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Preface

This text constitutes a preliminary version of an introductory textbook of the so-
lution of ordinary differential equations using symmetries, and is primerely aimed for
third year students of the ISLC college.

This book is not self-supported (one must know some analysis on manifolds, in-
cluding differential forms) and does not contain references.

First of all we recommend the study of Sophus Lie’s original works (which un-
fortunately are not easy reading), since the the further development of this field of
mathematics often consisted of the rediscovery of his results, but the main part of his
results were not exploited.

We suggest some books which might be useful in order to gain individual under-
standing of this subject:

1. P. Olver, Applications of Lie groups to differential equations, (Graduate Texts in Mathematics
107), Springer, New York, 1986.

. V. Lychagin, Lectures on geometry of differential equations. Part I, Roma, 1992.

. N. Ovsiannikov, Group analysis of differential equations, Academic, New York, 1982.

. H. Stephani, Differential equations. Their solution using symmetries, Cambridge University
Press, Springer, New York, 1990.

. N. Ibragimov, Transformation groups applied to mathematical physics, Reidel, Boston, 1985.

. B. Komrakov, Primitive actions and Sophus Lie problem, Preprint series, Inst. of Mathematics.
Univ. of Oslo, 1993.

7. B. Komrakov, A. Churyumov, B. Doubrov, Two-dimensional homogeneous spaces, Preprint series,

Inst. of Mathematics. Univ. of Oslo, 1993.
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CHAPTER I

DIFFERENTIAL EQUATIONS AND JETS

§1. GEOMETRICAL INTERPRETATION OF ORDINARY DIFFERENTIAL EQUATIONS

1.1. Let us consider differential equations of the first order with respect to a real-
valued function defined on R. They form the simplest class of ordinary differential
equations. An equation of this kind solvable with respect to a derivative can be written
as

y' = F(z,y), (1)

where x € R and y = y(z) is a function to be found.

It is well known that equation (1) can be geometrically interpreted as a directional
field. In this (standard) interpretation a triple (z,y(x),y'(z)) is interpreted as the
point (z,y) on the plane together with the straight line passing through this point
and tangent to the graph of the function y(x) (see Fig. 1).

y A
Y A T
y=y(z) T
: TY=1
- 7
L") y'=zy
z
Fig. 1 Fig. 2

Thus, at each point (z,y) of the plane, differential equation (1) determines a straight
line with a slope equal to F'(z,y) (see Fig. 2). Under this approach, the procedure of
solution consists in finding a function y = h(z) such that tangent lines to its graph at
points (z, h(z)) coincide with the corresponding straight lines of the given directional
field.

Suppose that a differential equation cannot be solved with respect to a derivative
y', i.e. it has the form

H(x>y($)>y,(w)) =0, (2)

and the function 0H/0y', say, vanishes. Then the standard geometrical interpretation
turns out to be rather awkward, since now at each point of the plane there may be
several (or even infinitely many) straight lines, their slopes k at a fixed point (z,y)
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being determined from the relation

H(z,y,k) =0. (2%)

1.2. Example. Consider the differential equation
(¥)* +2y + 2y =0. (3)

In this case, the directional field is defined only on that part of the plane where zy < 1.
In addition, on the interior of the domain (zy < 1) there exist exactly two different
directions:

ki =—-1++/1-zy,

whereas on the hyperbola zy = 1 only one: k = —1. (See Fig. 3.)

Fig. 3
In order to simplify the procedure of solution of similar differential equations and
make it clearer from geometrical point of view, we introduce the space J!, which coin-
cides with the three-dimensional arithmetic space, its elements (z, y, p) being identified
with pairs:
[(z,y); Uz, y,p)], (4)

where [(z,y,p) is the straight line passing through the point (z,y), its slope being
equal to p (see Fig. 4).

We shall say that J* is the space of 1-jets of functions, and its elements (4) will be
called 1—jets (of functions).

Differential equation (2) can now be regarded as the surface £ in J! defined by

H(z,y,p) =0, (5)

and its solutions y = h(z) as curves of the form
Ly = {y = h(z),p = I'(z)} (6)

lying on £.
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Fig. 4
In the example considered before the surface £ is the one—sheet hyperboloid and
solutions of equation (3) are curves of the form Ly, lying on the hyperboloid.

1.3. We are now going to construct the analogue of a directional field. Preparatory
to this we shall give an internal (in terms of the space of 1-jets) characteristic of those
curves in J! that have form (6) for a certain smooth function h(z). Fix a point

a = (-’L"O>y0,p0) € Jl

and consider tangent vectors at the point a to various curves of the form L,, passing
through a. It is easy to see that these vectors have the form

v = (1,po, h" (z0))- (7)

Under the condition that h”(zo) be arbitrary, all linear combinations of vectors (7)
form the 2-dimensional plane C'(a) given by the equation

Y — Yo = po(z — o). (8)
The plane C(a) is called the Cartan plane at the point a. The field of Cartan planes
C:a~ C(a)

on the space J' of 1-jets is called the Cartan distribution. Relation (8) shows that
the Cartan distribution can be given by the following differential form of degree one:

w = dy — pdx 9)

in the sense that
C(a) =kerw, = {v € Ty J} wy(v) = 0}. (10)

The differential form w is called the Cartan form.

It is immediate from construction of the Cartan distribution that each curve of the
form Ly in J! is an integral curve of the distribution; in other words, for any point
a € Ly the tangent vector to L,, at a belongs to the Cartan plane C(a). The converse
is also true.
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Proposition. Let L be a curve in J! such that
(i) L is an integral curve of the Cartan distribution;
(ii) L can be "well” projected on the z-axis, i.e. the z-coordinate can be chosen as

a parameter on L.
Then there exists a smooth function h = h(x) such that L = Ly,.

Proof. Condition (ii) means that the curve L can be given by equations

y=f(z), p=gz).

Condition (i) implies that the Cartan form w vanishes on L:
w|p = df — gdz = (f'(z) - g(z))dz = 0.

Therefore, g = f’ and
L=L;={y= f(a),p=f(2)}

1.4. Now we have everything necessary for construction of a directional field.

Each solution y = h(x) of equation (2) gives the curve Ly, which lies on the surface
£. In addition, at each point b € Ly the curve L, is tangent to the corresponding
Cartan plane C(b). Now, for each point a of the surface £ consider the intersection of
the tangent plane T, £ and Cartan plane C'(a). We see that the tangent vector to Ly,
at a belongs to the intersection. In general, the planes T, £ and C(a) do not coincide
and, therefore, their intersection

I(a) = To &N C(a) (10%)

is a straight line (see Fig. 5).

Fig. 5
More exactly, we shall say that a point a € £ is regular if

T & # C(a); (11)

otherwise, we shall say that a is singular.
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Relation (10) determines the directional field [ : a — [(a) at regular points of the
equation & (see Fig. 6).

Fig. 6
A solution of our differential equation is a curve on £ with the following properties:
tangent lines to it coincide with the corresponding straight lines of the directional field
I (condition (7) of the proposition above) and it can be ”well” projected on the z—axis
(condition (i1)).
Note that the last condition is totally dependent on [ and does not necessarily hold.

1.5. Let a € £ and let L be a solution passing through a. We shall say that L is
regular if it satisfies condition (i7). Let us find conditions for a and L to be regular in
terms of the function H(z,y,p), which gives our differential equation. A point a € &€
is regular if and only if the following differential 1-forms are linearly independent at
a:

dH = Hpdx + Hy,dy + Hpdp,
w = —pdx + dy.

Therefore, a € £ is singular if and only if
H,=0 and H,;+pH, =0 (12)

at the point a.

Further, the fact that a solution L passing through a regular point a € £ is regular
at a means that the projection of the straight line I(a) on the z-axis is other than
zZero.

Assume the contrary. Then [(a) is spanned by a vector of the form

0 0
’U-—Clé‘:l;—f—ﬁ-ag. (13)

Since [(a) lies on the Cartan plane C(a), we have
we(v) = a=0.

Therefore, it can be assumed that « = 0 and 8 = 1. Since v is a tangent vector to &,

we have
dH(v) =0
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and therefore

H,=0.

Thus, a curve L passing through a regular point a does not give a regular solution
if

Hy+pH,#0 and H,=0 (14)

at the point a. Now let a be a regular point of £. After solving the system of linear
equations w, = 0, d,H = 0, we see that the following vector can always be chosen as
a generator of the straight line [,:

o b 0
Yy = —Hp— — pHy— + (H, + pH,)

Por Pay a_p (15)

It is easy to see that the vector field Yz is tangent to £. It is called a characteristic
vector field.

1.6. Summarizing all the observations above, we can give a geometrical picture that
accompanies the procedure of solution of differential equation (2). Let £ C J! be the
surface corresponding to the given differential equation and let [ denote directional field
(15), which is defined at regular points of £. Then solutions of differential equation (2)
are integral curves of this directional field. Moreover, these solutions are smooth single-
valued functions at all points except those where condition (14) holds (see Fig. 7).

Fig. 7

Let us distract ourselves from singular points of equations for a while and by so-
lutions of the differential equation £ mean integral curves L of the directional field [
that do not necessarily satisfy condition (i) of proposition 1.3. This way we arrive
at the natural geometrical generalization of the concept of a solution of a differential
equation — a many-valued solution. Indeed, let L be an integral curve that does not
satisfy condition (77). The projection of L on the plane (z,y) is a curve with singu-
larities at exactly those points where condition (i7) does not hold; this projection can
be regarded as a graph of a many-valued function (see Fig. 8).
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Fig. 8

1.7. Example. First, consider the differential equation

which can be easily integrated. The surface & C J! corresponding to the equation is
the parabolic cylinder
p?—z=0.

The functions y and p can be chosen as coordinates on £, and £ can be identified with
the plane R%(y, p) by means of the mapping

E={0*yp)}3Ry,p)
®*,v,p) — (y,p)

The corresponding characteristic vector field has the form

0 0 0
= op— — P
Ya 2p8:r P Oy Op

Therefore, the projection of the directional field | from £ on the plane R?(y, p) deter-
mines the directional field on R2(y, p):

I:(y,p) — Uy, p),

where the straight line I(y, p) is spanned by the vector

~ 0 0

Identifying integral curves of | with graphs of functions y = ¢(p), we obtain the
following differential equation with respect to g(p):

/

g =2p°.
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It follows that 5

g9(p) = 5293 +ec.

Solutions, regarded as functions of z, have singularities at those points where
Finally we obtain

2
WP =z=y=tv/s=y==+0""+q.

Thus, solutions of our equation are semicubical parabolas, their cuspidal points lying
on the y-axis (see Fig. 9).

z
Fig. 9
1.8. Example. Let the function H of differential equation (2) has the form

H =1p?+2p+ay.
The set X of singular points of the equation can be found from the following relations:

H=p*+2p+zy=0,
H,=2p+2=0,
H,+pHy,=y+zp=0.

It follows that
r=1Y, p:_17 y::l:l

The projection of the set ¥ on the plane (z,y) consists of two points z = y = 1,
x =y = —1, which are exactly the points of tangency of the hyperbola zy = 1 and
the directional field (see Fig 3).

Since Hj, = 2p + 2, we have exactly one singular curve:

{p=-1, zy =1}.
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Its projection on the plane (z,y) is the hyperbola zy = 1. Because of this, solutions
have singularities at the points of this hyperbola and become many-valued there.

1.9. Basic constructions considered earlier can be automatically extended to the
case of an ordinary differential equation of an arbitrary order k (k > 2).
Each ordinary differential equation of the k-th order can be written as

H(z,y,y,...,y*)=0. (16)
For 2% € R and a smooth function g, consider the (k + 2)-tuple

(9130 = (°,9(2%),¢'(2%),..., 9™ (2°)). (17)

We shall call it the k-jet of the function g at the point z°. By J* denote the set of all
k-jets at all possible points. We shall call it the space of k-jets. It can be considered
as the arithmetic (k + 2)-space RF¥2 with the natural coordinates (z,po,p1,-- - ,Dk)

where '
pi([g1k) = gV (z°). (18)

Thus, the function H is a function defined on the space J* and equation (16) gives
the hypersurface £ in J* defined by

& ={(z,po,p1,---,0e)|H(x,po,p1,---,px) =0} (19)

Solutions y = h(z) of differential equation (16) can be considered as curves on
& C J* of the form

L = {po = h(z),p1 = ' (x),...,px = h®) (2)}. (20)

In order to distinguish curves of this form from other smooth curves in J*, fix a
point
a = (mo’pg)p?) ce 7p2) E Jk:

and consider tangent vectors at a to various curves of the form L;Lk)

a. Since these tangent vectors have the form

passing through

v = (17p(1)>p37 M 7p2’ h(k:_{—l)(xo)))

we see that their linear combinations form the 2-dimensional plane C'(a) given by the
following equations:
po — pg = pi(z — 2°),
p1—pi = ph(z — %),
(21)

Pr—1 — Dh_y = pp(z — 2).
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The plane C(a) is called the Cartan plane at the point a, and the distribution C' : a —
C(a) is called the Cartan distribution in the space J* of k-jets. From equations (21)
it follows that the Cartan distribution C' can also be defined as the set of common
zeroes of the following set of differential 1-forms on J*:

wo = dpo — prdz,

w1 = dpy; — padz, (22)

Wk—1 = dpg_1 — prdz.
The differential forms w;, j =0,...,k — 1, are called the Cartan forms.

1.10. Proposition. Let L be a curve in J*. The curve L has the form L;Lk) for
some smooth function h(z) if and only if the following two conditions are satisfied:

(1) L is an integral curve of the Cartan distribution; in other words, for each point
a € L the tangent vector to L at a belongs to the Cartan plane C(a);

(i) the curve L can be "well” projected on the x-axis.

Proof. The necessity of these conditions is clear. Let us prove their sufficiency. Con-
dition (i7) implies that the function = can be chosen as a parameter on the curve L.
Therefore, L can be given by the following system of equations:

po = fo(z), pr = fi(x), ..., Pk = fr(z).

By virtue of condition (i) we have
wilp = df; = fjde = (f; = fj41)dz =0
for all j € {0,...,k —1}. Thus, fj11 = f; and therefore L = Lglk), where h = fj.

1.11. So, necessary and sufficient conditions for a curve L in J* to determine a
solution of differential equation (16) are

(1) L is an integral curve of the Cartan distribution;
(2) L lies on the hypersurface £ C J*;
(3) L can be "well” projected on the z-axis.

Conditions (1) and (2) can be unified if we consider the restriction of the Cartan
distribution to the equation £. For each point a € £ consider the intersection of the
hypersurface T, £ tangent to £ at a and the Cartan plane C(a).

We shall say that a point a € £ is regular if C(a) ¢ T, &; otherwise, it will be
called a singular point.

Then for every regular point a € £ the intersection T, € N C(a) is a straight line
l(a), and the correspondence

lia€&egrl(a) =T ENC(a)
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gives a directional field on the set of all regular points &.¢y C £.

Thus, from the geometrical standpoint, solutions of the differential equation (16)
are those integral curves of the directional field [ that can be ”well” projected on the -
axis. As earlier, omitting the last condition, we arrive at a geometrical generalization
of the concept of a solution — a many-valued solution.

1.12. Let us find a condition for a point a € £ to be regular. The intersection of
the Cartan plane C'(a) and the tangent hypersurface T, £ can be found as the general
solution of the system of linear equations

( wo = dpo — prdz =0,
w1 = dp1 — padx = 0,

wi—1 = dpg_1 — prdz = 0,
\ dH = H,dx + Hp,dpo + - - + Hp, dp, = 0.

The differential 1-form dH will be a linear combination of the Cartan forms only at
singular points of the equation. Therefore, singular points can be found from the
following equations:

{ Hy +p1Hp, + -+ + prHp,_, =0, (23)

H,, = 0.

As a generator of the directional field [ (considered at regular points a € £) we can
choose the vector field

0 0 0 dH 0
Yir = —Hy |~ 4 pr—ae 4 @z g 24
" Pr <8I+p18p0+ +pk3pk_1>+dx Opr’ (24)
where by
aH _oH o, o
dz ~ 0z ' Plop, P

we denote the ”total” derivative with respect to . The vector field Yy is called the
characteristic vector field of equation (16). It can be easily verified that Yy is tangent
to the hypersurface H = 0.

Let L be a solution passing through a point a € £. Let us consider a condition for
L to be regular at a, i.e. a condition for L that it can be locally represented as L;lk)
for some smooth function h(x). As in the case of first-order equations, this condition

has the form
Hpk # 0. (26)

Note that the characteristic vector field Yy (regarded as a derivation) can be written
more briefly in the hamiltonian form:

dH d dH 0
Vi 2
H dpy, dx + dx Opi’ (27)
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where
da_o o0
de Oz b1 dpo P

is the total derivative operator.

28
Opk—1 (28)
1.13. Example. Consider the Gauss hypergeometric equation
t(1—2)y" + (c—(a+b+1)z)y —aby =0,
where a, b, c € R are constants. The corresponding function H has the form
H=z(1-2)ps+ (c—(a+b+1)x)p; — abpo.

Thus, the equation H = 0 gives a cubic surface in J? = R*. The characteristic vector
field of the equation has the form

d 0
Y =—x(1 —:E)E; +[(c+1—=(a+b+3)z)ps — abpl]a—pZ.

Singular points can be found from the equations

z(l—z) =0,
[(c+1)—(a+b+3)z]|p2 — (a+1)(b+1)p; =0,
H=0

and form two straight lines:
ll = {33 = O, G,bp() —Ccp1 = O, (a -+ 1)(b + 1)171 _ (C + 1)p2 — 0},

={z=1 abpo—(c—a-b-1)p =0, (a+1)(b+1)p1 ~(c—a—b—2)p; = 0}.

Therefore, solutions of the hypergeometric equation lose their smoothness and become
many-valued at points (z, po, p1, p2) that belong to the compliment of the straight lines
l1 and [y in the planes

II; = {z =0, cp1 — abpo = 0},

Iy ={z=1, (c—a—b—1)p; — abpy = 0}.

§2. GEOMETRICAL INTERPRETATION OF SYSTEMS OF DIFFERENTIAL EQUATIONS

In this section we shall apply the approach proposed in §1 to systems of differential
equations and give their geometrical interpretation.

2.1. Fix a natural number m > 1. A system of ordinary differential equations of
the k-th order with respect to a vector-valued function Y : R — R™ such that
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can be written as
Hy(z,Y,Y' ..., YR) =0,

Hy(z,Y,Y',...,Y(®) =0,

For each vector-valued function Y (z) and point z° € R consider the vector
Y50 = (2%, Y (2°),Y'(2”),...,Y®(2?)). (2)

We shall call it the k-jet of the function Y at the point x°. The set of all k-jets of
functions at all possible points is called the space of k-jets. We shall denote it by
JF(m). If m = 1 then J*(1) = J*. From (2) it follows that J*(m) is isomorphic to
the arithmetic space RY, where N = 1 + m(k + 1). As coordinates in J* we choose
the functions

1 m., .1 m, .l m
(x7p07""p0 ap17"'7p1 )"'apk;v"'apk; )7

where the coordinate function pé, it =1,....,m;5 = 0,...,k, gives the j-th order
derivative of the i-th component y;:
: L ‘
i([Y]50) = (v:)?(2°). (3)
The functions Hi,...,Hs involved in system (1) can be regarded as functions on

J¥(m). The system itself gives the submanifold £ in J*(m) defined by the following

relations: ) ) )
Hi(z,pg,... 08" 01,0155 Dps -, PR) =0,

: (4)
Hy(2, 06,085 DL, P3Py -, D) = 0.

If the functions Hi,..., Hs are functionally independent, then the codimension of £
in J*(m) equals s.
Solutions Y = h(z) of system (1) are curves of the form

LY = {p} = ha(@),..,P§" = him(z),...,
k= (h)P(@),...,pf* = (h)P(2)}  (5)

lying in &.

We shall say that a system of differential equations is determinate if codim€& = s =
m and underdeterminate if s < m.

Let us note that although this book is devoted mainly to determinate systems of
differential equations, this in no way means that underdeterminate ones are of little
interest. On the contrary, these systems can be found in non-holonomic mechanics and
in control theory and have very useful applications. However, their theory requires its
own presentation and somewhat different approaches.
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2.2. Construction of the Cartan distribution

C:a€ J*m)— Cla)

in this case is very similar to that in the case m = 1. It is the distribution of (m + 1)-
dimensional subspaces given by the Cartan differential 1-forms

wg = dpy — pide, ..., wi' = dpf — pdz;
wi = dp} — pydz,...,wi* = dp}* — pydz;
(6)
wllc—l = dpllc—l —pidl', s 7w1::n—1 = deL—l —pZLdIL'

In addition, the following statement is true:

Proposition. Let L be a smooth curve in J¥(m). It has the form L%k) for a certain
smooth vector-valued function h(z) = (hy(x),..., hy,(x)) if and only if
(A) L is an integral curve of the Cartan distribution:

w§|L=0, i1=1,....,m, 7=0,...,k—1,

and
(B) L can be "well” projected on the z-axis.

2.3. We shall say that a point a € £ is regular if the tangent subspace T, and
Cartan subspace C(a) are transversal at this point; otherwise, we shall call it singular.
The restriction of the Cartan distribution to the equation £

l:ae&—lla) =T,ENC(a),

considered at regular points, determines a distribution of (m + 1 — s)-dimensional
subspaces.

In particular, in the case of determinate systems of ordinary differential equations
(we shall simply call them differential equations), the distribution [ is a directional

field.
The following vector field can be chosen as a generator of the directional field [:

d _ dH; 0
y=aAl 92 9
da;+%,:HJ dz oL

(7)

Here
O0H;

opt

A = det H : (8)
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||HU|| is the adjoint of the matrix H ‘ZH, ie.

Hii|| = ( det | ) 9
11 = (e 522 ) | 522 )
and
d 8 m 0 , O m 0
—- — ... — ... - 10
is the total derivation operator. The vector field Y is called characteristic.
Thus, a point a € £ is singular if and only if the following conditions hold:
dH aH, _
d—ml:O,..., dx —O, (11)
det H 2—1{’— =0.
P

As earlier, the fact that a solution passing through a point a € £ is regular means
that the characteristic vector field Y has a nonzero component along the z-axis, i.e.

A = det £0. (12)

’ OH,
opl;

2.4. Example. Consider the following linear system of differential equations

{wy’1+(1—$)yé+y1 =0,
(1—2)y; +zys +y2 = 0.

The corresponding manifold £ in the space J*(2) can be given by the equations

{fcp% + (1 —z)pi +pg =0, (13)

(1 —2)pi + zpf +p§ = 0.
Thus, £ is a 3-dimensional manifold diffeomorphic to R3. The functions z, p}, p? can
be chosen as coordinates in £.
Restriction of the Cartan forms
wy = dpg — pidx and wi = dp? — pydz
to &£ leads to the following differential 1-forms:

we = (p? — 2p1)dz — zdpy — (1 — z)dp?,

W = (pi — 2p})dz — (1 — z)dp; — wdp3.
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Although singular points a € £ can be found from relations (11), we shall do it using
the fact that the forms @ and w3 are linearly dependent at singular points.

The following determinants must be zero at all points where wg and @¢ are linearly
independent:
pi—2pi -

pl—2pf g—1| =PI 2)+pi(-1-a)

2

p1 — 2p3 117“1‘ 101 2
+z)+pi(—2+2x),

pl — 2p? — P1( ) Pl( )

—x x-—1
z—1 -z

‘ = 2x — 1.
Therefore, singular points are points (z,pg, b2, i, p?) such that

r=1/2, pl=0pi, p5=ps=—2pi (14)

Thus, the set ¥ of all singular points of the equation £ is straight line (14), lying in
manifold (13).

Since
0H,

op;,

T 1—2

det 1— o -

= det “

=2r — 1,

we see that condition (12) does not hold on the plane II given by the equations

1
T=1/2, po=p;=5(p —p).
Therefore, at all points a € IT\X, solutions of our system lose their smoothness and
become many-valued.

§3. COMPLETELY INTEGRABLE SYSTEMS OF
DIFFERENTIAL EQUATIONS AND DISTRIBUTIONS

In this section we shall consider the class of first-order partial differential equations
which are conceptually close to ordinary differential equations.

3.1. Consider a system of partial differential equations with respect to a vector-
valued function Y =Y (z1,...,2,), Y = (Y1, -+, Ym):

. .
a_iji:Hg(xla.--amnaylw"?ym)’ (1)

where : = 1,...,mn; 7 = 1,...,m. System (1) is called (completely) integrable if its

right-hand side satisfies the natural condition that mixed derivatives of the second

order be equal:
a2yj 82yj d ; d .
= = H = —f’ 9
Ox;0xy,  Oxp0x; de b dx; ® (2)
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where p 5 5 5
- H — 4+ ... gmn_—_
dmi 8$1 * ! 8y1 + + ¢ Bym (3)
Conditions (2) can be written more extensively as
OH] OH] oH]  oH] oH] oH]
o gl o gm Tl EyHl—k ... gn_—k 4
oxy  F oy * Oym O Oy Coom Y

3.2. Examples.

1. If n = 1, then conditions (4) are obviously satisfied. Thus, systems of ordinary
differential equations are completely integrable.

2. The system of differential equations

{

with respect to a real-valued function y = y(z1,22) is not completely integrable.
However, we will see it later that in spite of its apparent ineptitude this system plays
a significant part in theory of ordinary differential equations.

&
I

T2,
0.

Q

1

T

T2

3.3. Let us give geometrical interpretation of systems of form (1) in accordance
with approaches proposed in §§1,2.
Let J%(n,m) denote the space of pairs (z,y), where z = (x1,...,2,) € R™ and
y € R™. Each solution y = h(z) of system (1) determines the n-dimensional surface
in J(n,m):
Ly ={(z,y)ly = h(z)},

which is the graph of the function h(z).

According to the terminology introduced in the previous sections, we say that
J%(n,m) is the space of 0-jets of vector-valued functions. For an a € R™, we shall say
that the pair

[h]} = [a;the tangent plane to Ly, at the point (a, h(a))] (5)

is the 1-jet of the function h(x) at the point a.
A 1-jet [h]} can analytically be given by the value h(a) together with the values

a
of all possible first-order partial derivatives:

Oh,
8:02((1)’ i1=1,...,n; 7=1,...,m.

Therefore, from a geometrical standpoint, simultaneous differential equations (1) de-
termine a field of n-dimensional subspaces in J°(n,m):

E:(z,y) = E(z,y),
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which is called a distribution or differential system.

Conversely, let E be an n-dimensional distribution in J°(n, m) such that the projec-
tion of each subspace E(z,y) into the space tangent to the z-space at x is nonsingular.
Then E determines a system of differential equations of form (1). Indeed, the distri-
bution E can be given by choosing a basis in each F(z,y). Moreover, this basis can
always by chosen so that its projection into the space tangent to the z-space is the
standard basis

0 0

EEIP.',EE;.
Thus, as a basis of the distribution E we can choose vector fields of the form:
_ 0 1_0 o
441—-5};‘%}115ET+”"*‘EHP5@;,

(6)

lé] o ol
An::5E;+HH%EET+"“+Eﬂ?5;:.

Conditions for vector fields (6) to be tangent to the graph Ly, of a function y = h(z)
are as follows:

oh
—— =H" . . —=H"
01 ! oz, n
which is equivalent to simultaneous system of differential equations (1).
It is easy to verify that in this case conditions (4) are equivalent to the condition

that vector fields (6) commute with each other:

[Ai, Ar] =0 (7)
foralli,k=1,...,n.
Let us write vector fields (6) as
0 0
Ay = —+Hy,..., Ay = — + H,,
1 axl + 1, ) axn +

where

Then conditions (7) take the form of "zero curvature conditions”:

OH;  OHj
8$k 8xi

+[H;, Hi ] = 0. 9)
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3.4. Distributions can also be defined dually, by giving a set of differential 1-forms
annihilating a given distribution. In our case it can be easily seen that as a basis for
the space of forms of this sort we can choose the following ones:

0, =dy; — H%da:l ——e = H,lldacn,
(10)

Om = dym — H{"dx1 — -+ — H}'dzy,.

It is easy to check that the restrictions of forms (10) to the graph Lj of a function
y = h(z) vanish if and only if y = h(z) is a solution of system (1). This is exactly
what we mean when we write system (1) in the form of the Pfaff system:

01=0, ...,0m =0. (11)

We shall say that system (11) is completely integrable if so is the corresponding
system of form (1).

3.5. Proposition. Pfaff system (11) is completely integrable if and only if
df; NOL A Nbp, =0 (12)

forallj=1,...,m.

Proof. Conditions (12) are equivalent to the condition that each of the differential

2-forms dfy,...,df,, be a linear combination of 1-forms 64,...,60,,, i.e.
df; =vj, NOL+ -+, NOp, (13)
for all j = 1,...,m. Conditions (13) are in their turn equivalent to the condition that

these 2-forms vanish on each subspace E(z,y) of our distribution. It remains to make
use of the following well known formula

d0;(v1,v2) = v1(0;(v2)) — v2(0;(v1)) — 0;([v1, v2]).

It follows that for arbitrary vector fields v; and vy lying in the distribution, their
commutator [vy,vy] also belongs to the distribution (i.e. condition (9) holds) if and
only if df; vanishes on the distribution.

3.6. Examples.
1. Consider the following system of ordinary differential equations:

8£C =H (x7y)?
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where x € R and j = 1,...,m. The corresponding distribution is a directional field
(z,y) — E(z,y) such that E(z,y) is the straight line spanned by the vector

0 0 0
A=—4+H' —+...4+ H"—.
8w+ 0y ot OYm

This is the classical correspondence between vector fields and differential equations.
The corresponding Pfaff system has the form

0, =dy, — H'dz =0,...,0m = dyy, — H™dz = 0.

2. Recall the system of differential equations from example 3.2.(2). As a basis of
the corresponding distribution we choose

0 0 0
Al—a—xl-i-ivza—y- and Ag—a—m.

The corresponding differential 1-form has the form
0= dy — $2d$1. (15)

Note that we have obtained nothing but the Cartan distribution (y < po,z2 <
p1,T1 <> x9). It is called the standard contact distribution in R3(= J1).

§4. DISTRIBUTIONS

As we saw in previous sections, the concept of a distribution is one of the most
useful concepts in theory of differential equations. In this section we shall give basic
definitions and results connected with distributions.

4.1. Let M be a smooth manifold of dimension m+n. A distribution (or differential
system) on M is a field of m-dimensional subspaces:

E:xeMw— E(x)C T,V

such that F is a smooth mapping of M.

Here the fact that F is smooth means that for any zg € M there exist a neighbor-
hood O of z¢g and m smooth vector fields Aq,..., A,, defined on O such that at each
point z € O vectors A;(x),..., Ay (z) form a basis of the subspace E(z).

The number m is called the dimension of the distribution E and is denoted by
dim F. The number n = dim M —dim F is called the codimension of E and is denoted
by codim F.

We say that a vector field A on M lies in a distribution E if A(x) € E(z) for all
x e M.

In the sequel, in order to locally define a distribution F, we shall use two methods.
Firstly, E/ can be defined by a set of m vector fields Ay, ..., A, such that the vectors
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Aq(z),..., Apn(x) form a basis of the subspace E(z) for all points z of some neigh-
borhood O. Secondly (the dual method), it can be defined by a set of n differential
1-forms 64, ..., 0, linearly independent at every point z € O:

E(x)={ve T, M|#1.(v) =0,...,0,4(v) =0} (1)

In the first case we shall denote £ by F(A1,...,An), while in the second case by
F(01,...,0,).

4.2. A submanifold L C M is called an integral manifold of a distribution E if
T.(L) C E(z)

for all x € L.

This definition implies that the dimension of an integral manifold cannot exceed
the dimension of the distribution.

A distribution E is said to be completely integrable (or involutory) if for any point
x € M there exists an integral manifold L such that x € L and dim L = dim F.

4.3. Example. Let (z,v, z) be coordinates in R3(= J'). Consider the distribution
E = F(w) in R? given by the differential 1-form
w=dz — ydx. (2)

Each 1-dimensional integral manifold of this distribution can be written as a curve of
the form

L={z=u(t),y=y(t),z=2(t)},

where t € R is a parameter on L.
For all a € L we have T,(L) C E(a). This means that the form w vanishes on the
tangent vector v = (z(t),y(t), 2(t)) and therefore

w(v) = 2(t) — y(t)z(t) = 0.

