, ZI) = 0 

for all i, l, r = 1, ... , m and all vector fields ZI, Z2 E D(E). 
Indeed, in order to prove these relations, it is sufficient to make use of (1). 

(5) 

(6) 
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Further, relation ( 2) implies that the differential forms WI, ... , Wm can be considered 
as elements WI, ... , Wm of the space g* if we make use of ( 4) and assume that Wi (X) = 0 
for all X E fla· From (6) it follows that if Wi E Ann[g, g J C g*, then the corresponding 
differential form wi is closed and therefore determines a first integral of the distribution. 

Thus we obtain mi independent first integrals of E, where 

mi = codimg(fla + [g, £1 ]). 

In order to explicitly describe these integrals, let us choose subspaces VI, V2 c g so 
that 

(7) 

and 
VI+ (£Jan [g,g]) = [g,g]. (8) 

Let {X I, ... , X k} be a basis of g such that the vectors X I, ... , X m-m1 -I form a basis 
of VI and the vectors Xm-m 1 , •.• , Xm form a basis of V2. Then 

(9) 

for j = m - mi, ... , m. 
Put 

£1(1) = £Ia + [g,g]. (10) 

Note that the algebra g(I) does not depend on a choice of the point a EM, since 

(11) 

As before, consider common level surfaces of the first integrals 

X 

Hj(x)= jwj, J=m-mi, ... ,m, 

a 

and the new pair (g(l), fla)· 
Let us generalize the definition of a solvable Lie algebra given in §: 

Definition. Let g be a Lie algebra and fla its subalgebra. The pair (g, £Ja) is called 
solvable if the sequence of subalgebras 

fl(o) = £1, £1(1) = flo + [ £1, £1], g(l+I) = g + [ g(l) g(l) J 
... ' 0 0 ' 0 ' 

converges to flo, i.e. g(i) =flo starting from some number i. 

Summarizing all that has been said in this item, we obtain the following result: 
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Theorem. Suppose that a completely integrable distribution E has a transitive Lie 
algebra g c shuf E of shuffling symmetries and g0 C g is a stability subalgebra of 
some point. If the pair (g, g0 ) is solvable, then first integrals of the distribution can 
be found by consecutive quadratures. 

3.4. Let us apply the result just obtained to integration of actions of Lie algebras 
on smooth manifolds. 

Let g be a transitive Lie algebra of vector fields on a contact manifold M and 9a C g 
the stability subalgebra of some fixed point a EM. 

Every subalgebra L C g such that L ::::> ga determines a distribution (which will 
also be denoted by L). 

Indeed, denote by G the connected Lie group corresponding to the Lie algebra g. 
Since elements of g are vector fields on M, we see that elements of G are diffeomor­
phisms of M. The group G acts transitively on M. Define the distribution Las follows: 
for b E M, L(b) is the image g*(L) C Tb M of the subalgebra L by the differential 
g* of any transformation g E G such that g(a) =b. Since Lis closed with respect to 
commutation with elements of ga, we see that the space L(b) does not depend on a 
choice of g E G. 

The corresponding Lie algebra of shuffling symmetries of the distribution L has the 
form: 

shuf11 L = N(L)/ L, 

where N(L) is the normalizer of Ling: 

N(L) ={X E gi[X, L] c L}. 

Conditions for this algebra to act transitively on maximal integral manifolds of the 
distribution L have the form: 

dimN(L)/L): dimg/g0 - dimL/g0 = dimg/L. 

Thus, the Lie algebra shuf11 Lis transitive if and only if N(L) = g, i.e. if Lis an ideal 
in g. 

In order to apply theorem 3.3 in this case, we must require that the factor algebra 
gj L be solvable. Finally, we obtain the following result: 

Theorem. Let g be a transitive Lie algebra of vector fields on a manifold M, g0 c g 
the stability subalgebra of some fixed point of M, and L an ideal in g such that g0 C L. 
Suppose that the factor algebra gj L is solvable. Then the complete system of first 
integrals of the completely integrable distribution generated by L can be found by 
consecutive quadratures. 

3.5. Let us apply the last theorem to a distribution defined by a vector field X on 
a Lie group M =G. Let g be the Lie algebra of G. The subalgebra L = Jl{.X C g is 
an ideal in g if and only if X is an eigenvector for all operators ad Y, Y E g. 

In particular, this observation implies that every effective transitive action of a 
solvable Lie algebra is integrable by means of quadratures. 
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§4. DIFFERENTIAL INVARIANTS 

In order to integrate equations by means of symmetries, it is necessary to know a 
sufficiently large algebra of shuffling symmetries. The problem of finding this algebra, 
i.e. of solving a system of Lie equations, is also not a simple problem. However, this 
problem can be approached from the opposite side: given a Lie algebra g, to describe 
all differential equations such that g can be considered as their algebra of shuffling 
symmetries. The present section is devoted to this approach. 

4.1. Suppose that a Lie algebra g is embedded as a subalgebra into the Lie algebra 
V(M x IP?.) of vector fields on M x IP?.. As in chapter 2, by X(k) we denote the k-th 
prolongation of a vector field X to the space Jk(JP?., M) of k-jets of parametrized curves. 

The correspondence X~----+ X(k) gives an embedding of g into V(Jk(JP?., M)). By gk 
denote the image of the embedding. 

Definition. A function f E c= ( Jk (IP?., M)) is called a k-th order differential invariant 
of the Lie algebra g if 

for all prolongations X(k) E gk. 

This definition can be formulated in a different way. Let G be a connected Lie 
group of transformations of IP?. x M such that g is its Lie algebra. For a g E G, denote 
by g(k) the prolongation of the transformation g : IP?. x M -----+ IP?. x M to transformations 
of the space Jk(JP?., M). Actually, the transformation g(k) is defined on an open and 
everywhere dense part of the manifold Jk(JP?., M) However, with the motivation of the 
definition in mind, for simplicity sake we shall assume that g(k) is completely defined. 
Then for each point a E Jk(JP?., M) consider its orbit with respect to the group G: 

Thus, we obtain the division of the manifold Jk(JP?., M) into orbits of the group G. 
Differential invariants are functions on Jk(JP?., M) constant on each orbit. 

4.2. Denote by h(g) c c=(Jk(JP?., M)) the set of all differential invariants of order 
k. The following result is immediate from the definition: 

Proposition. The set h(g) is a subalgebra of the algebra of smooth functions on 
Jk(JP?., M). In addition, if Jr, ... , fr E h(g) and F(x1 , ... , xr) is an arbitrary smooth 
function ofr variables, then F(Jr, ... Jr) E Ik(£1). 

Note that if a system E c Jk (IP?., M) of differential equations is given by invariants 
Jr, · · · ,JN E h, i.e. 

E ={!I = o} n · .. n {!N = o}, 

then g C symE. 
Thus, the definition of differential invariants allows to construct a number of classes 

of differential equations with a given symmetry algebra. 

4.3 Let us give some examples of direct calculating algebras of invariants. 
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Example 1. Let M = Iffi. and let g = s((2, Iffi.) be the Lie algebra of vector fields on 
] 0 (Iffi., Iffi.) = Iffi. 2 realized by the fields 

(1) 

The corresponding Lie group SL(2, Iffi.) is the group of linear fractional transformations 

(t ) = (t anpo + a12) g ,Po , , 
a21Po + a22 

where [an a 12 ] ESL(2,Iffi.). 
a21 a22 

(2) 

Differential invariants of order 0 are functions f(t,p0 ) such that f(g(t,p0 )) = 
f(t,p0 ) for all transformations g of form (2). It follows that J0 (sf(2, Iffi.)) is the set 
of functions independent of Po . 

Definition. We say that k-th order differential invariants fi, ... , fr form a (local} 
basis of h (g) if every differential invariant f E I k (g) can be (locally) represented 
as f = F (h, ... , f r) for some smooth function F and the functions h, ... , fr are 
functionally independent (in some neighborhood). 

Let us use relations of item 3.8, chapter 2, in order to find first prolongations of 
fields (1). We have 

{ 

x(1)- ..JL 
1 - apo' 

x(l) - ..JL ..JL 
2 - Po apa + P1 ap1 ' 

(1) _ 2 a a 
X3 - Po-a + 2P1Po-a · Po Pl 

(3) 

Iff= f(t,po,p1) is a differential invariant of sl(2,Iffi.), then 

and therefore 

!!1_ = !!1_ = 0 
opo 8p1 

Thus the function f = t forms a basis of h (sl(2, Iffi.) ). 
Further 

{ 
xi2) = a~o' 
X~2) = Po a~o + P1 a~ 1 + P2 a~2 , 

(2) 2 a a ( 2) a 
X3 =Po apo + 2P1Po ap1 + 2 P2Po + P1 ap2 • 

(4) 

It follows that h(sl(2, Iffi.)) is also generated by the function f = t. 
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(5) 

I !~ :·P2l/, +P3%/,, = 0, 

PIg~ + 3PIP2 #; = 0. 

(6) 

From the first two equations it follows that 

f = g(t, x, y), 

where x = P 2 and y = P3 , and the last equation implies that the function g(t, x, y) 
P1 Pl 

satisfies the following equation: 

Therefore 

Thus, the functions 

fJg fJg 
fJx + 3x fJy = 0. 

3 2) g = g(t, y- -x . 
2 

fi = t, f2 = y _ ~x2 = P3 _ ~ (P2) 2 
2 Pl 2 PI 

form a basis of invariants of the third order. 

