
Ludvig Sylow's lectures on algebraic equations and substitutions, 

Christiania {Oslo) 1862. 

An introduction, and a summary, 

by Bent Birkeland. 

The lectures. 

The first time Galois Theory was presented to a Norwegian audience was as early as in the academic 
year 1862-63, in Oslo (then called Christiania). The lecturer was Ludvig Sylow, on leave of absence from 
his job as teacher in the small city of Halden (then called Frederikshald). Among the audience was Sophus 
Lie. He was 20 years old at that time, and this must have been his first contact with the theory of groups. 

Sylow's notes for these lectures still exist in the Oslo University Library,* and they give a very legible 
account of the central parts of Abel's and Galois' theory of algebraic equations. Since Sylow had just returned 
from a year of studies in Germany and France, they also presumably represent what was then the modern 
way of presenting the theory of equations. Their approach to the theory of algebraic equations is much more 
direct than the one presented in most modern university courses. 

For these reasons, I think they may be of some interest to students of algebra, and perhaps also to 
historians of mathematics, and consequently I have written them out in TeX. 

The notes are written in the standard Norwegian of that time, which today looks very old-fashioned. 
To make them at least partially accessible to people not familiar with the Norwegian language, and/ or 
not wanting to read all of the 76 pages, I have written a short summary in English, and an even shorter 
introduction. That is the subject of the following pages. The text proper is available from the Institute of 
Mathematics, University of Oslo. 

The main sources Sylow used were the second edition (1854), of Serret's "Cours" [10], Galois' papers 
([2], [3]), in Liouville's Journal (1846), and of course Abel's works. (Sylow used Holmboe's edition of 1839. 
Now we have the 1881 edition by Sylow and Lie, which is much better). Also, at one point (in Lecture 8) he 
refers to a paper by Schonemann [9]. 

Galois Theory. 

Today Galois Theory is a standard theme in university courses in algebra all over the world; but it took 
a surprisingly long time to reach that status. 

Evariste Galois' ideas on the theory of solvability of algebraic equations were presented to the French 
Academy of Sciences in three different papers in 1829-31. The two first ones were lost, the third was 
returned with a request for clarifications. This rewriting was still unfinished at the time of the duel which 
ended Galois' life in May 1832, and Galois' works were largely forgotten. It is true that his main results 
had been stated (without proof) in two short notes in the "Bulletin de Ferrusac," 1830, but these notes were 

* It was the historian Elin StnzJm who in the spring of 1994 directed my attention to Sylow's papers, and 
kindly provided me with copies. I am grateful to her both for this and for useful discussions. 
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hard to read, and made little impact. Only fourteen years later, in 1846, did Joseph Liouville wake up this 
sleeping beauty by publishing a selection of Galois' posthumous papers in his "Journal". 

Even after that, the ideas took some time to catch on. The successive editions of J. A. Serret's influential 
"Cours d 'Algebre" (10] provide an interesting illustration. In the first edition (1849), Galois Theory is just 
mentioned in passing (p. 4, and footnote on p. 344); in the second edition (1854) Galois' paper "Sur la 
Theorie des Nombres" (2] is treated in detail (Le<;on 25), but his other work is not. It was in the third 
edition (1866) of the "Cours" that Galois theory for the first time was presented in a major textbook. On 
the other hand, G. A. Miller, in (8], reports that Serret lectured on Galois theory in Paris as early as 1848. It 
would be interesting to know the contents of these lectures. In Germany, according to Miller, the first to give 
a course in Galois Theory was Richard Dedekind, in Gottingen in 1858. In Italy, Enrico Betti taught Galois 
Theory at the university of Pisa in 1859-61. Only after Jordan's great "Traite" of 1870 [5] did Galois' ideas 
come to occupy the central place in algebra which they deserve. 

Ludvig Sylow. 

Ludvig Sylow (1832-1918) was the son of an officer (who later on became a member of the govern­
ment), and he was interested in mathematics since his schooldays. He finished his studies in 1855, with 
excellent marks, and then became a schoolteacher, no university position being available. But he kept up 
his mathematical studies, at first working on elliptic functions in the tradition of Abel and Jacobi, inspired 
by the professor in pure mathematics, 0. J. Broch. But he found Abel's papers on algebraic equations more 
interesting, and from them he was led on (probably by Broch or by the professor in applied mathematics, 
C. A. Bjerknes) to Galois. 