~—

Thus, if we put

for arbitrary functions z(t) and y(t), we shall obtain a 1-dimensional integral manifold
(an integral curve) of the distribution E.

Let us show that E has no 2-dimensional integral manifolds. First we shall prove
it by direct calculations. So, assume that L is a 2-dimensional integral surface of
and let

.’L’:SC(S,t), y:y(s)t)7 Z:Z(Sat)

be its parametric representation, where s,t € R are parameters and the rank of the
Jacobian matrix ox By 2
J = ( ds ds  Os )
9z Oy Oz

bt ot bt
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equals 2.
From the condition that L be integral it follows that the restriction of the form w
to L equals zero. Thus

02 8 0z 0
0=wlp = dz(s,t) — y(s, t)da(s, t) = (gé - ya—i> ds + ('a’% - y5§-> dt =0

and therefore

0z or 0z ox

5 Vo @ Vot )
Using
%z 0%z
950t Otds’
we obtain oy or Oy ou
o osor 4)

Now, multiplying equations (3) by %% and % respectively, we obtain

020y 020y

559t 2105 (5)

Conditions (4) and (5) contradict the assumption that the rank of the matrix J
equals 2. Thus, the distribution F has no 2-dimensional integral manifolds and there-
fore is not completely integrable.

This can be proved in a different way, using the fact that the restriction of the
differential 2-form dw to the tangent plane T, L must also be zero:

(dw) [ = d(w]r) =0.

But, by reasons of dimension, the plane T, L coincides with F(a). Since the 2-form
dw = —dy A dz is non-degenerate on F(a), we see that dw does not vanish on T, L.

This example, which is typical in some sense, shows that every distribution £ may
have integral manifolds of dimension less then dim F (for instance, integral curves).
However, not all distributions are completely integrable, i.e. may have distributions of
the maximal dimension equal to dim F.

Let us find conditions for a distribution E to be completely integrable. Assume
that E is given by differential 1-forms 6y,...,0,,, i.e. E = F(b1,...,0,), and let
L C M be an integral submanifold such that dim . = dim E. Then

(d0;)|L =d(0;]L) =0

forall j=1,...,m.
Thus, for any point a € L, the exterior differential 2-forms db1 4, ..., d0m o vanish
on the subspace

ToL=FE(a)={v€TeM|0;4(v)=0,...,0p.) =0}
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Therefore, they can be written as
djq = Aj1(a) Nb1g+ -+ Ajm(a) A O ola), (6)
where j =1,...,m and Aji(a),...,A\jm(a) € T, M are some covectors.

If E is a completely integrable distribution, then relation (6) holds for all points of
M and therefore the decomposition

dej,a:)\jl/\‘91+"'+)\jm/\9m, (7)
j=1,...,m, holds for certain differential 1-forms \;;. Conditions (7) can be rewritten
without using Aj;:

Ao NG A---NOp, =0 (8)

forall j=1,...,m.
Now assume that F is given by linearly independent vector fields Ay, ..., A,, ie.
E =F(Ay,...,A,). The formula
do(X,Y) = X (0(Y)) - Y(0(X)) - 0([ X, Y]) (9)
shows that the 2-forms df; vanish on the distribution E if and only if
df;(Ax,A;) =0

for all k,1 =1,...,n. But (9) implies that this is true if and only if the commutators
[Ag, A;] also lie in E, so that

n
[Ak, Al =D chiAs (10)
i=1
for all k,l =1,...,n, and some smooth functions cf,.

The following theorem shows that each of conditions (7), (8), (10) are sufficient for
FE to be completely integrable.

4.4. Frobenius’ theorem.

1st variant. A distribution E = F(0y,...,60,,) is completely integrable if and only
if conditions (7) (or equivalent conditions (8)) are satisfied.

2nd variant. A distribution E = F(A,...,A,) is completely integrable if and
only if conditions (10) are satisfied.

We shall first prove the following

Lemma. Let E = F(61,...,0,,) be a distribution satisfying conditions (7) and
(8). Suppose A is a vector field lying in E and {F}} is the one-parameter group
of translations along the vector field A. Then for all t € R the differential 2-forms
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Ff(601),...,F}(0m) vanish on E and therefore are linear combinations of the forms
O1,...,0m,.

Proof of the lemma. Consider the differential (m + 1)-forms

O,(t) =F(0;) NOL N+ A O,

j=1,...,m. Let us find their derivatives with respect to the parameter t. We have

de, d _, «

d—tJ = EFt (O;) NOLA - ANOpy = FF(La(0;)) NOLA -+ A Oy
But

La(0;) = AsdO; +d(AL0;) = Aad; = Xj1(A)01 + - + Njm (A) O,
Therefore,
doO;
where
Aji(t) = FY (A (A)).

Thus the forms ©1(t), ..., O, (t) satisfy simultaneous linear ordinary differential equa-
tions (11). Since ©;(0) =0 for all j = 1,...,m, from the unique solution theorem it

follows that ©,;(¢t) =0 for all j =1,...,m and ¢t € R. This concludes the proof of the
lemma.

Proof of the theorem. Let L C M be an integral manifold of the distribution E and
A a vector field such that A lies in E and is not tangent to L. Since by the lemma we
have

05 |Fzy = F7(05) |0 =0,

we see that the submanifolds L; = F}(L) are also integral manifolds of F. In addition,
for sufficiently small ¢ the set
L = U Lt
¢

is a smooth submanifold in M (see Fig. 10).

Fig. 10
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For a point a € L; consider the tangent space Ta(f). This space is the sum of
the space To(Ly) C E(a) and the straight line spanned by the vector A, € E(a).
Therefore, L is an integral manifold of the distribution FE.
Thus, if dim L < dim F, then we can construct an integral manifold of dimension
1+ dim L. Starting from, for instance, the trivial O-dimensional manifold, we can
construct an integral manifold of dimension equal to dim F.

4.5. Example. Distributions of codimension 1.
A distribution of codimension 1 can be given (locally) by one differential 1-form 6.
This distribution is completely integrable if and only if

dd NE = 0. (12)
For example, let M = R? and
0 = A(z,y,2)dz + B(z,y,2)dy + C(z,y, 2)dz.

Then

0B oC B 0A 0C
0z ox

deAe:[A(___

0B 0A
0z 0y

Thus, the distribution F(#) is completely integrable if and only if
0B oC 0A 0C 0B 0A
o) _ (¥ _ X 92 _92) . 1
A(@z 8y> <8z 8x>+0(8x 6y> 0 (13)

4.6. Remark. There is a connection between integral manifolds of distributions
and solutions of systems of differential equations considered in §3. Let E be a dis-

tribution on M. We can choose coordinates x1,...,Zn, Y1, .., Ym in some neighbor-
hood O of a point a € M so that for any x € O the restrictions of the differen-
tial 1-forms dxy,...,dz, to the subspace E(z) are linearly independent. The forms
dy1, ..., dym considered on the subspaces E(z), z € O, are linear combinations of the
forms dz1,...,dz,. Therefore, E can be given by forms 64,...,0,, of the form:

91 = dyl - Hll(xay)dxl - H7lz(x7y)dxn7

O = dym — H"(z,y)dx1 — - - - — H™ (2, y)dz,.

Now let L be an integral manifold of F passing through a point a € M and suppose
that dim L = dim E. Then in some neighborhood of a, L has the form of the graph
Ly, for some vector-valued function y = h(z). Conditions for L to be integrable:

Oj |Lh =0

are exactly differential equations (1) from §3, while conditions of Frobenius’ theorem
are exactly conditions (4) from §3.
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§5. JETS OF CURVES

In final sections of this chapter we shall give an invariant interpretation for basic
concepts of geometrical theory of ordinary differential equations on manifolds. This
will enable us to use language free of choice of local coordinate systems and to introduce
some new and useful structures in spaces of jets.

5.1. Let N be a smooth manifold of dimension n + 1. A curve in M is a 1-
dimensional submanifold L C N. Suppose that N can be written as a direct product
of a smooth manifold M and the set of real numbers R: N = M x R so that the
projection of L on R is a diffeomorphism of L onto some open domain O C R. Then
L is called a parametrized curve in M. (See Fig. 11 and 12.)

b MXR=N
N=S§"
Fig. 11 Fig. 12

The submanifold L determines the smooth mapping

z:0—-M

that takes a point t € O into z(t) € M so that (z(t),t) € L (see Fig. 12). In other
words, L is the graph of the mapping «.

5.2. Definition. Let L; and Lo be submanifolds of N, k£ a natural number, and
a € L1NLsy . We shall say that the submanifolds Ly and Ly have contact (or tangency)
of order k at the point a if for any smooth function f € C*°(N) vanishing on L1, the
function f|r, has zero of order > k + 1 at the point a € L.

Example. Let N be the plane with coordinates (¢,q). Consider the curves L; and
Lo given by

Ly = {(t,q)lqg = 0},
Ly ={(t,q)lg = h(1)},

where h(t) is a smooth function vanishing at the point ¢ = 0 (see Fig. 13).
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Fig. 13
All functions vanishing on L; have the form ¢- g(¢, q) for some g € C*°(N). There-
fore, in order to find the order of tangency of L and Lo, it is sufficient to put f = gq.
But ¢|r, = h(t). Thus, the order of tangency is determined by the order of zero of
the function h(t).

5.3. A condition for parametrized curves
z:0—-Mandy: 0 - M

to have contact of order k at a point t5 € O N O’ can be reformulated as follows:
Definition. The parametrized curves x(t) and y(t) have contact of order k at the
point to € O N O’ if for any smooth function f € C°(M), the function

' (f) =y (f): ONO =R,

has zero of order > k + 1 at .

Let tp € R. By ufo denote the ideal in C*°(R) consisting of all smooth functions
that have zero of order k at the point to. Then the curves z(t) and y(t) have contact
of order k at tg if and only if

= (f) =y (f) € pit!

for all functions f € C*°(M).

5.4. Note that the definition above has local nature. If functions h; and hs coincide
in some neighborhood of a point t5 € R and h; € u,’fo, then hy € ufo. Therefore,
local coordinates can be chosen as functions f in the definition above. Suppose that
ul,...,u™ are local coordinates in a neighborhood of the point z(ty) € M and the
curves z(t) and y(t) have the following form in these coordinates:
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y(t) s ut =y (t), ..., u" =y (t).
Then the curves z(t) and y(t) have contact of order k at the point ¢y € R if and only
if . . . .
(" () — y* (W) (1) = 27 (t) =y’ (t) € "

for all 7 =1,...,n. In other words, vectors
(2 (t0), -, 2" (t0), (&) (Fo)y - (&™) (b0 - ()P ko), ., (™) P (t0))

(yl (t0)> cee >yn(t0)7 (yl)/(t0)> sy (yn>l(t0)7 ceey (yl)(k) (t0)> ceey (yn)(k) (to)) (1)

coincide.

5.5. Definition.

1) Curves L1, Ly C N are said to be k-equivalent at a point a € L1 N Ly if they have
contact of order > k at this point. The k-equivalence class determined by a curve L
at a point a € L is called the k-jet of the curve L at the point a and is denoted by
[L]E.

2) Parametrized curves z : O — M and y : O’ — M are said to be k-equivalent at
a point tg € O if they have contact of order > k — 1 at this point. The k-equivalence
class determined by a curve x at a point £y € O is called the k-jet of the parametrized

curve z at the point ¢o and is denoted by [z]f .

5.6. By NF denote the set of all k-jets of curves on N at a fixed point @ € N and
by N* denote the set of all k-jets:

Nt = | JNE.
aeN

Now let J(ﬁo o) (R, M) denote the set of all k-jets [z]f of parametrized curves z on

M at a fixed to such that a = x(tp). By J*(R, M) denote the set of all k-jets of
parametrized curves on M:

TER, M) = | ) JE, o (R, M),
(t07a)

Let us consider these spaces for small numbers k. If £ = 0, then obviously
N° =N and JO(R,M) =R x M.
If k = 1, then each 1-jet [z]{, can be identified with the tangent vector &(to). Thus,
Jlso.ay (B, M) = To M

and therefore
JYUR, M) =R x T M.



SYMMETRIES AND INTEGRALS 33

Correspondingly, each 1-jet [L]. can be identified with a 1-dimensional subspace of
the tangent space T, N. Thus
N} =P(T, N)
is the projectivisation of the tangent space T, N, and
N'=P(TN)
is the projectivisation of the tangent bundle T N.

5.7. In order to describe the spaces of k-jets of curves for k > 2, consider the
natural projections

Tg,s : JE(R, M) — J*(R, M),
Th,s : Nk - N

generated by reduction of k-jets of curves to s-jets, k > s. For example,

(L) = [L];.

The spaces J*(R, M) and N*, for k = 0,1,2,..., can be naturally turned into
smooth manifolds. We shall begin with the space J*(R, M). Let u!,...,u" be local
coordinates in some neighborhood U of a point a € M. These coordinates determine
the local coordinates

tut, . u™ P Dhy e, DY
in the neighborhood 7'('];(1)((9 x U) of a point [z]f € J*(R, M). Here O is some interval
containing to and the coordinate functions p;'- are defined by

pi([=]f) = (=) ().
The rules for differentiation of composite functions show that the functions
tul,ph, i=1,...,m 5=1,...,k

give a local coordinate system on the set J*(IR, M), thereby turning J*(R, M) into a
smooth manifold of dimension n(k + 1) + 1.

In order to supply the space N* with a structure of a smooth manifold, let us note
that the manifold N can be locally represented as the direct product M’ x R. The
embedding

JE(R, M) — N,
corresponding to this representation, together with the smooth manifold structure in
JF(R, M") just described determine an atlas on the manifold N*.

Projections 7y s can be regarded as smooth fibrations with respect to the smooth
manifold structure described. Therefore, the manifold of k-jets can be imagined if we
successively describe fibres of the fibrations 7y, ,—1 for n = 2,3,...,k. With this in
mind, we shall digress for a while and consider a new object.
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§6. DIFFERENTIAL GROUPS

6.1. Let G denote the group of all diffecomorphisms of a manifold M. We shall
identify every diffeomorphism ¢ € G with its graph I'y C M x M, where

Iy ={(z,y) € M x My = ¢(z)}

Definition. Let ¢,% € G be diffecomorphisms of M such that ¢(a) = 1(a) = b for
some points a,b € M. We shall say that ¢ and 1 have contact of order k at the point
a if the submanifolds I'y, and I'y, have contact of order k at the point (a,b) € I'y NT'y.

In other words, diffeomorphisms ¢ and 1 of M have contact of order k at a point
a € M if p(a) = 1 (a) and for any smooth function f € C*° (M) the following condition
holds:

©*(f) —¥*(f) € pktt. (1)

Fig. 14

6.2. Definition. Diffeomorphisms ¢, € G are said to be k-equivalent at a point
a € M if they have contact of order > k at this point. The k-equivalence class
determined by ¢ at a € M is called the k-jet of the diffeomorphism ¢ at the point a
and is denoted by [¢]~.

6.3. The definition of contact of two diffeomorphisms has local nature. Therefore,
it is sufficient to check condition (1) only for coordinate functions. Let x1,...,z, be
local coordinates in a neighborhood of the point a and ¥, ..., y, local coordinates in
a neighborhood of the point b = ¢(a). In these coordinates the diffeomorphisms ¢
and v have the form

y1 = p1(z1,...,Zn) y1 = 1(z1,. .., Tp)
p=19q and ¢ =
yn:(Pn(xla-'-axn) yn:/l/)n(xla-"axn)

Putting f = y; in (1), we obtain

O™ (g — Pi)(a) _
ox° =0
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for all j =1,...,n and for all multi-indexes o = (071, ...,0.,) such that m < k. Thus,
the k-jet of ¢ at a can be identified with the vector

01 Opn O™
k __ J
[so]a—(sol(a),---,cpn(a),—axl a),... oz, (a),..., e (a),...),

where j=1,...,n, 0 = (01,...,0m), m < k.

6.4. Fix points a,b € M and by G’;’b denote the set of all k-jets [¢]* of diffeomor-
phisms ¢ such that ¢(a) = b.
The operation of composition of diffeomorphisms gives the pairing

k k k
Ga,b X Gb,c - Ga,c

taking a pair ([¢]¥,[¢]F) into [p oy ]E.
In particular, if @ = b = ¢, then this pairing turns the set G’;,a into a Lie group.
For small numbers k this group can be described easily.

So, if k = 0, then the group GJ , = {[id]3} is trivial. If k¥ = 1, then the definition

of a 1-jet [ ]l actually repeats the definition of a differential. Therefore, [(]! can be

identified with the differential
Psa: TogM — Ty M.

It is easy to check that each nonsingular linear transformation of the tangent space
T, M is a differential of some local diffeomorphism at the point a. Thus, the group
thz,a coincides with the general linear group GL(T, M).

6.5. In order to describe the group G’;,a for k > 2, consider the successive epimor-
phisms of groups
Thk—1 ° Glg,a — @Ig;l

and their kernels HP.

Proposition. For k > 2, the group HF is a connected commutative Lie group. More-
over, HF is isomorphic to the tensor product

SET* @ T,

where T, = T, M and S* T? is the k-th symmetric power of the cotangent space T%.

Proof. Let us first show that the group H’; is commutative. The condition that a k-jet
[©]* belongs to H¥ means that

(@]t = [id]E,

i.e. for every smooth function f € C*°(M)

(1—*)(f) € p. (2)
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If in addition
(1=9)(f) Cpeth,
then [ ]¥ is the identity element of HE.
Let [¢]F € H* and k > 2. Show that

[ oyla = [ o pla.
Note that the following relations are true

(@™ o) (f) =1 =¢") o (1-9") = (1 —¢") = (L = 97) + 1](f),
(@0 @")(f) =11 =9) o (1 - ¢)

|

|
=
|
S
»
|
—
r
<
=
+
:_'
o

Therefore
(prog" =9 o) (f) =1—¢ ) o (1 =9 )(f) — (L =9 o (1=¢")(f). (3
In addition,

1=e)(f-9) =FA=¢)9) +9(1=¢")(f) = (f =" (Mg - ¢ (9) (4
for all functions f, g € C*°(M).
From (4) it follows that if ¢ satisfies condition (2), then

(1 — ") (uh) € phti=?

foralll > 1.
Since [1]* € HE, we have

(1= o (1=¢")(f) € (1 =9 ) (ug) € pa" "
Since 2k—1 > k+1 for k > 2, from (3) it follows that elements [¢]* and [1)]¥ commute.
Further, relation (4) shows that the mapping
Xy :C®(M) = SFT;,  frs (1—¢")(f) mod pit
is a derivation and therefore can be represented as
X, =0, 0d,,
where 0, : Ti — S* T is a linear mapping and d, : C°°(M) — T} is the differential

at a point a. Thus, the mapping [p]* — 6, is a monomorphism of the groups HF and

Hom(T%, Sk T%).

Now show that [p]* — 0, is an epimorphism. Indeed, every linear mapping 0 :
T — S* T can be identified with an element of the space S* T} ® T, and therefore
with a k-jet of some vector field V on M. By {A;} denote the one-parameter group
of translations along V. Then

A;(f) = f=tV(f) mod g™,
Thus, if we put ¢ = Ay, then 6 = 0.

6.6. Definition. The group Gﬁ,a is called the full differential group of order k (at
the point a € M).
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Theorem. For k > 2, the full differential groups G¥ , are successive extensions of the
group G , = GL(T M) by commutative groups ]EI’c SET*®T,:

0—S?T;®T, — G2, =5 GL(T,) — 1

0— ST 0T, - 6, B3 62, 1

0— SPFT:@T, — Gk, ™55 gh-1 1.

6.7. As an illustration, let us describe coordinate representation of multiplication
in G2,

Let x1,...,zy be local coordinates in a neighborhood of a point a € M and z1(a) =

-+ =xp,(a) = 0. Then every 2-jet [p]? determined by a diffeomorphism ¢, p(a) = a,

can be given as
2 = (| 220|220
e 0x; 0z,0% s '
Then the following relation is true for i = 1,.

* a Z a 7
pr(xi) =) 90 Zaxlg 0)zizs mod p.

Therefore, for the composition [¢]2 o [¢]2 we have

[90; awz 0 1/)1 3 [l
T; E 8:6181:3 0)z;zs mod u
0, 890] 3% 82303'
53: (0 )&m ;9‘9‘% 0z,0 (O)zizs+
0Y; 890l s 3
ZSE,, 5'1753563 0 B2, (0)xrxy mod p.

It follows that

wlze ol = (|

0320
\

Note that if [p]2 and [¢]? belong to H2, then

612 = (180l | ot} 682 = (180l | 20l

3% BCPj 82¢z 8903
oz, 0 0x;0x, 0)+ 0x;0x 0 8 T, O
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and

02 ; 9?1,
2 2 _ , il !
[@]ao[w]a—<ll5w”> omaz, )t o, ”)

which is in accordance with proposition 6.5. (Here ¢;; is Kronecker delta.)

Remark. The group G2 , is the semidirect product of the group G , = GL(T,) and
the commutative ideal H2 = T, ®S? T}, with the natural action of G, , on HZ. How-
ever, for k > 2, (G’gjgl cannot be represented as the semidirect product of the groups
G , and HF™! (i.e. the corresponding exact sequence is not splitting).

§7. AFFINE STRUCTURES

7.1. Let us define an action of the full differential group (G';’a on the space of k-jets
NF. For [L]F € NF and [¢]F € GE ,, put

def
[ele([L]8) = [@(L)]h- (1)
Since the right-hand side of the equality is determined by the k-jet of the diffeomor-
phism ¢ and the curve L respectively, we see that the action is well-defined.

Proposition. The Lie group H'g acts transitively on fibres of the projection

For k > 2, the stabilizer of an element [ L]* € N* under this action is the subgroup
(Ann Ty L) o S* 1T @ Ty +S* T @ T, L,

where Ann'T, L C T}, is the annihilator of the straight line T, L and o is the sign of
symmetric product.

Proof. Tt is clear that the action of HF is transitive. Indeed, let L and L’ be curves
such that their (k — 1)-jets at a point a € L N L' coincide. Then there exists a
diffeomorphism ¢ such that ¢ coincides with the identity diffeomorphism up to the
(k — 1)-th order and the curves L and ¢(L’) coincide in some neighborhood of the
point a. Therefore, [ ]* € HF and [ ]5([L']¥) = [L]E.
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Let us now describe the stabilizer of an element [ L]¥ under the action considered.
Let [¢]¥ be an element of the stabilizer. Then the curves L and ¢(L) have contact of
order > k+1 at the point a. Therefore, for every function f € C'°° (V) vanishing on L,
the function ¢*(f) |1 has zero of order > k+1 at a. In terms of the operator X, (see
6.5), this is equivalent to the fact that the restriction of the symmetric tensor X, (f) to
the straight line T, L equals zero. Thus, X, maps AnnT, L into (AnnT, L)oS*~1T7

and therefore
X, € (AnnT, L) o S* ' T: @ T, +S* T, L.

Corollary 1. Let k > 2 and let [ L]* be an element of N¥. The fibre of the projection
Teg—1: NF — NF=1 is the affine space associated with the vector space

SET*L®V,,

where V, = T, N/ T, L is the space normal to the curve L at the point a.

Proof. The commutative group HF acts transitively on the fibre W;i_l([L] k=1). The
stabilizer of this action has been calculated earlier. Thus, the abelian group

SET*@T, /(Ann Ty Lo S* 1 T:@T, +S* T, ® T, L) ~ S* T: )V,

acts transitively and effectively on the fibre W,;}c_l([L] k=1,

Corollary 2. The fibre of the projection Ty 1 : J¥(R, M) — JE=Y(R, M) is the
affine space associated with the tangent space T, M.

Proof. 1t is sufficient to indicate the following isomorphisms:

Vo~T,M, T:L~R.

Remark. Actually, JE(R, M) is a vector space. As a base point, we can take the k-jet
of the singular curve R >t +—a € M.

7.2. Definition. The prolongation of order k of a diffeomorphism ¢ : N — N is
the diffeomorphism ¢®*) : N¥ — N* defined by

PO((L]5) = [w(D)]5-

The basic properties of prolongations are as follows:
(1) ¢ o p®) = (pory)®);

(ii) (id)®) = id;

(iii) for k& > s the diagram

K
Nk ‘/’_(_)) Nk
Tk,s ! ! Tk,s
N* — N
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is commutative.
These properties can be easily verified.

7.3. For the space of k-jets of parametrized curves consider diffeomorphisms of the
manifold R x M that preserve the structure of the direct product and parametrization.
More exactly, let ¢ : R x M — IR x M be a diffeomorphism such that ¢ is in agreement
with the projection R x M — IR and induces the identical mapping on the base R; in
other words, ¢ is a diffeomorphism such that the diagram

RxM & RxM

N /
R

is commutative. Then ¢ is called a gauge transformation.
It can be easily seen that every gauge transformation ¢ can be written as

@ (ta) = (¢ pa)),

where {¢;} is a one-parameter family of diffeomorphisms of M.

Gauge transformations act naturally on parametrized curves in M. If ¢ is a gauge
transformation and « : R D O — M is a parametrized curve, then by ¢(z) denote the
curve t — @i (z(t)).

Definition. The prolongation of order k of a gauge transformation ¢ is a diffeomor-
phism *) : JF(R, M) — J*(R, M) defined by

PP ([2]5) = [@(2) ],

Prolongations ¢(F) are restrictions of prolongations defined in the previous item to
the open subset J*(R, M) C (R x M)*. Therefore, they satisfy properties (i), (ii),
and (¢¢) from 7.2.

7.4. Let ¢ : N — N be an arbitrary diffeomorphism and ¢ : N — N a diffeomor-

phism such that [¢]% € HE. Then [poo go_l]f;(a) € H’;(a) and therefore, for k > 2,

the diffeomorphism (*) induces an affine transformation of fibres of the fibration
Tk,k—1-
Summarizing all observations of this section, we obtain the following result:

Theorem.

(1) Let k > 2. Then the fibration mj 1 : Nk — Nk-1 is an affine fibration and
prolongations ¢*) : N¥ — N of diffeomorphisms of N are affine automorphisms
of fibres of this fibration. If k = 1, then fibres of the fibration m o : N!' — N are
projectivisations of spaces tangent to N, while prolongations o) : N1 — N are
projective transformations generated by the differential o, : TN — T N.
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(2) For k > 1, the fibration 7y, —1 : J*(R, M) — J*~Y(R, M) is a fibration of a vec-
tor bundle, and prolongations ¢*) of gauge transformations are linear automorphisms
of this fibration.

7.5. As a larger group of transformations of the space J*(R, M), consider diffeo-
morphisms of R x M preserving fibres of the projection 7 : R x M — R. Every
diffeomorphism ¢ of this kind determines a parametrization (i.e. diffeomorphism)
A: R — IR such that the diagram

RxM % RxM

T l
R — R
A

is commutative. Thus, every ¢ is determined by a one-parameter family of diffeomor-
phisms ¢; : M — M, t € R, and a parameterization A : R — R:

®: (ta CL) = (A(t)a SOt(a))‘
In this case the prolongation ¢*®) of ¢ to the space J F(R, M) is defined by

B ([z(®)]5) = Lea(@ON () 5 4o
If k =1, then ¢! is determined by the differential ¢,
D ([2()]i,) = (N (t0)) " ¢x,a(&(t0)),

where a = z(tp).

The results of items 7.3 and 7.4 are also true for these, more general, transformations
¢ and their prolongations.

§8. CARTAN DISTRIBUTIONS

8.1. Definition.
(1) Let L be a curve in N. The k-jet jx(L) C N* of the curve L is the curve

k(L) ={[L]a|Va € L}.

(2) Let © : O — M be a parametrized curve. The k-jet jx(z) : O — J*(R, M) of
the curve x is the curve in the space J*(IR, M) defined by

Jr(@) st [a(t)]7

8.2. In this section we shall describe the basic structure on the space of k-jets of
curves, namely, the Cartan distribution, which will allow to distinguish k-jets of curves
among all curves in the space of k-jets.

Fix a point A € N* and suppose A = [Lg]® for some curve Ly C N. Consider
various curves of the form jj (L) passing through A, i.e. curves ji(L) such that [ L]F =
[Lo]k. By Ca denote the linear closure of the set of all tangent lines T 4 (jx(L)) to
curves like this.
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Definition. The space C4 C T4(N¥) is called the Cartan space. The distribution
C : A — C4 on the manifold N* is called the Cartan distribution.

We can similarly define Cartan spaces and distribution for the manifold J*(IR, M)
of k-jets of parametrized curves.

8.3. The Cartan distribution can also be described by means of special differential
1-forms.

Definition. A differential 1-form w on J*(IR, M) is called horizontal if w vanishes at
vectors tangent to all fibres of the projection 7y, : JF(R, M) — R.

By A}(J*(R, M)) denote the set of all horizontal 1-forms on J*(R, M). It is obvious
that this set is closed under addition and multiplication by smooth functions f &
C>=(J*(R, M)).

Note that if w is a horizontal 1-form on J*(R, M) such that for all parametrized
curves x in M

i) (W) =0, 1)

then w = 0. Thus, horizontal 1-forms are completely determined by their restrictions
to k-jets of parametrized curves.

8.4. To every smooth function f € C*(J¥~1(R, M)) we assign a horizontal 1-form
df € A{(J*(R, M)) by means of the following property:

A~

k()" (df) = d(je-1(2)"(f))- (2)
for all parameterized curves x : R — M.

Proposition. The I-form df is well-determined by relation (2).

Proof. The fact that d f is unique follows from the property mentioned at the end
of item 8.3. It remains to prove that d f exists. It is sufficient to note that every
nonvertical vector v € T4(J*(R, M)), i.e. a vector such that (m1).(v) # 0, can be
made into a vector tangent to a curve of the form ji(x), by adding some vertical (with
respect to the projection 7y ,—1) vector. But the forms standing in both sides of (2)
vanish at vectors tangent to all fibres of the projection 7y ,—1. Therefore, relation (2)

enables us to calculate the value of df at v and thereby determines the 1-form df.

8.5. Theorem. The mapping f — d f determines the operator
d: C®(JF 1R, M)) — Ag(T*(R, M))

satisfying the following properties:
1) d is linear over R;
2) d is a derivation:

A~

d(fg) = 5 p_1(f)dg + % 1_1(g)df- (3)
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Proof. We shall prove only the second property, since the proof of the first one is
absolutely similar. Let us restrict both sides of equality (3) to an arbitrary curve

(e (2))*(d(£9)) = djs_1 (f9) = a1 (Ndjt_1(9) + Ji_1(9)df_1 (f),
(@) (T p—1(F)dg + T k-1 (g)df) =
= ji_1(N)ir(@)* (dg) + jr-1(9)jr(z)* (df) =

= Jk-1(F)djg-1(9) + k-1 (9)djr 1 (f)-

We see that the restrictions coincide. Since the forms in both sides of (3) are
horizontal, from the property mentioned in 8.3 it follows that the forms coincide.

8.6. Consider the action of the operator d in local coordinates. Let
f=ftut, .. u™pl,..., 0% .. 0, .., D)

be a smooth function defined on J k_l(IR, M). (For the sake of convenience in the
sequel we shall write it as f = f(¢t,u?, p]).) From theorem 8.5 it follows that

> a ~ a "o a A .
df = %dt+z 8£.dul+z 8;;(1]9;-. (4)
% %, J

Thus, in order to calculate d f, it is sufficient to calculate the 1-forms dt, aAlui, cipg
Since all these forms are horizontal, they can be written in the form g(t,ui,p{ )dt,
where [ < k. Let us begin with dt and let

~

dt = A(t,u',p])dt.
Then from (2) it follows that
A(t,z'(t), (=)D (¢))dt = dt.

Therefore, A =1 and
dt = dt.

Further, if .
dp = B(t,u',p})dt,

then from (2) it follows that

B(t, ' (t), () (8))dt = d(a” (1)) = (a7 (1)) dt.
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Therefore, B = p},; and
dp; = pZHdt.