(7) 

The restriction of the differential invariant h to the 3-jet of a function z = z(t) 

z" 3 (z") 2 
(j3(z))*(h) = 7- 2 7 

is called the Schwarz derivative or Schwarzian of z(t). 
The Lie algebra st(2, IIR) considered as an algebra of point symmetries can be realized 

in a different way: 

(1 ') 

This representation corresponds to the action of 81(2, IIR) by linear fractional trans­
formations of the t-axis ( cp. (2) ). Proceeding as before, we see that the functions 

(7') 

form a basis of invariants of the third order. 
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Example 2. Consider the space J 0 (IP$., Ill$.) as the two-dimensional Euclidean plane 
with the standard metric. Let g be the Lie algebra of the movement group of the 
plane. For a basis of g choose the following vector fields: 

corresponding to translations along axes t and p0 and rotations, respectively. Their 
prolongations to the space J 1 (Ill$., Ill$.) have the form 

(8) 

It follows that g has no nontrivial differential invariants of the first order. All subse­
quent prolongations do not change the local form of the fields T and U, whereas for 
the vector field rr we have 

and 

c3) a a 2 a a 2 ) a 
rr = -poat + t-a + (1 + P1)-a + 3P1P2-a + (4P1P3 + 3p2 -a . 

Po P1 P2 P3 

Therefore, second-order differential invariants are functions f = f (Pb P2) satisfying 
the equation 

(1+Pi)aaf +3P1P2aaf =O. 
P1 P2 

The corresponding vector field has the form 

2 a a 
(1 + P1)-a + 3P1P2-a · 

P1 P2 

Translations along this field can be calculated in an explicit form, so that we obtain 
the following second-order differential invariant 

P2 
]I = (1 + Pi)3/2. (9) 

Restriction of ]I to the 2-jet of a function z(t) gives the curvature of the curve 
{Po = z(t)} C J 0 (IP$., Ill$.). 
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Similarly, solving the equation 

2) of of 2 of 
(1 +PI ~ + 3PIP2~ + (4PIP3 + 3p2)~ = 0 

upi up2 up3 

with respect to f = f (PI, P2, P3), we obtain the following third-order differential in­
variant: 

f _ P3 ( 1 + pi) 3 
2- 2 - PI· 

P2 
(10) 

Thus, the Lie algebra g of movements of the plane has two independent differential 
invariants of the third order: fi and f2. 

4.4. If dimM = 1, we can consider Lie algebras of contact vector fields on Jl(l~., l..PI.), 
their prolongations and differential invariants. 

Example. Consider the Lie algebra g of contact vector fields on JI (l..PI., l..PI.) generated 
by two vector fields 

0 0 
X'Pl =Po~+ Pl ~' upo upi 

a 2 a 
X'P2 = -2pi at -PI apo 

with generating functions 

rpi =Po and rp2 =PI· 

Let f = f ( t, p0 , PI) be a differential invariant of the first order. Then the relation 
x'Pl (f) = 0 implies that 

f = h(t, x), 

where x = 1!.Q. Substituting this expression in the equation X,n 2 (f) = 0, we obtain 
Pl .,.-

Thus, the function 

!I= 2Po - t 
PI 

forms a basis in the algebra of first order differential invariants. 
Consider the prolongations of the vector fields X'P 1 and X'P2 to the space of 2-jets: 

(2) a o a 
X =po-+PI-+P2-, 

'Pl apo 0PI ap2 

(2) a 2 a 2 a 
X =-2pi--P -+2p -. 

'P2 at I apo 2 ap2 
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Let f = f ( t, Po, PI, P2) be a differential invariant oft he second order. Then the relation 
x&~) (f) = 0 implies that 

f = h(t, x, y), 

where x = EQ, y = 12., and h is an arbitrary function. In terms of these coordinates, 
P1 P2 

the relation x&~) (f) = 0 takes the form: 

Therefore, the functions 

Po Po Pl !I = 2- - t, h = 2- - -
Pl Pl P2 

(11) 

form a basis in the algebra of second-order differential invariants. 

4.5. The following result, which apparently was first pointed out by Tresse, allows 
to construct new differential invariants starting from already-known ones. 

Definition. Let f, g E coo ( Jk (Iffi., m.n)) be arbitrary functions. Their Tresse derivative 
is the quotient 

where 

df def df/dg 
dg - dt dt' 

d f} "". f} 
dt = at + ~ Pj+l api. · 

i,j J 

(12) 

Theorem. Let f,g E coo(Jk(Iffi.,Iffi.n)) be k-th order differential invariants of a Lie 
algebra g. Then their Tresse derivative is also a differential invariant of g. 

Let us first prove the following lemma: 

Lemma. 
(1) Let X be a vector field defined on the manifold Iffi. x m.n and X(k) its k-th 

prolongation. If 

then 
- x(k+I) o .!!:._ .!!:._ o x(k) = dA .!!:._. 

dt + dt dt dt 
(13) 

(2) Let X = X f be a contact vector field defined on the space J 1 (Iffi., Iffi.). Then 

x(k+l) o .!!:._- .!!:._ o x(k) = .!!:._ ( af) i. 
dt dt dt ap1 dt 

(14) 



124 B. KOMRAKOV V. LYCHAGIN 

Proof of the lemma. Since proofs of (13) and (14) are similar to each other, we shall 
prove the first of the relations. We shall make use of relations 3.8.(18) and 3.10.(23) 
of chapter 2. 

Note that since operators in both sides of (13) are linear, it is sufficient to show 
that relation (13) holds for coordinate functions. We have 

( x(k+l) o .!!:_ - .!!:_ o x(k)) (t) =- dA 
dt dt dt' 

Proof of the theorem. Let X E g. Since X(k)(f) = X(k)(g) = 0, we have 

x(k+l) (dfjdg) = (x(k+l) (df) dg df x(k+l) (dg)) I (dg) 2 

dt dt dt dt dt dt dt 

= (dA df dg- df dA dg) I ( dg) 2 = 0. 
dt dt dt dt dt dt \ dt 

Corollary. Suppose that functions g, JI, ... , fn E C 00 (Jk(Jlll.., Jlll..n)) form a basis of the 
space of k-th order differential invariants and the following conditions hold: 

and 

ag = o apt ' i = 1' ... 'n, 

afi 
det #0. 

Then the Tresse derivatives 

generate all differential invariants of g. 

Proof of the corollary. It is sufficient to note that 

dfi 

dg 

"'Pj 8fi + ( ) L..i k+l ap1 · · · _ 2: j e fi dg 
d - Pk+l -.j- + ... , 
g{1 apJ dt 
dt k 

(15) 

where dots denote functions dependent on p~ (j ~ k). Therefore, the functions !!.J: 
form a basis in the algebra of (k + 1)-th order differential invariants and also satisfy 
condition (15). Induction on k concludes the proof. 
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4.6. Let us apply the results of the previous item to finding differential invariants 
of the algebras considered in examples 4.3 and 4.4. 

A) The algebra s[(2, Ill?.). 
1) For invariants 4.3.(7) 

we have 

2) For invariants 4.3.(7') 

we have 

( )
2 

P3 3 P2 !I =t, h = --- -
PI 2 PI 

]I = Po' f~ = 2 P3 - 3 (P2 ) 2 
p PI 

A A 3 

}3 = d~2 = _!_ df2 = 2p! - 12P2~3 + 12 (p~) 
dfi PI dt PI PI PI 

(16) 

(16') 

Thus, s[(2, Ill?.) can be considered as an algebra of shuffling symmetries of equations 

where F and G are arbitrary functions. 
B) The algebra of movements of the plane (see 4.3.(8)). 
For the invariants 

we have 

(17) 

(18) 

h = df2 = P4P22(1 +pi)- 2p~p2 3 (1 +pi)+ 2PIP3P2I- 3p2 (19) 
d]I (P3 + PIP3- 3PIP§)(1 + pi)512 

Therefore, the algebra of movements of the plane can be considered as an algebra of 
shuffling symmetries of the equation 

F(]I, h, h)= 0, 

where F is an arbitrary function. 
C)The commutative algebra g generated by the contact vector fields Xrp1 and Xrp2 , 

where 'PI =Po and <f/2 =PI. 
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For the invariants 
Po Po P1 h = 2- - t, fz = 2- - -
PI PI P2 

we have 
dlf 2 2 2 3+ 3 f _ 2 _ P1P2 - PoP2 P1P3 

3 - dfi - p~(PI- 2PoP2) 
(20) 

Thus, g can be considered as an algebra of contact symmetries for equations of the 
form: 

4.7. Example. [Halfan]. Consider the group of projective transformations of 
the plane (t, u), u = p0 . This group coincides with the factor group of SL(3, IR) with 
respect to the center Z2 = { 1, -1}. 

Each matrix A = llaij II E 81(3, IR) determines a projective transformation of the 
plane: 

A: (t, u) r-t (T, U), 

where 
T = aut+ a12u + a13, U = a21t + a22u + a23. 

a31 t + a32U + a33 a31 t + a32u + a33 
(21) 

In this case the Lie algebra s((3, IR) can be considered as the algebra of vector fields 
on the plane with the following basis: 

a a a a a a 
A5 = tau , A6 = u at, A 7 = t( tat + u au), As = u( tat + u au). 

Direct calculation shows that prolongations of these fields are independent up to 6-jets. 
It follows that first nontrivial differential invariants of the projective group are of the 
seventh order. Prior to the seventh order, the group has relative differential invariants, 
i.e. functions j(t,p0 , ... ,pk) such that (A(k))*(f) = AA] for all A E SL(3,IR), AA = 
AA (t, Po, ... , Pk)· 

The simplest relative differential invariants can be found from geometrical consid­
erations. 

Firstly, the projective group preserves the class of straight lines on the plane (t, u). 
Therefore, this group is a symmetry group of the equation p2 = 0, so that 

fi = P2 (22) 

is a relative invariant. 
Secondly, the projective group preserves the class of quadrics on the plane. Equa­

tions of all quadrics on the plane can be reduced to the form u = y(t) , where 
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Differentiating this expression two times, we obtain 

or 

It follows that 

:t33 (y")-2/3 = 0. 