In 1860, at the 8th meeting of Scandinavian scientists, in Copenhagen, he presented his reconstruction 
[11] of the last, highly fragmentary, part of Abel's unfinished paper [1] on algebraic solvability of equations. 
It appeared that Abel in 1828 had known considerably more about the possible forms of solutions of such 
equations than for instance L. Kronecker, who was the leading expert on algebraic equations around 1860, 
had thought. See the interesting paper [4] by Garding and Skau (esp. p. 95), and Kragemo [6]. 

This work was the start of Sylow's lifelong and very thorough study of Abel's work, culminating in his 
and Lie's edition of Abel's CEuvres, and his excellent article he wrote for the 100-year anniversary for Abel 
in 1902. 

In 1861-62 Sylow had a travel grant for studies in Berlin and Paris. In his report to the ministry 
afterwards, he tells that in Paris he followed lectures by Chasles on higher geometry (the theory of conics), 
by Liouville on rational mechanics, and by Duhamel on "la methode des limites". In Berlin he followed 
no courses. Weierstrass was ill, and the other lectures of little interest. Instead he worked in the library, 
studying number theory and the theory of equations; and he got acquainted with professor Borkhardt (editor 
of Crelles Journal), and had useful discussions with Leopold Kronecker. It is interesting to note that no 
lectures in algebra or theory of equations are mentioned, either from Paris or Berlin. 

The following year (1862) professor Broch was elected to the National Assembly (Stortinget), and Sylow 
acted as his substitute at the university. That was the occasion for the lectures discussed here. They intend 
to explain the main body of Abel's and Galois' approach to the theory of algebraic equations, but they do 
not try to tell all that was known. In particular, the connections to the division problems in the theory of 
elliptic functions, which were so important in Abel's work, are barely mentioned. 

Sylow remained at the gymnasium in Halden for close to 40 years, but kept up his mathematical work. 
The theorems which are now named after him were published in 1872. Then he worked eight years (having 
leave of absence for four of them) in collaboration with Sophus Lie, to prepare the definitive edition of Abel's 
works, which appeared in 1881. Lie emphasised that the greater part of the work was done by Sylow. His 
main interest was algebra (theory of groups), but he also wrote about elliptic functions. He was co-editor of 
the Acta Mathematica, and in 1894 he was made honorary doctor at the university of Copenhagen. At last, 
in 1898, when Sylow was 65 years old, an extraordinary professorship was created for him, at the urging of 
Lie. He kept on lecturing with zeal and enthusiasm nearly till the end of his long life. 

For further biographical information on Sylow, the article [6] by Kragemo probably is the best source. 
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Sylow's theorems. 

It is natural to ask whether these lectures contain any hint of the "Sylow Theorems" ([13)) about the 
existence of subgroups of given orders in a finite group. They were published in 1872; but Jesper Liitzen has 
shown (in ref. [7)) that Sylow knew them at least two years earlier. 

The answer is that there is very little. After his proof (in lecture 8) of Cauchy's theorem that any 
(finite) group contains cyclic subgroups of any prime order dividing the order of the group, Sylow has added 
the questions: "What if m is divisible by v6? Can the proof above be extended?" But that is all. So he 
apparently had posed himself the problem, but not yet solved it. 

Liitzen also remarks on the fact that Sylow's proof of his famous theorems rely heavily on the fact that 
any (finite) group is the Galois group of an equation (with coefficients from some extension of the rationals). 
In that connection he cites the simple proof Sylow gave for his fact in 1868, in ref. [12]. This same proof is 
found in the present lectures of 1862, at the end of Chapter 8. 

The manuscript 

The manuscript is written on 17 large sheets of paper, each folded once, to make four written pages. 
The sheets are numbered from 1 to 15, with two different sheets 12, and one extra sheet containing material 
to be inserted after sheets 5 and 7. In addition there are 11 sheets containing preliminary versions of parts 
of the lectures, computations for examples and the like. They have not been reproduced. 

The handwriting is small and a bit cramped, but in general quite legible. 