Similarly we obtain dut = pidt. Finally,

df = D(f)dt, (5)
where
+ ZP1 ;T Z Pl (6)
Ou 1,j<k—1 ! apj

is the operator of total differentiation.

8.7. Definition. Let f € C>(J*~!(R, M)). The following differential 1-form on
JF(R, M) is called the Cartan form determined by f:

A~

w(f) = dry 1 (f) — df. (7)

Proposition. Cartan forms vanish on curves of the form ji(z)

Proof. Since 7 j_1 0 ji(x) = jr_1(z), we have
(k@) (d(mf, g —1.f)) = d(ir(2)" (7} 1 ) = d(Gr-1(2)"f).
Now, using (2), we obtain
k(@) @() = (r())* (drt g1 f) = (e (2))*df =
= d(jr-1(z)"f) — d(je-1(2)"f) = 0.

8.8. Using representation (5) for the operator J, we see that Cartan forms can be
written in local coordinates as

Of (i of i
where
w(ut) = dut —pldt, ..., w(u™) = du™ — p}dt,

w(ph) = dp§- — phyqdt.

This calculation immediately leads to the following result:
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Theorem.

(1) The Cartan distribution on the manifold J*(R, M) can be considered as the
annihilator of Cartan forms w(f) for all f € C®(J*~Y(R, M)).

(2) Let q be a curve in J¥(R, M) that can be parametrized by the function 7y :
JF(R,M) — R. Then q is a k-jet of a parameterized curve in M if and only if all
Cartan forms vanish on q.

8.9. In conclusion, we shall give one more description of the Cartan distribution.
For this purpose note that every A = [z]f € J¥(R, M) determines the straight line
[(A) tangent to the curve ji_1(x) at the point A" = mj 4_1(A). The sum of I(A)
and the space Fs4/ tangent to the fibre W,c__ll(to) at the point A’ gives the whole space
Ta(J¥Y(R, M)) (see Fig. 16).

J/é

iﬂ'k,x-q
, k-1

t

Fig. 16

Consider the operator
Ua: Ta(J*(R, M)) — Fa
that takes a vector v € T4(J*(R, M)) into the projection of (T x—1)«(v) to Fas along
[(A).
Theorem. kerUy = Cy4.

Proof. Note that if dimM = n, then dimCy = n + 1 and dimkerUy = n + 1.
Therefore, it is sufficient to prove that C'y C ker Us. But the operator U, vanishes
on vectors tangent to curves of the form ji(z). Thus, Cq =ker Uy.

8.10. As an illustration consider the simplest case, that is k = 1. In this case the
fibre of the projection mg : M x R — M coincides with M. Therefore, Flyr = T, M,
where a = mp(A’) = 71 (A), and the operator Uy has the form:

Ua:Ta(TM x R) — Ty M.

Identifying T, M with the subspace of T 4(T M x R) tangent to the fibre of the pro-
jection TM x R — M x R, we obtain the operator field

A Uyg : T4(TM xR) — T4(T M x R)
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on the manifold of 1-jets.
It is immediate from the definition of U4 that

Ui =0 (8)

for all points A € J}(R, M).

Let us describe the operator field U in local coordinates. Suppose t,ul,...,u",
pi, ..., p} are coordinates in some neighborhood of a point A € J!(R, M). By theorem
8.9 the operator U4 vanishes on C'4. Hence

Uy = Zvi ® w(ut),
i=1

where vectors v1,...,v, are linearly independent. By definition
0 0
U = —
A (3%) opi’
so that
Ug = - @ w(u') 9)
or
"9 S
Ur=) + @ (du' —pidt). (10)
i=1 Op}

Since J1(R, M) = R x T M, we see that the operator field U can be written as
U=-v®dt+ U(),

where v is a vector field on the tangent bundle T M and U, is on operator field on
TM.

The vector field v is called Liouwville field. It can be described invariantly as the
vertical vector field on T M such that the one-parameter group A; of translations
along this field has the form:

Ap: (u,p) = (u,e’p).

The operator field Uy is called the tangent structure. These operators are also nilpo-
tent:
Ujp=0  forall BETM.

In contrast to the operator field U, kernel
Ker Uy p =Im Uy B

coincides with the space tangent to the fibre of the projection T M — M for all points
BeTM.
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§9.DIFFERENTIAL EQUATIONS

In this section we shall once more revert to basic concepts of differential equa-
tions and give their invariant interpretation. We shall consider only spaces of jets of
parametrized curves, since in the majority of cases extension of the basic concepts to
the case of spaces N* can be made automatically.

9.1. Definition.

(1) A system of ordinary differential equations of order k on a manifold M is a
smooth submanifold £ C J*(R, M) of codimension equal to dim M.

(2) A solution (or more exactly, a classical solution) of this system is a paramet-
rized curve x : O — M such that the image of O by the k-jet jx(z) : O — J*(R, M)
lies in &.

We shall say that the system £ is solvable with respect to the derivative of the highest

order if the mapping
Tpg1: & — JFHR, M)

is a diffeomorphism.

If £ is solvable with respect to the derivative of the highest order, then to every
point A € J¥~1(IR, M) we can assign its inverse image Ae¢ by 7k k-1 and therefore
the straight line [(A) = I(A) C C(A) (see item 8.9). Let X4 € C(A) be a vector on
[(A) such that the projection of X 4 on R is the vector field %. Then the system £ can
be identified with the vector field X on J*~!(R, M) lying in the Cartan distribution.

Thus, the following result is true:

9.2 Proposition. There is a one-to-one correspondence between systems of difter-
ential equations of order k solvable with respect to the derivative of the highest order
and vector fields on J¥~1(IR, M) lying in the Cartan distribution.

9.3. Let k = 2. A system of differential equations of order 2 solvable with respect
to the derivative of the second order can be identified with a vector field X on the
manifold J(R, M) = T M x R. This field can be written as

s,
X=—+4Y, (1)

where {Y;} is a one-parameter family of vector fields on the manifold T M. Since X
lies in the Cartan distribution, we have

U(X) =Uo(X) —v =0,

where v is the Liouville vector field on T M.

Thus, we can identify (see (1)) a system of differential equations of order 2 solvable
with respect to the derivative of the second order with a one-parameter family of vector
fields Y; on the tangent bundle T M, where {Y;} satisfies the additional condition

Uo(Y:) = v. (2)
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9.4. The operator field U on J(R, M) gives additional derivations of the algebra
of exterior differential forms. Consider the inner derivation

iy s M (JHR, M)) — A (JYR, M)),
where
(iUw)<X1, e ,Xj) = w(U(X1), cee >Xj) T+t w<X1> ) U(XJ)) (3)

for all differential forms w and vector fields X7,...,X; on J}(R, M).
If j =0and f € A°(JY(R,M)) = C°(J}(R, M)), then by definition put

iv(f)=0.

It can be easily verified that the following result is true:

Proposition. The inner derivation iy is a 0-degree derivation of the exterior algebra;
in other words,

(i) iy is linear over C*°(JY(R, M));
(ii) iy (w1 Awg) = iywi Aws+wi Aigwy for all differential forms wy, ws on J* (R, M).

Let d be the standard exterior derivation. By dyy denote the commutator of d and
the inner derivation 2:

dy =doiy —iyod: AN(JYR,M)) — AITH(JHR, M)).

Using the previous proposition, we obtain the following result:

Theorem. The operator dy is a 1-degree derivation of the exterior algebra; in other
words,
(i) dy is R-linear;
(11) dU(w1 N ’wg) =dywi N we + (—l)jwl Adyws if wq € Aj(Jl(]R, M))
In addition, d o dy + dy od = 0 and for an arbitrary function f the following relation
holds:
d (f) +du(f) Adt = 0.

9.5. Let us now describe the action of dyy in local coordinates. First, note that
ip(dt) =iy(du’) =0  and  igy(dp]) = w.

Therefore, for an arbitrary function f we have

, of . af . . .. df . .
Ao (f) = v (df) = i (d) + > (8—Lw(du3) ¥ Efjl.w(dpg))
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or
of
u(f) ; e (4)
Further, since d o dy + dy o d = 0, we obtain
dy (dt) = —d(dy (t)) = 0, dy (duw?) = —d(dyw?) = 0, dy (dp!) = —dw,. (5)

Relations (4) and (5) enable us to calculate the value of the operator dyy at an arbitrary
differential form.

9.6. In practice, most of differential equations of the second order appear as Euler-
Lagrange equations of a variational problem. In this item we shall give a brief descrip-
tion of how to obtain equations of this sort. Every function L defined on J!(RR, M)
can be regarded as a Lagrangian of a variational problem.

Consider the functional

b
Iia) o [ @) (L (6)

defined on the space of smooth curves in M. The problem will remain unchanged if
we add any linear combination of Cartan forms to the differential 1-form Ldt under
the integral sign.
The differential 1-form
0 =dyL + Ldt (7)

is called the structure form of the variational problem. The Lagrangian L is called
non-degenerate if the form 0, determines a contact structure in J* (R, M).

Consider the kernel of the differential 2-form df;, defined on the odd-dimensional
manifold J!(R, M):

Kerdfy = {X € T(J*(R, M))| X df, = 0}.

Its dimension is equal or greater than 1. If the Lagrangian L is non-degenerate, then
dim Ker df;, = 1.

By Zr, denote the vector field on J*(IR, M) such that Z;, forms a basis of Ker dfy,
and its projection on IR is (—%.

Thus, the vector field Z, is uniquely defined by the following conditions:

Z) ZL_IQL - 1;

i) Zpadfy = 0. )

The fundamental theorem of variational calculus can be reformulated as follows:

Theorem. Extremals of non-degenerate variational problem (6) coincide with trajec-
tories of the vector field Z;,. The vector field Z; determines a system of differential
equations of order 2 on the manifold M, that is a system of FEuler-Lagrange equations.
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CHAPTER 1II

SYMMETRIES

The problem of solution of differential equations or, what is the same, of finding
integral manifolds of distributions is a problem of transcendental complexity. The
idea of symmetry turns out to be very constructive in solution of this problem, as well
as in solution of any mathematical problem though. Such is the case in the study
of algebraic equations, where solubility (say, by radicals) of an algebraic equation is
determined by its Galois group or (what is the same) its symmetry group. A similar
situation takes place in the study of differential equations. However, in the latter case
it is possible to linearize the problem, i.e. to pass to Lie algebras of symmetries. We
are now going on to the fundamental concept of this book.

§1. SYMMETRIES OF DISTRIBUTIONS

1.1. Let E be a distribution on a manifold M. First, we give a preliminary definition
of a symmetry.

Definition. A symmetry of the distribution E is a diffeomorphism ¢ : M — M such
that

¢« (E(a)) = E(p(a)) (1)
for all elements a € M.

By sym E denote the set of all symmetries of E. Let us point out some obvious
properties of symmetries.

i) The set sym E is a group with respect to composition of diffeomorphisms.

ii) Let L C M be an integral manifold of the distribution E and ¢ a symmetry of
E. Then the manifold (L) C M is also integral. Moreover, if L is a maximal integral
manifold, then so is ¢(L).

Thus, symmetries enable us to construct new integral manifolds, starting from
already known ones.

Obviously, symmetries just defined have local nature. So, we can consider local
symmetries of a distribution, defining them as local diffeomorphisms ¢ : O — O’ such
that ¢ satisfies condition (1) for all @ € O. All local symmetries of a distribution form
a pseudogroup.

1.2. Assume that F is the distribution given by differential 1-forms wy, .., Wyy,:
E= ]:(wl,.. . ,wm).

In addition suppose that the covectors wi q, ..., Wmn,q are linearly independent at all
points a € M (or at all points of some domain, if local symmetries are involved).
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It is clear that condition (1) is equivalent to the following condition:

Flwi, ..., wm) = F(@*(w1),...,¢" (Wn)). (2)

Therefore, there exists a smooth matrix-valued function A : a — ||4;;(a)l,4,5 =
1,...,m, such that for all points a

det [|44;(a)l| # O

and
¢*(w1) = Annwr + -+ + AW,
. (3)
(W) = Apawr + -+ + Ay Wi,

Relations (3) are very convenient when we use local coordinates. Let q1,..., ¢, be
local coordinates in a neighborhood of a point a € M and gy, .. ., ¢, local coordinates
in a neighborhood of ¢(a), where ¢ : M — M is a diffeomorphism.

Then in these coordinates ¢ has the form:

q1 = Q1(q1, -+, qn),
(4)
@ = Qn(q1s- -, Gn)-
Suppose that the forms wy, ..., w, have the form
w1 = wi1(g)dqr + -+ + win(q)dan
(5)
W = W1 (9)dgn + - - + Winn(q)dgn
in a neighborhood of a and
wy = wyy (@)dgy + -+ + wi,(q)dgy,
(6)

Wi = Wy (q)dqy, + -+ + Wy (@)dgy,

in a neighborhood of ¢(a). Then relations (3) take the form
Z z] 8qk ZAleJk (7)
7 r

It can be written in matrix form as

aQ

Q/
dq

= AQ, (8)
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where Q) and ' are the following matrices:

Q = Jlwill, Q= fJlwgl-

In oder to avoid indeterminacy connected with the function A, we rewrite relations
(3) in the equivalent form:

QO*(wl)/\wl/\”'/\’LUm:O
(3)
O (W) ANWL A+ AWy, =0

Then relation (7) means that all (m + 1)-th order minors of the matrices

1 9Q;
ijjia—(hawlla-~~’wm1
B; = , J=1,...,m,
1 0Q;
Zj Wii gy » Wins - -+ Wmn

are equal to 0.

1.3. Examples.

1. Let E be the distribution on M = R? given by the 1-form w = dg (see fig.17).
Symmetries of this distribution are transformation of the plane preserving the family
of vertical straight lines.

2, E
A
Fig. 17
In this case relations (7) have the form:
091 _ 4 9% _
oq (ofip)

Thus, symmetries of the distribution E are transformations of the form:

©:(q1,q2) — ((QI(Q1)>Q2(Q1>Q2))'

2. Consider the Cartan distribution C' on the manifold J* = J*(R,R), i.e. the
distribution given by the differential 1-form

w = du — pdt.
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Symmetries of this distribution are called contact transformations. They have the
form

@ : (t,u,p) — (T((t,u,p),U(t,u,p), P(t,u,p)), 9)

wher
ere BU_P(?T_A
ou Ou ~ T

oU oT __
5 — P55 = —Ap,
U _ paT _

Substituting A from the first equation into second one, we obtain

aUu dT _
{ aw —Plar =0, (10)
ou or __
% — P35 =0,
where p 5 5
— -2 . pL
dt Ot + ou

is the operator of total differentiation with respect to t. In its turn, system (10) may
be rearranged to give a single relation on the functions U and T

dUOT QU dT _

dt dp  Op dt
assuming that
ou /oT
P=—/—. 12
o/ o (12)

3. Legendre transformations are contact transformations of J!(IR,RR) of the form:

(28 (tauap) = (_p)u _ptat)‘

Here T = —p,U = u — pt, P =t and obviously, conditions (11) and (12) are satisfied.

1.4. Relations (7) can be considered as a system of nonlinear differential equa-
tions on the functions ()q,...,Q,. In this respect it appears that the procedure of
finding symmetries of a distribution is hardly simpler than that of finding its integral
manifolds. However, a system like this has an advantage over an arbitrary nonlinear
system: it is a Lie system of equations, i.e. a system of nonlinear differential equa-
tions such that its solutions form a group. The problem of finding symmetries can be
linearized and simplified if we pass to infinitesimal symmetries.

Definition. A vector field X on a manifold M is called an infinitesimal symmetry of
a distribution F if the local one-parameter group ¢; of translations along X consists
of local symmetries of the distribution FE.

In the sequel we shall mainly use infinitesimal symmetries. For brevity sake, we
shall simply call them symmetries.
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By sym(E) denote the set of all infinitesimal symmetries of a distribution E. By
D(E) denote the set of all vector fields lying in a distribution E:

D(E) ={X|X, € E, Ya € M}.
If £ =F(wy,...,w,), then
D(E) = {X[wn(X) = - = wn(X) = 0}.

Theorem. The following conditions are equivalent:

(1) X € sym(E);

(2) Lx(w;) = 23"21 cijwj, © = 1,...,m, where E = F(wy,...,wn) and ¢;; are
smooth functions defined on M;

(3) LX(wi)/\wl/\---/\wm:O, izl,...,m;

(4) if Y € D(E) then [X,Y] € D(E).

Here by Lx we denote the Lie derivative with respect to a vector field X.
Proof.

1=2. Let X € sym(FE) and let ¢; be the one-parameter group of translations along
the vector field X. From relation (3) it follows that

o; (w;) = ZAij (t)w;.

Let us differentiate this equality with respect to ¢t and then put ¢ = 0. This leads us
to (2), where
8Aij
Cij = ~5; lt=0-

2<3. Both of the conditions mean that covectors Lx (w;) are linear combinations
of the covectors wq, ..., Wp.
3=-1. Consider the differential (m + 1)-forms
Ql(t) :cpf(wi)/\wl---/\wm, 1= 1,...,m.
Let us show that €;(t) = 0. For this purpose note that
084 (t)

g = (L (i) Awr - Awm =D 07 (€i)95 (1),
j=1

Thus the vector-valued function
Q(t) = (Ql(t)7 R Qm(t)))

is a solution of a homogeneous system of linear differential equations. Since 2(0) = 0,
we see that Q(¢) = 0.

2<4. By iz denote the operator of inner multiplication by a vector field Z. Since
iy (w;) =0 and

ix,y) = [Lx,iv],
we obtain
w;([X,Y]) = ipx,v)(wy) = [Lx, iv](w;) = —iy (Lx (w;)).
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Corollary 1. The set sym(FE) is a Lie algebra over R with respect to commutation
of vector fields.

Corollary 2. A distribution E is completely integrable if and only if

D(E) C sym(FE).

1.6. Examples. Let us describe symmetry algebras sym E for distributions con-
sidered in 1.3.
1. Here w = dq;. For a vector field X of the form

0 0
et B — b —_
X a(Q1’Q2)8q1 + (Qbﬂh)a(D
condition (3) of theorem 1.5. has the form:

Lx(w)ANw=daAdg = %dql A dgy = 0.

0q2
Therefore,
0 0 | Oa
symPE=<{a— +b—1|—=0
Y { 01 0Oqz| Oq2 }

2. Let w = du—pdt. Infinitesimal symmetries of the Cartan distribution C = F(w)
are also called contact vector fields. If X € sym(C) has the form

0 0 0
X——(La—u‘f"ba—p‘F'Ca,

then
Lx(w) ANw = (da — bdt — pde) A (du — pdt) =

( Oa 6c)du/\dp—l—(——a-g— aa—l—b+p%+pzac>du/\dt+

"o T 5 Tou du
(—pg—z +ng—;) dp A dt = 0.
Therefore, X € symC if and only if
(s -0 “
5t —p5; +p(5e —pae) —b=0.

Put
f=a—pc.
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Then from relations (13) it follows that

__of ,_9of _ of
c= By’ b= TR and a = f pap.
Finally,
of 0 0f 0 of., 0 1
—_— X — T — — —_— — —— ) ——— oo .
(@) = {x =L L U2 -2 fecrmm). o
By Xy denote the contact vector field corresponding to a function f = f(¢,u,p):

__9fo &0 . 0f 0

F= Op ot  dt dp Y p(?p)(?u' (15)

Thus, the set of contact vector fields is isomorphic to the space C*°(J!(R,R)) of
smooth functions on J(R,R).
Let us now describe a structure of a Lie algebra on sym(C') or, what is the same,
on C®°(JY(R,R)).
It is obvious that
Xoafitdafe = X + 22X,

for arbitrary functions fi, fo € C°°(J1(R,R)) and constants A1, Ap € R, so that
X =Xy €sym(C) — f € C°(J}(R,R))

is an isomorphism of vector spaces.
Define the Lagrange bracket [f, g] of two functions f and g by

(X5 Xo] = Xi,q) (16)
From (15) it follows that the Lagrange bracket of functions f and g can be written as

_ 09 _ 0f dfdg dgOf
1,91 = ou g8u+dt8p dt Op’ (17)

Relation (16) shows that C°(J!(R,R)) is a Lie algebra with respect to Lagrange
bracket (17).
Summarizing all that has been said in this example, we obtain the following result:

Theorem. Let C denote the Cartan distribution on J'(R,R). Every contact vec-
tor field X = Xy € symC has form (15). The mapping Xy — f establishes an
isomorphism of the Lie algebra symC onto the Lie algebra C*°(J'(R,R)), where
C>(J'(R,R)) is considered as a Lie algebra with respect to Lagrange bracket (17).

1.7. Let us now revert to description of symmetries for general differential systems.
Conditions of Frobenius’ theorem, reformulated in terms of symmetries as

D(E) C sym(E),

show that a completely integrable distribution E has rather many symmetries, which
can be found with the use of only linear algebra.

Note that symmetries X € D(E) let invariant each maximal integral manifold of the
distribution E. This allows to construct integral manifolds by induction on dimension.
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Definition. Let E be an arbitrary distribution and X a vector field such that
X € sym(E) ND(E).

Then X is called a characteristic vector field of the distribution E.

The property just mentioned still remains valid for characteristic vector fields of an
arbitrary distribution:

Proposition. Let X be a characteristic vector field of a distribution ¥ and L C M
a maximal integral manifold of E. Then L is invariant under the action of X.

Proof. Assume that the converse is true. Suppose that the vector field X is not
tangent to L and let ¢; be the one-parameter group of translations along X. Then
for sufficiently small t € R, the subset

L=|JeL)cMm

A

is an integral manifold. Indeed, at each point b € (L) the tangent space Ty(L) is
the direct sum of the subspace Tp(¢:(L)) and the straight line RX, (see Fig. 18).

X

Fig. 18
But ¢, is a symmetry and therefore

To(pe(L)) = (1)«(Ta L) C E(b).

Since X is a characteristic vector field, we have X}, € E} so that
Ty(L) = To(:(L)) + RX, C E(b).

On the other hand, for dimension reasons dim L > dim L, which is impossible since
L is a maximal integral manifold.

1.8. Theorem. (Criterion of characteristicity.) Assume that a distribution E
is given by differential 1-forms wy, ..., Wy, i.e. E = F(wy,...,wy). A vector field X
is characteristic for E if and only if the following conditions hold:

() wn(X)=-=wnp(X)=0 and

19
(ii)iX(dwj)/\wl/\---/\wmzo,j:l,...,m. (19)
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Proof. Indeed, condition (i) means that X € D(FE) and therefore
Lx (wy;) = ix (dw;).
Then condition (ii) is equivalent to the condition that X € sym(FE).
1.9. Conditions (19) can be considered as a system of linear algebraic equations in

coefficients of a vector field X. By Char, ¥ denote the solution space of this system
at a point a € M:

Char, E = {X, € E(a)|(Xqadw;) N A+ Awp, =0, j=1,...,m}.

Definition. The codimension of the space Char, F is called the class of the distribu-
tion E at the point a and is denote by cl,(E):

cly(E) = dim M — dim Char, E.

In the sequel we shall assume that the function
cl:a s cly(F)

is locally constant on M. Then the family of vector spaces a +— Char, E determines
the distribution Char F on M called the characteristic distribution. Its codimension
is called the class of the distribution E and is denoted by cl(E).

Theorem (E.Cartan). The characteristic distribution is completely integrable.

Proof. Let X and Y be characteristic vector fields of the distribution E. It is sufficient
to show that their commutator [X,Y] is also a characteristic vector field belonging to
E. Since sym F is a Lie algebra, we have [X,Y] € sym E. Moreover, since Lx (w;) is
a linear combination of the forms wn, ..., w,,, we obtain

w; ([X,Y]) = ix,y)(w;) = [Lx,iy](w;) = —iy(Lx(wy)) = 0.

1.10. Remark. Proposition 1.7 combined with Cartan theorem shows that max-
imal integral manifolds of the characteristic distribution Char E' lie in those of the
distribution E.

1.11. Examples. Let us describe the characteristic distributions for the distribu-

tions considered in examples 1.6.
1. Here F = F(w), w = dg;, and

sym(E) = {X - a<q1>5% + b(ql,qz)a%} .
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Therefore,
0
Char B = {X € sym(E)| w(X) = 0} = {x _ b(qwlz)%} |
2

Thus, Char £ = F.
2. C = F(w), where w = du — pdt, and sym(C) = {X}.
If X; € D(C), then
w(Xy) = f=0.

Thus, Char E = 0.

1.12. Let B = F(ws,...,wy). The class of the distribution F has a simple in-
terpretation: r = cl(E) is the least natural number such that the differential 1-forms

wi, ..., W, can be expressed in terms of r variables qq, ..., ¢,:
T
wj =ijs(q1,...,qr)dqs, j=1,...,m (20)
In order to prove this statement, let us choose local coordinates (qi,...,qn) so that
the vector fields 5 5
Xpp1=—,..., Xp=—
r+ 8‘1r+1 ) n 3qn

from a basis of the distribution Char E. Suppose that the distribution F is given by
differential 1-forms of the form:

w; = Z Aij(@)wy,

Jj=1
where i = 1,...,m, ||\ is a non-singular matrix, and
Lx (w) =0, s=r+1,...,n. (21)

Since Char E C E, we see that in the local coordinates (q1,. .., qn)

T
wi =Y wii(q)dg;.
j=1

In addition,

0
Z w”dqj, s=r+1,.

Therefore, equations (21) are solvable with respect to unknown functions A;;.

1.13. Proposition. Char E is an ideal in the Lie algebra sym F.
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Proof. Let X € CharE and Y € sym E. Let us show that [X,Y] € Char E. Indeed,
let w be a differential 1-form annihilating the distribution E. Since ixw = 0 and the
form Lyw also annihilates E, we have

z'[X,y]w = -—[Ly,ix]'w = ixLy’w =0.

1.14. By Mg denote the set of all maximal integral manifolds of a distribution F.
Each symmetry X € sym E generates a flow in Mpg: if {¢;} is the one-parameter
group of translations along the field X and L € Mg, then Ly = ¢i(L) € Mpg. In
addition, if X € Char E then L; = L. Therefore, characteristic symmetries generate
trivial flows in the solution space. With this in mind, elements of the quotient Lie
algebra

shuf £ = sym E/ Char E

are called shuffling symmetries, and the Lie algebra shuf F itself is called the algebra
of shuffling symmetries.

1.15. Examples. For distributions considered in examples 1.11, we have
~ 8 .
1. shuf £ ~ {a(ql)a—ql},
2. shuf £ =sym FE.

1.16 Example. Let (q1,q2) be coordinates on the plane R%. Consider the com-
pletely integrable distribution on R? given by the differential 1-form

w = dgs — F(q1, g2)dq1.

In this case, the characteristic distribution is generated by the vector field

0 0
— + F(q1,q2)—.
oq (QI qg)&lz

Therefore, shuffling symmetries can be identified with vector fields of the form:

0
g _—
X C?(Q1,Qz)aq2
The condition
Lx(w)ANw=0

is equivalent to the following differential equation with respect to the function G:

oG oG oF
—+F—-G—=0. 22
oq 0qz 0q2 (22)

Thus, the Lie algebra shuf F can be identified with the solution space of equation (22).
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§2. CONTACT GEOMETRY

In this section we shall consider the simplest distributions — distributions of codi-
mension 1. Each distribution of this kind considered locally has the form E = F(w)
for some differential 1-form w. The characteristic distribution Char E' can be described
as

Char, F = {X € E(a)|(X1dw) AN w = 0}.

In other words, Char, E C E, is the kernel of the 2-form Q, = dw|g,. Therefore, the
codimension of Char, E in F, is an even number, whereas cl,(E) is odd.

2.1. Definition.

(1) A distribution E on a manifold M is called a contact distribution if cl(E) =
dim M.

(2) A differential 1-form w on a manifold M is said to be contact if the distribution
F(w) is contact.

(3) A manifold M supplied with a contact distribution is called a contact manifold.

2.2. Examples.
(1) The Cartan distribution on J!(R,R) = R? is contact. Moreover, the form

w=dz —1ydry — - — Yrdzg

on R2*+1 is contact.

(2) Let N be an arbitrary 2-dimensional manifold. The Cartan distribution on the
manifold N is contact.

(3) A non-degenerate Lagrangian L € C*(J!(IR, M)) determines the contact form
0r = dy L + Ldt (see 9.6, chapter 1).

2.3. The condition for a 1-form w to be contact can be reformulated as follows: a
1-form w is contact if for any point a € M, the restriction of the 2-form dw to the
hyperplane E, is non-singular. Therefore, a contact manifold M is odd-dimensional:
dim M =2k + 1.

If dim M = 2k + 1, then the condition that dw be non-singular on F, is equivalent
to the condition that

w A (dw)F #£ 0.

Thus, a manifold supplied with a contact form is orientable.

2.4. Definition. Symmetries of a contact distribution are called contact vector

fields.

2.5. Let E = F(w) be a contact distribution and X a contact vector field of E.
Then
Lx (w) Aw=20 (1)

Lx(w)) = Axw (2)

for some smooth function A = Ax € C*®°(M).
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Example. Let M be an odd-dimensional manifold and w a differential 1-form on M.
The form dw is singular on M. Therefore, there exists a nonzero vector field Y such
that

Y idw = 0.

If w is a contact form, then this field is unique up to multiplication by a function. Let
us normalize the field Y to be equal to 1 at w. By X3 denote the field obtained. Then

X1adw =0 and X;.w = 1. (3)

Since
LX1 (w) = X adw + d(Xl_lw> =0,

we see that the field X7 is contact.

2.6. The next theorem is a generalization of results obtained in example 1.3(2) of
the previous section.

Theorem. Let w be a contact form on a manifold M. Then each contact vector
field X on M is uniquely determined by the function f = w(X). In addition, for
any function f € C*° (M) there exists a unique contact vector field Xy such that the
following conditions hold:

(i) w(Xy) = f,

(ﬁ) LXf (w) =X (f)w7

(iil) Xf1g = X5+ Xg,

(iv) Xgg = [ Xy + 9X; — foXn,

(v) X5(g) + Xo(f) = Xa(f)g + X1(9)f-
Here by X; we denote the contact vector field corresponding to the function f =1
and determined from relations (3).

Proof. Let X be a contact vector field on M satisfying condition (2). Let us write X
as
X =fX;+Y,

where Y is a field lying in the distribution E = F(w), i.e. w(Y) = 0. Using
w(X) = f and Lx(w) = X sdw + d(X 1w),

we obtain
Xadw = Aw — df.

But since fX;.1dw = 0, we have
Y adw = dw — df. (4)
The differential form in the right-hand side of (4) vanishes on X;. Therefore,

(Aw —df)(X1) = A= X1(f) =0,
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so that
A= X1(f). (5)

Then relation (4) takes the form:
Y idw =X (f)w — df. (6)
In order to prove the first part of the theorem, it remains to note that the mapping
E(a) 3Y + Y.idw € E*(a) is an isomorphism and therefore (6) uniquely determines
the vector field Y.

It is clear that relation (iii) is satisfied. So, we shall dwell on proving that (iv) and
(v) are also valid. From (4) it follows that

Xpadw = X1 (f)w — df.
Consider the values of both sides of the equality at a vector field X,. We obtain:
dw(Xy, Xg) = X1(f)g — X,(f)- (7)
By the same reasoning,
dw(Xg, Xy) = X1(g9)f — Xy (9)- (8)

Adding (7) and (8), we obtain (v).
By Z denote the right-hand side of relation (iv). Then

w(Z) = fg
and
Zadw = fXgadw — gXpadw = (fX:1(g) + 9X1(f))w — fdg — gdf = X1(fg)w —d(f9g),
which implies that Z = X,.

2.7. Definition. The function f = w(X) is called the generating function of the
contact vector field X.

2.8. Let f and g be functions defined on a contact manifold M. The Lagrange
bracket [f,g] of f and g is the generating function of the vector field [X ¢, X]:

[f, 9] = w([Xy, X,)). (9)
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Theorem. Lagrange bracket turns C°° (M) into a Lie algebra over the field R and
[f,9] = X;(9) = X2 (f)g- (10)

Proof. The fact that C°°(M) is a Lie algebra with respect to Lagrange bracket is
immediate from the definition. Let us check that formula (10) is valid. Indeed,

i, x,w = [Lx;,ix,](w) = Xr(g) — X1(f)g-

2.9. Theorem.[J.Darboux|. Let w and w’ be contact forms on a manifold M.
Then for any point a € M there exists a local diffeomorphism ¢ such that

p(a) = a and o*(w') = w.