Differentiating this expression, we obtain the following relative invariant of the fifth 
order: 

(23) 

Halfan gave two more relative invariants of the seventh order: 

P3 P4 Ps P6 P7 
P2 P3 P4 Ps P6 

h= -p~ 0 p§ 2P3P4 2P3Ps + P~ (24) 
0 p~ 2P2P3 2P2P4 + p§ 2P2P5 + 2P3P4 
0 0 p~ 3P2P3 3p§ + 3P2P4 

and 

!4 = 
256f1- 27f~ 

(25) 
Pi 

The first differential invariant of the seventh order can be expressed by means of 
relative differential invariants: 

(26) 

The group SL(3, JFS.) can be considered as a symmetry group of any of the equations 
fi = 0, i = 1, ... ,4, and fs = const. 

Let us indicate geometrical meaning of solutions of these equations. We have al­
ready done it for the equations fi = 0 and h = 0. The equations h = 0 and j4 = 0 
describe the class of so-called W-curves. The equation h = 0 describes curves on the 
plane that, by means of projective transformations, can be turned into the logarithmic 
spiral that makes the constant angle 1r /6 with the radius vector. The equation f4 = 0 
describes curves that are projectively equivalent to curves of the form y2 = ct3 . The 
equation f 5 = const also describes W-curves, i.e. curves projectively equivalent to 
curves of the form yatb = const. 
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§5. LAGRANGE INTEGRALS AND SUPERSYMMETRIES 

In this section we shall consider various ways of obtaining integrals from linear 
symmetries with the use of the Lagrange formula. We shall restrict ourselves to the 
case of self-adjoint or anti-self-adjoint matrix differential operators 

M = Ao(t)an + · · · + An(t). 

Here Aj are functions oflR into the vector space Hom(V, V*) and A 0 (t) is non-singular. 

5.1. Let E = E(M) be the solution space of the homogeneous differential equation 
M(h) = 0. Now if M is self-adjoint, then from the Lagrange formula it follows that 

for any two solutions h1, h2 E E. In particular, PM ( h1, ·) is a first integral for an 
arbitrary solution h1. 

Thus, the mapping 
PM : E(A1) X E(M) --7 lR 

(h1, h2) ~ PM(h1, h2) 

determines a bilinear form on the solution space. This form is symmetric if M is 
anti-self-adjoint and skew-symmetric if M is self-adjoint. 

Let us show that this bilinear form is non-singular. Indeed, suppose that a solution 
h1 E E(M), h1 #- 0, belongs to the kernel of the form. Then 

for all solutions hE E(M). Let t0 E lR be a point such that A0 (t0 ) · h1 (t0 ) #- 0 and 
h(t) a solution such that 

h (to) = h ( 1) (to) = · · · = h ( n-2) (to) = 0 

and 

Then the Lagrange formula implies that 

which contradicts the choice of the function h1 . 

Definition. Let M be a (anti-)self-adjoint operator. The bilinear form PM(h1, h2) 
on the space E(M) is called the Lagrange form. 

Summarizing the preceding, we obtain the following result: 
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Theorem. The Lagrange form on the space E(M) determines 
( i) a symplectic structure if M is self-adjoint, 
( ii) a pseudo-Euclidean structure if M is anti-self-adjoint. 

129 

5.2. Let us consider some examples. Let V =~and if {h1 , ... , hk} is a basis of the 
space E(M), then by {hi, ... , hk} denote the dual basis of the dual space (E(M))*. 

1) Suppose M = 8. Then the space E(M) is one-dimensional and the function 
h 1 = 1 forms a basis of E(M). In addition, PM(h1, h1 ) = 1 and therefore 

PM= (h;') 2 . 

2) Suppose M = 82. Then the space E(M) is two-dimensional and the functions 
h1 = 1 and h2 = t form a basis of E(M). In addition, PM(h1, h2) = -1, so that 

PM= h; !\ h;'. 

3) Suppose M = EP. The space E(M) is three-dimensional and the functions 
h1 = 1, h2 = t, h3 = ~t2 can be chosen as a basis of E(M). In this case 

PM = -(h;) 2 + h;' · h;. 

5.3. Actually, it is not necessary to know the explicit description of the space E(M) 
in order to calculate the form PM. For example, it can be done in the following way. 
A solution h(t) of the differential equation M(h) = 0 is completely determined by 
initial conditions: 

h(to) = xo, ... , h(n-l)(to) = Xn-1· (1) 

Thus, relations (1) give an isomorphism between E(M) and ~N, where 
N = n · dim V. In this case the Lagrange formula allows to calculate PM as a bilinear 
form on ~N. 

Examples. 
1) Consider second-order differential equations M(h) = 0, where 

Then 
PM(X, Y) = mo(to)(xlYo- Y1xo) + (ml(to)- m~(to))xoyo, (2) 

where X= (x0 , x 1 ) andY= (yo, yl). 
2) For third-order differential equations M(h) = 0, where 

we obtain 

PM(X, Y) = mo(to)(x2Yo + Y2Xo- x1y1) + m1(to)(x1Yo- YlXo)+ 

+ 2m~(to)XoY1 + (m2(to) - m~ (to)+ m~ (to))xoyo, (3) 
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where X= (xo, X1, x2) andY= (yo, Yl, Y2)· 

5.4. Let us digress into linear algebra for a while. 
Let E(= E(M)) be a finite-dimensional pseudo-Euclidean space with a structure 

form P( ~M ). It is known that to each bilinear form Q onE we can assign a linear 
operator Q : E --+ E such that 

Q(X, Y) = P(QX, Y) (4) 

for all X, Y E E. By * denote the operator of adjunction on End(E) determined by 
the form P: 

P(AX, Y) = P(X, A *Y) (5) 

for all X, Y E E. 
Let A2 (E*) denote the space of all skew-symmetric bilinear forms onE and S2 (E*) 

the space of all symmetric bilinear forms on E. 
It can be easily checked that the following statement is true: 

Proposition. A bilin.!?_ar form Q is either symmetric or skew-symmetric depending on 
whether the operator Q is self-adjoint or anti-self-adjoint with respect to the involution 

Q E A2 (E*) ¢:? Q* + Q = 0, 

Q E S2 (E*) ¢:? Q* - Q = 0. 
(6) 

5.5. Now note that if A and B are self-adjoint operators, then so is their anticom-
mutator 

1 
{A, B} = 2'(AB + BA). (7) 

We shall make use of this observation in order to define an operation on the space 
S2 (E*). If Q1 , Q2 E S2 (E*), then by {Q1 , Q2 } E S2 (E*) denote the symmetric bilinear 
form corresponding to the operator {Q1 , Q2 }, so that 

(8) 

It is obvious that the following statement is true: 

Proposition. Anticommutation Q1 , Q2 ~----+ {Q1, Q2 } turns the space S2 (E*) of sym­
metric bilinear forms on the pseudo-Euclidean space E into a Jordan algebra with 
identity. The structure form P is the identity of the algebra. 

5.6. If operators A and B are anti-self-adjoint, then so is their commutator 

[A,B] = AB- EA. (9) 

Using the isomorphism mentioned in 5.4, we can extend this operation to the space 
A2 (E*) of skew-symmetric bilinear forms: if a, (3 E A2 (E*), then by [a, (3] denote the 
skew-symmetric bilinear form corresponding to the operator [ &, ~ ]. Then 

[a, (3] (X, Y) = a( X, ~Y) + (3(X, &Y). (10) 
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Proposition. Commutation a, (3 1--7 [a, (3] turns the space A2 (E*) into a Lie algebra 
isomorphic to so(P). 

Proof. By definition, the Lie algebra so(P) consists of all linear operators A: E-+ E 
such that 

P(AX, Y) + P(X, AY) = 0 

for all X, Y E E; in other words 

so(P) ={A: E-+ EIA* =-A}. 

Therefore, 

5. 7. If an operator A is anti-self-adjoint and B is a self-adjoint operator, then their 
commutator [A, B] is self-adjoint. Therefore, as before, we can define the commutator 
of a skew-symmetric form a E A2 (E*) and a symmetric form Q E S2 (E*) as the 
symmetric bilinear form corresponding to the operator [ &, Q ]. Thus, we obtain an 
action of the Lie algebra A2 (E*) on the Jordan algebra S2 (E*). 

Finally, note that if operators A and B are self-adjoint, then their commutator is 
anti-self-adjoint. Therefore, we can define the commutator [ Q1 , Q2 ] E A2 (E*) for 
elements of S2 (E*). Similarly, if A and Bare anti-self-adjoint, then their anticommu­
tator is self-adjoint. Therefore, we can define the anticommutator {a,(3} E S2 (E*) for 
elements of A 2 ( E*). 

5.8. Now let E(= E(M)) be a finite-dimensional symplectic space with a structure 
form D( =PM). The correspondence Q 1--7 Q defined by 

Q(X, Y) = D(QX, Y) 

gives an isomorphism of the space of bilinear forms on E onto the space of linear 
operators on E. Denote by# the operation of adjunction on End(E) determined by 
the form D: 

D(AX, Y) = D(X, A#Y) 

for all X, Y E E. 
The following results are similar to those of the previous items: 

Proposition. 
(1) Q E S2 (E*) 9 Q# + Q = 0, 

Q E A2 (E*) 9 Q#- Q = 0. 
(2) The space S2 (E*) forms a Lie algebra with respect to commutation of forms. 

This algebra is isomorphic to s.p(O). 
(3) The space A2 (E*) forms a Jordan algebra with identity with respect to anti­

commutation of forms. The structure form D is the identity of this algebra. 
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(4) The operations of commutation and anticommutation determine the following 
mappmgs: 

commutation- A2 (E*) x A2 (E*)----+ S2 (E*), 

82 (E*) X A2 (E*)----+ A 2 (E*); 

anticommutation- 82 (E*) x 82 (E*)----+ A 2 (E*). 