In the transcription I have noted the numbers of the sheets on which the text is found, and I have added 
some headings, there being only two by Sylow. I also have written out in full some standard abbreviations 
used by Sylow ("F." or "Funct" for "Function", "Coeff." for "Coefficient" and so on.) I also have omitted 
three rather heavy computations in the examples on Sheet 12, they would have amounted to between one 
and two printed pages. Apart from that, I have tried to follow Sylow's text to the letter. 

In the summary below, I reproduce the main theorems given in the lectures, but not much of the text 
inbetween (proofs, comments, examples). I have tried to use language which is not too different from Sylow's 
own expressions. Since mathematical language has changed a bit since Sylow wrote these notes, it may be 
useful to begin with a few remarks on terminology. 

Terminology. 

The word "group" was introduced in algebra by Galois in 1830, but with a meaning which differed 
slightly from the modern one. Roughly, it denoted a subgroup of the group of permutations of the roots of 
a given equation; but we need to be a bit more specific: 

A permutation of the roots of a given equation of degree n is a way of ordering them, or, in modern 
terms, a bijection between the set of roots and the set {0, 1, ... , (n-1)} of integers (or of the residue classes 
of integers modulo n). 

A substitution ("Ombytning" is Sylow's word) is the transition from one permutation to another, or, in 
modern terms a bijection of the index set {0, 1, ... , (n- 1)} (or of the corresponding equivalence classes 
modulo n) to itself. Thus, substitutions can be composed, permutations can not. 

A group, then, in the language of the 1860's, is "a set of permutations, such that any substitution that 
takes one member of the group to another, takes every member of the group to another member, without 
introducing alien permutations." 

With this definition, much of the reasoning will of course take place not in the group itself, but in 
the associated set of substitutions. But the construction of equivalence classes modulo a subgroup takes 
place in the set of permutations. It is described by Sylow as a partition of the given group (that is: set of 
permutations) into subsets, such that every two of these subsets "have the same set of substitutions, but 
no permutation in common." The fact that this set of subsets can again be associated with a group in the 
modern sense af that word is used only indirectly. 

(The modern, abstract, formulation of the group concept evolved very slowly; a beginning can be seen 
in work by Cayley in 1854, it is completed in Heinrich Weber's textbook of 1895-6.) 
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The setting in which Sylow works throughout these lectures, is as follows: 

There is given one algebraic equation xn + an-1Xn-1 + · · · + a1x + ao = 0, and the problem considered 
is to clarify the relations between the coefficients ao, at, ... , an-1 and the roots xo, Xt, ... , Xn-1 of that 
equation, in particular to find out when the equation is solvable by radicals. The roots are generally 
considered to be distinct. Sylow refers to this equation as " the equation" or "the given equation", and to 
its roots simply as "the roots". 

We also note some minor points of terminology: 

The word "field" was not used by Sylow, he uses the expression "rationally known quantities". It means 
either the field of rational numbers or some finite extension of it. The context tells which. The process of 
extending the field of coefficients is referred to as "considering some additional quantity to be known". 

"Equations" are polynomial equations, with "rationally known" coefficients. Polynomials are generally 
understood to be monic (leading coefficient equal to one). Sylow often speaks about equations where modern 
readers might find it more natural to speak about polynomials, and he speaks about splitting or reduction 
of the equation where nowadays we would speak about factorisation of the polynomial. 

The words "function" and "expression" are used synonymously, it means a rational expression. An 
"entire function" is a polynomial. 
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Summary of the lectures 

Chapter 1 Introduction. 

o Definition of rational and irrational quantities, algebraic operations and quantities, algebraic equations 
and functions. Solvability of algebraic equations. 

o Every algebraic equation has a root (in the complex numbers). Proof by calculus: Write z = x + iy, 
f(z) = u(x, y) + iv(x, y), where x, y, u, v are real, and note that u2 + v2 has a minimal value for 
some finite (x0 , y0 ). Then show by calculus that this minimal value must be zero. (The existence of a 
minimum is considered obvious.) 

o Hence every polynomial of degree n > 0 can be factored (over the complex numbers) in a product of n 
linear factors. 