Proof. Without loss of generality it can be assumed that
we = w,, and dyw = dgw’
Consider the one-parameter family of 1-forms
wy = tw' + (1 —t)w.

Then wy = w and w; = w'.
We shall be searching for a one-parameter family of local diffeomorphisms 1/, such
that ¢4 (a) = a, 1o = id, and

¥y (wy) = w. (11)
Differentiation of both sides of (11) gives
d . ] ,
23 ¥t (we) = ¥y (Lx,wy + ) =0, (12)

where w; = dwy/dt = w' — w and {X,} is a family of vector fields defined on some
neighborhood of a such that translations along X; in the time from ¢ = 0 to ¢t coincide
with ;. From (12) it follows that
Xt_ld'LUt + d(wt(Xt)) = . (13)

As in the proof of theorem 2.6, let us write the vector field X; as

Xy = fiXi+Y,
where w;(Y;) = 0 and X! is the contact vector field such that w;(X}) = 1. Then
relation (13) can be rewritten as

th_ld’wt =W — dft (14)
Let {fi} be a one-parameter family of smooth functions on M such that in some
neighborhood of the point a

(b — dfy)(X1) =0
or

X1(fe) = w(Xe). (15)
Thus, choosing functions f; and the vector field Y; so that fi(a) = 0, f; satisfy (15),

and Y} satisfies (14), we see that the vector fields X; vanish at the point a and the
family {1} satisfies condition (11). Therefore, 9] (w’) = w.
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Corollary. Let M be a manifold of dimension 2k + 1, w a contact form on M, and

a € M. Then it is possible to choose local coordinates (z,%1,..., Tk, Y1,---,Yk) In a
neighborhood of a such that z(a) = z1(a) = -+ = zx(a) = y1(a) = -+ = yx(a) =0
and

w=dz —y1de — - - - — ypdxy. (16)

Coordinate systems like this are called canonical.

2.10. System of linear equations (6) can be easily solved in canonical local coordi-
nates. This leads us to the following local description of contact vector fields:

k k
of o N 0
; 5y oy T T 2 bigy)g +Z du; az L

=1

In particular, X; = 3‘22-.
The Lagrange bracket [f, g] in canonical coordinates has the form:

dg af+z’“:(iag_ d 91,

[f:9] = 0z Yo, — dx; Oy;  dxz; Oy; " (18)
where
4a_90 .,.9
do; 0z oz

2.11. Definition. Let w be a contact form on a manifold M. A diffeomorphism
p: M — M is called a contact transformation if

¢ (w) = A(w) (19)
for some function A € C*°(M).

2.12. For the purpose of local description of contact transformations, consider the
model contact space R?**+1 together with standard contact form (16). Each smooth
function f(z1,...,zx) determines the k-dimensional submanifold

o af _of 2k+1
Lf—{Z—f(ZU)ayl (9:13 yk—axk}cﬂl{ )

Note that the form w vanishes on Ly. In addition, suppose L C R2k+1 g a k-
dimensional integral manifold of the distribution F(w) such that the functions
T1,...,% can be chosen as coordinates in L; then L has the form L = Ly, where
f = Z| L.

Further, note that if a vector field Y of the form

0 0
Y = —_
A1 ) 4 Ap— Em
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is tangent to an integral manifold L at a point a € L, then the form
Y idw = —(/\1d331 +---+ )\kdxk)

vanishes on T, L, since
(Yadw)|r, =Y i(dw|r) =0.

Therefore, if the forms dx;,,...,dz;, (i1 < iz <--- < i) are linearly independent on
T, L, then the forms
dil}il,. . ,diﬁis,dyis_H, e ,d’yik,

where (i1,...,%s,%s41,--.,0k) is a permutation of the indexes (1,...,k), form a basis
in T} L.
In other words, the functions
:I;’ila"' ,Zl]‘is,yi$+1,. - 7yik
corresponding to some permutation of the indexes (1,...,k) can be chosen as local

coordinates in a neighborhood of each point a of an integral manifold L (dim L = k).
Writing w as

w = d(z~— Tigp1Yisyr — _xikyik) —Yis dxil - _yisdxis +wis+1 dyis+1 +ee +xik dy'ik

and using the description of manifolds Ly, we see that an integral manifold L in a
neighborhood of a point a € L can be written as:

o) e}
Yip = %Lia---)yis = E%a
e} 0
Bions = G T = o (20)
— f gy SOf ., Of
Z = f yls+1 3y¢s+1 Yix, 8y¢k
for some smooth function f = f(zs,,..., %, Yi,11s--->Yix). The function f is called

the generating function of L at the point a.

2.13. Let us use the just-obtained local description of integral manifolds of a contact
distribution in order to describe contact transformations. For this purpose, we shall
establish the association between contact transformations and integral manifolds.

Consider a contact transformation

P ($1>--->$k73/1,~-,3/k,2) = (Xla"'7XkaY1a""Ykaz),
where X; = X;(z,v,2), Y; =Yi(z,y,2), Z; = Zi(z,y,2),i=1,..., k. Condition (19)

for ¢ to be contact has the form:

k k
—w + ¢*(w) = dZ — Z Y;dX; — \dz + Z Ayidz; = 0. (21)
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It can be interpreted as follows.
Consider the (2(2k + 1) + 1)-dimensional manifold R***3 with coordinates
(Z, X1, ., X, Y1, ., Y, A\, 2,21, .., Tk, Y1, - - -, Yk ) together with the contact 1-

form
K

0=dZ - (YidX; — \yidz;) — Mdz. (22)
i=1
Each contact transformation ¢ determines the (2k + 1)-dimensional submanifold
L¥ in R¥+3 given by the relations

Z=Z(xy,2), Y, =Y(z,y,2), X; = Xi(z,y,2), A\=XNz,y,2), i=1,...,k (23)

From (21) it follows that L¥ is an integral manifold of the distribution F(9).
The description of integral manifolds in terms of generating functions (see 2.12)
enables us to give the complete description of contact transformations of R2¢+1,

2.14. We shall dwell on the case k = 1 (R = J!(R,R)), which is most important
for us. Let us choose coordinates (z,y, z) such that the Cartan form has the form:
w=dz—ydzx,ie z=u,y=p,x =t1.

The complete description of contact transformations of J!(IR,R) in terms of gener-
ating functions can be divided into eight types in accordance with types of functions
that can be chosen as coordinates in the manifold L¥. (By S we denote the corre-
sponding generating function.)

1) (x1,x2,z3). Coordinates in L¥ are functions (X, z,z). The generating function
S = S(X, z,z) determines the following contact transformation:

oS oS /oS
Y =— =——/—, Z=5X .
ax Y ox/ 0z’ (X, 2,2)
2) (y1,z2,z3). Coordinates in L¥ are functions (Y, z,z). The generating function
S = S(Y, z,z) determines the following contact transformation:

05 = 08 _({.)_‘_S: Z:S_YE

X=—5v V= "5/ 5 oY

3) (z1,y2,z3). Coordinates in L¥ are functions (X, A, z). The generating function
S = S(X,\, z) determines the following contact transformation:

oS oS 408 B oS
4) (z1,x2,y3). Coordinates in L¥ are functions (X, z, —Ay). The generating func-
tion S = S(X, z, R), where R = —\y, determines the following contact transformation:
yoOS 08 L85, o L0s

X’ OR 9z’ OR’
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5) (x1,Y2,y3). Coordinates in L¥ are functions (X, A, —Ay). The generating func-
tion S = S(X, A\, R), where R = —\y, determines the following contact transformation:

oS oS oS oS oS
Y:"a-—)z, Z:_—é—)\_’ JJ——B—E, y——R//\, Z_S_/\B—/—\-_Rﬁ

6) (y1,22,y3). Coordinates in L¥ are functions (Y, z, —Ay). The generating function
S = S(Y, z, R), where R = —\y, determines the following contact transformation:

oS oS oS oS oS

7) (y1,y2,23). Coordinates in L¥ are functions (Y, A,z). The generating function
S = S(Y, )\, x), determines the following contact transformation:

08 08 4,08 B oS oS
8) (y1,y2,ys). Coordinates in L¥ are functions (Y, A, —Ay). The generating function
S =S(Y,\, R), where R = —\y, determines the following contact transformation:

a8 s as ., 05 08 S

Example. Consider the following generating function of type 1:
S(X,z,z) = Xz+1/22°
Then S determines the contact transformation
v:(z,y,2) — (:;E,z, 1/22% — z2/y).
Indeed,
©*(w) = dZ —YdX = d(1/22* — zz/y) + zd(z/y) = —z/y(dz — ydz).

§3. LIE FIELDS AND SYMMETRIES OF CARTAN DISTRIBUTIONS

Preparatory to considering symmetries of differential equations, consider those
transformations of spaces of jets that preserve the Cartan distribution.

3.1. Definition. A diffeomorphism ¢ of the space J*(R, M) (or N*) is called a
Lie transformation if ¢ is a symmetry of the Cartan distribution.

3.2. Let us consider some examples. Let M be the n-dimensional arithmetic space
R"™ and let k¥ = 1. Then J!(R,R") is the arithmetic space R?"*! with coordinates
(t,uly. .., u™, pl, ... pt). Suppose ¢ is a Lie transformation:

SO: (t)u17"'7un’pi”"’p§_l) = (T7U1)"'7UH’P]?-)"'7P{L)7 (]')

where T = T(t,u,p1), U = U'(t,u,p1), P} = P(t,u,p;) for i = 1,...,n. Then the
inverse images ¢*(w;) = dU* — P{dT of the Cartan forms w; = du/ — p}dt must vanish
on the Cartan distribution.
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Example 1. Transformation of variables. Consider a transformation of depen-
dent and independent variables

¢ (tul,. . u™) = (T(),UNu),...,U"(w)). (2)

Define P (t,u,p;) so that the corresponding transformation (1) is a Lie transforma-
tion. We have

¢*(w;) = dU’ — PJdT = %—Zd ‘- PIT'dt.
These forms must vanish if wy, = -+ = w,, = 0. Therefore,

gb*(w]) = ( aaUz pl Pi?T,> dt mod (wl,...,wn).

Thus, the relations
T =T(t)

UjZUj(t,ul,...,lu”) (3)
P{ = (1)1 3 8%pi
i
determine a Lie transformation.
Example 2. Point transformations. Consider an arbitrary transformation of the
space JO(R,R") = R"H1
¢ (tul,... u™)— (T,U,...,U™), (4)

where T'=T(t,u), U9 = U’ (t,u),j=1,...,n
Let us prolong ¢ to a Lie transformation. As in the previous example, we have

. - aU aUi
¢*(w;) = dU? — P{dT = (wd +Wdt—Pf—(_§?—ZPf

ou’ . oUY ; or ., oT
:< azpl-l- En —Plj< . wpzl-i-E))dt mod(wl,...,wn). (5)

By 4 denote the operator of total differentiation with respect to t:

dt
¢ _0 gl (6)
TR Proun
Then from relations (5) and the conditions ¢*(w;) = 0 mod (w1,...,wy) it follows
that .
;. dU7 /dT
Pl = — j=1,...,n. (7)

dt /| dt’
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The Lie transformation defined by (4) and (7) is called a point transformation.
Note that transformation of variables (1) is a partial case of point transformations.

3.3. Point transformations have a simple geometrical interpretation. As we saw in
chapter 1, every diffeomorphism ¢ : N — N can be prolonged to the diffeomorphism
»(k) . Nk — NF of the space of k-jets such that

p® (Je(L)) = je($(L)) (8)

for all curves L in the manifold N.

Tangent lines to k-jets ji(L) generate the Cartan distribution on N*. Therefore,
prolongations 1)(*) of diffeomorphisms ¢ : N — N are Lie transformations. We shall
call them point transformations.

It is obvious that the definition just given is in accordance with that given in the
previous item. It is sufficient to put N =R x R".

3.4. Theorem. Every Lie transformation of the manifold J*(R, M) (or N¥) is a
point transformation under the condition that dim M > 2 (dim N > 3).

We shall first prove a lemma describing the structure of maximal integral manifolds
of the Cartan distribution. In order to formulate the lemma, we give the following
definition:

Definition. An integral manifold S C J*(R, M) of the Cartan distribution is called
infinitesimally maximal if for every point a € S there does not exist any integral
manifold S’ such that a € S/, S’ is tangent to S at the point a, and T, S ; T, S

haman ¥

(]

Fig. 19

Lemma. Let dim M > 2 and k > 1. Then all infinitesimally maximal manifolds in
J¥(IR, M) are confined to the following ones:

(i) k-jets jx(x) of parametrized curves,

(ii) fibres of the projection 7y 1 : J*(R, M) — J*~1(R, M).

Proof of the lemma. Let S C J*(R, M) be a maximal integral manifold of the Cartan
distribution. Then

w(pi)]s =0 9)
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foralli=1,...,nand j =0,1,...,k — 1 and therefore
dw(p}) |s = 0.

But ’

dw; = —dpj 4 Adt.
Therefore, all differential 1-forms dp§-+1 (t=1,...,n;7=0,1,...,k — 1) are propor-
tional to dt on S. If dimS > 2, then this is possible if and only if dt = 0 on S.
Then from (9) it follows that dp} =0onSforalli=1,...,nand j =0,1,...,k—1.
Thus, S lies in a fibre of the projection 7y ;1 and since S is maximal, we see that S
coincides with the fibre. If dt |s # 0 and all forms dpz- are proportional to dt, then S
is one-dimensional and ¢ can be chosen as a coordinate on S and therefore S is a k-jet
of a parametrized curve.

Proof of the theorem. Let ¢ : J¥(R,M) — J*(R, M) be an arbitrary Lie transfor-
mation. This transformation preserves the class of infinitesimally maximal integral
manifolds. Since the dimension of fibres of the projection 7,1 equals dim M,
we see that ¢ preserves fibres of m; ;1 and therefore induces the transformation
@: JFY R, M) — JF~Y(R, M), satisfying the commutative diagram

JHRM) S THR, M)

Thk—1 1 L Tk k-1

P M) - TR M)

For a parametrized curve x : O — M, by z,, denote the curve defined by

k(xe) = ¢(jk())- (10)
Since for almost all parametrized curves x : O — M
P(ik-1(z)) = G(mk,k—-1(k(2))) = T k—1((Jk(2))) = To-1(T), (11)

we see that ¢ is also a Lie transformation.

Note that relations (10) and (11) allow to restore the transformation ¢ starting
from ¢.

The Lie transformation ¢ in its turn determines the Lie transformation

@ JEA(R, M) — TR, M)

and so on. Eventually, we arrive at the point transformation ¥ : M x R — M x R.
Using (11) and (10) in consecutive order, we obtain ¢ = 1),

3.5. Let us now describe Lie transformations of the space J*(IR, M) under the
condition that dim M = 1. There are two possibilities: either M =R or M = S'. We
shall go into detail only on the first case, for the second one is very similar.

Note that theorem 3.4 is no longer valid for M = R. Indeed, the Cartan dis-
tribution on J!(R,R) is a contact distribution and Lie transformations are contact
transformations of R?® = J1(IR,R). The fact that not all contact transformations are
point transformations follows from the description of contact transformations of R3
given in the previous section.

Let us make some simple observations.
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Lemma 1. Let F € C*®(J*(R,R)) be an arbitrary function. Then

dF oOF
dF = (Edt + 3_17kdpk> mod (w(po), - .-, w(Pk-1)),

where

4o, 0
dt Ot pl(‘?po pk@pk—1

is the operator of total differentiation.

Lemma 2. Let ¢ : J¥(R,R) — J*¥(R,R) be a Lie transformation of the form:

v (t,poy-..,pk) — (T, Po,...,Pg).

Then
dp; ., dT _ ap; dT
da  UtYar T dp, T Ndp

forall j=0,...,k—1.

0 (12)

Proof. Lemma 2 follows from Lemma 1, while the latter follows from the following
relations:

dpj — pj+1dt mod (w(po), ce ,w(pk_l)), ] = 0, N ,k‘ - 1.

Let us now show that if k£ > 2, then gTq; = 0. Indeed, if the converse was true, the

functions (¢, po, .. .,pk—1,1) could be chosen as (local) coordinates in the domain of
JF(R,R) where g—ka— # 0. Then relations (12) would take the form:

dP; OP;

‘E:t—:O, Pj-l_l:a_T’ ]:O,,k—l (13)

Using the relations

{d a}_ Opy

dt’ T |~ 8T dpj_,
and d 0 0 0 0
[_’—_:|:_ - ) =0,...,k—-2,
dt’ Op; Opj—1  Opj Opk—1
we obtain
d 0 _ 0 oP;
(% o7) (Bi) = —FF 555 =0,
d 98 __or _
[E‘:’ 61)3] (PJ) - _3ps—1 -
ap; _ 9F _
a — ot —
which contradicts the fact that the functions T, P, ..., P, are functionally indepen-

dent.
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Therefore,

oT OP;

— =0, =—1=0, j=0,1,...,k—1.

Opk Opk g
Thus, a Lie transformation ¢ determines the Lie transformation @ : J*~}(R,R) —
JF~1(R, R), satisfying the commutative diagram

JER,R) 5 JR(R,R)
! ! :
JFHR,R) — JHR,R)
@

Proceeding as in the proof of theorem 3.4, we eventually arrive at a contact transfor-
mation 1 : J*(R,R) — J1(R,IR). Moreover, the following result is true:

3.6. Theorem. All Lie transformations of the space J*(R,R), k > 2, are prolonga-
tions of contact transformations of the space J'(R,R). In addition, if ¢ : J*(R,R) —
JY(R,R) is a contact transformation of the form

'9[) : (tap07p1) = (T7 P07P1)7
then its prolongation ®*) : J*(R,R) — J*(IR,R) is defined by
(t7p07p1a ce 7pk) = (T7P07P17 cee 7Pk)7

where P T
I /= j=1,...,k—1

P‘ —_
T ) e

Example. The prolongation of the Legendre transformation

¢ : (t,pOapl) = (p17p0 - tp1> —t)
to the Lie transformations of J3(IR,R) has the form:

1 ps
¢(3) : (tap07p1ap2ap3) = (Pl,PO - tpl) —'t, —— ___3'> .
b2 (pz)

3.7. An arbitrary Lie transformation of the space J*(IR,R™) can be given by for-
mulas analogous to formulas (12). Let

v (tpg, ... ) — (T, PY,..., P
be a point transformation of the space J°(R,R"™) and
v (t,ph) = (T, P)), i=1,...,m; j=0,...,k, (14)

its k-th prolongation. In order to find the functions P}, we shall make use of the
following result, analogous to lemma 1 from 3.5:
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Lemma. Let F € C®(JF(R,R™)) be an arbitrary function. Then

_(dF oF . 1 n
dF = (% + s apzdpk> mod (w(po),“'aw(pk—l))’ (15)
where d 9
di ot +ij+1W'
1,7 J
Since 5P
orT P;
~0 1 -0, si=1,...,n; j=0,1,....k—1
g =0 Gy =0 Si=Loom =01k,

from the lemma we obtain
(1/’( )) (w(pj)) = de - Pj+1dT =

dP? ; dr n
— (d_tj — Pj“%) dt mod (w(p(l)), o w(Pr_1))-

Therefore .
; dP; dT

Jl Ry |
Piy %/ @ (16)

Starting from the functions P} = Pi(t,pg,...,pR) and using (16), we can find Lie
transformation (14).

3.8. Let us now consider infinitesimal symmetries of the Cartan distribution.

Definition. A vector field X on the manifold of k-jets of curves is called a Lie field
if X is an infinitesimal symmetry of the Cartan distribution.

Description of Lie vector fields can be divided into two parts, just as the description
of Lie transformations.

Let dim M > 2. Suppose X is a vector field on the manifold JO(R, M) = R x M
and {1} is the one-parameter group of translations along X. Then its prolongation
{¢§’“) . JE(R, M) — J*¥(R, M)} is also a one-parameter group. By X(®) denote the
vector field on J*(R, M) corresponding to the group {wﬁk’}.

Definition. The vector field X %) is called the k-th prolongation of the vector field X.

We shall now describe the procedure of prolongation of a vector field in coordinates,
using the model M = R".
Every vector field X on J°(IR,R™) can be written as

_ % 8 1 A 8 n 7 0
X——A(t,po)a—FB (t,pO)apé +--+B (tvpo)gpg‘
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Then the k-th prolongation of X has the form:

X®) = At pb) 2 + > B 0

ot J 3p; ’ (18)

2,J

where i =1,...,n,j=0,...,k, and B} = B%.
Now find the functions B; Let {5} be the one-parameter group of transformations
along X:
s+ (t,py) = (T(s,t,00), Fo (5,1, 95)),

and {gagk)} the k-th prolongation of the group {ys}:
e 1 (t,05) = (T(s,t,0h), Pi(s, t,ph,))-

Since
T(s,t,p0) =t + sA + o(s),

Pj(s, t,pl) = pg- + SB; + o(s)

and therefore

ar| e,
dt|og 7 dt| AR
using (16), we obtain
i 0 i l . 0 dP; dT de , dA
ITLT Bs s:O( (5 7m)) = ds|,_, ( T YT

Thus, we obtain the following recursion equations for the functions B;:
i dBj i dA
BJ+1 T _p3'+1ﬁ (19)
B} = B!
wherei=1,...,n,5=0,1,...,k— 1.
3.9. Example. For the first prolongation X we have

, dB? dA dB® , OB i 0A
Bl:dt Pldt—( 218296)“171( Z l)_

l Po

oB! (OB.  dA . 04
~ o +(Z Mo 1dt> 2P

l 0

3.10. Now let M = IR. Suppose X = X is a contact vector field on the manifold
JYR,R) and {¢s : J(R,R) — J'(R,R)} the corresponding one-parameter group of
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contact transformations. By X}k) denote the vector field on J*(IR,IR) corresponding

to the prolongation {¢§’“) } of the group {¢s}. The field X}k) is called the (k — 1)-th
prolongation of X;.

Let us find the explicit form of X ](ck). Let X have the form

_0F0 [, OI\ D  (0f Of\®
A= Op, Ot <f p1p>3 +<3t+ Y9po ) Op1

and let
Ps - (t7p0?p1) = (T(87tap07p1)a PO(SJt)pO,pfl)) Pl(s)t)pO)pl))

be the corresponding one-parameter group, so that

of
T=t-— 0_pls+o( s),
Py =po+ (f —P1%> s +o(s), (20)

- af  of
Py =p + ((% +p18p >5+0(3)-

Let X}k) have the form:
k
af o of 0 of of 0 0
x® _ YS9 —_— B;—.
g 8p16t+<f pl@pl) 970 +<8t+p10p ap1+; i Op;
The components of the corresponding prolongation
(p.(sk) (t Po, - apk')'—)(T)PO))Pk:) (21)

have the form
P;=p;+Bjs+o(s), j=2,...,k, (22)

and can be found from recursive relations (13). Therefore,

0 _ 0 dpP; /[dT aB; of
B = 55 0 (Fi1) = 5 $:O< dt /dt) @ Pty (6 '
Finally,
dB af .
and o7 of
By = — +p17—

ot 8}70
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3.11. Example. For the first prolongation Xj(cz) of the contact vector field X, we

have
Cdjof . of of
B2_dt(8t+p18po>+ & <a )

o2 f o%f O*f of O f O*f 2O f
(8t2 2D TP g TP +pla 7 T2 g +p23p1)

3.12. Examples. In conclusion, let us give several examples of the most useful
contact vector fields.
1. Point vector fields are contact vector fields corresponding to functions linear with
respect to pi:

f = B(t’pO) - plA(t’pO)'

Here

0 0
X;=A=+B— — = —
+ +<8t oo 0t ) Plop,

Op1 .

OB OB DA\ _ ,0AY 0
ot " oo

The first prolongation of Xy has the form:

@ _ 49 pd (9B 9B 04N 504\ 0
X 8t+B(90+<8t 21\ o o) P ) 3
B PA_, 04 L 0B 0B, PA 04,
8t2 P15 81;2 D2 8t P14 8ta Do D2 7— apo pl 8ta D1Dp2 apo

n ,0°B 82A> 0
pl 8 — P apo 8]72
2. Translations with respect to t.

The vector field X = % corresponds to translations along the t-axis: (t,pg) —
(t + s,p0). The corresponding generating function has the form:

f=-p.
The first prolongation (as well as all subsequent ones) has the form:

0

(2) _
X =2 (25)

3. Translations with respect to pg.
The vector field X = 6%0 corresponds to translations along the pg-axis: (¢,pg) —

(t,po + s). The corresponding generating function has the form:

f=1
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The first prolongation (as well as all subsequent ones) has the form:

@ _ 9
Xf - 3170' (26)

4. Scaling (or similitude) transformations have the form:
(taPO) = (eas ta e,@s pO))

where a and (3 are constant numbers. The corresponding vector field and generating
function have the form:

0 0
X =at— _—
[ = Bpo — apit.
The first prolongation has the form:
@ oy D O D ,
Xy’ =atz + o o0 (8 —a)p1 oo (8 = 20)p2 0y (27)

§4. SYMMETRIES OF DIFFERENTIAL EQUATIONS

4.1. We can look at a system of ordinary differential equations of order k£ from two
standpoints:

i) external standpoint: it is a submanifold £ in the space J*(IR, M), where J*(IR, M)
is supplied with the Cartan distribution;

ii) internal standpoint: it is a manifold £ supplied with the Cartan distribution
C(€) of dimension 1.

From now on, we shall assume that £ is a regular system of differential equations;
in other words, at each point a € O, the subspaces T, € and C(a) are transversal and

C(€)(a) = C(a) N T4 &.

In accordance with these standpoints, we can consider two kinds of symmetries.

Definition. Let £ be a regular system of ordinary differential equations of order k.

(1) An internal symmetry of the system & is a transformation of the manifold £
preserving the Cartan distribution C(€).

(2) An external symmetry of the system & is a diffeomorphism ¢ of the manifold
J*(R, M) such that

a) ¢ is a symmetry of the Cartan distribution on J*(R, M),

b) ¢ maps the manifold £ in itself.

4.2. We are interested mainly in infinitesimal analogues of the definitions above.
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Definition.

(1) An internal (infinitesimal) symmetry of the system & is a shuffling symmetry
of the distribution C(£).

(2) A Lie vector field on J*(R, M) is called an external or classical (infinitesimal)
symmetry of the system & if it is tangent to the submanifold £ C J*(R, M).

In the sequel by symmetries we shall always mean infinitesimal symmetries.

By sym.(€) denote the Lie algebra of classical symmetries and by shuf(€) the Lie
algebra of internal symmetries.

It is obvious that restriction of the classical symmetry to the submanifold £ gives
an internal symmetry of £. Thus, we obtain the homomorphism of Lie algebras

s sym,(€) — shuf(€).

Elements of ker s¢ are called characteristics of the system &.

4.3. Example 1. The ordinary differential equation
Yy =F(ty), (1)
considered from the external standpoint, is the surface £ in J}(R,R) = R3 given by
p1 = F(¢,po). (2)

From the internal standpoint, differential equation (1) is the distribution on £ given
by the differential 1-form
w =dpo — F(t,po)dt, (3)

where (t,po) are coordinates on the surface &.
A classical symmetry of £ is a Lie vector field or a contact field of the form

RN AN S AN
Xp = 8p18t+<f Py >ao+<8t+18po>8p1

tangent to the surface £. The condition that X; be tangent to £ means that

_of,  of ofoF (.  Of
X¢(p1 — F(t,po)) = D +p 18p0 +3p1 5 <f 8p1) B =0

on the surface £.
Note that condition (4) is automatically satisfied for functions f of the form:

f =Xt po,p1)(pr — F(t, po))-

Since every function f(¢,po,p1) can be written as

f(t,po,p1) = g(t,p0) + A(t, po, p1)(p1 — F(t, po)), (5)



80 B. KOMRAKOV V. LYCHAGIN

using the fact that equation (4) is linear with respect to f, we obtain the equation for
g(t,po) describing classical symmetries of equation (1):

0 %) oF
_g +F(t,p0)—g— - g(t7p0)8_ =
Po

Bt o 0. (6)

This equation coincides with equation 1.16.(22) describing shuffling symmetries of the
distribution F(w) on £. Thus, the homomorphism ¢ has the form:

0
: X t,po)=—. 7
< Xy = gt )5 @
The module of characteristics is generated by the contact vector field Xy, where
fo = —p1+ F(t,po). The restriction of X, to &£ is the already-known characteristic
vector field of equation (1) (see 1.16):

0 0
o +F(t,po)a—p0-

Note that in this case s is an epimorphism.

Example 2. Let us consider several most popular contact symmetries of equation (1).
(See also 3.12.)

a) Suppose that equation (1) is invariant under translations along the t-axis. The
corresponding symmetry is the classical symmetry with the generating function f =
—p1. Substituting f into equation (4), we see that £ is invariant under translations
along the t-axis if

OF
— =0.
ot

b) Suppose that equation (1) is invariant under translations along the pg-axis. The
corresponding symmetry is the classical symmetry with the generating function f = 1.
From (4) it follows that in this case the function F' must satisfy the following condition:

oF _,,
Opo
¢) Suppose that equation (1) is invariant under scaling transformations. The cor-
responding symmetry is the classical symmetry with the generating function f =
Bpo — apit, where o and 3 are similitude exponents. Substituting f into equation (4),
we see that the function F' must satisfy the following condition:

OF OF
atﬁ +ﬁp08—po = (a - B)F.

This means that F' is a homogeneous function:

F(e**t, efs Po) = ela=h) F(t,po).
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Therefore, F' can be written as
F(t,p) = t(a—ﬁ)/ah(pot—ﬁ/a) (8)

for some function h = h(z).

d) Generating functions corresponding to point symmetries have the form f =
B(t,po) — p1A(t, po). If we write it in form (5), we obtain

9(t,po) = B(t, po) — F(t, po)A(L, po)

and

F(t,po) =g(t,po)/g‘2%dpo. (9)

This formula allows to give an explicit form of first-order differential equations having
point symmetries. For example, if a symmetry has the generating function g = e~ *Po,
the corresponding differential equation has the form:

ty' = (c—eW).

4.4. Let k > 2 and let £ C J¥(R,R) be a k-th order differential equation with
respect to a function y : R — R. In addition suppose that £ is solvable with respect
to the derivative of the highest order:

y(k:) = F(t’ y’ y/7 ce ’y(k_l)) (10)

Let us describe symmetries of equation (10). We shall start with internal ones.
The manifold & is given by

Pk = F(tap07 cee 9pk‘—1)~
The Cartan distribution on £ can be given by the differential 1-forms

wo = dpo — p1dt, ..., wk—2 = dpk—2 — pr—1dt,

(11)
wk—1 = dpg—1 — F(t, p)dt.

In this case the characteristic distribution coincides with the Cartan distribution and

therefore is generated by a vector field D. The projection of D on the t-axis does not

vanish. Let the functions ¢, po,...,pr_1 be coordinates on &, then the field D can be

written as 5

D——-i-ai—i- +a
— ot Copo " Okt

Since D is characteristic, we have

wo(P) = —p1+ap =0, ..., wg—2(D) = —pr—1+ar—2 =0,
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wg-1(P) = —F 4+ ap—1 =0.
Therefore, the field D has the form

0 0 0 0
D= = 4+ pia—+ + P +F 12
ot pl@po Pr Y Op_s Opr—1 (12)

and coincides with the operator of total differentiation of the equation.
For every shuffling symmetry we can choose a representative of the form:

0 0
X=oa 17 +az—+ - +ak1

ot Opo Op—1’
where av_1, ..., ax_1 are functions of (¢, pg,...,pr—1). Since shuffling symmetries are
considered up to summands of the form f(¢,po,...,px—1)D, we see that in each coset

there exists a unique representative of the form:

X =« 0 + 0 + + o
— N o1 —— e _ .
®dpo L opy " P

Consider the Lie derivative with respect to X at the forms w;, i =0,...,k — 2:
Lx(w;) = Lx (dp; — piy1dt) = dog — o 1dt.