5.9. As we know, linear symmetries determine Lagrange forms and, thereby, first 
integrals. 

Let L be a self-adjoint operator and (~, ~) E II(L). If(~,~) E II0 (L), then the 
operator M = L o ~ is anti-self-adjoint. Consider the Lagrange form corresponding 
to M. We shall denote it by Q b.. ( = PLob..). By the Lagrange identity 

((L o ~)u, v) + (u, (L o ~)v) = 8Qb..( u, v ). 

Since Lo ~ = -~to L, we see that the form Q b.. ( u, v) remains constant on every element 
ofthe space E(L) and, thereby, determines a quadric on this space. If(~,~) E Ih(L), 
then the operator M = L o ~ is self-adjoint and similar reasoning shows that Q b.. ( u, v) 
is a skew-symmetric form on the space E(L). 

Now suppose Lis anti-self-adjoint. If(~,~) E II0 (L), then the corresponding form 
Qb.. is skew-symmetric, whereas the form Qb.. corresponding to (~, ~) E II1 (L) is a 
symmetric form on E(L ). We can obtain new bilinear forms and new first integrals 
on the solution space, using the results of previous items. 

Theorem. 1) Let L be a self-adjoint differential operator. Then the Lagrange form 
PL determines a symplectic structure on the solution space E(L). The correspondences 

Ilo(L) 3 (~, ~) r---+ Qb.. = PLob.. E 82 (E*), 

Il1(L) 3 (~,~) r---+ Qb.. = PLob.. E A2 (E*) 

give homomorphisms of the Lie algebra IT0 (L) and the Jordan algebra Ih(L) into the 
corresponding algebras of forms on E(L). 

2) Let L be an anti-self-adjoint differential operator. Then the Lagrange form PL 
determines a pseudo-Euclidean structure on the solution space E(L). The correspon­
dences 

Ilo(L) 3 (~, ~) r---+ Qb.. = PLob.. E A 2 (E*), 
- 2 

Il1 (L) 3 (~, ~) r---+ Qb.. = PLob.. E 8 (E*) 

give homomorphisms of the Lie algebra IT0 (L) and the Jordan algebra II1 (L) into the 
corresponding algebras of forms on E ( L). 

Remark. The isomorphism 

l.fJt : E(L) 3 h r---+ (h(t), h' (t), ... , h(k-l) (t)) E J:-l 
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allows to consider every fundamental system of solutions of the equation Lh = 0 as 
a flow of symplectic transformations of ~m if L is self-adjoint or pseudo-Euclidean 
isometries of ~m if L is anti-self-adjoint. 

5.10. In conclusion, consider application of Lagrange forms to nonlinear differential 
equations. For simplicity sake we restrict ourselves to the case of functions y : ~ ----+ ~. 

Consider a differential equation of the form: 

y(k) = F(t, y, ... , y(k-1)). (11) 

By S denote the solution space of equation (11). Let us describe the space Th S 
tangent to Sat a point hE S. Let h7 be a curve passing through the point h, h7 E S, 
ho = h, 7 E ( -E, E) C ~. 

t, 

Fig. 20 

The tangent vector 

u = EJhT I 
07 r=O 

(see Fig. 20) can be identified with the function 

which, by virtue of (11), satisfies the equation 

The operator 

k-l 

u(k) = L ~F (t, h, ... 'h(k-l))u(i). 

i=O P~ 

is called the linearization of equation (11) on the solution h. 
Thus, 

(12) 

(13) 

(14) 
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Similarly, the cotangent space Th, S can be identified with the solution space of the 
adjoint equation: 

Th, S = {vJL~(v) = 0}. (15) 

Indeed, every solution v of the adjoint equation L~ ( v) = 0 determines a linear function 
on the tangent space Th S: 

(15') 

The operator 

(16) 

where 
a a a a 

V = at+ P1- + · · · + Pk-1 + F , 
apo aPk-2 aPk-1 

is called the Lie operator or the operator of total linearization. 
By virtue of (14) a vector field on S can be identified with a function 

tp(t,po, ... ,Pk-1) 

satisfying the Lie equation: 
Ltp = 0. (17) 

Correspondingly, a differential 1-form on S can be identified with a function 

satisfying the adjoint equation: 
(18) 

where 

Identifying the solution space with a fibre of the bundle Jk- 1 (ill?., ill?.), we can repre­
sent covectors on S as differential 1-forms of the form 

k-1 

w = L ai(t,po, ... ,Pk-1)dPi· 
i=O 

In view of (15') the differential form W1f; corresponding to a solution 1/J of equation (18) 
can be written as 

(19) 
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In addition, the restriction of the function 

(20) 

to every solution y = h(t) coincides with the Lagrange form PL(<fJh, 1./Jh). 

5.11. The results of the previous item can be easily extended to the more general 
case of equations of the form 

where BF :f. 0. 
8pk 

F(t,po, ... ,pk) = 0, (21) 

Let£ be the submanifold given by (21). The description of vector fields and differ-
ential forms on the solution space S given in the previous item still holds for equations 
(21) under assumption that V is the restriction of the operator Jt to £ and that L 
has the form: 

(22) 

5.12. Definition. A differential operator 

where An, ... , A0 are functions on the manifold£, is called a supersymmetry of the 
equation£ if 6. is a linear symmetry of the Lie operator L. 

The following statement is obviously true: 

Theorem. Let 6. be a supersymmetry of the equation £ and <p a generating function 
of a shuffling symmetry of the equation. Then 6.( rp) is also a generating function of a 
symmetry of£. 

5.13. Using the description of linear symmetries given in §5 ofthe previous chapter, 
we obtain the following description of supersymmetries: 

Proposition. A differential operator 6. is a supersymmetry of the equation £ if and 
only if 

6.oL=Lo6. (23) 

for some operator 
6. = En vn + · · · + Eo. 

5.14. Definition. A differential equation£ ofform (21) is called self-adjoint (anti­
self-adjoint) if there exists a function G = G(t,p0 , ... ,pk) such that the equation 
{ G = 0} coincides with £ and the operator La is self-adjoint (anti-self-adjoint). 
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5.15. Example. Let us describe self-adjoint second-order differential equations of 
the form: 

(24) 

Here 

(25) 

and 
Lt = TJ2 8F _ 1J 8F + 8F = 

8p2 8p1 8po 

= 8F TJ2 + ( 2v ( 8F) _ 8F) 1J + (v2 ( 8F) _ 1J ( 8F) + 8F) 
8p2 8p2 8p1 8p2 8p1 8po · 

(26) 

Thus the equality L = Lt holds if and only if 

8F -TJ (8F) 
8pl - 8p2 . (27) 

Let F have the form F = p 2 + H(t,p0 ,p1) and cp = cp(t,p0 ,p1). For the function 
cpF condition (27) is equivalent to the following condition: 

aH 
D(ln lcpl) =-a . 

Pl 

If 88 H = a(t), then cp can be chosen as 
Pl 

cp(t) = exp (! a(t)dt). 

Therefore, all differential equations of the form 

P2 + a(t)pl + b(t,po) = 0 

are self-adjoint. 

(28) 

5.16. By II(£) denote the set of all supersymmetries of the equation£. Since the 
relation L'Pp = cpL F holds for the equation £ = { F = 0}, we see that if L F o L). = 
L).oLp, then L'PpoL). = L).'PoL'Pp, where L).'P = cp·L).·cp- 1 . Thus, II(£) does not depend 
on a choice of the function F. If£ is a self-adjoint (or anti-self-adjoint) equation, then 
the correspondence L). 1--7 L)_t determines an involution of II(£) and therefore 

where 

II(£) = Tio(E) + TI1 (£), 

llo(£) = { L).iLF o L). + L).t Lp = 0}, 

TI1 (£) = { L).iLF o L).- L).t Lp = 0}. 

The constructions described in 5.8 allow to use supersymmetries in order to find 
new symmetries and integrals, starting from already-known ones. 



SYMMETRIES AND INTEGRALS 137 

CHAPTER IV 

MODELS 

§ 1. REDUCTION 

If a Lie algebra g of shuffling symmetries of a completely integrable distribution E 
is sufficiently large: dim g ;:: co dimE, then maximal integral manifolds of the distri­
bution can be found by quadratures, i.e. by the use of the following two procedures: 
solving equations and calculating integrals. The latter can also be considered as solv­
ing a model differential equation 

y' = f(t) 

for some function f ( t). 
In this section we shall show how, given an arbitrary algebra of shuffling symme­

tries, to find the corresponding model differential equations, whose solutions should 
be known in order to integrate the initial equation. 

1.1. Throughout the section we shall assume that a completely integrable distri­
bution E and algebra g of shuffling symmetries satisfy conditions of §2, chapter 3. In 
particular, dimg = codimE. 

Lett C g be an ideal in g and r = codim9 t. Suppose that {XI, ... , Xm} is a basis 
of g such that the vectors Xr+I, ... , Xm form a basis oft. As in §2 of chapter 3, choose 
differential 1-forms WI, ... , Wm so that the distribution E can be (maybe locally) given 
by these forms and 

(1) 

Lemma. The distribution E(t) = :F(w1, ... ,wr), given by the differentiall-forms 
WI, ... , Wr, is completely integrable. 

Proof. Since tis an ideal in g, we see that all commutators of the form [Xi, Xj], where 
i = 1, ... , m and j = r + 1, ... , n, belong tot. Therefore, 

[Xi, Xj] = L c:jxs, 
s~r+I 

where 

c:j = o 
under the condition that j ;:: r + 1 and s ~ r. 