Chapter 2 Reducible and irreducible equations. 

o If an algebraic quantity x0 can be defined by two different equations F(x) = 0 and f(x) = 0, then it 
can also be defined by ¢(x) = 0, where¢ is the greatest common factor ofF and f. Hence there is one 
monic equation of lowest degree which defines xo, and that equation is irreducible. 

o When an irreducible equation has one root in common with some other equation with rational coeffi­
cients, then it has all its roots in common with that equation. 

o Irreducibility of an equation depends on which quantities are considered to be known: The equation 
x2 - 4x + 2 = 0 is irreducible if only rational numbers are known, but it becomes reducible if J2 is 
known. 

o Equations with multiple roots are reducible. (Because f(x) = 0 and !a;(x) = 0 then have a common 
factor.) 

o If n is a prime number then the equation xn - a = 0 is reducible only if y'a is rationally known. If n is 
not a prime, it is reducible only if y'a is rationally known for some factor m of n. 

o If t 0 +ha~ +t2af. + ... +tn_1a ";;- 1 = 0, where n is prime and og a~ cannot be expressed rationally by 
a and t0 , t 1 , ... tn_ 1 , then all the tj are equal to zero. (Credited to Abel.) 

Chapter 3 Symmetric functions. 

o The coefficients in the equation f(x) = xn + a1xn-l + ... + an-lX +an = 0 are symmetric functions 
of the roots. Hence every rational function of the coefficients is a symmetric function of the roots. The 
converse question is of the highest importance for the theory of equations. 

o Newton's equations relating the coefficients to the sums of powers of the roots are proved. 

o Elimination in Newton's equations gives the sums of powers of the roots as polynomials in the coeffi­
cients. The coefficients of these polynomials are integers. 

o Elimination in Newton's equations also gives the coefficients of the given equation as polynomials in 
the sums of powers of the roots. (The coefficients of these polynomials are not integers.) 

o Every symmetric entire function of the roots can be expressed as an entire function of the coefficients 
of the equation; and that expression is linear in the coefficients of the given function, and involves no 
division. Two proofs of this are given. The first comes from the two previous statements; the second 
uses Waring's more direct approach. 

Chapter 4 Entire functions of the roots. 

o An entire non-symmetric function of the roots can take on at most n! different values when the roots 
are permuted in all different ways. If the function depends on just one of the roots, it takes on at most 
n values; if it involves two roots, it may take on at most n(n- 1) values. 
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o If vo is a given functon of the roots, and Vt, v2, ... Vm-1 are the different values it takes on when the 
roots are permuted, then every symmetric function of the Vj is also a symmetric function of the roots. 

o Every entire function uo of the roots is itself root in an algebraic equation of degree m :::; 2 · 3 . · · n, the 
roots of which are the m different values uo takes on when the roots are exchanged in all posssible ways. 
The coefficients of this new equation are entire functions of the coefficients in the given equation and of 
those in uo. 

o If the coefficients in the given equation and of uo are integers, then the coefficients in this new equation 
are integers too. 

o Every rational function of the roots of an equation f(x) = 0 can be written as an entire function of the 
roots, and in such a way that no root appears to a power greater than ( n - 1). Two somewhat different 
algorithms for this reduction are given. 

Chapter 5 Theorems about irreducibility. 

o If an equation whose coefficients are integers has a rational root, then that root is an integer. More 
generally: If in an equation whose coefficients are integers, some entire function of the roots takes on a 
rational value, then that value is an integer. [Recall: all equations are monic.] 

o When an equation whose coefficients are integers is reducible, then the coefficients of the equations into 
which it is reduced are integers. 

o When all coefficients in an equation are multiples of some prime m, and some entire function of the roots 
has a rational value, then that value is divisible by m. It follows that if such an equation is reducible the 
coefficients of the equations into which it can be reduced will be divisible by m. Hence if the coefficients 
of an equation are all divisible by m, and the last coefficient not divisible by m2 , then the equation is 
irreducible. 

o These theorems hold also for equations with coefficients from other domains with unique factorisation. 
Also, equations with rational coefficients can be transformed to equations with integer coefficients by 
the substitution x = z / D, where D is the common denominator for the coefficients. 

o Application to an equation connected to the theory of elliptic functions: For general o: the equation 
x 8 - 6o:x4 + 4o:(1 + o:)x2 - 3o:2 = 0 is irreducible. 