Since the relation
dh =D(h)dt mod (wo,...,wk-1)

is valid for an arbitrary function h = h(t, po,...,pk—1), Wwe obtain
Lx(w;) = (D(oy) — ajy1)dt mod (wo,...,wk—1),
so that
a1 = D(ag), ag =D(ay) = D?*(ag), ..., ag_1 = D(ag_2) = D" ).

Let f denote the function ap. Then every internal symmetry of a k-th order differ-
ential equation is determined by f and has the form:

0
Opr—1 '

_ ;0 9 L ypk

(13)

The function f is called the generating function of the symmetry X;. Note that
there is an analogy with the case of contact vector fields; namely, the generating
function of X can be found from

f=wo(Xy). (14)
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We have so far used only the forms wy,...,wg_2. For the form wy_; we have
Lx(wk—1) = (D(ag—1) — X(F))dt mod (wo,...,wk—1)
Using (13), we obtain the equation with respect to f:

OF Dk—l(f) — . — @—D(f) — 3_F_ =0. (15)

_ kg
Le(f)=D0) Opr—1 dp1 Opo

Equation (15) is called the Lie equation, while the operator

OF peer _OF, OF

Lp=DF -
d Opk—1 Op1 Opo

(16)
is called the Lie operator.

The Lie equation is linear with respect to f. This means that its solutions form a
vector space over the field R. Moreover, this space can be turned into a Lie algebra if
we define a bracket (f,g) — [ f,g] on the solution space by

[ X5, Xg] = X541 (17)
From (14) it follows that
L R
1a1= 3 (P05e - Dozt ). (1)
i—0 i i

It is immediate from definition (17) that the bracket [,] truly turns the solution space
of equation (15) into a Lie algebra. The bracket [ f, g] is called the Jacobi bracket of
functions f and g.

Summarizing all that has been said in this item, we obtain the following result:

Theorem. Every internal symmetry of differential equation (10) has the form Xj
(13) for some solution f of the Lie equation. The solution space of the Lie equation
is a Lie algebra with respect to Jacobi bracket. A symmetry X; is the image of
some classical symmetry by the mapping s if and only if its generating function f is
independent of ps,...,pg_1, i.e. f = f(t,po,p1). In this case, the internal symmetry
Xy is the image of the contact vector field with the same generating function.

4.5. Let us now give several examples of how to find symmetries of second-order
differential equations.
We shall start with equations of the form:

v =9+ ¢o(y). (19)

Since these equations are invariant under translations along the t-axis, they always
have the symmetry with generating function f = p;. We shall find out when they
have at least two point symmetries.
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Generating functions of point symmetries have the form

f = B(t7p0) - plA(tapO) (20)
and satisfy the Lie equation:
D*(f) - D(f) - ¢'(f) =0, (21)
where 5 9 5
D= — — —
5 T Pigp T (p1 +90)3p1

Substituting (20) into equation (21), we obtain

PA (B PA L 0AN o [, 0A 0A OPA L, OB
o3t \ ok~ “otope oo b

Yoo ot a2 ' “otopo

0A OB 0°B 0B
+< Z(PE—{_SD(? +W-E_ /B>=0.

The left-hand side of the equation obtained is a polynomial in p;. Therefore,

.
8p0 =0
8°B 8% A HA
-2 2—— =0
o 22
—308ps ~ Bt 3t2 + 2atapo =0
8°B _ 0B _
| —205¢ +903p0 +57 — G —¢'B=0

From the first equation of the system it follows that
A(t,po) = a(t)po + b(t).
Substituting this expression into the second equation of the system, we obtain

’B
0 = 2a + 24’
8p0

B(t,po) = (a+ a’)pj + c(t)po + d(t)

for some functions ¢(t) and d(t). Then the third equation of system (22) reduces to
3ap = 3(a' 4+ a")po — 0" =" — 2.

Assuming that the function ¢ = ¢(pg) is nonlinear (the linear case will be considered

later), we obtain
a =0,

k—b' =V
= ——,

2
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where k is constant. The last equation of system (22) can now be written as
(epo +d)p' — (c—2b)p = (" —)po +d" - d'. (23)

The equation obtained is a first-order linear differential equation with respect to the
function ¢ = ¢(po). Here the variable ¢ can be considered as a parameter. Under the
condition that ¢ # 0, ¢ — 2V #, and b/ # 0, the general solution of equation (23) has
the form:

d 1-2(b"/c) o d d(¢’ — ) — c(d" — &)
o) = RO (m+5) 4TS (e D)+ LEDAL D) oy

where R(t) is an arbitrary function.

We must pick out those of functions of form (24) that are nonlinear with respect to
po and are independent of ¢. A function of form (24) satisfies these conditions if and
only if

R = a = const,

d
— = [ = const,
c

b/
1 —2— =~ = const,

c
=

5y = const,
d(c// _ C/) _ c(dl/ _ dl)
= t.
(e —2v) cons

From these relations we obtain

1—
c:—-a—(1—|~l~c)ekt, d=fBc, V= 7c,
2 2
where k = %7_-_;[ Eventually,
2y 42
= afpo + ) — L= 25

It remains to consider the cases excluded from the previous considerations. If ¢ =0
and b’ = 0, then ¢ is a linear function. If ¢ = 0, then the solution of equation (5) is
nonlinear:

w@@=a¥m—§ (26)

Thus, the following result is true:



86 B. KOMRAKOV V. LYCHAGIN

Theorem. Among all second-order nonlinear differential equations of the form
y' =y +o(y),
the following ones have a two-dimensional Lie algebra of point symmetries:
)y =y +aly+0) - e a By ER v #£L -3
i)y =y +aef¥—2 o BeR, B#0.

In addition, the following functions can be chosen as a basis of the space of gener-
ating functions for symmetries of these equations:

i) fr=mp1, f2=e"(p1 — Edpo), k= 57
it) fr =p1, fo=e"t(p1 — %)

4.6. Let & C J¥(R, M) be a system of differential equations on a manifold M,
dim M > 2. Assume that £ is solvable with respect to derivatives of the highest order.
Then £ can be identified with a vector field D on J*~!(R, M) lying in the Cartan
distribution. The projection of D on R is the field %. Therefore, D can be written as

B
D= +D, (27)

where Dg is a mp_1-vertical vector field, i.e. a vector field tangent to fibres of the
projection m,_q : J¥(R, M) — R.

The field D generates the characteristic distribution for C'(€). Therefore, shuffling
infinitesimal symmetries of the system £ can be identified with m_1-vertical vector
fields X on J*~1(R, M).

The condition that a vector field X be a symmetry is equivalent to the condition
that D and [D, X | be proportional. Comparing the %—components of these two vector
fields, we obtain the following result:

Proposition. Shuffling symmetries of the system & are my,_1-vertical vector fields on
JF1(R, M) satisfying the Lie equation

X =[X,Do], (28)
where X = [ 2, X].
Proof. 1t is sufficient to note that

[D,X] = [% + Do, X ] =X +[Do, X ].

4.7. Let us use the results of the previous section in order to describe (in local
coordinates) shuffling symmetries of the following system of differential equations:

p,lc:Fl(t,...,p;,...)
(29)

szF”(t,...,pé,...)
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where i =1,...,n, j =0,1,... k—1.
The vector field D can be written as

) .0 .0
Let
X = 1
2% Jap (31)

be a shuffling symmetry of system (29), where
Xi=Xit,...,p[,...), r=1,...,n, 1=0,1,...,k—1.

Then

. 0X; D
X_; ot op,

and

; ; 0 ; . OF" 1,
[Do, X] = (Do(X}) - XJ+1 — 4> | Do(Xi ) =D X — -
op op] | Opp_4

1,4 J i Tl

Therefore, the vector field X is a shuffling symmetry of system (29) if and only if

DX =X!,, i=1,...,n, j=0,....,k-2,

D(Xi_, = zx;ggg, i=1,...,n (32)
Put f* = X¢. Then from the first equations of system (32) it follows that
Xo=f" X{=D(f"), . =DI(fY), ..., Xj_y =D 1(fY).
Thus every shuffling symmetry can be written as
X;= ZDj(fi)% (33)

for some vector-valued function
f=0 M,

fr=fit,....,p},...), r=1,...,n, 5=0,1,...,k—1.
The function f is called the generating function of the symmetry X;.
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The rest of the equations of system (32) reduce to the Lie equations for f:

8F

D*(f1) - DYfT)=0, i=1,...,n. (34)

By Lr denote the matrix differential operator (the Lie operator) Ly = || L. ||, where

an
L = 8;;DF — 35
> 2 )

Then Lie equations (34) can be written in matrix form:

Lr(f') =0, (36)

where f! is the transpose of the row vector f.

The symmetries corresponding to solutions of system (36) form a Lie algebra with
respect to commutation of vector fields. This operation determines Jacobi bracket
on the space of generating functions: if f and g are generating functions, then their
Jacobi bracket is the vector-valued function [ f, g] such that its i-th component [ £, g ]’

has the form: g of
i lyger
[£,9] —Z(D(f) 57~ D0 )8]0) (37)

r,l
Thus, the following result is true:

Theorem. If £ is a system of differential equations resolved with respect to deriva-
tives of the highest order, then its shuffling symmetries can be represented as (33),
generating functions f satisfying Lie system (34). The solution set of this system is a
Lie algebra with respect to Jacobi bracket (37).

§5. LINEAR SYMMETRIES

In this section we shall consider linear differential equations with respect to func-
tions y: R — R

and their linear symmetries, i.e. symmetries preserving linear structure of the solution
space.

5.1. Consider first the differential equation & C J*(IR,R) given by

pe = F(t,po, ..., Dk—1)- (1)

Let us find a condition for a function f(¢,po,...,pr—1) to be a generating function of
a shuffling symmetry of £.
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Let {¢s} be the one-parameter group of translations along the vector field Xy and
let h = h(t) be a solution of (1). Then

ps(Jk(h)) C €.
Let ps(jk(h)) = jr(hs); then

hs = h + sfn + o(s),
hl =h' + s(Df)p + o(s),

A= = pb=1) 4 o(DFL ), + o(s),

where for a function G = G(t,po,...,pk—1) by G we denote its restriction to the
curve jr_1(h) : Gp(t) = G(t,h(t),...,RE=D ().

Thus, a function f = f(¢,po,...,pk—1) is a generating function of a shuffling sym-
metry if the one-parameter family of functions

hs == h + an (2)
corresponding to an arbitrary solution h(t) satisfies equation (1) up to o(s):
hE) — F(t, b, ..., KDY = o(s). (3)

5.2. We shall use observations of the previous item in order to describe linear
symmetries of linear differential equations.
Consider the linear differential equation

Ly=0 (4)
given by the operator
L=08"+a,()0"t + -+ ap(t), (5)

— 0
where 0 = B

Definition. Shuffling symmetries of differential equation (4) are called its linear sym-
metries if their generating functions f are linear:

f=01(t)pe—1 + - + bi(t)po- (6)
To a function f of form (6) we associate the operator A(= Ay) given by
A =0y (1)0% 4+ + by(t). (7)

Let us write the Lie equation for a generating function f in terms of the corresponding
operator A, using relation (3). But first prove the following result:
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Lemma 1. For an arbitrary differential operator
M = mg(t)0™ +mq (£)0" " + - + my,(t) (8)

of order n > k there exist differential operators N and R of order n — k and k — 1

respectively such that
M =NoL+R. 9)

In addition, the operators N and R are uniquely defined.

Proof. We shall prove this by induction on the order n of M. If n < k — 1, then it is
obvious that the operators NV and R exist. Assume that these operators exist for all
operators of order < n — 1. For an operator M of order n we have

M = (mo(t)d" %) o L + M;,
where the order of M; is not greater than n — 1. Then M; = Ny o L + R; and
M = (mo(t)0" % + Ny) o L+ R;.
Let us prove that N and R are unique. Suppose we are given two representations:
M =NioL+ Ry and M = Nyo L+ Rs,
where Ny # Ny and Ry # Ry. Then (N; — N3) o L = Ry — Ry. But the order of the

operator (N7 — N3) o L is not less than k, whereas the order of Ry — R; is not greater
than £ — 1. Therefore, Ny — N =0 and Ry — R; = 0.

Remark. It can be proved similarly that M can be written uniquely as
M=LoN+R.
Lemma 2. Let M be a differential operator such that
M(h) =0 (10)

for every solution h = h(t) of the equation L(h) = 0. Then there exists a differential
operator N such that M = N o L.

Proof. Using Lemma 1, write the operator M as M = N o L+ R. Then M(h) = R(h)
for all solutions h(t) and

R = Tl(t)ak_l —+ -+ rk_l(t).
Every solution h(t) can be uniquely determined by the set

ho = h(to), h1 = R (to), ..., hi—1 = h* D (to),
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where tg is an arbitrary point of R. Since
R(h)(to) = r1(to)hk—1 + -+ ri—1(to)ho =0

for all sets (to, ho, . ..,hk—1), we obtain 7y =0,...,7,_1 = 0.

5.3. Theorem. A differential operator A corresponds some shuffling symmetry if
and only if there exists a differential operator A such that

LoA=AolL.

Remarks. B
(1) The order of A, as well as that of A, does not exceed k — 1.
(2) The operator A is uniquely defined.

Proof of the Theorem. Let A be an operator corresponding to some shuffling symme-
try. Then
L(h+sA(h)) = s(LoA)(h) = o(s)

for all solutions h of the equation L(h) = 0. Therefore, (LoA)(h) = 0 for all solutions
h. Then from lemma 2 it follows that there exists an operator A such that LoA = AoL.
It is obvious that the converse is also true.

5.4. Definition.
(1) Let M be an operator of the form:

M =mg(t)0" + - +mp_1(t)0 + mn(t) (12)
The operator
M'=(=1)"0" omg + -+ + (—1)8 o mp—_1 + M, (13)
operating as follows
M*(h) = (=1)"(moh)™ + - - 4+ (=1)(mp_1h)" + mph,

is called (formally) adjoint to M.

(2) A differential operator M of form (12) is called self-adjoint if M* = M and
anti-self-adjoint if Mt = —M.

It is easy to verify that a self-adjoint operator always has even order n = 2r and

can be written as .

M(h) =) (f;(t)hl)V). (14)

§=0
Correspondingly, an anti-self-adjoint operator always has odd order n = 2r + 1 and
can be written as

M(B) = YIS ORD)5H 4 (1)) (15)
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Theorem.[J.Lagrange]. Let M be an arbitrary differential operator of form (12)
and u(t),v(t) two functions. Then

vM (u) — uM*(v) = Py (u,v), (16)

where e
PM (’LL, U) = Z (_1)j (ak—j—lu, aj (mn—kv))' (17)

k=1 5=0

5.5. Let V be a finite-dimensional vector space and A; : R — Hom(V, W) functions
defined on RR.
Consider the differential operator

M = Ap(t)0™ + -+ + An(t),
operating on vector-valued functions u : R — V. The operator
M= (=1)"0" 0 Al +--- + AL

operating on vector-valued functions w : R — W*, is called adjoint to M. Here by A®
we denote the operator adjoint to A in sense of linear algebra:

(Au,w) = (u, A'w)

for all u € V,w € W*, where <, > is the natural pairing of the spaces W and W*.

Theorem.[J.Lagrange]. For an arbitrary operator M and any two vector-valued
functions u : R — V,v : R — W* the following relation holds:

(Mu,v) — (u, M*v) = OPy(u,v),

where
k; _

[y

PM(U,’U) :Z

(=1)(0% 7 u, & (AL, ).
k=1j=0
Proof. 1t is easy to check that
k—1 ‘
(BO*u,v) — (u, (—1)*8*Bv) = 62(—1)j (9%~ u, 3 Btv).
§=0

It remains to apply this formula to every term of the operator M.

5.6. Examples.
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(1) Every anti-self-adjoint operator of order 1 has the form:

M(h) = (f(O)R) + fO)R" = 2f ()R + f'(t)h

or
M =2f(t)d + f'(t). (18)
(2) Every self-adjoint operator of order 2 has the form:
M(h) = (A (O) + fo(h = LA + fL(E)R + fo(t)h,
or
M = f1(t)0 + fi(t)0 + fo(?). (19)
(3) Anti-self-adjoint operators of order 3 have the form:
M(h) = (f(ORPD) + (HOR)D + foOR' + (fo(t)h) =
=2hh® +3f102 + (f + 2fo)’ + foh,
or

M =2f10° + 3f1h* + (fy +2f0)0 + fb. (20)

The corresponding Lagrange formula have the form:

(1) uM(v) + vM (u) = OPp(u,v), where Py (u,v) = 2fuv;

(2") uM(v) — vM(u) = 0Py (u,v), where Py(u,v) = f1(u'v —uw');

(3’) uM(v) + vM(u) = OPp(u,v), where Py(u,v) = 2f1(v"u — v'v" + wv”) +
f1(w'v + uwv') + 2 fouv.

(4) If M = Ap(t)0 + Ay(t) is a matrix differential operator, then M* = —9A§ +
At — ALD — (AL) + AL, Therefore, M is self-adjoint if W = V* and

Ab = — Ao, —AL + Ay = Al
so that A; = 1/2A{ + Bj, where B is symmetric, i.e. B; = B. Thus, the formula
M = Agd + 1/245 + C4, (24)

where Ag is skew-symmetric and C; is symmetric, gives a complete description of
self-adjoint operators of order 1. The corresponding Lagrange formula has the form:

(Mu,v) — (u, Mv) = 0Pp(u,v), (25)

where Py (u,v) = (u, Ajv).
If M is anti-self-adjoint, then A} = Ag and (A4f) — A} = A;. Thus, the formula

M = Agd +1/24} + C, (26)
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where Ay is symmetric and C; is skew-symmetric, gives a complete description of
anti-self-adjoint operators of order 1. The corresponding Lagrange formula has the
form:

(Mu,v) + (u, Mv) = Py (u,v), (27)
where Py(u,v) = (u, Ajv).

5.7. By II = II(L) denote the set of pairs (A, A) of differential operators of order
< k — 1 such that A and A satisfy conditions of theorem 5.3. Note that II(L) is a
vector space over R, and if (A, A) € TI(L), then (Af, At) € TI(L?).

In particular, if L is self-adjoint or anti-self-adjoint, then the operation of adjoining
operators generates the involution

(A, A) = (AY AN = (A A) (28)

of the space II(L). Thus, if an operator A corresponds to some shuffling symmetry of
the equation Lh = 0, then so does At. Using the involution just defined, we write IT

as a direct sum:
II(L) =11o(L) & 11y (L),

where

in other words,

Io(L) = {(A,-A") e TI(L)},

. (29)
(L) ={(A,A%) e TI(L)}-

Theorem. Let L be a self-adjoint or anti-self-adjoint operator. Then the set of
operators corresponding to linear shuffling symmetries of the equation Lh = 0 can be
written as the direct sum of the solution spaces of the following equations:

(Mg) : LoA=—A'o L, 30)
(II;): Lo A = Ao L. (

5.8. Let us indicate some algebraic constructions related to the questions under
consideration. Omitting the condition that operators A, A have order < k — 1, we
obtain a new space of pairs of operators. We denote it by ﬁ(L) The space ﬁ(L)
can be supplied with some additional algebraic structures. Let (A1, A;) € TI(L) and
(Ag, Ay) € II(L). Since

LOA10A22A10L0A2=A10A20L,

we have (A1 0 Ay, Ay 0 Ay) € II(L). Thus, we obtain multiplication in II(L), and this
operation turns II(L) into an associative algebra.
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If L is self-adjoint or anti-self-adjoint, the space ﬁ(L) is closed with respect to
involution (28) and, as before,

T(L) = Tho(L) + Iy (L). (31)

In addition, II; (L) is closed with respect to anticommutator:

_ - AroAy+Ay0A; AjoAg+ Ao
{(A]_,Al),(AZ,Az)}:( 1 22 2 1) 190 22 2 0O 1>’ (3)
whereas II, (L) is closed with respect to commutator:
[(Al,Al), (Az,AQ)] = (Al o Az — Az o Al,Al o Ag — AQ ] Al) (33)

Let (A1, Aq) € IIo(L) and (Ag, Ay) € II; (). Then formula (33) gives an action of a
Lie algebra on a vector space. Thus, i, (L) is a Lie algebra, i (L) is a Jordan algebra,
and the Lie algebra IIo(L) acts on II; (L).

Now let (A, A) € TI(L) be an arbitrary pair. The operators A and A can be written

as
A=NoL+ R(A),

A=LoM+S(A),

where the orders or R(A) and S(A) do not exceed k — 1. Since Lo A = Ao L, we
obtain

Lo(N—-M)oL=S5(A)oL—LoR(A).

If N # M, then the order of the operator standing in the left-hand side of the equality
must be greater than 2k. Therefore, M = N and

(R(A), S(A)) e II(L).
Thus, the mapping
(L) 3 (A, A) = (R(A), S(A)) € TI(L),

which is obviously an epimorphism, establishes a connection between ﬁ(L) and the
space of shuffling symmetries.

Example.[J.Dixmier]. The differential operator
A = 0% + (2% 4 2a)0% + 6120 + (t° + 20t® + 8t + a?)
commutes with the operator

L =085+ 3(t3 + a)0* + 18t20% + (3t + 60t + 45t + 3a%)0%+
+ (1815 + 18at? + 27)0 + (t° + 3at® + 33t* + 32> + 21at + o),
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where o € R is some constant number.
Thus, the equation Lh = 0 has a shuffling symmetry of order 4. Its generating
function has the form:

[ =pa+ (2t3 +202)py + 6t2py + (15 + 20t® + 8t + o) po.

5.9. Operators of the form
L=0*+f (34)

are called Hill operators. The function f = f(t) is called the potential.

Let us find linear shuffling symmetries of the equation Lh = 0. We shall first
describe the space II(L), using the fact that L is self-adjoint.

Let A = z + y0; then A' = (z — ¢') — yd and

LoA=(0"+f)(z +y0) =yd* + (¢ +2/)0" + (v + 22" +yf)d + 2" + fu,

AloL=(z—y —yd) (0 + f) = —yd° + (x —y)0* —yfo —yf' =y f + fu.
Therefore, if A € IIy(L), then Lo A+ Ao L =0 so that

2z + 1y’ =0,
22" + 4" =0,
" +2zf —yf —y'f=0.
From the first equation we obtain
r=-1/2y.
Substituting this into the last equation, we obtain
y" +4fy +2f'y=0. (35)
If A e II4(L), then LoA—Afo L =0, so that y =0 and 2’ = 0. Thus, A € I1;(L)
if and only if A(h) = ch for some constant number ¢ € R.
Consider equation (35). The corresponding operator

M =0°+4f0+2f (36)

is anti-self-adjoint. The solution space of the equation is 3-dimensional. As a solution
space of a Lie equation, this space is a Lie algebra with respect to bracket

[y1, y2) = y1¥5 — Y1v2 (37)

reduced from Jacobi bracket.
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Let {Y1,Y3,Y3} be a fundamental system of solutions of equation (35); in other
words, at some point £y € IR, the solutions Y7, Y2, and Y3 satisfy the following initial

conditions:
Yi(to) =1, Ys(to) =0, Ys(to) = 0,

Yi(to) =0, < Y3(to)=1, { Yi(to)=0, (38)
Y'(to) =0; L ¥2'(t0) =0; | ¥3'(to) = 1.

Commutators of these solutions are also solutions and from (35) and (38) it follows
that

[Y1,Y3](to)
[Y1,Y3](to)
[Ya, Y3](to)

1,[v1, Ya) (to) = 0,[Y1, Y2]" (to) = —4f(to),
0,[Y1, Y3]'(to) = 1,[Y1, Y3]" (to) = O,
0,[Ya, Y3]'(to) = 0,[Ya, Y3]" (to) = 1

Il

Il

Il

Therefore, for all ¢ € R we have

[Y1,Y2](to) = —Y1 — 4f(t0)Y3,

Thus, the solution space of equation (35) is isomorphic to the Lie algebra s[(2, R).
If f =0, then equation (35) takes the form:

yl// — 0.
The corresponding realization of s[(2,R) in terms of vector fields on R has the form:

2 tﬁ ltz 0
ot’ ot’ 27 ot
Note that a shuffling symmetry
Yy = )\1t2 + )\zt + Ag

of the Hill equation Lh = 0 belongs to s[(2,R) if and only if the potential f(¢) satisfies
the condition

W*f) =0,

so that
c

(A112 + Aot + \3)2

for some constant numbers ¢, A1, A2, As.
The relation f = cy~2, connecting the potential with symmetries, can be general-
ized if we consider an arbitrary relation

f=Hl(y) (40)

ft) = (39)



98 B. KOMRAKOV V. LYCHAGIN

for some function H. In this case, Lie equation (35) takes the form:
y" + 2y (yH' +2H) = 0. (41)
In particular, if

f:y"—Cla

where c; € R is a constant number, we obtain the following equation for f:
f"+6ff —2c1f =0. (42)

This equation coincides with the Korteweg—de Vries equation for travelling waves and
can be solved explicitly in terms of elliptic functions. Indeed, integrating (42), we
obtain

317 =2e1f = ¢y, (43)

where c; € R is a constant number. Multiplying both sides of (43) by f’ and integrat-

ing, we obtain
1

E(f’)2201f2+02f—f3+03, (44)

cs € IR being the integrating constant. From (44) it follows that

F(t) = =2p(t) + c1/3, (45)
where p(t) is the Weierstrass elliptic function with invariants

1 1 1 1
go = Co + 50%, g3 = —5¢3— —l—éclcz - ﬁc‘;’ (46)

Thus, Hill equations with potential f(¢) of form (45) have shuffling symmetries
corresponding to operators of the form:

A=(f-e)d—5f = (~2p(t) 310+ () (47)

Definition. A potential f(t) is called integrable if equation (35) has at least one
nontrivial solution.

Motivations for this definition can be found in chapter 3.
Consider equation (35) as an equation with respect to f(¢). Then we obtain

2(y2f)/ + y///y =0.

This implies that all potentials of the form
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where y(t) is an arbitrary function, are integrable. For example, putting y(t) =
asin(wt) + bcos(wt) in (48), we obtain integrable potentials of the form:

w c
/= Tt (asin(wt) + bcos(wt))?’ w,a,b,¢ € R (49)

If y(t) = ae* + be™**, then

2?2 c
ft) = T4 + (aeM + be—At)2’

\a,b,ceR. (50)

In conclusion, let us show a procedure that allows to obtain new integrable poten-
tials from already-known ones. For this purpose, we apply the Lagrange formula to
operator (36):

yM(z) +2M(y) = 0(y2" —y'2' +y"2 + 2fyz).

Putting z(t) = —y(t), for every solution y(t) we obtain
209" — (V') +2fy* =¢, ceR. (51)
This relation can be rewritten as
)" =3()* +2fy* =c.

Therefore, putting

3y 2
F=3(L) +5h (52)
we obtain the equation for y(t):
W*)" + fo(H) (") =0, (53)

This equation can be solved if fo(t) is an integrable potential.
Relations (52) and (53) enable us to construct new integrable potentials starting
from already-known ones. The procedure of construction can be described as follows.
1) Let fo(t) be an integrable potential and z(¢) a nontrivial solution of the Hill
equation
2"+ fo(t)z = 0.

2) Then the potential
1 3 7

f(t) = §fo(t) + g(;)z (54)

is also integrable and the operator

A=z0— -2 (55)

e
2K
3
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determines a shuffling symmetry of the corresponding equation.
If we start with the trivial integrable potential fo = —v?2,v # 0, then after the first
iteration we obtain the following integrable potential:

14 3 5 (cie?t —coe™ 2
f(t) - 2U + 8v (Clevt+026vt ) (56)

If fo =0, then we obtain potentials (39).

Remarks.

1) Note that finding symmetries of Hill equations or, what is the same, finding
solutions of equation (35) is equivalent to solving the Hill equations themselves. Thus,
we obtain a nontrivial correspondence between differential equations of order 2 and 3.

2) As a matter of fact, every anti-self-adjoint operator of the form M = 8% +
a(t)0+b(t) has form (36). Therefore, the solution space of the corresponding equation
M(h) = 0 is closed with respect to Jacobi bracket (37) and is isomorphic to the Lie
algebra s[(2,R). A slight improvement of this construction shows that this is also true
for every anti-self-adjoint operator of the third order.
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CHAPTER III

INTEGRALS

§1. INTEGRALS OF COMPLETELY INTEGRABLE DISTRIBUTIONS
1.1 Let E be a completely integrable distribution on a manifold M.

Definition.

1) A function H € C*®(M) is called a first integral of the distribution E if H is
constant on all integral manifolds of E.

2) A function H € C*®(J*(R, M) is called a first integral of a system of differential
equations £ C J¥(R, M) if the restriction of H to the manifold £ is a first integral of
the restriction C(&) of the Cartan distribution.

If E is given by differential 1-forms wy,...,wy, ie. E = F(wi,...,wn), then
H € C*®(M) is a first integral of E if

dH = Mwy + -+ + AW, (1)
for some functions A1,..., A, € C°(M). This condition can be rewritten without
resorting to functions Aq,..., \,:

dH Awi A -+ Awy, = 0. (2)
Suppose Hi,. .., H are first integrals of F and f(z1,...,x) is an arbitrary smooth

function of k variables. Then the function H = f(Hy,..., Hy) is also a first integral
of E. Therefore, it makes sense to seek only functionally independent first integrals.
From (1) it follows that their number does not exceed m.

We say that a system of first integrals Hy, ..., H,, of the distribution F is complete
if Hy,...,H,, are functionally independent and m = codim F.

Given a complete system of first integrals, it is possible to find all maximal integral
manifolds of F by solving a functional system of the form:

lecly"‘aHm:Cma

where ¢y, ..., ¢, are constant numbers.

Example. Consider the differential equation £ C J!(R,R) given by
(y +tcosy)y +siny =0

and the function

. 1
H(t,po) = tsinpo + §pg.
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Since the differential 2-form
dH N wg = ((po + tcospo)dpy + sin podt) A (dpg — prdt) =

= (p1(po + tcospo) + sinpg)dt A dpo

vanishes on &, we see that H is a first integral of £.

1.2. Let g be a finite-dimensional Lie algebra of shuffling symmetries of a com-
pletely integrable distribution E. Suppose that X1,...,X,, € sym(FE) and that the
corresponding shuffling symmetries X1, ..., X, € shuf(F), given by

)?i = X; mod Char(F),

form a basis of g. Furthermore, assume that at every point a € M the vector fields
Xi4,---,Xm,q generate the subspace of T, M complementary to E(a) and that E =

F(wi,. .., wn), where the 1-forms wy, ..., ,wy, are linearly independent at each point
of M. Then the differential forms wy, ..., w,, giving the distribution £ can be chosen
so that R

wz-(Xj) ='(.U¢(Xj) :6@‘, i,j:1,...,m. (3)

Indeed, let E = F(04,...,0,) and let the desired forms wq, ..., w,, have the form

wy = a1101 + - + a1mfm

(4)
Wi = Am1b1 + - + Gmmbm
for some nonsingular matrix A = ||a;;||,a;; € C*°(M). By S denote the matrix
S = |lsisll = 16:(X,)Il- (5)

The conditions imposed on the vector fields X3, ..., X, imply that the matrix S is
nonsingular. Further, relations (1) are equivalent to the equality A-.S = I, so that

A=8"1 (6)

and
w1 0 1

=57 (7)

W, O,

1.3. Theorem. Let g be a Lie algebra of shuffling symmetries of a completely
integrable distribution E, {Xy,..., X} its basis, and wy, . .., w,, differential 1-forms
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such that E = F(ws,...,w,,). Suppose that all these objects satisfy conditions of the
previous item and that Cé’ g 1 < 4,0, 0 < m, are structure constants of g:

m
(X Xl = ) Ci X (8)
i=1
Then the forms w, ..., w,, satisfy the Maurer-Cartan equations:
1 .
dw; + 3 Z C pWa ANwg = 0. 9)
a,p
Proof. By Frobenius’ theorem
m
dwi = Z’)fij N wy (10)
Jj=1

for some differential 1-forms «;;,1 < 4,5 < m. Substituting X, in (10), we obtain
m
Xoadw; = Z%‘j (Xa)wj — Yia
j=1
But

LXQ (dwz) — Xadei.