Using the Maurer-Cartan formula, we obtain 

dwz = -1/2 L c~,bWa 1\ Wb 

a,b~r 

(2) 
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if l ~ r. Therefore, the distribution :F( w1 , ... , Wr) is completely integrable. 

1.2. Note that the ideal tis a symmetry algebra of the distribution E(t). Indeed, 
if X E t, then w1 (X) = · · · = wr(X) = 0 and from (2) it follows that 

for j ~ r. 
Thus, vector fields X E tare characteristic for E(t). 
The procedure of finding maximal integral manifolds of the distribution E can be 

performed in two steps: 
1) integration of the completely integrable distribution E ( t); 
2) integration of the completely integrable distribution EL obtained by restricting 

the distribution E to maximal integral manifolds L of the distributions E(t). 
In this case the factor algebra g/t and ideal t can be chosen as algebras of shuffling 

symmetries for the distribution E(t) and EL respectively. 
In particular, if t is solvable, then integration of the distribution can be completed 

by quadratures. 
Now let t be the radical (i.e. maximal solvable ideal) of the Lie algebra g. Then 

the factor algebra g/t is semisimple and thus we are led to integration of distributions 
with semisimple symmetry algebras. Further, every semisimple Lie algebra a is a direct 
sum of simple Lie algebras, which are ideals in a. Therefore, in this case our problem 
reduces to integration of distributions with simple algebras of shuffling symmetries. 

1.3. Let us turn to integration of distributions with simple symmetry algebras. We 
shall first consider the procedure of reduction. 

Definition. 
1) An action of a Lie algebra g on a manifold N is an injective homomorphism 

).. : g-----+ D(N) of g into the Lie algebra of vector fields on N. 
2) An action).. of g on N is called transitive ifthe values of vector fields .A(X), X E g, 

at each point a E N generate the whole of the space TaN. 

Examples. 
1) If dimg = 1, then an action)..: g-----+ D(N) is uniquely determined by the image 

.A(l) of any nonzero vector l E g and therefore can be identified with a vector field on 
N. 

2) Suppose g = .s[(2, ~) and N = ~1 is the projective line with homogeneous coor­
dinates [Yl : y2]. Consider the natural action of the group S£(2, ~) on the projective 
line 

where 

a 12 ] E S£(2, ~) ~---+ A(A) : ~P1 -----+ ~P1 , 
a22 

A(A)([y1 : Y2]) = [(anYl + a12y2) : (a21Y1 + a22y2)]. 

(3) 
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The differential A. of this action is an action of g on N. Consider the following basis 
ofs((2,IP?,.): 

Then 

- [1 0] +- [0 1] -- [0 0] h- 0 1 'a - 0 0 'a - 1 0 · 

A(expth)([YI: Y2]) = [etyl: e-ty2 ], 

A(expta+)([YI: Y2]) = [(YI + ty2): Y2], 

A(expta-)([YI : Y2]) = [YI : (Y2 + ty1)]. 

Let us identify IF?,. with the affine part of IP?,.P1 by means of the embedding 

IF?,. '--+ IP?,.Pl, s 1---7 [s : 1]. 

Then relations ( 4) take the form: 

A(expth)s = e2ts, 

A(expta+)s = s + t, 
s 

A(expta-)s = --. 
1 + ts 

The differential A. has the form: 

d 
A.( aj) = dt A( exp taj) lt=O, 

so that 
( - d +) - d ) - 2 d 

A.\ h)- 2s ds' A.( a - ds' A.(h - -s ds. 

(4) 

(5) 

3) This example is a direct generalization of the previous one. Suppose g = 
s((n + 1, IF?,.) and N = IP?,.pn is the n-dimensional projective space with homogeneous 
coordinates [y1 : · · · : Yn+1]. As before, consider the natural projective action of the 
group SL(n + 1, IF?,.) on the projective space IP?,.Pn: 

where 

and 

A= llaij II E SL(n + 1, IF?,.) 1---7 A( A) : IP?,.pn ----t IP?,.pn, 

A(A)[y1 : · · · : Yn+I] = [Y1 : · · · : Yn+I] 

n+l 

Yi = L aiJYJ· 
j=l 

The differential A. of this action is an action of g on N. 

(6) 

For i = 1, ... , n, by hi denote the diagonal matrix of order n + 1 whose diagonal 
elements are all except for the i-th and ( i + 1 )-th ones equal to 1 and -1 respectively. 
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For 1 :( i < j :( n + 1 by E~ denote the square matrix of order n + 1 whose the only 
nonzero element is the element lying in the i-th row and the j-th column and equal 
to 1. Put Eji = ( E~) t. The matrices 

form a basis of the Lie algebra .sl(n + 1, IPI.). We have 

A(expthi)[Yl: · · ·: Yn+l] = [Yl : · · ·: etyi: e-tYi+l : · · ·: Yn+l], 

A(exptE~)[YI : · · ·: Yn+I] = [YI : · · ·: Yi + tyj: · · ·: Yj: · · ·: Yn+l], (7) 

A(expEji)[YI: · · ·: Yn+I] = [YI: · · ·: Yi: · · ·: Yj + tyi: · · ·: Yn+I]· 

Let us identify the arithmetic n-space mn with the affine part of J:PI.pn by means of the 
embedding 

IPI.n 3 (xb ... , Xn) 1---+ (xi : · · · : Xn: 1) E IPI.Pn. 

Then the differential >. has the form: 

a a 
A(hi) =Xi~- Xi+l ~' i = 1, ... , n- 1; 

UXi UXi 
a a a 

>.(hn) =XI~+···+ Xn-l :::~ + 2Xn~, 
UXI UXn-l UXn 

>.(E~) = Xj a~i, 1 :( i < j :( n, 

>.(Etn+I) = :::~a ' i = 1, ... 'n, 
UXi 

>.(Eij) = Xj a~i, 1 :( j < i :( n, 

n a 
>.(E;:+I i) =- LXrXi~, 1 :( i :( n. 

UXr 
r=l 

Let A= llaij II E .s[(n + 1, IPI.). Since 

A= an hi +(an+ a12)h2 +···+(an+ ann)hn + L aijE~ + L aijEij, 
i<j j <i 

we obtain 

(8) 

(9) 



SYMMETRIES AND INTEGRALS 141 

or 

(10) 

4) Reverting to the projective plane and its affine part IP~2 , form (10) we see that if 

then the corresponding vector field on IPI.. 2 has the form: 

or, after collecting terms, 

1.4. Let E be a completely integrable distribution on a manifold M and g an 
algebra of shuffling symmetries on E (we shall identify elements of g with vector fields 
on M) such that g satisfies conditions of §2, chapter 3. Suppose .A : g -----+ V(N) ~is a 
transitive action of g on some manifold N. Let us construct a new distribution E on 
the direct product M x N: for a E M and b E N. Let E(a, b) be the direct sum of 
the subspace E(a) and the subspace spanned by vectors of the form: 

for all X E g. 

Lemma. The distribution E is completely integrable and 

co dimE = dim N. 
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Proof. Let Y1, ... , Yn-m be vector fields generating the distribution E and let 
{X1, ... , Xm} be a basis of g. Then the vector fields 

can be chosen as a local basis of the distribution E. 
If is sufficient to note that 
a) vector field~ of the form [Yi, 1j] belong to the distribution E and therefore to 

the distribution E; 
b) since Xi are symmetries of E, all vector fields [Xi+ >..(Xi), }j] = [Xi, }j] belong 

toE; 
c) all vector fields [Xi+~(Xi),Xj+>..(Xj)] = [Xi,Xj]+[>..(Xi),>..(Xj)] = [Xi,Xj]+ 

>..([Xi,Xj]) also belong to E. 

1.5. Let us describe the distribution E as a Pfaff system. Let r = dim N and let 
a 1 , ... , ar be differential forms on N that form a (local) basis in spaces cotangent to 
N. Consider the differential forms 

(11) 

where {X 1 , ... , Xm} is a basis of the Lie algebra g and w1, ... , Wm are forms generating 
E such that wi(Xj) = 8ij· 

Lemm~ The differential forms el' ... ' eT determine the completely integrable distri­
bution E. 

Proof. We shall employ the notation of the previous item. Then since for any vector 
field }j, a 8 (Yj) = 0 and wi(}j) = 0, i = 1, ... , n, we have 

08 (Yj) = 0, s = 1, ... , r, 

and 

It remainS !_O note that the differential formS 81, ... , eT are linearly independent and 
r = codimE. 

1.6. Let us now consider maximal integral manifolds of the distribution E. The 
projection of each manifold L C M x N of this sort into M is a diffeomorphism of L 
onto M. By construction of E, the projection of a subspace E(a, b) into the tangent 

space TaM is an isomorphism of E(a, b) onto TaM. Therefore (see Fig. 21), every 
maximal integral manifold L determines the smooth mapping 

h:M---+N 
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such that 
L = Lh ={(a, h(a)) EM x N)}. 

N 

Fig. 21 
The kernel of the differential h*,a : TaM ---+ Th(a) N coincides with the intersection 

Ta,h(a) L n TaM 

and therefore can be written as a direct sum: 

Ker h*,a = E(a) + fJb, 

where b = h(a) and 
Qb ={X E gi.\(X)b = 0} (14) 

is the stability subalgebra of the point b E N with respect to the action .\. 
Since .\ is a transitive action, we see that the image ofT aM by h*,a coincides with 

Tb N. Thus, h*,a is an epimorphism and the inverse function theorem can be applied 
to h. Therefore, sets of the form 

(15) 

are smooth submanifolds of M. 
From (13) it follows that for every a E Mb the subspace E(a) belongs to the 

tangent space T a ( Mb). Thus, the distribution E determines a completely integrable 
distribution on Mb. We shall still denote it by E. By construction vector fields X E fJb 
are tangent to the submanifold Mb and therefore these fields are shuffling symmetries 
of E. In addition 

codimMb E = dim fJb· 

Definition. This transition from completely integrable distribution E on the mani­
fold M to the distribution E on Mb determined by the mapping h is called reduction 
of the symmetry algebra g to the subalgebra [J = Qb· 

Let us make some observations about the procedure of reduction. 
1) It is useful to assume that N is a homogeneous space N = G / H, where G is a 

connected Lie group, g being its Lie algebra, and H is the connected closed subgroup 
of G corresponding to [J. 
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2) Finding of functions 
h: M ----t GIH 

leading to maximal integral manifolds of the distribution E reduces to integration of 
ordinary differential equations on the homogeneous space G I H. 