Chapter 6 The group of an equation. 

o Problem: Can a non-symmetric function of the roots be expressed rationally by the coefficients? 

o For "general" equations we have proved that the answer is no: When a rational expression in the roots 
is rationally expressible by the coefficients, it is symmetric. 

o For a rational expression, ¢(x0 ), in only one of the roots of an irreducible equation to be rationally 
known, it is necessary and sufficient that its numerical value is unchanged when x0 is replaced by any 
of the other roots of the equation. Proof of sufficiency: If¢ is invariant, then ¢(x0 ) = ¢(x1) = ... = 
¢(xn-1) = ~ (¢(xo) + ¢(x1) + ... + ¢(xn-1)) is symmetric, hence rational. Necessity: If x0 is a root 
in the irreducible equation f(x) = 0, and ¢(xo) = A, then f and the equation ¢(x) -A = 0 have a 
common root. The irreducibility off then implies that ¢(xj)- A= 0 for all roots Xj of f. 

o The case of a rational expression uo involving two or more of the roots is reduced to this, by first 
constructing an algebraic quantity by which all the roots can be expressed rationally. 
To do that, we choose rational numbers o:o, O:t, ..• O:n-1 such that when the Xj are exchanged in all the 
n! = m possible ways, the quantity vo = o:oxo + o:1x1 + ... + O:n-1Xn-1 will take on m different values. 
(The condition means that there is a finite number of equations which are not to be satisfied, and we 
have an infinite number of rationals O:j to choose from.) Using this v0 we find that: 

i) Every rational function uo of the roots can be expressed rationally by vo and the coefficients of the 
equation. 
Proof: Let vo, v1, v2, ... Vn-1 be them= n! different values into which Vo is changed when Xj are 
permuted in all possible ways, and uo, U1, u2, ... Un-1 the corresponding values of uo (these are 
not necessarily different!) Then note that the sums 'L.";:-;/ ujvj = ck, for k = 0, 1, ... m- 1, are 
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symmetric in the ui, hence in the Xj, and therefore rational. These m equations are linear in the 
Uj, and their determinant is nonzero, so we can solve them to get the Uj as rational expressions in 
the Vj· 

ii) Since vo is a root in the equation (v- vo)(v- v1) .•• (v- Vm- 1) = 0, which has rational coefficients, 
Vo is a root in some irreducible equation of degree J.L :::; m. Let the other roots in that equation be 
V1, v2, ... , v ,-1 . Then every rational function u0 in the xi can be written as a rational expression 
in vo. Therefore it is rational in the coefficients if and only if it is unchanged when v0 is replaced 
by any of v1, ... , v~-t-1· 

o It follows that uo can be expressed rationally by :the coefficients in the given equation if and only if it is 
unchanged under that subset of all permutations of the Xj which exchanges the first J.L of the Vj among 
themselves, and the rest of them among themselves. 

o This subset of the set of all permutations of the roots is called the group of the given equation. 
That is: A rational function of the roots can be expressed rationally by the coefficients if and only if it 
invariant under the permutations which belong to the group of the equation. 

o The reasoning in this chapter is valid also for equations with repeated roots, provided that each of them 
is considered as just one root [i. e. not counting multiplicity]. 

o The substitutions belonging to the group have the property that if any two of them are applied one 
after the other, the result is a third substitution which belongs to the group. 

o To any given group of permutations of x0 , X1, •.• Xn- 1 there exists a function of the roots, which is 
unchanged by the substitutions in the group, but not by any other substitution. 
The proof starts from a function Vo which takes on n! different values when the roots are permuted. Let 
vo, V1, ... v~-t-1 be the values corresponding to the given group. Then it is possible to find a rational a 
such that the function F0 = (a- v0 )(a- v1) ···(a- vl-'_ 1 ) has the desired property. 

o Finally it is shown that to any group there exists an equation to which it belongs. 
Proof: The general equation of degree n is used, with the quantity Fo defined above considered as 
known. {Editor's note: Thus the given group is the Galois group of an equation with coefficients from 
the extension Q(F0 ) of the rationals. Whether there exists an equation with rational coefficients, and 
having the specified Galois group, is quite another matter!] 