Therefore, the differential 1-forms X,.dw; are linear combinations of the 1-forms
W1, ..., W, SO that

m
Vij = Z —Aypwp
=1
for some smooth functions Agﬂ, 1 <i,a,6 < m. Thus,
dw; = Z Afxﬂwa A wg.
a<f

This equality implies that ‘

But on other hand,
dwi(Xa, Xp) = Xo(wi(Xp)) — Xp(wi(XXo)) — wi([Xa, Xp]) =

= —wi(z ngﬂXj) = 3;5“
J
Therefore, Al 5 = —Ci,5.

1.4. As a corollary of theorem 1.3, we obtain the following result:
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Theorem. Suppose that a distribution EZ and a Lie algebra g of shuffling symmetries
of F satisfy conditions of the previous theorem and, in addition, g is commutative.
Then the differential 1-forms wi,...,w,, are closed: dw; = 0, and therefore first
integrals Hy,...,H,, of E can be found by quadratures:

T

Hj(a:):/wj, j=1,...,m. (11)

a

Here integration is carried out along arbitrary paths in M connecting a point z € M
with a fixed point a € M.

Remark. In the case of simply connected manifolds M (or manifolds with trivial de
Rham cohomology 1-group), first integrals (11) are well-defined. In the general case,
formula (11) gives ”many-valued” first integrals.

1.5. Let us now revert to the general case considered in 1.3. By g(V) = g, g] denote
the commutator subalgebra of the Lie algebra g. Suppose g(*) # g. Then a basis of g
can be chosen so that

)?1, e ,)/fr ¢ g(l) and )?TH, e ,)/fm € g(l),

where 7 = codim, g(*).
Since [X;, X;] € ¢V (1 < 4,5 < m), we have

Cyi =0, s<r.
Therefore, from the Maurer-Cartan equations it follows that
dw; =0, j <. (12)

By Hi, ..., H, denote the first integrals (which may be many-valued) corresponding
to the 1-forms wy, ..., w,, i.e. dH; = w;. Note that these integrals can be found from
(11).

Let ¢ = (¢1,...,¢) € R" and by M, denote the common level surface of the integrals
Hl, ceey HT:

M, ={z € M|H:(z) =c1,...,H.(z) = ¢ }.

From linear independence of the 1-forms wy, . .., w, and the implicit -function theorem
it follows that M, is a manifold. In addition, since

X;(Hi) = dHy(X;) = wi(X;) =0

for : < r and j > r + 1, we see that M, is invariant with respect to the commutator
subalgebra.
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So, since E(a) C Ty(M.), we see that the restriction E. of the distribution E to the
manifold M. has dimension equal to that of E and can be given by the differential 1-
forms wWyy1,...,Wn. Moreover, the subalgebra g(*) determines an algebra of shuffling
symmetries of the distribution E., and the pair (¢!, E,) satisfies conditions of item
1.2. Therefore, if the subalgebras g = [g(), g®] and g™ do not coincide, then
the procedure just described can be repeated, and so on. Note that at every new
step the codimension of the distribution obtained coincides with the dimension of the
corresponding commutator subalgebra.

Define by induction the sequence of derived subalgebras g, 1 =0,1,2, ..., where

gt = [g0 g®] and g© — g,

It is clear that gD c g® 1=0,1,2,....

Definition. A Lie algebra g is called solvable if there exists a natural number n > 1
such that g =0 for all | > n.

Now suppose that the Lie algebra g of shuffling symmetries is solvable. Then the
procedure described above enables us to find all first integrals of the distribution E in
consecutive order and thereby to find maximal integral manifolds of the distribution.
Finally, we obtain the following result:

Theorem. Let E be a completely integrable manifold and g C shuf(FE) a finite-
dimensional solvable Lie algebra of shuffling symmetries of E. Suppose that E and
g satisfy the conditions of item 1.2. Then the complete system of first integrals of
can be found with the use of the following two procedures:
a) integration of closed differential 1-forms and
b) solving functional equations (i.e. equations of the form F(x,y) =0).
§2. LIE-BIANCHI THEOREM

In this section we are going to apply theorem 1.5 to system of ordinary differential
equations.

2.1. First consider systems £ of differential equations of order 1. Let
p1=F'(t,p5, .., 08)
: (1)
Y = F™(t,p; - -, pf)

be a system of this kind and g C shuf £ a finite-dimensional Lie algebra of shuffling
symmetries of system (1). Suppose that the vector fields

% o) o)
X128011'37(:5+"'+<Pn1m

e o] el
szwlka—%-’r“--l—@nka—p'oﬁ
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form a basis of g.
In order that £ and g satisfy conditions of item 1.2, it is necessary that m = n and
the matrix

S = [16:(X;)|

be non-singular. Here 64,...,60, are arbitrary 1-forms that determine the restriction
of the Cartan distribution to the system &.
Let 64,...,0, be the Cartan forms:

0, = dpy — F'dt, ..., 6, = dp? — F™dLt.

Then R . . N
0:(X;) = (dpp — F'dt)(X;) = 4

and therefore

S = 11551l = Nl (3)
In this case the forms wi,...,w, satisfying conditions (3) of item 1.2 can be found
from
w1 6
=57t ). (4)
wn 971/

Theorem. [Lie, Bianchi]. Suppose that system (1) has a solvable Lie algebra of
shuffling symmetries such that its basis has form (2) for k = n and det ||p;;|| # 0.
Then the general solution of the system can be found by quadratures.

2.2. Let us describe a procedure of integration of system (1) possessing a solvable
Lie algebra g of shuffling symmetries.

1) Since g is solvable, there exists a sequence of subalgebras

go=0¢D01 D D Dgit1 D Dgn =10}

such that codimg(g;) =4, ¢ = 0,...,n, and each subalgebra g;11 C g; is an ideal in
g;. A sequence like this can be constructed as follows.

Let gt = [g,g] be the commutator subalgebra. Then every vector subspace g of g
containing g(V) is an ideal in g. Therefore, any subspace of codimension 1 containing
g can be chosen as g;. Replacing g by g1, we can similarly construct a Lie algebra,
g2, and so on.

2) Let {X1,...,X,} be a basis of g such that
the vectors Xo, ..., X, form a basis of the subalgebra g1,
the vectors X3, ..., X, form a basis of the subalgebra go,
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the vectors XH—M cee )/fn form a basis of g;,

the vector )A(n forms a basis of g, _1.

3) Using the Cartan forms 6y,...,6, and relation (4), we find the differential 1-
forms wy,...,w, corresponding to the basis {X1,...,X,}, i.e. the forms such that

~

wi(Xj)chij, i,jzl,...,n.

4) The differential 1-form w; is closed and the function

T

Hi(z) = /w1

a

is a first integral of system (1). The form ws is closed on the level surface M., of H;
corresponding to a number ¢; € R and thereby determines the following first integral

where the integration is carried out along a path lying in the manifold M., and so
on.

2.3. Let us give some examples of how to use the procedure.
Example 1. Consider first-order differential equations of the form:
y' =F(t,y). (5)

Here n = 1. Therefore, it is sufficient to require that the equation have a shuffling
symmetry of the form:

-~ 0
X = A(t _ 6
(tp0) 5 (©
Then the differential 1-form .
is closed and the function
(tvpo)
H(t7p0) = / w
(t9,p9)

is a first integral of equation (5).
Note that the condition that w be closed means that the function 1/A is an inte-
grating factor for the Cartan form

0= dpo - F(t,po)dt.
In the case of homogeneous equations, i.e. equations that have a scaling symmetry,

the generating function has the form fBpy — atp;. Therefore, the integrating factor
equals (Bpo — atF)~ L.
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Example 2. Consider linear systems of differential equations of the form:

pi = F1(t)pg + - + F™(t)pg + f1(2),

: (8)
P =F" (6)po + -+ + F™™(1)pg + fu(D)-
A vector field 5
X=pi(t)g7+ - +enlt)5 (9)
opg " ope
is a shuffling symmetry of system (8) if the vector-valued function
o(t) = (@1(t),-- -, en(t))
is a solution of the system
¢1(t) = Flloy + - + Flrg,,
(10)

Pn(t) = Frlo1+ -+ F™ oy

Indeed, in this case system (10) coincides with the Lie equations, which can be easily
seen without calculations though: transformations corresponding to field (9) have the
form

@ (t,pg, .- 08) — (t,p5 + sp1(t), ..., 0o + sen(t)),

and they are symmetries of equations (8) if and only if ¢ is a solution of system (10).

Suppose that vector-valued functions ¢! (t),...,¢"(t) form a fundamental system
of solutions of system (10) and ¢*(t) = (p1:(t),. .., Pni(t)). Let M = ||¢;;(t)|| be the
matrix of this fundamental system. It is obvious that the vector fields X;,..., X,
corresponding to the solutions ¢!, ..., ¢", respectively, commute.

Therefore, the Lie algebra g generated by them is commutative and the differential
1-forms wy, . .. ,w, are closed. The first integrals determined by these forms correspond
to solution of system (8) by the method of variation of constants.

2.4. Let us now found out how theorem 1.5 can be modified in the case of ordinary
differential equations. We shall start with equations £ of the second order:

p2 = F(t,po,p1). (11)
In this case the Cartan forms have the form:
91 = dpo - p1dt, 92 = dpl — Fdt. (12)

Every shuffling symmetry has the form:

0 0
Xf:fa—po+p(f)8—pl> (13)
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where

3 0 0

and f = f(t,po, p1) is an arbitrary function. Then

01(Xr) =f, 02(Xy) = D(f). (14)

Let g C shuf(€) be a two-dimensional Lie algebra of shuffling symmetries of £ and
{Xy,,Xy,} its basis. In order to apply theorem 1.5, it is necessary that the following

matrix be non-singular:
S = { h f2 } : (15)

D(f1) D(f2)

(This matrix is called the generalized Wronski matriz.) If det S # 0, then the forms
wi and wy can be found from

(o) =@ |20 2] () (16)

so that
_ D(f2)b1 — fabo
w1 = )
D(f2)f1 — f2D(f1) (17)
g = —D(f1)61 + f102
D(f2)f1 — f2D(f1)’
or
Wy = D(f) - fzd N Ffo _le(fZ)dt,
w =~ 2D gy ﬁd L EhenD)
d d
where d = det S = f1D(f2) — f2D(f1).
There are two types of 2-dimensional Lie algebras:
a) commutative Lie algebras: [ Xy, Xy, | =0, and
b) solvable but not commutative ones and it can be assumed that (18)

[ X5, Xp, | = Xy,

Therefore, in the case of second-order differential equations theorem 1.5 takes the
following form:

Theorem. [Lie, Bianchi|. Suppose that second-order equation (11) has a two-
dimensional solvable Lie algebra g of shuffling symmetries such that Wronski matrix
(15) is non-singular. Let {Xy,, Xy, } be a basis of g such that one of conditions (18)
is satisfied. Then
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a) if g is commutative, then the differential 1-forms wy and wy (see (17)) are closed
and give two independent first integrals:

Hi () :/wl, Hj(z) =/w2;

b) if g is solvable but not commutative, then the differential 1-form w; is closed and
gives the first integral
H 1 (LE) = / Wi,

the 1-form wy is closed on a level surface of Hy and gives an independent first integral
of equation (11).

2.5. Example 1. Consider linear differential equations of the second order:
p2 = A(t)p1 + B(t)po + C(1). (19)

Then, as in example 2.3.(2), a function f = f(t) is a generating function of a symmetry
if and only if f satisfies the homogeneous differential equation

f"=Af +BH)f (20)

Let {f1, f2} be a fundamental system of solutions of equation (20). It is obvious
that the vector fields Xy and Xy, commute and therefore form a two-dimensional
commutative Lie algebra of symmetries of (19). Hence, the differential 1-forms

/ A— / —B
Wy = édpo _ édpl + ( fa)p pof2+ Cf2 it
d d d
/ I _ .
wy = —LLdpy + ﬁdpl n (fi —A)pr — Bpofy Cfldt,
d d d
where
d= fl f2
fi 13

is the Wronski determinant, are closed. Thus, the complete system of solutions of a
non-homogeneous equation is determined by a fundamental system of solutions of the
corresponding homogeneous equation. This well-known fact can also be proved by the
method of variation of constants.

2.6. Example 2. Consider the Hill equation:
y' = F(t)y=0. (22)

This is a homogeneous linear equation. Therefore, it always has the scaling symmetry
(t,po) — (t,A\po). The generating function of the corresponding infinitesimal scaling
symmetry has the form:

J1 = po- (23)
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Assume that equation (22) has a linear symmetry with a generating function of the
form:
fa = A(t)p1 + B(t)po. (24)
Then
[f1,f2]=0

and the Lie algebra g generated by the vector fields X and Xj, is commutative.
Hence, the differential 1-forms

(A"+ B)py + (B" + FA)po dpo — Ap1 + Bpo

w1 = p 0 4 dp1+

2 _ ! _ A/ B 2
+FBpo Bplpc(l) (A’ + B)p? .

—B 2 A 2
wy = ~hdpo + Dpy 4 PP TP gy
d d d
where d = (B’ + FA)p + A'pop1 — Ap? is the Wronski determinant corresponding to
the given symmetries, are closed and therefore give a complete system of first integrals
for equation (22).

Using the results of item 5.9, chapter 2, we obtain the following result:

Theorem. 1) The Hill equation is integrable by quadratures for the following poten-
tials:

@) Flo)= (a1t? + :2?5 + ag)?’

(1) F(t) = —20(t) + S, ceR;

ai,az,as,C € R)

3
w? c 22 c
_ W B =
(i) F(t) it (asin(wt) + bcos(wt))?’ t) 7t (aer +be )2’
a,b,c,\,w € R;

, 1 3 c1 et —cype vt
F(t) = =v? 4+ =v?
(ZU) ( ) + gV (Cl evt +CZ e—vt

2
5 S > , C1,C2,V € R,

The following functions can be chosen as a function f, in these cases:

a
(1) fa= (alt2 + ast + az)p1 — (alt + 72) Do

(i) 2= (~20(0) = o + o'po;

(131) fo = (asin(wt) + bcos(wt)py — g—(a cos(wt) — bsin(wt))po

and

fo = (aeM+be  M)p, — %(a M —be ™ M)po;



112 B. KOMRAKOV V. LYCHAGIN

v(cy eVt —cye™vt)

4\/01 eVt +cq eVt Po

(’iU) fz = D1 \/Cl evt “+co e~ vt —

2) If a potential F'(t) is integrable by means of symmetries (24), then the potential

1 3

Finlt) = L P() + o (—)

where z(t) is a nontrivial solution of the Hill equation with potential F(t), is also
integrable and the following function can be chosen for fo:

/

fo=vam — ;2=

2.7. Example 3. Consider second-order equations of the form:

v =y + o), (25)

where functions ¢(y) are those listed in item 4.5, chapter 2. Shuffling symmetries with
generating functions f; and fy described in that theorem form solvable Lie algebras:

[ f1, f2] = kf2 in case (i) and
[ f1, f2] = —f2 in case (i1).

Choosing a new basis:

fi=1f1, f2 = f2 in case (i);

fi=—f1, f2 = f2 in case (ii),
we arrive at the situation described in theorem 2.4.
Thus, the differential 1-forms

(4)

y  kfe+ (o + L5Ep) ekt >
@) _ kf2 3
Y= 4 @po = Gy dprt

n (p — (k—1)p1)f2 — p1(p + 5Ep1) ekt it

FIO) ’

(44)
@y  —Jo+(p+pi)e? f2 —pf2 —pi(p+p1)e?
Wi = (%) dpo — 4G9) dp1 + (i) dt

are closed in cases (i) and (1), respectively, and give the first integrals H fi) and H. fii)
of equation (25). The differential 1-forms
(4)

W = (pl + ) P1te),

2 @ PTG )dpl’
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(17)
i) _ (1 +9) P
Wy | = 1) dpo + 76D dpy

are closed on level surfaces of the first integrals H 1(i) and H fii) respectively. Here d(*)

and d(® are the Wronski determinants corresponding to cases (i) and (i7) respectively.

2.8. For k-th order ordinary differential equations
y® = Ft,y,y,...,y*D), (26)

Lie-Bianchi theorem takes the following form:

Theorem. Suppose that differential equation (26) has a k-dimensional solvable Lie
algebra g of shuffling symmetries and let {¢1,...,pr} be a basis of g. Now suppose
that the determinant of the corresponding Wronski matrix

$1 e Pk
Dy ... Doy
W = det , (27)
DE-lp, ... Dk ly,

does not vanish. Then equation (26) has k independent first integrals that can be
found by means of the method described in 2.2.

Proof. 1t is sufficient to note that if
0o = dpo — p1dt, ..., Op_2 = dpg_2 — pp—1dt, O_1 = dpy_1 — Fdt,

then

where
0 0 0 0
+p1— 4+ +pPr_1 + F

p=2
ot Opo Opr—2 Opr—1

is the operator of total differentiation. Therefore, the matrix S involved in 2.1 coincides
with Wronski matrix (27).

2.9. Remark. Usually-suggested methods of solving differential equations with the
use of symmetries consist in lowering of the order of a differential equation to be
integrated and assume that first integrals are already known.

More exactly, let X be a point symmetry, i.e. a vector field on R x M. Suppose
that there exist local coordinates such that
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Then equations, say, first-order equations possessing this symmetry can be written as

{ Fi(t,pg- -, 08,015 »pp) =0
Fi(t>p(2),---,p&p%,---,pi)=0> Z:2a)n
Therefore, it is sufficient to integrate the last n— 1 equations with respect to p3, ..., p2

and then turn back to the first equation and find y!.
Similarly, for a single ordinary differential equation possessing a contact symmetry
Xy, there exists a canonical coordinate system such that f =1 and

0

Xr=—.
! dpo

Therefore, a k-th order differential equation possessing this symmetry can be written
as

F(t,pl,...,pk)zo.

The last equation can be reduced to a (k — 1)-order differential equation.

§3. INTEGRALS OF DISTRIBUTIONS (THE GENERAL CASE)

In this section we are going to generalize results of §1 to the case of arbitrary
transitive actions of Lie algebras of shuffling symmetries.

3.1. Let E = F(wy,...,wn) be a completely integrable distribution on a manifold
M and g C shuf E a Lie algebra of shuffling symmetries, dimg = k. Let X € g be
a shuffling symmetry. The value X, of X at a point a € M is the element of the
factor space T, M/E(a) determined by the value of any representative of X in the Lie
algebra sym(F) of infinitesimal symmetries.

Definition. We say that the Lie algebra g acts transitively on the set of maximal
integral manifolds of the distribution E if for any basis {Xi,..., X} of g the values
Xi,a,-+-,Xg,q of the vector fields X1, ..., X}, at each point a € M generate the factor
space T, M/E(a).

Note that if g acts transitively, then dimg > codim E.
At each point a € M, by g, denote the set
go = {X € g|X, =0}.
Thus, an infinitesimal symmetry X generates a shuffling symmetry lying in g, if and
only if X, € E(a). This observation shows that the following statement is true:
3.2. Proposition. g, is a subalgebra of g.

Proof. Let X,Y € g, and let X,Y € sym(E) be representatives of X and Y respec-
tively.
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We have
dwj = Z ’in A (0]
)

for some 1-forms ;. Then since

wi([X,Y]) = —dw;(X,Y) + X (w;(V)) + Y (w; (X)), (1)
we obtain o
wJ([X’Y]a) =0
if w1 (Xg) = =wn(Xa) =wi1(Ys) =...wm(Y4) = 0. Therefore,
[X,Y], € E(a),

so that [X,Y] € g.
The subalgebra g, is called the stability subalgebra of the point a.

3.3. Suppose that the action of g is transitive. Then at each point a € M the
following conditions hold:

8/8a = Ta M/E(a),
(To M/E(a))* = Ann E(a),
(9/8a)" = Anng,. (2)

Hence,
Ann F(a) = Anng, C g*. (3)

Denote by V' an arbitrary subspace of g transversal to g,, so that
g=0.0V. (4)

Let {X4,..., X} be a basis of V. Then for every point b € M lying in some neighbor-
hood O of the point a, the values X1 3, ..., X, » generate the factor space Ty, M/E(b).
Asin 1.2, let us choose the differential 1-forms wy, . . . ,w,, determining the distribution
E so that

wi(Xj):éij, i,jzl,...,m (5)

in the neighborhood O. Then
dwi(Xl, Xr) - wi([Xr, Xl ])

dw(Z1,7Z3) =0 (6)
dwi(Xl, Zl) =0

for all 4,l,r =1,...,m and all vector fields Z1, Zo € D(E).
Indeed, in order to prove these relations, it is sufficient to make use of (1).
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Further, relation (2) implies that the differential forms wy, . .., wy,, can be considered
as elements &y, . . . , Wy, of the space g* if we make use of (4) and assume that @;(X) =0
for all X € g,. From (6) it follows that if &; € Ann[g,g] C g*, then the corresponding
differential form w; is closed and therefore determines a first integral of the distribution.

Thus we obtain m; independent first integrals of E, where

my = codimg(gq + [g,9])-

In order to explicitly describe these integrals, let us choose subspaces Vi,V C g so
that

V:‘G@V% ‘/2@(9(1"_[9’9]):97 (7)
and
Vi+(g.N[g8]) =[g 0] (8)
Let {X1,..., Xk} be a basis of g such that the vectors X, ..., Xy—m,—1 form a basis
of V7 and the vectors X,,_m,,..., X;, form a basis of V5. Then
dwj =0 (9)
forj=m—mq,...,m.
Put
o =ga+[g9,9]- (10)

Note that the algebra g(*) does not depend on a choice of the point a € M, since

Adn(ga) C g0 +[9,9]. (11)

As before, consider common level surfaces of the first integrals

x

Hj(:c):/wj, j=m-—maq,...,m,

a

and the new pair (g™, g,).
Let us generalize the definition of a solvable Lie algebra given in §:

Definition. Let g be a Lie algebra and g, its subalgebra. The pair (g,g,) is called
solvable if the sequence of subalgebras

l l
0@ =g, gV =go+[gal ..., sV =go+ 8,01, ...

converges to go, i.e. g(i) = go starting from some number 3.

Summarizing all that has been said in this item, we obtain the following result:
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Theorem. Suppose that a completely integrable distribution E has a transitive Lie
algebra g C shuf E of shuffling symmetries and go C ¢ is a stability subalgebra of
some point. If the pair (g,go) is solvable, then first integrals of the distribution can
be found by consecutive quadratures.

3.4. Let us apply the result just obtained to integration of actions of Lie algebras
on smooth manifolds.

Let g be a transitive Lie algebra of vector fields on a contact manifold M and g, C ¢
the stability subalgebra of some fixed point a € M.

Every subalgebra L C g such that L D g, determines a distribution (which will
also be denoted by L).

Indeed, denote by G the connected Lie group corresponding to the Lie algebra g.
Since elements of g are vector fields on M, we see that elements of G are diffeomor-
phisms of M. The group G acts transitively on M. Define the distribution L as follows:
for b € M, L(b) is the image g«(L) C Ty M of the subalgebra L by the differential
g« of any transformation g € G such that g(a) = b. Since L is closed with respect to
commutation with elements of g,, we see that the space L(b) does not depend on a
choice of g € G.

The corresponding Lie algebra of shuffling symmetries of the distribution L has the
form:

shuf, L = N(L)/L,

where N (L) is the normalizer of L in g:
N(L)={X eg|[X,L] C L}.

Conditions for this algebra to act transitively on maximal integral manifolds of the
distribution L have the form:

dim N(L)/L > dimg/go — dim L/go = dimg/L.

Thus, the Lie algebra shuf, L is transitive if and only if N(L) = g, i.e. if L is an ideal
in g.

In order to apply theorem 3.3 in this case, we must require that the factor algebra
g/L be solvable. Finally, we obtain the following result:

Theorem. Let g be a transitive Lie algebra of vector fields on a manifold M, gq C g
the stability subalgebra of some fixed point of M, and L an ideal in g such that go C L.
Suppose that the factor algebra g/L is solvable. Then the complete system of first
integrals of the completely integrable distribution generated by L can be found by
consecutive quadratures.

3.5. Let us apply the last theorem to a distribution defined by a vector field X on
a Lie group M = G. Let g be the Lie algebra of G. The subalgebra L = RX C g is
an ideal in g if and only if X is an eigenvector for all operators adY, Y € g.

In particular, this observation implies that every effective transitive action of a
solvable Lie algebra is integrable by means of quadratures.
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§4. DIFFERENTIAL INVARIANTS

In order to integrate equations by means of symmetries, it is necessary to know a
sufficiently large algebra of shuffling symmetries. The problem of finding this algebra,
i.e. of solving a system of Lie equations, is also not a simple problem. However, this
problem can be approached from the opposite side: given a Lie algebra g, to describe
all differential equations such that g can be considered as their algebra of shuffling
symmetries. The present section is devoted to this approach.

4.1. Suppose that a Lie algebra g is embedded as a subalgebra into the Lie algebra
D(M x R) of vector fields on M x R. As in chapter 2, by X(®¥) we denote the k-th
prolongation of a vector field X to the space J*¥(IR, M) of k-jets of parametrized curves.

The correspondence X — X ) gives an embedding of g into D(J*(R, M)). By g*
denote the image of the embedding.

Definition. A function f € C*°(J*¥(R, M)) is called a k-th order differential invariant
of the Lie algebra g if
x®(f) =0

for all prolongations X*®) ¢ gk,

This definition can be formulated in a different way. Let G be a connected Lie
group of transformations of R x M such that g is its Lie algebra. For a g € GG, denote
by g(¥) the prolongation of the transformation ¢ : R x M — R x M to transformations
of the space J*(IR, M). Actually, the transformation g(*) is defined on an open and
everywhere dense part of the manifold J*(IR, M) However, with the motivation of the
definition in mind, for simplicity sake we shall assume that g*) is completely defined.
Then for each point a € J*(R, M) consider its orbit with respect to the group G:

GW(a) = (g™ (a)lvg € G}

Thus, we obtain the division of the manifold J*(IR, M) into orbits of the group G.
Differential invariants are functions on J*(R, M) constant on each orbit.

4.2. Denote by Ij(g) C C®(J*¥(R, M)) the set of all differential invariants of order
k. The following result is immediate from the definition:

Proposition. The set I(g) is a subalgebra of the algebra of smooth functions on
JF(R, M). In addition, if f1,..., f. € I+(g) and F(z1,...,z,) is an arbitrary smooth
function of r variables, then F(fi,..., fr) € Ix(g).

Note that if a system & C J¥(R, M) of differential equations is given by invariants
fiyooo, N € Iy, ie.
E={fi=0tn---n{fy =0}
then g C sym¢&.
Thus, the definition of differential invariants allows to construct a number of classes
of differential equations with a given symmetry algebra.

4.3 Let us give some examples of direct calculating algebras of invariants.
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Example 1. Let M =R and let g = sl(2,IR) be the Lie algebra of vector fields on
JO(R, R) = R? realized by the fields

0 0 0
X = =, X = - X = 2"‘ . 1
1 00 2 = Do 300 3=DPo 10 ( )

The corresponding Lie group SL(2,R) is the group of linear fractional transformations

a +a
mw@=@J@LJQ, @)

a21po + ag2

21 Q@22
Differential invariants of order 0 are functions f(t,po) such that f(g(t,po)) =
f(t,po) for all transformations g of form (2). It follows that Ip(sl(2,IR)) is the set

of functions independent of pq .

where [all a12J € SL(2,R).

Definition. We say that k-th order differential invariants fi,..., f, form a (local)
basis of Ii(g) if every differential invariant f € I(g) can be (locally) represented
as f = F(fy,...,fr) for some smooth function F' and the functions fi,..., f, are
functionally independent (in some neighborhood).

Let us use relations of item 3.8, chapter 2, in order to find first prolongations of
fields (1). We have

(1) _ 8
X 8P0
x{M = (3)
Doz - 31’70 +p1 31,1 .

1
X( ) = Po 8p + 2p1p0 opr
If f = f(t,po,p1) is a differential invariant of s[(2,R), then

xP)=x0)=xP(H) =0

and therefore

of _of _
oo Opr
Thus the function f =t forms a basis of I (sl(2,R)).
Further
X = 3(1970
X = pos 3p0 +DP1g,; 8p1 + D23, 3p2 (4)

X5V = pR 5o= -+ 2p1D0 2= + 2(p2po + P7) 55 -
It follows that I(sl(2,R)) is also generated by the function f = t.
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For k = 3 we have

(B3 _ o
Xy = 9po?
3
X( ) —p03p0 "|'pl(§)p1 +p23p2 +p33p3 (5)

X5V = pd 52 + 2p1poze a0+ 2(p2po + p3) 52 + 2(Pops + 3p1p2) -
Therefore, if f(t, po,p1,p2,p3) € I3(sl(2,R)), then

2L =y,
dpo
o P
pla—pil +p2£§ +p3§,%=0, (6)

Pt 5 3p2 + 3p1p23—p% = 0.

From the first two equations it follows that
f=gtz,y),

where x = g—"l’ and y = g—j, and the last equation implies that the function g(¢, z,y)
satisfies the following equation:

0g 8g

—+4+3z—==0.
8ac+ 8y
Therefore
3 9
g=9(ty—52°).
Thus, the functions
2
3 o2 s 3 (P2
= t e —_— - —_ e = —_— 7
R -t ) )

form a basis of invariants of the third order.
The restriction of the differential invariant f5 to the 3-jet of a function z = 2(¢)

. . Z// 3 Z” 2
Gl () =5 -3 (Z)
is called the Schwarz derivative or Schwarzian of z(t).
The Lie algebra s[(2,R) considered as an algebra of point symmetries can be realized

in a different way:

0 0

6
1 at? 2 t

17
ot’ at’ (1)
This representation corresponds to the action of SL(2,R) by linear fractional trans-
formations of the t-axis (cp. (2)). Proceeding as before, we see that the functions

2

p 2 b b y

f1 = po, f2=2—§—3p—i- (7)
1 1

form a basis of invariants of the third order.
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Example 2. Consider the space J°(R,R) as the two-dimensional Euclidean plane
with the standard metric. Let g be the Lie algebra of the movement group of the
plane. For a basis of g choose the following vector fields:

0 0 8 0
T'=—,U=—,1I=
ot A LT
corresponding to translations along axes t and pg and rotations, respectively. Their
prolongations to the space J!(R,R) have the form

0
T — =
ot’
0
U(l) ) 8
B0 (8)
0 0
oW = —pg= +t— ) P
p06t+ 5 +(1+p B

It follows that g has no nontrivial differential invariants of the first order. All subse-
quent prolongations do not change the local form of the fields T' and U, whereas for
the vector field II we have

0 0 0
@ = _ t— +(1
Pog; + o + ( +p1) +3p1p28p2
and
0 ) 0 0 o
I® = —po— +t—+ (1+pd)=— + 3p1pas— + (4p1ps + 3p3) 5 —
Pop, I (1+p7) o D1D2 7 (4p1ps + 3p3) s

Therefore, second-order differential invariants are functions f = f(p1,p2) satisfying
the equation
3f 3f

1 —

The corresponding vector field has the form

= 0.

0

+ 3p1p2—.

0
1+p?)——
( pl) 8p2

Op1

Translations along this field can be calculated in an explicit form, so that we obtain
the following second-order differential invariant

Restriction of f; to the 2-jet of a function z(t) gives the curvature of the curve
{po = 2(t)} C J°(R, IR).
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Similarly, solving the equation

or of of
1+ p)=— 4+ 3p1p2=— + (4p1ps + 3p3) =— =0
(1 +p7) ap1 P1D2 ErS (4p1ps + 3p3) Opa

with respect to f = f(p1,p2,ps), we obtain the following third-order differential in-
variant:
p3(1+ p?)
P}
Thus, the Lie algebra g of movements of the plane has two independent differential
invariants of the third order: f; and f>.

fa= — 3p1. (10)

4.4. If dim M = 1, we can consider Lie algebras of contact vector fields on J* (R, R),
their prolongations and differential invariants.