Indeed, let us fix points a0 E M and bo E G I H and find mappings h : M ----t G I H 
such that h(a0 ) = b0 and Lh is a maximal integral manifold of E. For every x EM the 
value h(x) can be found as a solution of a system of first-order differential equations 
with respect to y(t) E GIH, where y(t) = h(x(t)) and x(t) is an arbitrary path in M 
(see Fig.22). 

!~! 
M 

Fig. 22 
By virtue of ( 11) the system has the form: 

1.7. Examples. 

(16) 

1) Let g = s((2, JP?.) be the Lie algebra of 2x2 matrices with zero trace and G = 
SL(2, IP?.) the Lie group of 2x2 matrices with determinant equal to 1. Fix a vector 
v0 E IPI.2 and consider the subgroup 

H ={A E SL(2,IP?.)IA(vo) =.Avo}. 

We shall assume that v0 = (1,0). Then the homogeneous space GIH can be identified 
with the projective line JP?.P1 . The corresponding isomorphism is determined by the 
mapping 

SL(2, IP?.) 3 A = [an 
a21 

Under this identification the natural action of G on G I H corresponds to linear 
fractional transformations of the projective line. The corresponding homomorphism 
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A was calculated in example 2, 1.3. On the affine part IPl.I = {[z: 1]} c llJl.pi it has the 
form: 

h= [~ ~1 ] ~2z:z' 

a+=[~ ~]~:z' 
a = [ ~ ~] ~ - z2 :z . 

In this case r =dim G / H = 1. Therefore, putting r = 1 and ai = dz in system (16), 
we obtain the Riccati equation 

where ai = ai(t) = wi(x(t)). 
The subalgebra f) corresponding to the Lie subgroup His solvable. Thus, the pro­

cedure of reduction allows to reduce integration of an arbitrary completely integrable 
distribution with s[(2, IPl.) being an algebra of shuffiing symmetries to integration of 
the Riccati equation. 

2) Let V be an arbitrary n-dimensional vector space with a fixed flag of subspaces 

V = Vn ::) Vn-l ::) · · · ::) V1 ::) Vo = {0}, 

where dim Vi = i, i = 0, ... , n. Let G be the Lie group of all linear isomorphisms of 
the flag: 

G ={A E GL(V)IA(Vi) c Vi, i = 0, ... , n} 

and H C G the subgroup of isomorphisms constant on V1 : 

H ={A E GIA(v) = v Vv E VI}· 

Suppose { ei, ... , en} is a basis of V such that the vectors e1 , ... , ei form a basis of 
Vi for all i = 1, ... , n. Then, in terms of matrices, 

* 

H={AEGIAI=1}. 

In this case 

and this isomorphism is determined by the mapping 

G 3 A~ AI E IPl.\{0}, 
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where A(e1) = .A1e1. 
The algebra g of the Lie group G is solvable and [J C g is a subalgebra of co dimension 

1. If z denotes the standard coordinate on IPI. \ { 0} C IPI., then the action ).. : g ---+ V (IPI.) 
has the form 

d 
.>..(A) = .A1z dz, 

where .>..1 = .>..1 (A) is the eigenvalue corresponding to the eigenvector e1 E V1. 
In this case r = dim G I H = 1. Let us take the form 

dz 
al =-

z 

as a basis 1-form in (16). Then system (16) turns into an equation of the form: 

z' = f(t). 

Similar considerations can be applied to any subalgebra of g and therefore, by Lie's 
theorem, to an arbitrary solvable Lie algebra. Thus, the procedure of reduction, as well 
as the Lie-Bianchi theorem, allows to integrate distributions with solvable symmetry 
algebras by means of quadratures. 

§2. MODEL EQUATIONS AND THE SUPERPOSITION PRINCIPLE 

2.1. Differential equations 1.6. (16), appearing in the procedure of reduction of a 
symmetry algebra g to a subalgebra [J, are said to be model. There are two methods 
of constructing minimal models. First of them is specified by the minimal size of the 
system and therefore corresponds to homogeneous spaces G I H such [J is a maximal 
subalgebra of g. 

The second method is based on the fact that after solving model equations we need 
to solve a system of equations with the symmetry algebra [J. Therefore, with the 
Lie-Bianchi theorem in mind, we should take the maximal solvable subalgebra for the 
subalgebra [J. Models of the first type are called d-models, whereas those of the second 
type are called r-models. 

Thus, the use of d-models allows to integrate the system by solving smaller systems 
of model equations several times, while the use of r-models allows to complete the 
integration by quadratures just after the first implementation of an r-model. 

2.2. Model differential equations can be described formally by the following con­
struction. Let N = G I H be a homogeneous space and ).. : g ---+ V(N) the natural 
representation of the Lie algebra g by vector fields. Consider the path IPI. 3 t f-----+ Xt E g 
and the following vector field on the manifold N x IPI.: 

a 
X= at+ .>..(Xt)· (1) 

Systems of first-order differential equations on N corresponding to fields (1) com­
prise, among other equations, all model equations. 
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In the present section we shall consider only differential equations of this sort. 

2.3. Let us give the coordinate expression for these systems. Let { X 1 , ... , Xm} be 
a basis in g and (Yl, ... , Yn) a local coordinate system on G /H. Assume that 

{ 
A(XI) = Jf(y) aZ, + ... + fl'(y) B~n' 

A(Xm) = J}n(y) a~1 + ... + J::-.(y) a~n' 

(2) 

and let t ~---+ Xt E g have the form 

(3) 

Then the corresponding system of differential equations has the form ( comp. 1.6. 
(16)): 

{ 
Y1 = A1(t)f{(y) + · · · + Am(t)ff(y), 

~n = A1(t)j}(y) + · · · + Am(t)J::-.(y). 

(4) 

2.4. Example. Recall that (see §1) the action of the Lie algebra s((2, ~) on the 
affine part of the projective line can be given by the vector fields 

Let 
Xt = A1(t)X1 + A2(t)X2 + A3(t)X3 

be a path in s((2, ~). In this case system ( 4) turns into the Riccati equation 

2.5. Let us consider another (less formal) method of obtaining systems of form ( 4). 
Let M be a certain G-space and A : g ---+ 'D( M) the corresponding representation of 

g by vector fields on the manifold M. Consider those systems of differential equations 
on M whose solutions y(t) all have the form 

y(t) = g(t)(y(O)) (5) 

for some path~ 3 t ~---+ g(t) E G, g(O) = e, in the group G. 
Let~ 3 t ~---+ Xt E g be the path in g corresponding to the just-mentioned path in 

G. Identifying g with the space T e G tangent to G at the identity e E G, we obtain 
(see Fig.23) 

(6) 
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g It I 
,.·· X, ····· ....... 

g (t I 

Fig. 23 
Let us calculate tangent vectors y(t) to the trajectory y(t) given by (5). Differen­

tiating relation (5) and using the chain rule, we obtain 

y(t) = .\(Xt)y(t)· (7) 

Thus, trajectories (5) are solutions of the system ofform (4) corresponding to path (6). 
Note that since y(O) E M is arbitrary, relation (5) gives all solutions of the system. 

Conversely, suppose that we are given a path Xt in g. Then, considering relation 
(6) as a differential equation with respect to g(t), we can find a unique path in G such 
that g(O) =e. Thus, we arrive at the following description of systems (4): 

Proposition. A system of first-order differential equations on G / H has form ( 4) for 
some path t ~----+ Xt in g if and only if there exists a path g(t), g(O) = e, in G such that 
all solutions of the system can be written in form (5). 

2.6. So, integration of systems of form ( 4) and therefore of model systems reduces 
to finding a path g(t) in the group G. Instead of solving equation (6) with respect 
to g(t), we shall use another (more algebraic) method. Assume that g is a simple Lie 
algebra and b its maximal subalgebra. 

Consider the action of the Lie group G on the direct product Mk = M x · · · x M 
(k times), M = G/ H, 

where g E G, a1, ... ,ak EM. 
Denote by H(a) C G the stability subgroup of an element a E M and H(a1, ... , 

... , ak) C G the stability subgroup of an element (a1, ... , ak) E Mk. It is obvious 
that 

Let us show that a number k can be chosen so that stability subgroups of almost 
all elements ( a1, ... , ak) E Mk will be trivial. Consider stability subalgebras bai, i = 
1, ... , k. Let us choose an element a2 E M so that the dimension of the intersection 
Oa1 n ba2 is minimal. It is obvious that elements like this form an open and everywhere 
dense subset M 1 of M. Under the condition that a 2 E M 1, choose an element a3 EM 
so that the dimension of (ba1 n Oa2 ) n Oa3 is minimal. The set Mz of elements like this 
is also open and everywhere dense in M. We can similarly define everywhere dense 
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sets Mi C M. Since b is a maximal subalgebra of g,we see that the dimension of 
intersections 

ba1 n · · · n bai (a1 EM, a2 E M1, ... , ai EMi-l) 

monotonically decreases. Therefore, these intersections become zero, starting from 
some number k. Obviously 

k:::; dimb. 