Chapter 7 Relations between the equation and its group. 

o Rational relations (i. e. equations) between the roots of the given equation are conserved under the 
substitutions that belong to the group of the equation. 

o If a rational expression in the roots takes on v different values under the substitutions of the group, it 
satisfies an equation of degree v with rationally known coefficients, and whose roots are these v values. 
The number v is a divisor of the number of permutations in the group of the given equation. 

o The group of this new equation is transitive. (It will be shown later that this implies that the equation 
is irreducible.) 

o Example: The theorems above are used to show how the equation x4 + x3 + x2 + x + 1 = 0 can be solved 
by radicals. 

o If uo and vo are two rational expressions in the roots of the given equation, and if all the substitutions 
in the group of the equation which leave vo invariant also leave u0 unchanged, then u0 can be expressed 
rationally by vo. 

o Finally: If a given function u0 of the roots is considered as known, the group is reduced to those elements 
of the original group which leave uo unchanged. 

Chapter 8 Substitutions. 

o A substitution may be written as a product of cyclic substitutions. The order of a substitution is defined. 
A cyclic substitution of n roots is of order n. If n is prime, then any substitution of order n is cyclic. 
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o Different notations for substitutions and for composition of substitutions are discussed. Composition 
is not necessarily commutative. It is verified that the substitutions belonging to a group have the 
properties which are used to define groups in the modern sense of that word. 

o The group of a general equation of degree n is of order n!. 

o An equation with no repeated roots is irreducible if and only if its group is transitive. 

o If the given equation is irreducible the order of its group is a multiple of its degree. In any equation of 
degree n the order of the group is a divisor of n!. 

o If the degree of the equation is prime, and the group contains no cyclic substitution of all the roots, 
then the equation is reducible. Or: Any irreducible equation of prime degree contains in its group a 
cyclic substitution of all the roots. (Result credited to Schonemann) 

o Generalization (Cauchy): A group contains cyclic substitutions of every prime order which is a divisor 
of the number of substitutions in the group (i. e. the order of the group). 
[Note, after the main text: "What if m is divisible by v8? Can the above be extended?") 

From here on the manuscript has no division into chapters until sheet 14. I have put in some headings 
where I thought appropriate, and also noted on which sheets the original text is found. 

{Sheet 8.} Abelian equations. 

o The number of substitutions belonging to the group of an irreducible equation is at least equal to the 
degree of that equation. We will study the class of the irredeucible equations whose group has this 
minimal number of substitutions. 

o In an irreducible equation whose group has only n substitutions, every root can be expressed rationally 
by any of the others. Conversely, if every root can be expressed rationally by one of them, then the 
group has only n permutations. 

o If in addition the degree of the equation is prime, then every substitution in its group must be of order n. 
Then, if one root can be expressed rationally by one other, say x1 = B(x0), it follows that the remaining 
roots can be Written X2 = 82(xo), ... Xn-1 = en-l(xo), with Bn(xo) = Xo. 

o Conversely, if the degree of an irreducible equation is prime, and one of the roots is a rational function 
of one other, x1 = B(xo), then the remaining roots are given by B2(xo), B3(x0), ... en-1(x0 ), where 
en(xo) = Xo. Thus the group contains just one cyclic substitution, repeated n times. 

o Regardless of whether the degree n is prime or not, if the roots are given by B2 (x0 ), B3 (x0 ), ... en-1(x0 ), 

then the equation is solvable by radicals. 
The proof goes by noting that the group then must be cyclic, and that the quantity 

where w is an n-th root of unity, is invariant under cyclic permutations of the roots, and therefore 
rational. Using all then different values of w, we get n such quantities v. Taking n-th roots and solving 
the resulting system of linear equations we find rational expressions for the Xj in terms of the n-th roots 
of 1 and of these n values of v. [See formula (1) on the following page.) 

o This expression for the roots is simple, but it has the drawback that it contains n - 1 root signs, 
and therefore gives nn-l values, not just the n roots. A closer analysis shows how to get rid of that 
complication. 

o Regardless of whether the degree n is prime or not, it is true that if the group is cyclic, or, equivalently, 
if the roots may be written as xo, B(xo), B2(x0), ... en-1(x0), then the equation is solvable by radicals. 

o Such equations have been called Abelian by Kronecker. 

o It follows that if the equation is irreducible, of prime degree, and one of the roots may be expressed 
rationally by one of the others, then the equation is solvable by radicals. 