Example. Consider the Lie algebra g of contact vector fields on J!(IR,R) generated
by two vector fields

Xo + P17

1=p080 op1’
o, 0

X, = —2p = — 2L

with generating functions

1 =po and @y = pj.
Let f = f(t,po,p1) be a differential invariant of the first order. Then the relation
Xy, (f) =0 implies that

f=h(tz),
where z = 1;]'—2. Substituting this expression in the equation X, (f) = 0, we obtain
oh  Oh
2— + — =0.
ot * ox
Thus, the function
fi= 20 _y
p1

forms a basis in the algebra of first order differential invariants.
Consider the prolongations of the vector fields X, and X, to the space of 2-jets:

0 0 0
X@ =poz— +p15— +
DPo Er D1 o1 P27 8p2

0 0
X® = —2p — —p2— fop—
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Let f = f(t, po, p1,p2) be a differential invariant of the second order. Then the relation
X<(p21)( f) = 0 implies that
f=h(z,y),

where © = gfll, Yy = Z;L, and h is an arbitrary function. In terms of these coordinates,

the relation Xé,zz)( f) = 0 takes the form:

oh  Oh Oh
2 4 — 42— =
ot Tor 2oy T
Therefore, the functions
fi=22—t, =22 2 (11)
p1 P11 P2

form a basis in the algebra of second-order differential invariants.

4.5. The following result, which apparently was first pointed out by Tresse, allows
to construct new differential invariants starting from already-known ones.

Definition. Let f,g € C*°(J*(R,R™)) be arbitrary functions. Their Tresse derivative
is the quotient

df def df
12
dg dt dt (12)
where
+ Zpﬂ—l apj )

Theorem. Let f,g € C®(J*(R,R")) be k-th order differential invariants of a Lie
algebra g. Then their Tresse derivative is also a differential invariant of g.

Let us first prove the following lemma:

Lemma.
(1) Let X be a vector field defined on the manifold R x R™ and X®) its k-th

prolongation. If
X = Alt,po) 5 + ZBz (tp0) 5

then i i
x4 d e _dAd 1
X et ek dt di (13)

(2) Let X = X be a contact vector field defined on the space J*(IR,R). Then

d d of
k) o L4 k) 1
Xem @t T w (ap1> dt’ (14)
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Proof of the lemma. Since proofs of (13) and (14) are similar to each other, we shall
prove the first of the relations. We shall make use of relations 3.8.(18) and 3.10.(23)
of chapter 2.

Note that since operators in both sides of (13) are linear, it is sufficient to show
that relation (13) holds for coordinate functions. We have

d d dA
(k+1) . & @ (k) -
(X TR AR ) ==

<X(k+1) il ox(k)> (i) = Biy —

EBJ' = TPi g

Proof of the theorem. Let X € g. Since X®)(f) = X(*)(g) = 0, we have
2
sy (G /39N _ (yern) (F) WG har) (99 ag\" _
dt/ dt dt ) dt dt dt dt
_ (dAdrdg dfdAdg) [ (dg\*
~\dtdtdt dtdtadt a)

Corollary. Suppose that functions g, f1,..., fn € C®(J*(R,R™)) form a basis of the
space of k-th order differential invariants and the following conditions hold:

dg
8p}l'c = M Z - ]') ’n’
and
det || 27 £ 0. (15)
oy’
2
Then the Tresse derivatives
dfi d?f; .
d—g,d—gz—,..., ’LZ]_,...,TL,

generate all differential invariants of g.
Proof of the corollary. It is sufficient to note that
J Ofi
iy ZThero] sy (0 da)
=2 e\ gl ) T

7 d
dg _&%

where dots denote functions dependent on p§ (7 < k). Therefore, the functions %J;

form a basis in the algebra of (k + 1)-th order differential invariants and also satisfy
condition (15). Induction on k concludes the proof.
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4.6. Let us apply the results of the previous item to finding differential invariants
of the algebras considered in examples 4.3 and 4.4.

A) The algebra s[(2,R).

1) For invariants 4.3.(7)

3 [ p2 2
et =23 (2)
P12\ ;m

dfs _ dfs _ ps  pap3
= == 4= 43 16
fa= dfi  dt  p p? (pl) (16)

2) For invariants 4.3.(7’)

we have

2
f1 = po, f2—2—-—3< >
D p1

we have

o dfy 1 df ’
oz Ld of4 _ 1oP2B3 4 9 ( ) . (16°)
dfy p1 dt pi P pi

Thus, s[(2,R) can be considered as an algebra of shuffling symmetries of equations

F(fl:fZ)f3):O and G(fl)f2af3)207 (17)

where F' and G are arbitrary functions.
B) The algebra of movements of the plane (see 4.3.(8)).
For the invariants

D2 p3(1 +p?)
T 2\3/2’ —— -3 18
h=asppr 257 5 P1 (18)
we have
g Y2 _ papy (1 + p?) — 2p3p; ° (1 + p}) + 2p1psp; ' — 3p2 (19)
dfy (ps + p3ps — 3p1p3) (1 + p3)5/2

Therefore, the algebra of movements of the plane can be considered as an algebra of
shuffling symmetries of the equation

F(f1,f2,f3) =0

where F' is an arbitrary function.
C)The commutative algebra g generated by the contact vector fields X, and X,,,

where ¢; = pp and s = p%.
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For the invariants
f1—2 —t, f=0R0 1L
D1 D2

we have - . 5
df2 _ pip; — 2pop; + Pip3
df1 p3(pT — 2pop2)
Thus, g can be considered as an algebra of contact symmetries for equations of the
form:

fs=

(20)

F(flafZ’f?») =0.

4.7. Example. [Halfan]. Consider the group of projective transformations of
the plane (¢,u), v = po. This group coincides with the factor group of SL(3,R) with
respect to the center Zy = {1,—1}.

Each matrix A = ||a;;|| € SL(3,R) determines a projective transformation of the
plane:

A (tu) = (T,0),

where
i a11t + ajpu + a3 i a21t + agu + az3

= , = .
azit + asau + ass agit + azou + ass

(21)

In this case the Lie algebra s[(3,R) can be considered as the algebra of vector fields
on the plane with the following basis:

0 0 0 0
Al—é’iy Az—%, A3—t5z, A4—u—é¥,
0 0 0 0 0 0
A5 = tng, A6 = ’LLE, A t(tg +ua ) Ag U(té— +U55)

Direct calculation shows that prolongations of these fields are independent up to 6-jets.
It follows that first nontrivial differential invariants of the projective group are of the
seventh order. Prior to the seventh order, the group has relative differential invariants,
i.e. functions f(t,po,...,pr) such that (A®))*(f) = Asf for all A € SL(3,R), A\a =
A4 (t Do, - - apk)

The 51mplest relative dlfferentlal invariants can be found from geometrical consid-
erations.

Firstly, the projective group preserves the class of straight lines on the plane (¢, u).
Therefore, this group is a symmetry group of the equation ps = 0, so that

fi=p2 (22)

is a relative invariant.
Secondly, the projective group preserves the class of quadrics on the plane. Equa-
tions of all quadrics on the plane can be reduced to the form u = y(t) , where

Yy =ait+ az + \/b1t2 + 2byt + bs.
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Differentiating this expression two times, we obtain

" _ blb3 - b%
(bltz + 2bot + b3)3/2’

or
2/ _ bit? + 2bot + bs

"
(") (b1bs — 53)2/3 :

It follows that
d3

=) =0

Differentiating this expression, we obtain the following relative invariant of the fifth
order:

f2 = paps — 3pap3ps + 2p5. (23)

Halfan gave two more relative invariants of the seventh order:

b3 P4 Dbs Ps b7
b2 D3 y2! Ps Ps
fa=|-p3 0 1P 2p3p4 2psps + i (24)
0 p3 2peps 2peps+p3  2paps + 2pspa
0 0 p3 3p2ps 3p3 + 3p2ps

and
256f§’ - 27f§
V%)

Ja (25)

The first differential invariant of the seventh order can be expressed by means of
relative differential invariants:

fs = f3f58 (26)

The group SL(3,R) can be considered as a symmetry group of any of the equations
fi=0,i=1,...,4, and f5 = const.

Let us indicate geometrical meaning of solutions of these equations. We have al-
ready done it for the equations f; = 0 and f, = 0. The equations f3 =0 and f4 =0
describe the class of so-called W-curves. The equation f3 = 0 describes curves on the
plane that, by means of projective transformations, can be turned into the logarithmic
spiral that makes the constant angle 7/6 with the radius vector. The equation f4 =0
describes curves that are projectively equivalent to curves of the form y? = ct3. The
equation fs = const also describes W-curves, i.e. curves projectively equivalent to
curves of the form y%t® = const.
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§5. LAGRANGE INTEGRALS AND SUPERSYMMETRIES

In this section we shall consider various ways of obtaining integrals from linear
symmetries with the use of the Lagrange formula. We shall restrict ourselves to the
case of self-adjoint or anti-self-adjoint matrix differential operators

M = Ag(£)0™ + -+ + An(2).

Here A; are functions of R into the vector space Hom(V, V*) and Ay (t) is non-singular.
5.1. Let E = E(M) be the solution space of the homogeneous differential equation
M(h) =0. Now if M is self-adjoint, then from the Lagrange formula it follows that
8PM(h1, hz) =0= PM(hl,hg) = const € R

for any two solutions hi,he € E. In particular, Pys(hy,-) is a first integral for an
arbitrary solution hj.
Thus, the mapping
Py : E(M) x E(M) —» R

(h1, h2) — Prr(ha, ho)

determines a bilinear form on the solution space. This form is symmetric if M is
anti-self-adjoint and skew-symmetric if M is self-adjoint.

Let us show that this bilinear form is non-singular. Indeed, suppose that a solution
hi € E(M), hy # 0, belongs to the kernel of the form. Then

Prr(hi,h) =0

for all solutions h € E(M). Let tg € R be a point such that Ag(tp) - h1(to) # 0 and
h(t) a solution such that

hito) = hV (to) = - = h™ 2 (t) = 0

and

(ha(to), A (to) RV (to)) # 0.
Then the Lagrange formula implies that

Pas(h, h1)(to) = (ha(to), Ab(t0)h™ (o)) # 0,

which contradicts the choice of the function h;.

Definition. Let M be a (anti-)self-adjoint operator. The bilinear form Py (hq,ha)
on the space E(M) is called the Lagrange form.

Summarizing the preceding, we obtain the following result:
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Theorem. The Lagrange form on the space E(M) determines
(i) a symplectic structure if M is self-adjoint,
(i7) a pseudo-Euclidean structure if M is anti-self-adjoint.

5.2. Let us consider some examples. Let V' = R and if {hq, ..., s} is a basis of the
space E (M), then by {h],...,h}} denote the dual basis of the dual space (E(M))*.

1) Suppose M = 9. Then the space E(M) is one-dimensional and the function
hy =1 forms a basis of E(M). In addition, Pys(h1,h1) = 1 and therefore

Py = (B)2.

2) Suppose M = §2. Then the space F(M) is two-dimensional and the functions

hi1 =1 and he =t form a basis of E(M). In addition, Pys(hy,he) = —1, so that
Py = h; VAN h’{

3) Suppose M = 93. The space E(M) is three-dimensional and the functions
hi =1, hg =t, hg = %tz can be chosen as a basis of E(M). In this case

Py = —(h3)%+ b} - hi.

5.3. Actually, it is not necessary to know the explicit description of the space E(M)
in order to calculate the form Pp;. For example, it can be done in the following way.
A solution h(t) of the differential equation M (h) = 0 is completely determined by

initial conditions:
h(to) =Ty .+ h(n_l)(to) = Tp—-1- (1)

Thus, relations (1) give an isomorphism between E(M) and RY, where
N =n-dimV. In this case the Lagrange formula allows to calculate Py; as a bilinear
form on RY.

Examples.
1) Consider second-order differential equations M (h) = 0, where

M = mg(t)0? + mq (£)0 + may(t).

Then
Py (X,Y) = mo(to)(z1y0 — y120) + (ma(to) — mg(to))zoyo, (2)

where X = (zo,21) and Y = (yo,y1).
2) For third-order differential equations M (h) = 0, where

M = mo(t)83 +ma (t)82 + mg(t)a -+ m3(t),
we obtain

Py (X,Y) = mo(to)(z2yo + Y2zo — 21y1) + ma(to) (1Yo — y120)+
+ 2m6(t0)$0y1 -+ (mz(to) — m/1 (to) + mg(to))$0y0, (3)
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where X = (zo,21,22) and Y = (Yo, y1,¥2)-

5.4. Let us digress into linear algebra for a while.
Let E(= E(M)) be a finite-dimensional pseudo-Euclidean space with a structure
form P(= Pys). It is known that to each bilinear form ) on E we can assign a linear

operator () : E — FE such that
Q(X,Y) = P(QX,Y) (4)

for all X,Y € E. By * denote the operator of adjunction on End(E) determined by
the form P:
P(AX,Y)=P(X,A"Y) (5)

for all X,Y € E.

Let A2(E*) denote the space of all skew-symmetric bilinear forms on E and S*(E*)
the space of all symmetric bilinear forms on E.

It can be easily checked that the following statement is true:

Proposition. A bilinear form @) is either symmetric or skew-symmetric depending on
whether the operator @) is self-adjoint or anti-self-adjoint with respect to the involution
*:
QeN(B) @ +Q=0,
QeSHE) < Q —Q=0.
5.5. Now note that if A and B are self-adjoint operators, then so is their anticom-
mutator

(6)

1
{A,B} = §(AB + BA). (7)
We shall make use of this observation in order to define an operation on the space
S?(E*). If Q1, Q2 € S*(E*), then by {Q1, Q2} € S*(E*) denote the symmetric bilinear
form corresponding to the operator {Q1, @2}, so that
2{Q1, Q2}(X,Y) = Qu(X, @2Y) + Q5(X, QrY). (8)
It is obvious that the following statement is true:

Proposition. Anticommutation Q1,Qy — {Q1,Q2} turns the space S*(E*) of sym-
metric bilinear forms on the pseudo-Euclidean space E into a Jordan algebra with
identity. The structure form P is the identity of the algebra.

5.6. If operators A and B are anti-self-adjoint, then so is their commutator
[A,B]| = AB — BA. (9)

Using the isomorphism mentioned in 5.4, we can extend this operation to the space
A?(E*) of skew-symmetric bilinear forms: if , 3 € A%(E*), then by [«, 8] denote the
skew-symmetric bilinear form corresponding to the operator [&,3]. Then

[o, B](X,Y) = (X, BY) + B(X, &Y). (10)
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Proposition. Commutation a, 3 — [, 3] turns the space A?(E*) into a Lie algebra
isomorphic to so(P).

Proof. By definition, the Lie algebra so(P) consists of all linear operators A: £ — E
such that
P(AX,Y)+ P(X,AY) =0

for all X,Y € E; in other words
so(P)={A:E — E|A" = —A}.

Therefore, R
Q € A*(E*) <= Q €so(P).

5.7. If an operator A is anti-self-adjoint and B is a self-adjoint operator, then their
commutator [ A, B] is self-adjoint. Therefore, as before, we can define the commutator
of a skew-symmetric form o € A?(E*) and a symmetric form Q € S?(E*) as the
symmetric bilinear form corresponding to the operator [d,@]. Thus, we obtain an
action of the Lie algebra A%(E*) on the Jordan algebra S?(E*).

Finally, note that if operators A and B are self-adjoint, then their commutator is
anti-self-adjoint. Therefore, we can define the commutator [Q1,Q2] € A%2(E*) for
elements of S? (E*). Similarly, if A and B are anti-self-adjoint, then their anticommu-
tator is self-adjoint. Therefore, we can define the anticommutator {a, 8} € S*(E*) for
elements of A?(E*).

5.8. Now let E(= E(M)) be a finite-dimensional symplectic space with a structure
form Q(= Pps). The correspondence @ — @ defined by

Q(X,Y) = Q(QX,Y)

gives an isomorphism of the space of bilinear forms on E onto the space of linear
operators on E. Denote by # the operation of adjunction on End(FE) determined by
the form Q:

Q(AX,Y) = Q(X, A*Y)

for all X,Y € E.
The following results are similar to those of the previous items:

Proposition.
(1) QeS*(E) & Q* +Q =0,
Qe AN(E*) & Q#F —Q =0.
(2) The space S*(E*) forms a Lie algebra with respect to commutation of forms.
This algebra is isomorphic to sp(2).
(3) The space A*(E*) forms a Jordan algebra with identity with respect to anti-
commutation of forms. The structure form ) is the identity of this algebra.
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(4) The operations of commutation and anticommutation determine the following
mappings:
commutation — A*(E*) x A*(E*) — S?(E™),

S?(E*) x A*(E*) — A*(E*);
anticommutation — S*(E*) x S*(E*) — A%*(E™).

5.9. As we know, linear symmetries determine Lagrange forms and, thereby, first
integrals.

Let L be a self-adjoint operator and (A, A) € TI(L). If (A, A) € IIy(L), then the
operator M = L o A is anti-self-adjoint. Consider the Lagrange form corresponding
to M. We shall denote it by Qa (= Proa). By the Lagrange identity

(Lo A)u,v) + (u, (Lo A)w) = 0Qa(u,v).

Since LoA = —A'oL, we see that the form Qa (u, v) remains constant on every element
of the space E(L) and, thereby, determines a quadric on this space. If (A, A) € II;(L),
then the operator M = LoA is self-adjoint and similar reasoning shows that Qa (u, v)
is a skew-symmetric form on the space E(L).

Now suppose L is anti-self-adjoint. If (A, A) € IIo(L), then the corresponding form
Qa is skew-symmetric, whereas the form Qa corresponding to (A, A) € I (L) is a
symmetric form on E(L). We can obtain new bilinear forms and new first integrals
on the solution space, using the results of previous items.

Theorem. 1) Let L be a self-adjoint differential operator. Then the Lagrange form
Py, determines a symplectic structure on the solution space E(L). The correspondences

) — QA = Prop € SZ(E*),

HO(L) (Aa
. A,A) - Qa = Proa € A*(E?)

=)
I, (L) > (

>l D

give homomorphisms of the Lie algebra Ily(L) and the Jordan algebra II1(L) into the
corresponding algebras of forms on E(L).

2) Let L be an anti-self-adjoint differential operator. Then the Lagrange form Py,
determines a pseudo-Euclidean structure on the solution space E(L). The correspon-
dences

Mo(L) 3 (A, B) > Qa = Proa € AX(EY),

I (L) 3 (A,A) — Qa = Proa € S*(E*)

give homomorphisms of the Lie algebra Ilo(L) and the Jordan algebra I1,(L) into the
corresponding algebras of forms on E(L).

Remark. The isomorphism

@ : E(L) 3 h— (h(t),h'(t),...,hE=D (1)) e JF1
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allows to consider every fundamental system of solutions of the equation Lh = 0 as
a flow of symplectic transformations of R™ if L is self-adjoint or pseudo-Euclidean

isometries of R™ if L is anti-self-adjoint.

5.10. In conclusion, consider application of Lagrange forms to nonlinear differential
equations. For simplicity sake we restrict ourselves to the case of functions y : R — RR.

Consider a differential equation of the form:

y® = F(t,y,...,y*"D).

(11)

By S denote the solution space of equation (11). Let us describe the space Tp S
tangent to S at a point h € S. Let h, be a curve passing through the point h, h, € S,

ho = h, T € (—¢,e) C R.

The tangent vector
_ Oh,

= or

(see Fig. 20) can be identified with the function

T7=0

u(t) = 3'161“)

Y

7=0

which, by virtue of (11), satisfies the equation

OF ,
(k) — (k—1)y,,(%)
u —gapi(t,h,...,h Jul®,
The operator
k—1
OF ,
Ly =0"-Y —(h)d
= L

is called the linearization of equation (11) on the solution h.

Thus,
Ty S = {u|Lp(u) = 0}.

(12)

(13)

(14)
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Similarly, the cotangent space T} S can be identified with the solution space of the
adjoint equation:
T}, § = {v|Lj,(v) = 0}. (15)

Indeed, every solution v of the adjoint equation Lt (v) = 0 determines a linear function
on the tangent space T} S:

Ty S>ur Pp,(u,v) €R. (157)
The operator
k—1
oF __.
L=DF— D 16
where 5 5 5 5
D= — —_ ... 3 F
o h dpo T " Opre—s - Opk-1’

is called the Lie operator or the operator of total linearization.
By virtue of (14) a vector field on S can be identified with a function

‘P(t,po, cee 7pk—-1)

satisfying the Lie equation:
Ly = 0. (17)

Correspondingly, a differential 1-form on S can be identified with a function
¢(tap0a oo )pk:—l)

satisfying the adjoint equation:
L =0, (18)

where

ko

-1
. . OF

t _ (_1\knk _ 1\t

L' = (-1)*D . (1)D8p¢.

I
o

Identifying the solution space with a fibre of the bundle J*~(R,R), we can repre-
sent covectors on S as differential 1-forms of the form

k
w = a/i(t)po""’pk—l)dp’i-

i

|
—_

I
)

In view of (15’) the differential form wy, corresponding to a solution 9 of equation (18)

can be written as
k—1r-—-1 o 8F
o =3 LD () ey (19)

r=0 57=0
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In addition, the restriction of the function

k—1r—1

Polp ) =wp(X,) = 3 3 1)3@3(61? )DH 1) (20)

r=0 j=0

to every solution y = h(t) coincides with the Lagrange form Pr (¢, 1p).

5.11. The results of the previous item can be easily extended to the more general
case of equations of the form

F(t,po,...,px) =0, (21)

where 3F # 0.

Let £ be the submanifold given by (21). The description of vector fields and differ-
ential forms on the solution space S given in the previous item still holds for equations
(21) under assumption that D is the restriction of the operator % to £ and that L
has the form:

L=Lp= gil)’wraﬁfl?)’“ 1y +g—i. (22)
5.12. Definition. A differential operator
A =AD"+ -+ A,
where A,,..., Ag are functions on the manifold &, is called a supersymmetry of the

equation &£ if A is a linear symmetry of the Lie operator L.

The following statement is obviously true:

Theorem. Let A be a supersymmetry of the equation £ and ¢ a generating function
of a shuffling symmetry of the equation. Then A(yp) is also a generating function of a
symmetry of £.

5.13. Using the description of linear symmetries given in §5 of the previous chapter,
we obtain the following description of supersymmetries:

Proposition. A differential operator A is a supersymmetry of the equation £ if and
only if
AoL=LoA (23)

for some operator
A = B,D" + .-+ By.

5.14. Definition. A differential equation &£ of form (21) is called self-adjoint (anti-
self-adjoint) if there exists a function G = G(t,po,...,px) such that the equation
{G = 0} coincides with £ and the operator L is self-adjoint (anti-self-adjoint).
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5.15. Example. Let us describe self-adjoint second-order differential equations of
the form:

F(tap07p1>p2) =0. (24)
Here OF OF  OF
L= D? + D+ 25
Op2 op1 Opo (25)
and OF _OF OF
L'=D>— _—D— + =

Opo Op1  Opo

oF oF oF oF oF oF
:—D2+<2D<—>——>D+<D2(—>—D<——)+———>. 26
Ops Op2 Op1 Op2 Op1 dpo (26)

Thus the equality L = L* holds if and only if

aF_D(aF) en

a1 \0p

Let F have the form F = py + H(t,po,p1) and ¢ = ¢(t,po,p1). For the function
@F condition (27) is equivalent to the following condition:

0H

D(ag]) = 5.

(28)

If 37}{ = a(t), then ¢ can be chosen as

o(t) = exp ( / a(t)dt) .

Therefore, all differential equations of the form

p2 + a(t)py + b(t, po) =0

are self-adjoint.

5.16. By II(£) denote the set of all supersymmetries of the equation £. Since the
relation L,p = @Lp holds for the equation & = {F = 0}, we see that if Lp o A =
AoLp, then LopoA = AgyoLyp, where A, = - A-~1. Thus, II(£) does not depend
on a choice of the function F. If £ is a self-adjoint (or anti-self-adjoint) equation, then
the correspondence A — A’ determines an involution of II(£) and therefore

I(€) = Mo(€) + L (£),

where
() ={A|Lr o A + AlLp = 0},

The constructions described in 5.8 allow to use supersymmetries in order to find
new symmetries and integrals, starting from already-known ones.
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CHAPTER IV

MODELS

§1. REDUCTION

If a Lie algebra g of shuffling symmetries of a completely integrable distribution F
is sufficiently large: dimg > codim E, then maximal integral manifolds of the distri-
bution can be found by quadratures, i.e. by the use of the following two procedures:
solving equations and calculating integrals. The latter can also be considered as solv-
ing a model differential equation

for some function f(t).

In this section we shall show how, given an arbitrary algebra of shuffling symme-
tries, to find the corresponding model differential equations, whose solutions should
be known in order to integrate the initial equation.

1.1. Throughout the section we shall assume that a completely integrable distri-
bution E and algebra g of shuffling symmetries satisfy conditions of §2, chapter 3. In
particular, dim g = codim F.

Let vt C g be an ideal in g and r = codimg t. Suppose that {Xi,..., X} is a basis
of g such that the vectors X, 1,...,X,, form a basis of t. Asin §2 of chapter 3, choose
differential 1-forms wy, . .., w., so that the distribution E can be (maybe locally) given
by these forms and

wl(Xj):6ijv i)j:]‘)"'7m' (1)

Lemma. The distribution E(t) = F(wy,...,w,), given by the differential 1-forms
w1i,...,Wwr, is completely integrable.

Proof. Since v is an ideal in g, we see that all commutators of the form [X;, X;], where

t=1,...,mand j=7r+1,...,n, belong to t. Therefore,

X, X5l =) C5Xs,

s2r+1

where

under the condition that j > r+1 and s < 7.
Using the Maurer-Cartan formula, we obtain

dw; = —1/2 Z Cé’bwa A wp (2)

a,bgr
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if I < r. Therefore, the distribution F(wy,...,w,) is completely integrable.

1.2. Note that the ideal v is a symmetry algebra of the distribution E(t). Indeed,
if X €, then w1(X) ="+ =w,(X) =0 and from (2) it follows that

Lx (wj) = 1x(dw;) =0

for j < r.

Thus, vector fields X € t are characteristic for E(t).

The procedure of finding maximal integral manifolds of the distribution £ can be
performed in two steps:

1) integration of the completely integrable distribution FE(t);

2) integration of the completely integrable distribution Ej obtained by restricting
the distribution E to maximal integral manifolds L of the distributions E(t).

In this case the factor algebra g/t and ideal v can be chosen as algebras of shuffling
symmetries for the distribution E(t) and Ey, respectively.

In particular, if v is solvable, then integration of the distribution can be completed
by quadratures.

Now let v be the radical (i.e. maximal solvable ideal) of the Lie algebra g. Then
the factor algebra g/t is semisimple and thus we are led to integration of distributions
with semisimple symmetry algebras. Further, every semisimple Lie algebra a is a direct
sum of simple Lie algebras, which are ideals in a. Therefore, in this case our problem
reduces to integration of distributions with simple algebras of shuffling symmetries.

1.3. Let us turn to integration of distributions with simple symmetry algebras. We
shall first consider the procedure of reduction.

Definition.

1) An action of a Lie algebra g on a manifold N is an injective homomorphism
A:g— D(N) of g into the Lie algebra of vector fields on N.

2) An action X of g on N is called transitive if the values of vector fields A(X), X € g,
at each point a € N generate the whole of the space T, N.

Examples.

1) If dimg = 1, then an action A : g — D(N) is uniquely determined by the image
A(l) of any nonzero vector [ € g and therefore can be identified with a vector field on
N.

2) Suppose g = s[(2,R) and N = R! is the projective line with homogeneous coor-
dinates [y : y2]. Consider the natural action of the group SL(2,R) on the projective
line

A= [a” “12} € SL(2,R) — A(A) : RP* - RP, (3)
a1 Qa22

where
A(A)([y1 = y2]) = [(a1191 + a1292) : (a2191 + a22y2)]-



SYMMETRIES AND INTEGRALS 139

The differential A of this action is an action of g on N. Consider the following basis

of s[(2,R):
10l 4+ [o1] _ Jo o
O E e O I

Alexpth)([ys : y2]) = [e'yr : e "l
Alexpta™)([y1 < y2]) = [(y1 + ty2) : 2], (4)
Aexpta™)([y1 : yal) = [y1 : (2 + ty1)].
Let us identify R with the affine part of RP! by means of the embedding

Then

R — RP', s+ [s:1].
Then relations (4) take the form:

A(expth)s = e?'s,
Alexpta™)s = s+ t,

Alexpta™)s =
The differential A has the form:

d
Maj) = EZA(GXP ta;)|e=o,

so that q p p

—, Mat) ==, Mh) =—s—. 5

dS, (a’ ) ds) ( ) S dS ( )
3) This example is a direct generalization of the previous one. Suppose g =

sl(n+ 1,R) and N = RP" is the n-dimensional projective space with homogeneous

coordinates [y; : -+ : Yns1). As before, consider the natural projective action of the

group SL(n + 1,R) on the projective space RP":

Ah) =2s

A =||aj|| € SL(n + 1,R) — A(A) : RP"™ — RP™, (6)

where
A(A)[?Jl AR yn+1] = [Yl el Yn+1]

and
n+1

Y, = Z @i Yj-
Jj=1

The differential A of this action is an action of g on V.
For i = 1,...,n, by h; denote the diagonal matrix of order n 4+ 1 whose diagonal
elements are all except for the i-th and (i + 1)-th ones equal to 1 and -1 respectively.
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For1<i<j<n+1by Ejj' denote the square matrix of order n + 1 whose the only
nonzero element is the element lying in the i-th row and the j-th column and equal
to 1. Put Ej; = (E;})". The matrices

hi,... hn; E5 E=

z]) Jf[,) 1<Z<J<n+]‘7

form a basis of the Lie algebra sl(n + 1,R). We have

Alexpthi)[yr s+t Ynga] = [y1: - 1 €ysr e yigr oo Ynpals
AexptE) - i ynpa]l = [yr sty ty oy Yol (7)
AexpE)yr -t yn] =y iyt g+ttt Y]

Let us identify the arithmetic n-space R™ with the affine part of RP™ by means of the
embedding

R™ S (z1,...,Zn) — (T1: - i xp 0 1) € RP™. (8)
Then the differential A has the form:
0 o .
)\(hi):mic’)_xi—%“@_xi’ ZZl,...,TL—l;
0 0 0
Mh = - n— 2 na4a_
(hp) = x16z1+ +ax 18%_1%- z .
0
)\(E+)—$Ja 1<i<j<n,
o (9)
/\(E{I-n+1):8—%, 221,...,Tl,
_ 0 o
)‘(Eij):xja_xi7 I<y<ign,
n+“ = Zxr:cl , 1 <1< n.

Let A = ||a;;| € sl(n + 1,R). Since

A =ai1ht + (a11 + a12)he + -+ + (a11 + ann) on + ZaijEi_; + ZaijE”
i<j j<i

we obtain
n n
>y, Segm t ¥
= Qi34 — On41n+1 Zq a; iEz
, ox; nl or “
i=1 i=1 1<jgn

Zazn—i-l . + Z awar:z : (Zan—l—lzﬂ?z)z:xzaxl

j<ign

i
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or

- 0
/\(A) = Z aijxi—a—g;;—

3,j=1
<an+1 nt1l Z a; n+1$i> Z i g + Z Ont1j5 (10)
i=1 j=1 i = g

4) Reverting to the projective plane and its affine part R?, form (10) we see that if

ail iz ais
a= |az a2 ags| and a1+ ax +asz =0,

az1 azz2 ass

then the corresponding vector field on R? has the form:

9 0 0
A(4) = (anz1 + a21:1:2)-(% + (a1271 + azzh)gﬂ;; + a318—331+

(a33 + a13x1 + az3z2)(z +z 0 )
83 + 01371 + d2382) (17— + T2

as2 _8m
2

or, after collecting terms,

)‘(A) = (az1 + (a1 — a33):c1 + a2122 — a1333% — a23x1x2)8_x1+

9y O
(ag2 + 1221 + (a92 — a33)T2 — a13T1T2 — a231:2)5£—2—.