Then the subgroup H(ab ... , ak) is zero-dimensional. 
Consider now the system of equations 

(9) 

with respect to elements g E G under the condition that a1 E M, a2 E M1, ... , ak E 
Mk-l· The set of solutions of the system is discrete. 

In other words, fix an element c = (c1 , ... , ck) E Mk of general position and consider 
the mapping 

defined by 
7re(g) = (g(ci), ... ,g(ck)). 

Let Me= 7re(G) be the image of 7re· Then the projection 

is a fibration with fibre H(cb ... , ck)· 
Let us now revert to finding a path g(t) satisfying condition (6). For this purpose 

consider a set of k partial solutions y~ ( t), ... , y~ ( t) of system ( 7) such that the subgroup 
H(c1, ... , ck), where c1 = y~(O), ... , Ck = y~(O), is discrete. Put c = (c1, ... , ck) E Mk. 

The equations 
y~(t) = g(t)cb ... , y~(t) = g(t)ck, (10) 

with respect to a path g(t) in G can be considered from a different standpoint. The 
function Y : t r--+ (y~(t), ... , y~(t)) gives a path in Me, and we are looking for a path 
g(t) in G such that 

1re(g(t)) = Y(t). (11) 

According to properties of covering homotopies, a path g(t) like this always exists and 
is uniquely determined by its value g(O) at the point t = 0. In our case g(O) = e and, 
therefore, relations (10) uniquely determine a path g(t) such that g(O) = e. Denote 
this path by 

g(t) = S(y~(t), ... , y~(t)). (12) 

Then the general solution y(t) of system (7) has the form: 

y(t) = S(y~(t), ... , y~(t))y(O). (13) 
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Definition. 
1) A system of partial solutions y~(t), ... , Y2(t) is called fundamental if the sub­

group H(y~(O), ... , Y2(0)) of the group G is discrete. 
2) The function S(y~(t), ... , Y2(t)) is called the superposition function. 
3) A homogeneous space M = G I H is called k-sti.ff if k is the minimal natural 

number such that for some (a1 , ... , ak) E Mk the subgroup H(a1, ... , ak) is discrete. 
The number k is called the stiffness of M. 

Summarizing results of this item, we obtain the following result: 

Theorem. Let k be the stiffness of the homogeneous space M = G I H. Then there 
exists a fundamental system of solutions y~(t), ... , y2(t) of system (4) such that the 
general solution y(t) of the system can be written in form (13), where S = g(t) is the 
superposition function, which can be found from system (10). 

2.7. Note that the group G can be realized as a symmetry group of system (4) of 
differential equations. For this purpose consider various gauge transformations 

h:M x~-----+M x~, 

h: (a, t) f--7 (h(t)a, t) 
(14) 

determined by paths h(t) in G. A necessary and sufficient condition for a transforma­
tion of form (14) to be a symmetry of system (i)s that this transformation take every 
solution y(t) of the system to a solution again. Using (13), we have 

(t,y(t)) = (t,g(t)y(O)) j; (t,h(t)g(t)y(O)) = (t,g(t)(g- 1 (t)h(t)g(t)))y(O)). 

Therefore, a gauge transformation h determines a symmetry if 

g- 1 (t)h(t)g(t) =hoE G 

or 
h(t) = g(t)h0 y- 1 (t). (15) 

Thus, relation (15) assigns to every element h0 of the group G a symmetry of sys­
tem ( 4). 

2.8. Remark. In the examples considered in §1 Lie groups act transitively on 
solution spaces. In this case systems of differential equations are called automorphic. 
Therefore, model equations are those automorphic systems of differential equations 
whose symmetry groups can be found with the help of a finite set of partial solutions 
(fundamental system of solutions). 

2.9. In conclusion of this section let us describe model differential equations cor­
responding to one-dimensional homogeneous spaces. We shall first find out which 
finite-dimensional Lie algebras can be realized as transitive algebras on the line. 
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Let g be a Lie algebra of this sort and A. : g --7 D(llR) an injective homomorphism 
of Lie algebras. Then we can identify elements X E g with vector fields on the line. 
Every element X E g has the form: 

[) 
x = f(t) at, 

and it makes sense to speak about the order of an infinitesimal of X at the zero point 
with the order of an infinitesimal of f in mind. 

The fact that g acts transitively on the line means that there exists a vector field 
X 1 E g such that f(O) -1- 0. Then, by the known theorem about straightening vector 
fields, a coordinate z on the line can be (locally) chosen so that 

(16) 

Denote by 
0 :::;; k1 < k2 < · · · < kr 

the orders of an infinitesimal of vector fields belonging to g. From the commutation 
relation 

[f(z) :z, g(z) :) = (fg'- f' g) :z 

it follows that if a function f has zero of the maximal order kr and a function g has 
zero of order ki ( i < r), then their commutator has zero of order kr + ki - 1. Therefore, 

(17) 

for all i = 1, ... , r. Relation ( 17) implies that ki :::;; 1 and therefore r = dim g :::;; 3. 
Let us consider the cases dimg = 1, 2, 3 consecutively. The case dimg = 1 is 

trivial. Suppose dimg = 2. Then a basis of g contains some vector field X 2 = f(z) tz 
in addition to X 1 . Since the commutator 

is a linear combination of x1 and x2, we see that x2 can be chosen as 

(18) 

If dimg = 3, then similar considerations show that the Lie algebra g is generated 
by the vector fields X 1 and X 2 (see ( 16), ( 18)) and the vector field 

2 [) 
x3 = z [)z' 

Finally,we obtain the following result: 
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Theorem.[S.Lie]. Suppose that a Lie algebra g acts transitively on the line. Then, 
in a suitable (local) coordinate system, g has one of the following forms: 

a) g is the commutative Lie algebra generated by the vector field 

b) g is the solvable Lie algebra generated by the vector fields 

c) g is the Lie algebra s((2, I!R) generated by the vector fields 

The corresponding differential equations have the form: 
a) z = A1(t); 
b) z = A1 (t) + A2(t)z; 
c) z = A1 (t) + A2(t)z + A3(t)z2. 

2.10. Example. All differential equations listed in theorem 2.9 are Riccati equa­
tions. Let us illustrate finding of the superposition function by the example of the 
Riccati differential equation. 

if 

In this case, the action of the Lie group SL(2, IIR) has the form: 

g(t) = A(t) = II an (t) a12(t) II E SL(2, IIR). 
a21(t) a22(t) 

(19) 

It is known from projective geometry that every projective transformation of the 
line can be determined by the images of three different points. Therefore, the stiffness 
of IIRP1 equals k = 3. To every number z E IIR assign a vector of the plane: 

Then system (10) for finding g(t) can be rewritten as 

(20) 
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where ..\1, ..\2, ..\3 are nonzero numbers. 
Denote by Yij (respectively, Cij) the 2 x 2 matrix with the vectors fl?, yJ ( respec­

tively, ci, cj) being its columns. Then system (20) is equivalent to the matrix system 

where 

From (21) we obtain 

so that 

and 

.A i = det Y12 det Y13 det C23 1 ( det c12 det c 13 det Y23), 

).~ = det y12 det c13 det y23/(det c12 det y13 det c23), 

).~ = det c12 det y13 det y23/(det y12 det c13 det c23), 

§3. MODEL EQUATIONS: THE SERIES Akl Bk, Dk 

(21) 

(22) 

(23) 

(24) 

3 .1. Let V be a vector space (over IR<. or C) of dimension n + k, n ?;: 2. The 
grassmannian Gn+k,k of k-dimensional subspaces is the set whose elements are k­
dimensional subspaces L C V. The Lie group SL(V) = SL(n + k) acts naturally on 
this set: 

A: Gn+k,k 3 L r-----+ A(L) E Gn+k,k 

for all subspaces Land transformations A E SL(n + k). This action is transitive. The 
stability subgroup H(L) of an element L E Gn+k,k has the form: 

H(L) ={A E SL(V)JA(L) = L}. 

Thus, 
Gn+k,k ~ SL(n + k)/H(L). 

3.2. Let us give coordinate description of constructions of the previous item. To 
be definite, assume that V is a vector space over IR<.. Let us identify V with JR<.n+k 
and let L0 be a fixed k-dimensional subspace of V. We identify L0 with the space JR<.k 
embedded into m<.n+k: 

Under this identification, all elements L E Gn+k,k lying in a sufficiently small neigh­
borhood of the point L 0 E Gn+k,k can be represented as k x n matrices 
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where the vectors 
(1, 0, ... , 0, Wn, W12, ···,Win,) 

(0, 1, ... , 0, W21, W22, ... , W2n,) 

(0, 0, ... , 1, Wk1, Wk2, ·. ·, Wkn) 

form a basis of a subspace L. 

[Rn 

Wx 

L 
y=Wx 

X k 
IR 

Fig. 24 

Each vector z E ]p~n+k can be written as a column: 

where y E ~n and x E ~ k. Then a space L E Gn+k,k is the graph of the corresponding 
linear mapping W : ~k -t ~n, x f---+ y = W x. 

Each element A of the group SL ( n + k) in these coordinates can be written as a 
hypermatrix: 

where An is a matrix of order n x n, A22 a k x k matrix, A12 an n x k matrix, A21 a 
k x n matrix, and det A= 1. 

Elements of the stability subgroup H(L0 ) are blocked triangular matrices of the 
form: 

A=[An 0] 
A21 A22 . 

The action of an element A E SL(n + k) in coordinates W has the form 

L (y = Wx) 4 (An 
X Jl21 

where 
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so that 

3.3. Let us describe the corresponding action 

A: s[(n + k)-+ V(Gn+k,k) 

of the Lie algebra sl(n + k) on the grassmannian Gn+k,k· 
Each element h E s[( n + k) is a hypermatrix of the form 

with zero trace: tr h11 + tr h22 = 0. 
Let us calculate the value of a vector field A(h) at a point W. We have 

where 

Therefore, 

dhij ( t) I _ h. . ( ) 8 dt - ~J ' hij 0 = ij ' 
t=O 

and 
A(h)w = hn W + h12- W(h21 W + h22). 