1.4. Let E be a completely integrable distribution on a manifold M and g an
algebra of shuffling symmetries on E (we shall identify elements of g with vector fields
on M) such that g satisfies conditions of §2, chapter 3. Suppose A : g — D(N) is a

transitive action of g on some manifold N. Let us construct a new distribution £ on
the direct product M x N: for a € M and b € N. Let E(a,b) be the direct sum of
the subspace E(a) and the subspace spanned by vectors of the form:

Xa + )\(X)b

for all X € g.

Lemma. The distribution E is completely integrable and

codim E = dim N.
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Proof. Let Y1,...,Y,_,, be vector fields generating the distribution E and let
{X1,...,Xm} be a basis of g. Then the vector fields

Yi, ooy Yoom, X1+ A(X1), .., X + A (X )

can be chosen as a local basis of the distribution E.
If is sufficient to note that
a) vector fields of the form [Y;,Y;] belong to the distribution E and therefore to

the distribution F ;

b) since X; are symmetries of E, all vector fields [X; + A\(X;),Y;] = [X;,Y;] belong
to F;

c) all vector fields [X; +A(X;), X; + A(X;)] = [Xi, X;]+[MX3), AM(X;)] = [ X, X;]+

AM([X:, X)) also belong to E.

1.5. Let us describe the distribution E as a Pfaff system. Let r = dim N and let

ai, ..., a, be differential forms on N that form a (local) basis in spaces cotangent to
N. Consider the differential forms

01 = a1 — (a1, A(X1))wr — -+ = (a1, A(Xm) )W,

: (11)

97‘ = Oy — <ar) )\(Xl»wl - <O./7-, A(Xm»wma
where {X1, ..., X} is a basis of the Lie algebra g and w1, . . . ,wy, are forms generating
E such that w;(X;) = 6;5.
Lemma. The differential forms 01, ...,0, determine the completely integrable distri-

bution E.

Proof. We shall employ the notation of the previous item. Then since for any vector
field Y;, a,(Y;) =0 and w;(Y;) =0, i =1,...,n, we have

0:(Y;) =0, s=1,...,r,
and
05 (Xi + A(Xy)) = as(A(X)) — (o, A(Xi))wi(X;) = 0.

It remains to note that the differential forms 6y,...,0, are linearly independent and
r = codim F.

1.6. Let us now consider maximal integral manifolds of the distribution E. The
projection of each manifold L C M x N of this sort into M is a diffeomorphism of L
onto M. By construction of E’, the projection of a subspace E(a, b) into the tangent
space To M is an isomorphism of E(a,b) onto Ty M. Therefore (see Fig. 21), every
maximal integral manifold L determines the smooth mapping

h:M— N
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such that
L =1Ly={(a,h(a)) € M x N)}.

Fig. 21
The kernel of the differential h. o : Ty M — Tpq) IV coincides with the intersection

Ta,h(a) LNT, M
and therefore can be written as a direct sum:
Ker h, o = E(a) + by,

where b = h(a) and
he = {X € g|A(X)s = 0} (14)

is the stability subalgebra of the point b € N with respect to the action A.

Since A is a transitive action, we see that the image of T, M by h. , coincides with
Ty N. Thus, hy 4 is an epimorphism and the inverse function theorem can be applied
to h. Therefore, sets of the form

My = h™1(b) (15)

are smooth submanifolds of M.

From (13) it follows that for every a € M, the subspace E(a) belongs to the
tangent space Ty (Mp). Thus, the distribution E determines a completely integrable
distribution on M}. We shall still denote it by E. By construction vector fields X € b,
are tangent to the submanifold M} and therefore these fields are shuffling symmetries
of E. In addition

codimyy, E = dim hj,.

Definition. This transition from completely integrable distribution £ on the mani-
fold M to the distribution F on M; determined by the mapping h is called reduction
of the symmetry algebra g to the subalgebra h = hy.

Let us make some observations about the procedure of reduction.

1) It is useful to assume that N is a homogeneous space N = G/H, where G is a
connected Lie group, g being its Lie algebra, and H is the connected closed subgroup
of GG corresponding to .
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2) Finding of functions
h:M — G/H

leading to maximal integral manifolds of the distribution E reduces to integration of
ordinary differential equations on the homogeneous space G/H.

Indeed, let us fix points ag € M and by € G/H and find mappings h: M — G/H
such that h(ag) = by and Ly, is a maximal integral manifold of E. For every = € M the
value h(x) can be found as a solution of a system of first-order differential equations
with respect to y(t) € G/H, where y(t) = h(z(t)) and z(t) is an arbitrary path in M
(see Fig.22).

/]

Fig. 22
By virtue of (11) the system has the form:

(o, (1)) = (o, A(X)) w1, 2(8)) + - + (a1, MXim)) (@, £(2)),

(o, 9(8)) = (o, A(X1)) w1, &(8)) + -+ + (r, M(Xom)) (Wi, £(F))-

1.7. Examples.

1) Let g = s[(2,IR) be the Lie algebra of 2x2 matrices with zero trace and G =
SL(2,R) the Lie group of 2x2 matrices with determinant equal to 1. Fix a vector
vo € R? and consider the subgroup

H={A¢e SL(2,R)|A(vo) = Avp}.

We shall assume that vy = (1,0). Then the homogeneous space G/H can be identified
with the projective line RP!. The corresponding isomorphism is determined by the
mapping

SL(Z,IR) > A = [all a12] — [all I(Lzl] € RPl
G21 QA22

Under this identification the natural action of G on G/H corresponds to linear
fractional transformations of the projective line. The corresponding homomorphism
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A was calculated in example 2, 1.3. On the affine part R! = {[2 : 1]} € RP! it has the
form:

1 0 d
h = _0 _1] l—>2ZZl;,
01 d
+ = —
a‘_ooyﬁm’
a = [0 0 H—zz—i
|10 dz’

In this case r = dim G/H = 1. Therefore, putting r = 1 and «; = dz in system (16),
we obtain the Riccati equation

2 —2a12 —ag + agz® =0,

where a; = a;(t) = w;(2(t)).

The subalgebra h corresponding to the Lie subgroup H is solvable. Thus, the pro-
cedure of reduction allows to reduce integration of an arbitrary completely integrable
distribution with s[(2,R) being an algebra of shuffling symmetries to integration of
the Riccati equation.

2) Let V be an arbitrary n-dimensional vector space with a fixed flag of subspaces

V=V,DVu1D---DV; D Vo ={0},

where dimV; =4, ¢ = 0,...,n. Let G be the Lie group of all linear isomorphisms of
the flag:
G={AecGL(V)AV;) CV;, i=0,...,n}

and H C G the subgroup of isomorphisms constant on Vi:
H={AeGlA(w) =v Vv eV}

Suppose {e1,...,e,} is a basis of V such that the vectors ey, ..., e; form a basis of
V; for all = 1,...,n. Then, in terms of matrices,

)\1 X *
G={AecGL(nR)|A= S :
0 Am
H={AecGN =1}

In this case

G/H = R*

and this isomorphism is determined by the mapping

G > A )\ € R\{0},
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where A(e1) = Are;.
The algebra g of the Lie group G is solvable and f C g is a subalgebra of codimension
1. If z denotes the standard coordinate on R\{0} C R, then the action X : g — D(RR)

has the form p
AA) = Alza—;,
where \; = A\1(A) is the eigenvalue corresponding to the eigenvector e; € V;.

In this case r = dim G/H = 1. Let us take the form

dz
Q= —
z

as a basis 1-form in (16). Then system (16) turns into an equation of the form:

2 = f(t).

Similar considerations can be applied to any subalgebra of g and therefore, by Lie’s
theorem, to an arbitrary solvable Lie algebra. Thus, the procedure of reduction, as well
as the Lie-Bianchi theorem, allows to integrate distributions with solvable symmetry
algebras by means of quadratures.

§2. MODEL EQUATIONS AND THE SUPERPOSITION PRINCIPLE

2.1. Differential equations 1.6. (16), appearing in the procedure of reduction of a
symmetry algebra g to a subalgebra §, are said to be model. There are two methods
of constructing minimal models. First of them is specified by the minimal size of the
system and therefore corresponds to homogeneous spaces G/H such f is a maximal
subalgebra of g.

The second method is based on the fact that after solving model equations we need
to solve a system of equations with the symmetry algebra f. Therefore, with the
Lie-Bianchi theorem in mind, we should take the maximal solvable subalgebra for the
subalgebra h. Models of the first type are called d-models, whereas those of the second
type are called r-models.

Thus, the use of d-models allows to integrate the system by solving smaller systems
of model equations several times, while the use of r-models allows to complete the
integration by quadratures just after the first implementation of an r-model.

2.2. Model differential equations can be described formally by the following con-
struction. Let N = G/H be a homogeneous space and A : g — D(N) the natural
representation of the Lie algebra g by vector fields. Consider the path R>¢+— X; € g
and the following vector field on the manifold N x R:

)
X = = +A(X0). (1)

Systems of first-order differential equations on N corresponding to fields (1) com-
prise, among other equations, all model equations.
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In the present section we shall consider only differential equations of this sort.

2.3. Let us give the coordinate expression for these systems. Let {X1,..., X,,} be
a basis in g and (y1,...,¥yn) a local coordinate system on G/H. Assume that

MX1) = A W) + -+ W) 55

: (2)
MXm) = fp@) gz + -+ [ (Y) 50,
and let t — X; € g have the form
Xe=A1)X1+ -+ An(®) Xm. (3)

Then the corresponding system of differential equations has the form (comp. 1.6.

(16)):
=AW fLy) + -+ An(®) (),
: (4)
Un = A1) 1Y) + -+ A (8) F7 (1)

2.4. Example. Recall that (see §1) the action of the Lie algebra s[(2,R) on the
affine part of the projective line can be given by the vector fields

) 9 ) 0

AX) = 50 AXe) =ygm, AXs) =y 7.

Let
X = A1) X1 + A2(t) X2 + As(t) X3

be a path in s[(2,IR). In this case system (4) turns into the Riccati equation

§ = Ay (t) + As(t)y + As(t)y2.

2.5. Let us consider another (less formal) method of obtaining systems of form (4).

Let M be a certain G-space and \ : ¢ — D(M) the corresponding representation of
g by vector fields on the manifold M. Consider those systems of differential equations
on M whose solutions y(t) all have the form

y(t) = g(t)(y(0)) ()

for some path R 3t — g(t) € G, ¢g(0) = e, in the group G.

Let R 5t — X; € g be the path in g corresponding to the just-mentioned path in
G. Identifying g with the space T, G tangent to G at the identity e € GG, we obtain
(see Fig.23)

Xe=(971(1)=(9)- (6)
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g(t)

Fig. 23
Let us calculate tangent vectors y(t) to the trajectory y(t) given by (5). Differen-
tiating relation (5) and using the chain rule, we obtain

y(t) = )\(Xt)y(ty (7)

Thus, trajectories (5) are solutions of the system of form (4) corresponding to path (6).
Note that since y(0) € M is arbitrary, relation (5) gives all solutions of the system.

Conversely, suppose that we are given a path X; in g. Then, considering relation
(6) as a differential equation with respect to g(t), we can find a unique path in G such
that g(0) = e. Thus, we arrive at the following description of systems (4):

Proposition. A system of first-order differential equations on G/H has form (4) for
some path t — X in g if and only if there exists a path g(t), g(0) = e, in G such that
all solutions of the system can be written in form (5).

2.6. So, integration of systems of form (4) and therefore of model systems reduces
to finding a path ¢(¢) in the group G. Instead of solving equation (6) with respect
to g(t), we shall use another (more algebraic) method. Assume that g is a simple Lie
algebra and h its maximal subalgebra.

Consider the action of the Lie group G on the direct product M* = M x --- x M
(k times), M = G/H,

g:(a,...,ar) — (g9(a1),...,g(ax)),

where g € G, ay,...,ar € M.
Denote by H(a) C G the stability subgroup of an element @ € M and H(aq,...,
.,ag) C G the stability subgroup of an element (ai,...,a;) € M*. It is obvious
that
H(ay,...,ax) = H(a;)N---N H(ag)-

Let us show that a number k£ can be chosen so that stability subgroups of almost
all elements (ay,...,ax) € M* will be trivial. Consider stability subalgebras h,,, i =
1,...,k. Let us choose an element ay; € M so that the dimension of the intersection
ha, Nhg, is minimal. It is obvious that elements like this form an open and everywhere
dense subset M7 of M. Under the condition that as € My, choose an element a3 € M
so that the dimension of (h4, Nha,) Nhe, is minimal. The set My of elements like this
is also open and everywhere dense in M. We can similarly define everywhere dense
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sets M; C M. Since h is a maximal subalgebra of g,we see that the dimension of
intersections
hall’%--ﬂbai (aleM,aZEMl,...,aiEMi_l)

monotonically decreases. Therefore, these intersections become zero, starting from
some number k. Obviously
k < dimb.

Then the subgroup H(aq,...,ax) is zero-dimensional.
Consider now the system of equations

¥ =g(a1),...,yp = g(ax) (9)

with respect to elements g € G under the condition that a; € M,as € My,...,ar €
My, _1. The set of solutions of the system is discrete.
In other words, fix an element ¢ = (cy,...,cx) € M* of general position and consider
the mapping
e : G — MF
defined by
7"-c(g) = (g(cl)a s ,g(Ck))

Let M, = 7.(G) be the image of m.. Then the projection
. : G — M,

is a fibration with fibre H(cy,...,ck).

Let us now revert to finding a path g(t) satisfying condition (6). For this purpose
consider a set of k partial solutions y9(t), ..., y2(t) of system (7) such that the subgroup
H(cy,...,cx), wherec; = 49(0), ..., cx = y2(0), is discrete. Put c = (c1,...,c;) € MF.

The equations

1 (t) = gt)er, -, YR (t) = g(t)ck, (10)

with respect to a path g(t) in G can be considered from a different standpoint. The
function Y : ¢t — (y9(¢),...,y2(t)) gives a path in M., and we are looking for a path

g(t) in G such that
me(9(t)) =Y (2). (11)

According to properties of covering homotopies, a path g(t) like this always exists and
is uniquely determined by its value g(0) at the point ¢ = 0. In our case g(0) = e and,
therefore, relations (10) uniquely determine a path g(t) such that ¢g(0) = e. Denote

this path by
g(t) = SA®), ..., uk(t))- (12)

Then the general solution y(t) of system (7) has the form:

y(t) = SL(), ., yk()y(0). (13)
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Definition.

1) A system of partial solutions y?2(t),...,yL(t) is called fundamental if the sub-
group H(y9(0),...,y%(0)) of the group G is discrete.

2) The function S(y?(t),...,y2(t)) is called the superposition function.

3) A homogeneous space M = G/H is called k-stiff if k is the minimal natural
number such that for some (a1, ...,a;) € M* the subgroup H(a1,...,ay) is discrete.
The number k is called the stiffness of M.

Summarizing results of this item, we obtain the following result:

Theorem. Let k be the stiffness of the homogeneous space M = G/H. Then there
exists a fundamental system of solutions y?(t),...,y%(t) of system (4) such that the
general solution y(t) of the system can be written in form (13), where S = g(t) is the
superposition function, which can be found from system (10).

2.7. Note that the group G can be realized as a symmetry group of system (4) of
differential equations. For this purpose consider various gauge transformations

h:MxR—MxR,

A (14)

h:(a,t) — (h(t)a,t)
determined by paths h(t) in G. A necessary and sufficient condition for a transforma-
tion of form (14) to be a symmetry of system (i)s that this transformation take every
solution y(t) of the system to a solution again. Using (13), we have

(, (1)) = (£, g(D)y(0)) > (2, h(D)g(B)y(0) = (¢, 9(t) (g™ (D)h(D)g(£)))y(0)).
Therefore, a gauge transformation h determines a symmetry if
g~ ()h(t)g(t) =ho € G

h(t) = g(t)hoy ™ (t). (15)

Thus, relation (15) assigns to every element hg of the group G' a symmetry of sys-
tem (4).

2.8. Remark. In the examples considered in §1 Lie groups act transitively on
solution spaces. In this case systems of differential equations are called automorphic.
Therefore, model equations are those automorphic systems of differential equations
whose symmetry groups can be found with the help of a finite set of partial solutions
(fundamental system of solutions).

2.9. In conclusion of this section let us describe model differential equations cor-
responding to one-dimensional homogeneous spaces. We shall first find out which
finite-dimensional Lie algebras can be realized as transitive algebras on the line.
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Let g be a Lie algebra of this sort and A : g — D(IR) an injective homomorphism
of Lie algebras. Then we can identify elements X € g with vector fields on the line.
Every element X € g has the form:

0

and it makes sense to speak about the order of an infinitesimal of X at the zero point
with the order of an infinitesimal of f in mind.

The fact that g acts transitively on the line means that there exists a vector field
X1 € g such that f(0) # 0. Then, by the known theorem about straightening vector
fields, a coordinate z on the line can be (locally) chosen so that

0

Xlzaz'.

(16)
Denote by
0Lk <k < - <ky

the orders of an infinitesimal of vector fields belonging to g. From the commutation
relation
0 0

£ 0(2) 5] = (5 = £'9) -

it follows that if a function f has zero of the maximal order k, and a function g has
zero of order k; (i < r), then their commutator has zero of order k, +k; —1. Therefore,

ke + K — 1< kor (17)

for alli =1,...,r. Relation (17) implies that k; < 1 and therefore 7 = dimg < 3.

Let us consider the cases dimg = 1,2,3 consecutively. The case dimg = 1 is
trivial. Suppose dim g = 2. Then a basis of g contains some vector field X5 = f (z);%
in addition to X;. Since the commutator

X0, %) = ()5

is a linear combination of X; and X5, we see that X5 can be chosen as

0
=z 1
Xo =z (18)

If dimg = 3, then similar considerations show that the Lie algebra g is generated
by the vector fields X; and X, (see (16), (18)) and the vector field

0
X3 =2"—.
3 Z@z

Finally,we obtain the following result:
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Theorem.[S.Lie]. Suppose that a Lie algebra g acts transitively on the line. Then,
in a suitable (local) coordinate system, g has one of the following forms:
a) g is the commutative Lie algebra generated by the vector field

0

X1 ==
1 82’

b) g is the solvable Lie algebra generated by the vector fields

0 0
X = P Xa =257

c¢) g is the Lie algebra s[(2,R) generated by the vector fields

0 Xzzz—a—, ngzzﬁ

X1= 9z’ 0z 0z’

The corresponding differential equations have the form:
a) z = Al (t);
b) z= Al(t) -+ Az(t)z;
c) 2= Ai(t) + Az(t)z + As(t)22.

2.10. Example. All differential equations listed in theorem 2.9 are Riccati equa-
tions. Let us illustrate finding of the superposition function by the example of the
Riccati differential equation.

In this case, the action of the Lie group SL(2,R) has the form:

_ all(t)z + (112(75)

g(t)z agl(t)z -+ a22(t) (19)
) (t) (t)
_ _la11(t) a1a(t
g(t) = A(t) = an(t) as(t) H e SL(2,R).

It is known from projective geometry that every projective transformation of the
line can be determined by the images of three different points. Therefore, the stiffness
of RP! equals k = 3. To every number z € R assign a vector of the plane:

e )

Then system (10) for finding ¢(t) can be rewritten as
AgY(t) = Mén,

AGI(t) = \aca, (20)
AP3(t) = XsCs,



SYMMETRIES AND INTEGRALS 153

where A1, Ao, A3 are nonzero numbers.
Denote by Yj; (respectively, C;) the 2x2 matrix with the vectors 77,7 (respec-
tively, ¢;, ¢;) being its columns. Then system (20) is equivalent to the matrix system

AY;; = NGy, (21)
where
[xo0]
AZJ_|:0 )\j:!alaj"“laQ’g‘
From (21) we obtain
/\i)\j = det Y%J/ det Oij, (22)
so that
)\% = det Y12 det Y13 det ng,/(det 012 det 013 det Ygg),
A2 = det Y35 det O3 det Yo3/(det Cyo det Vi3 det Ca3), (23)
)\% = det 012 det Y13 det ng/(det leg det 013 det ng),
and

A= A0V 5 (24)

§3. MODEL EQUATIONS: THE SERIES Ag, By, Dg

3.1. Let V be a vector space (over R or C) of dimension n + k, n > 2. The
grassmannian Gy of k-dimensional subspaces is the set whose elements are k-
dimensional subspaces L C V. The Lie group SL(V') = SL(n + k) acts naturally on
this set:

A:GpyrrdL— A(L) € Gnikk

for all subspaces L and transformations A € SL(n + k). This action is transitive. The
stability subgroup H(L) of an element L € Gy  has the form:

H(L) = {A € SL(V)|A(L) = L}.

Thus,
Gn—l—k,k ~ SL(n + k)/H(L)

3.2. Let us give coordinate description of constructions of the previous item. To
be definite, assume that V is a vector space over R. Let us identify V with R"**
and let Lo be a fixed k-dimensional subspace of V. We identify Lo with the space R”
embedded into R™*%:

R* 3 (z1,...,2%) — (z1,...,24,0,...,0) € R*TF,

Under this identification, all elements L € Gy 1 lying in a sufficiently small neigh-
borhood of the point Ly € G4k, can be represented as k X n matrices
W = (wij)

1€igk”?
1<j<n
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where the vectors

(]-a0>'"707w11aw12)"'aw1n;)
Ovla"')Oaw21aw22,"'>w2n7)
(0>0a"'71awk17wk2>-"awkn)

form a basis of a subspace L.

Fig. 24

Each vector z € R"** can be written as a column:

/
= (2)
x
where y € R and = € R*. Then a space L € Gr+k,k is the graph of the corresponding

linear mapping W : RF — R™, 2 +— y = Wx.
Each element A of the group SL(n + k) in these coordinates can be written as a

hypermatrix:
A1 A12:|
A=
{Am Aga |’

where A1 is a matrix of order n X n, Ags a k X k matrix, Ao an n X k matrix, A1 a
k x n matrix, and det A = 1.
Elements of the stability subgroup H(Lg) are blocked triangular matrices of the

form:
A= .
{Am Az ]

The action of an element A € SL(n + k) in coordinates W has the form
I (y = Wac) A (All A12> (?J) _ <A11y+A12$ _
x Agy A x Ag1y + Az
_ < (A11W + Alz)w)
(A1 W + Ago)z

(")
33', 9

where
Wa = (AW + A1) (AW + Agp) ™1,
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so that

AW — Wa = (AW + Ag)(Agg W + Agg) L.

3.3. Let us describe the corresponding action
A:sl(n+k) — D(Gpikk)

of the Lie algebra sl(n + k) on the grassmannian G4 .
Each element h € sl(n + k) is a hypermatrix of the form

hi1 hia
h =
{hzl hzz}

with zero trace: tr hyy + trhgy = 0.

Let us calculate the value of a vector field A\(h) at a point W. We have

d _
Ah)w = pr [(hll(t)W + h12(t)) (ho1 (£)W + haa(t)) 1},

t=0

where © ©
hll t h12 t .
{hm(t) hzz(t)} = exp th.

Therefore,

dh;(t)

= hyj,  hy;(0) = b3,

and

)\(h)W =h W + hig — W(h21W -+ hzz).
Thus, the field A(h) in coordinates W has the form

0

Ah)w = (hig + h1W — Whag — Wth)W’

trhip + trhoy = 0.

3.4. The differential equation corresponding to the action A has the form:

W = Bia(t) + Bi1(t)W + W Bao(t) + W Ba1 (H)W,

where tr B11 = tr Bog. It is the matrixz Riccati equation.
The general solution W (t) of equation (5) can be written as

W (t) = (A ()W (0) + A12()) (A21 ()W (0) + Az (t)) 7,

where matrices A(t) = ||A;;(t)|| € SL(n + k) are the same for all solutions.

155
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Suppose r is the stiffness of the grassmannian and Wiy(t),..., W, (t) are partial
solutions of (5). Then the matrices A(t) can be found from the following system of
linear equations

A11M(0) + A12 = Wl(t)(A21M(O) + Azg), l= 1, ceey T (7)

3.5. Example. If £ = 1, then the grassmannian G117 coincides with the n-
dimensional projective space. Each projective transformation of RP™ is completely
determined by images of (n + 2) points of general position. Therefore, the stiffness
of RP" equals n + 2. In this case it can be assumed that r = n + 2 in system (7).
The procedure of explicit solution of the system is similar to that for the case n =1
considered before.

3.6. Let k = n. Then all matrices in Riccati equation (5) are square matrices of
order n x n. Let us find the stiffness of the grassmannian Gap . Let Lo, L1 € Gann
be the subspaces corresponding to the horizontal and vertical planes (see Fig. 24)
respectively. The stability subgroup H(Lg, L1) = H(Lo) N H(L1) consists of blocked
diagonal matrices of the form:

. All 0
A—|: 0 Azz}’

where det A1 - det Ay = 1. The action of elements A € H(Lg, L1) in coordinates W

has the form:
AW WA = A11WA2_21.

For a third point Lo, take the subspace corresponding to the diagonal y = z. Then

and the action of this stability subgroup has the form:
W — BWB™'.

It remains to note that, with respect to this action, the common stabilizer of two
matrices W1 and Wy of general position is trivial. Thus, it is sufficient to use 5
solutions ”of general position” in order to find the general solution with the help of
relations (6) and (7).

3.7. Expression (1) has a universal nature and holds for other classical Lie groups.
In conclusion of this section, let us consider the series Dy and Bjy. Assume that a
vector space V has dimension n + k and is supplied with an Euclidean metric g. Let
G = SO(g) be the group of transformations of V' preserving the metric g. Let us fix
an orthonormal basis in V and identify V with R™»** and g with the standard scalar
product:

9(X,Y)=(X,Y) =211+ + TnikYntk- (8)
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Then the Lie group SO(g) = SO(n + k) can be identified with the group of orthogonal
matrices of determinant 1, while the Lie algebra so(g) with the algebra of skew-
symmetric matrices.

The action of SO(n+k) on the grassmannian Gy, is transitive. In coordinates W
this action also has form (1). For a space complementary to Ly consider the orthogonal
complement LOL. Then a hypermatrix

hii hig
h =
{hm hzz}

belongs to so(n + k) if and only if the following conditions hold:
hil + h11 =0, hgz + hog =0, h’iz + hop = 0. (9)
The vector field A(h) in coordinates W has the form:
0
)\(h) = (h1a + h11W — Whay + Wth)W (10)

The corresponding differential equation has the form:
W = Bis(t) + Bi1 ()W + W Bas(t) + W B, (£)W. (11)

Here W is a matrix of order kx k and By;, Bgs are skew-symmetric matrices. Equation
(11) is called the orthogonal Riccati equation.

3.8. A fundamental system of solutions and general solution of the orthogonal
Riccati equation can be found in much the same way as in the general matrix case.
We shall restrict ourselves to evaluating the number of fundamental solutions of the
orthogonal Riccati equation in the case of n X n matrices; in other words, we shall find
the stiffness of Gy, , With respect to the orthogonal group.

It is obvious that elements of the stability subgroup H(Lg) have the form:

[An o0
S

where A11 and Ays are orthogonal matrices of order n X n.
Let Ly be the subspace corresponding to the diagonal y = z (cp 3.6). Then the
stability subgroup H (Lo, L1) consists of matrices of the form:
B 0
4-[7 3,

where B is an orthogonal matrix of order n x n. The action of elements of H(Lg, L1)
in coordinates W has the form:

W — BW B

Therefore, for any two subspaces Lo and L3 of general position, the stability subgroup
H(Lg, Ly, Ly, L3) is trivial.
Thus the stiffness of Gy, 5, equals 4.
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§4. MODEL EQUATIONS: THE SERIES C),

4.1. Let V be a symplectic space of dimension 2n with a structure 2-form w. Fixing

a symplectic basis in V, we identify V with the arithmetic space R?" where w has the
form:

w(X,Y) = (T1Ynt1 — Tnt1y1) + -+ (TnY2n — T2nYn)- (1)

Let G = Sp(2n) be the group of symplectic transformations of V; in other words,
G is a group of transformations A : V — V such that

W(AX, AY) = w(X,Y) 2)

for all vectors X,Y € R?",
If (, ) is the standard scalar product in R?", then the form w can be replaced by
the operator 2 such that
w(X,Y)=(QX,Y).

The operator () is skew-symmetric and its matrix has the form:
10 I,
where [, is the identity matrix of order n X n.

Condition (2) for a transformation A to be symmetric can be written in matrix
form as

AQAY = Q. (4)
Then the Lie algebra sp(2n) can be written in matrix form as
sp(2n) = {h € gl(2n)|hQ + QA = 0}. (5)
Let h be a hypermatrix
B — [hu h12:,
ha1 hoa |’

Then the condition hQ + Qht = 0 is equivalent to the following conditions:
hi1+hiy =0, hiy =hiy, ho = hi,.

Thus, elements of sp(2n) can be written as hypermatrices of the form:
i o

where his, ho1 are symmetric matrices of order n X n and hi; is an arbitrary matrix
of order n x n. Correspondingly, if we write a matrix A € Sp(2n) as a hypermatrix:

A1 Alz}
A=
[A21 Az |’
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then condition (4) will take the form:

4.2. If 1 <k < 2n — 1, then the action of Sp(2n) on the grassmannian Gy, j is not
transitive. In this case two subspaces L1, Ly € Gy, i lie in the same orbit if and only
if the rank of the restrictions of the structure form w to L; and Lo is the same. We
shall consider the most interesting case — the case of the Lagrange grassmannian.

Definition. A subspace L C V of dimension (dim V')/2 is called a Lagrange subspace
if the restriction of the structure form w to L is trivial, i.e.

w(X,Y)=0

for all vectors X,Y € L.

Denote by A, the set of all Lagrange subspaces in (R?"*,w). The set A, is called
the Lagrange grassmannian.
Witt’s theorem shows that the action of Sp(2n) on A, is transitive.

4.3. Let us describe the action A : sp(2n) — D(A,,) in coordinates W, assuming
that the subspace Lg is spanned by the first n basis vectors, while its complement is
spanned by the last n vectors.

Lemma. The subspace y = Wx determined by a matrix W is a Lagrange subspace
if and only if W is a symmetric matrix.

Proof. Suppose {e1,...,€n,€nt1,---,e2,} is a standard basis in R?". Let us calculate
the value of the structure form w at a pair of vectors X = e; + W(e;) and ¥ =
e; + Wi(e;), where 4,5 < n. We have

w(X, Y) = w(ei, W(ej)) + w(W(ei),ej) — Wij — Wji =0.

Therefore,
Wt =Ww.

4.4. Using expression (6) for elements of the Lie algebra sp(2n), we see that vector
fields A(h) on the space of symmetric n x n matrices W have the form:

)
A(R) = (hz + huW + Whiy = Whan W) . 8)

The corresponding system of differential equations has the form:
W = Bia(t) + Bii ()W + W B, (t) — Whay (£)W, (9)

where W = W(t), B12(t), Be1(t) are symmetric n x n matrices and By is an arbitrary
n x n matrix. Equation (9) is called the symplectic Riccati equation.
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4.5. A fundamental system of solutions of equation (9) can be found in the same
way as in the case of the general Riccati equation. Let us evaluate the stiffness of
the Lagrange grassmannian A,, with respect to the symplectic group, assuming that
n > 2.

Let us choose Lagrange subspaces Ly and L; as in the general case. Then the
stability subgroup H(Lg, L1) consists of symplectic matrices of the form:

. All 0
A_[O A]

From conditions (7) it follows that

0 ]

H(LO,Ll):{A:[O (1)1 BEGL(n)}.

The action of elements A € H(Lg, L) in coordinates W has the form:
A:W— BWB".

Therefore, for any two Lagrange subspaces Lo and Lg of general position, the stability
subgroup H (Lo, L1, La, L3) is trivial. Thus, the symplectic Riccati equation, as well
as the orthogonal one, has a system of 4 fundamental solutions regardless of the
dimension of the space (2n > 4).

4.6. Remark. If n = 1, the group Sp(2) coincides with the group SL(2) and the
space A; with the projective line. Therefore, in this case the number of fundamental
solutions of the Riccati equation equals three.
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