Thus, the field A(h) in coordinates W has the form 

a 
A(h)w = (h12 + hnW- Wh22- Wh21W) aw' 

tr hn + tr h22 = 0. 

3.4. The differential equation corresponding to the action A has the form: 

W = B12(t) + Bn(t)W + WB22(t) + WB21(t)W, 

where tr B 11 = tr B 22 . It is the matrix Riccati equation. 
The general solution W(t) of equation (5) can be written as 

W(t) = (A 11 (t)W(O) + A 12 (t))(A21(t)W(O) + A22(t))-I, 

where matrices A(t) = IIAij(t)ll E SL(n + k) are the same for all solutions. 
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(1) 

(3) 

(4) 

(5) 

(6) 
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Suppose r is the stiffness of the grassmannian and W1 ( t), ... , Wr ( t) are partial 
solutions of (5). Then the matrices A(t) can be found from the following system of 
linear equations 

Au Wz(O) + A12 = Wz(t)(A21 Wz(O) + A22), l = 1, ... , r. (7) 

3.5. Example. If k = 1, then the grassmannian Gn+l,l coincides with the n­
dimensional projective space. Each projective transformation of J:P?.pn is completely 
determined by images of (n + 2) points of general position. Therefore, the stiffness 
of J:P?.pn equals n + 2. In this case it can be assumed that r = n + 2 in system (7). 
The procedure of explicit solution of the system is similar to that for the case n = 1 
considered before. 

3.6. Let k = n. Then all matrices in Riccati equation (5) are square matrices of 
order n x n. Let us find the stiffness of the grassmannian G2n,n. Let Lo, L1 E G2n,n 
be the subspaces corresponding to the horizontal and vertical planes (see Fig. 24) 
respectively. The stability subgroup H(L0 , L1) = H(L0 ) n H(L 1 ) consists of blocked 
diagonal matrices of the form: 

A=[Aou o] 
A22 ' 

where det A 11 · det A22 = 1. The action of elements A E H ( L 0 , L1) in coordinates W 
has the form: 

A: W r-----t WA = AuWA;r 

For a third point L 2 , take the subspace corresponding to the diagonal y = x. Then 

and the action of this stability subgroup has the form: 

It remains to note that, with respect to this action, the common stabilizer of two 
matrices W1 and W2 of general position is trivial. Thus, it is sufficient to use 5 
solutions "of general position" in order to find the general solution with the help of 
relations (6) and (7). 

3.7. Expression (1) has a universal nature and holds for other classical Lie groups. 
In conclusion of this section, let us consider the series Dk and Bk. Assume that a 
vector space V has dimension n + k and is supplied with an Euclidean metric g. Let 
G = SO(g) be the group of transformations of V preserving the metric g. Let us fix 
an orthonormal basis in V and identify V with J:P?.n+k and g with the standard scalar 
product: 

g(X, Y) = (X, Y) = X!Yl + · · · + Xn+kYn+k· (8) 
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Then the Lie group SO(g) = SO( n + k) can be identified with the group of orthogonal 
matrices of determinant 1, while the Lie algebra .so(g) with the algebra of skew­
symmetric matrices. 

The action of SO(n+k) on the grassmannian Gn+k,k is transitive. In coordinates W 
this action also has form (1). For a space complementary to L 0 consider the orthogonal 
complement L~. Then a hypermatrix 

h = [ hn h12] 
h21 h22 

belongs to so ( n + k) if and only if the following conditions hold: 

hi1 + hn = 0, h;2 + h22 = 0, hi2 + h21 = 0. (9) 

The vector field .A (h) in coordinates W has the form: 

..\(h)= (h12 + hnW- Wh22 + Whi 2W) 0~. (10) 

The corresponding differential equation has the form: 

(11) 

Here W is a matrix of order k x k and B 11 , B22 are skew-symmetric matrices. Equation 
(11) is called the orthogonal Riccati equation. 

3.8. A fundamental system of solutions and general solution of the orthogonal 
Riccati equation can be found in much the same way as in the general matrix case. 
We shall restrict ourselves to evaluating the number of fundamental solutions of the 
orthogonal Riccati equation in the case of n x n matrices; in other words, we shall find 
the stiffness of G2n,n with respect to the orthogonal group. 

It is obvious that elements of the stability subgroup H ( L 0 ) have the form: 

A= [ A~1 A~J, 
where A11 and A22 are orthogonal matrices of order n x n. 

Let L 1 be the subspace corresponding to the diagonal y = x (cp 3.6). Then the 
stability subgroup H ( L 0 , L 1 ) consists of matrices of the form: 

A=[~~], 
where B is an orthogonal matrix of order n x n. The action of elements of H(L0 , L 1) 

in coordinates W has the form: 

W ~---+ BWBt. 

Therefore, for any two subspaces L 2 and L 3 of general position, the stability subgroup 
H(Lo, L 1 , L 2 , L 3 ) is trivial. 

Thus the stiffness of G2n n equals 4. 
' 
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§4. MODEL EQUATIONS: THE SERIES Cn 

4.1. Let V be a symplectic space of dimension 2n with a structure 2-form w. Fixing 
a symplectic basis in V, we identify V with the arithmetic space Il{2n where w has the 
form: 

w(X, Y) = (XIYn+l- Xn+IYI) + ... + (XnY2n - X2nYn)· (1) 

Let G = Sp(2n) be the group of symplectic transformations of V; in other words, 
G is a group of transformations A : V --+ V such that 

w(AX, AY) = w(X, Y) (2) 

for all vectors X, Y E Il{ 2n . 

If ( , ) is the standard scalar product in Il{2n, then the form w can be replaced by 
the operator n such that 

w(X, Y) =(OX, Y). 

The operator n is skew-symmetric and its matrix has the form: 

n = [ o 
-In 

(3) 

where In is the identity matrix of order n x n. 
Condition (2) for a transformation A to be symmetric can be written in matrix 

form as 

Then the Lie algebra s.p(2n) can be written in matrix form as 

Let h be a hypermatrix 

s.p(2n) ={hE g[(2n)lh0 + Oht = 0}. 

h = [hn 
h21 

Then the condition hO + Oht = 0 is equivalent to the following conditions: 

Thus, elements of s.p(2n) can be written as hypermatrices of the form: 

h = [hn 
h21 

(4) 

(5) 

(6) 

where h12 , h21 are symmetric matrices of order n x n and hu is an arbitrary matrix 
of order n x n. Correspondingly, if we write a matrix A E Sp(2n) as a hypermatrix: 

A= [An 
A21 
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then condition ( 4) will take the form: 

4.2. If 1 < k < 2n- 1, then the action of Sp(2n) on the grassmannian G2n,k is not 
transitive. In this case two subspaces £ 1 , L2 E G2n,k lie in the same orbit if and only 
if the rank of the restrictions of the structure form w to L 1 and £ 2 is the same. We 
shall consider the most interesting case ~ the case of the Lagrange grassmannian. 

Definition. A subspace L C V of dimension (dim V) /2 is called a Lagrange subspace 
if the restriction of the structure form w to L is trivial, i.e. 

w(X, Y) = 0 

for all vectors X, Y E L. 

Denote by An the set of all Lagrange subspaces in (IPl. 2n, w). The set An is called 
the Lagrange grassmannian. 

Witt's theorem shows that the action of Sp(2n) on An is transitive. 

4.3. Let us describe the action ..\ : .sp(2n) -+ D(An) in coordinates W, assuming 
that the subspace L 0 is spanned by the first n basis vectors, while its complement is 
spanned by the last n vectors. 

Lemma. The subspace y = W x determined by a matrix W is a Lagrange subspace 
if and only if W is a symmetric matrix. 

Proof. Suppose { e1 , ... , en, en+ I, ... , e2n} is a standard basis in IPl.2n. Let us calculate 
the value of the structure form w at a pair of vectors X = ei + W(ei) and Y = 
ej + W(ej), where i,j:::; n. We have 

Therefore, 
wt=w. 

4.4. Using expression (6) for elements of the Lie algebra .sp(2n), we see that vector 
fields ..\(h) on the space of symmetric n x n matrices W have the form: 

(8) 

The corresponding system of differential equations has the form: 

W = E12(t) +En (t)W + W Ei1 (t)- Wh21 (t)W, (9) 

where W = W(t), E 12 (t), E21 (t) are symmetric n x n matrices and En is an arbitrary 
n x n matrix. Equation (9) is called the symplectic Riccati equation. 
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4.5. A fundamental system of solutions of equation (9) can be found in the same 
way as in the case of the general Riccati equation. Let us evaluate the stiffness of 
the Lagrange grassmannian An with respect to the symplectic group, assuming that 
n ~ 2. 

Let us choose Lagrange subspaces L 0 and L 1 as in the general case. Then the 
stability subgroup H ( L 0 , L 1 ) consists of symplectic matrices of the form: 

A= [An 0 l· 
0 A22 

From conditions (7) it follows that 

The action of elements A E H(L0 , L 1 ) in coordinates W has the form: 

A: W ~--+ BWBt. 

Therefore, for any two Lagrange subspaces L2 and L 3 of general position, the stability 
subgroup H(L0 , L 1 , L2 , L3 ) is trivial. Thus, the symplectic Riccati equation, as well 
as the orthogonal one, has a system of 4 fundamental solutions regardless of the 
dimension of the space ( 2n ~ 4). 

4.6. Remark. If n = 1, the group Sp(2) coincides with the group SL(2) and the 
space A1 with the projective line. Therefore, in this case the number of fundamental 
solutions of the Riccati equation equals three. 
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