8 



o Two examples are considered. First the general quadratic equation x2 +ax+b = 0 is shown to be abelian, 
and its solution deduced from the general theory. Then the equation xn-I + xn-2 + ... + x + 1 = 0, 
with n prime, is considered, and it is shown that the n-th roots of unity can be expressed by radicals 
and the (n- 1)-th roots of unity. 

{Sheet 9.} Equations with real coefficients. 

o If the roots are as above, and the coefficients in the function () are real, then either all the roots are real, 
or none of them is real. 

o If in addition the coefficients of the given equation are real, then the quantities v from Sheet 8 can be 
expressed rationally by real quantities and an nth root w of unity. By separating real and imaginary 
parts in the expressions for the v's, and in the resulting expressions for the roots, it is then shown that 
all that is needed to solve the equation is: 

1) to divide the periphery of the circle in n equal parts. 
2) to divide an angle, which can now be constructed, inn equal parts. 
3) to extract the square root of one quantity, which can now be computed. 

o Example: xxn~l = xn-I + xn-2 + ... + x + 1 = 0. The n-th roots of unity can be expressed by radicals 
and the (n -1)-th roots of unity, (as was found by other means before). 

o To divide the periphery of the circle in n equal parts, when n is prime, it is sufficient 
1) to extract the square root of n, 
2) to divide the periphery in (n- 1) equal parts, 
3) to divide a certain angle, which can now be constructed, in (n- 1) equal parts. 

o In particular, the circle can be divided in n equal parts using only straightedge and and compasses when 
n is a prime of the form 2P + 1. 

o Example: The same conclusions about solvability by radicals and constructability with straightedge 
and compasses are also deduced from the equation wich expresses x = cos <P in terms of cos (2n + 1 )¢; 
although through somewhat heavier computations. 

{Sheet 10.} 

o It has been shown (Sheet 8) that the roots of an abelian equation can be written in the form 

where VI and all the coefficients are rational expressions in known quantities and one nth root w of unity. 

o To obtain a converse statement, we consider w to be known, and suppose that the equation xn- VI = 0 
is irreducible. Then every quantity of the form (1) will be a root in some irreducible equation of degree 
n, with rationally known coefficients, and the roots of this equation can be written as xo, ()(xo), ()2(xo), 
... 'en-l(xo). 

o If we do not consider w to be known, it is hard to find symmetric expressions in the roots, to be used 
instead of the the v in the preceding theory. The most important case is when only rational numbers 
are known;or rather that only such quantities are known that leave the equation x;:} = 0 irreducible. 
The resulting equations are important in the theory of solvable equations with rational coefficients. 
There also are intermediate cases, where some quantity is known which renders the equation x;:} = 0 
reducible without giving rational expressions for the w. [These problems are not discussed further in 
the present lectures.] 

9 



Generalised Abelian equations. 

o Now consider a more general case, where the degree of the given equation is no longer a prime, but 
where the group is still supposed to contain just n substitutions, and where consequently each root can 
be expressed rationally by any one of the others. 

o In that situation, there is a factorisation n = m · m' such that the roots of the equation can be arranged 
in m' cycles, each consisting of m roots, in such a way that every substitution belonging to the group 
either exchanges permutations only within the individual cycles, or else exchanges whole cycles among 
themselves. 

o Generally, when the roots of an equation of degree n = m · m' can be placed in m' cycles, each of order 
m, such that every substitution belonging to the group either exchanges permutations only within the 
individual cycles, or else exchanges whole cycles among themselves, then the given equation is split into 
m' equations of degree m, the coefficients of each of which are rational expressions in the coefficients of 
the given equation and one root of an auxiliary equation of degree m', with rationally known coefficients. 

o These m' equations are abelian, hence solvable by radicals. 

Sheet 11 

o In general this auxiliary equation ¢(x) = 0 is not solvable by radicals, and its roots can not be expressed 
as rational functions of each other. If they can, then a substitution in the group of the given equation 
which leaves one of the roots Yk of ¢(x) = 0 invariant, must leave them all invariant. Necessary and 
sufficient for that is that every substitution which keeps one of the cycles in the group invariant keeps 
them all invariant. 

o An equivalent condition is the following: If() and ¢ are two substitutions from its group, xo a root, and 
k a positive integer, then there is a positive integer l such that B¢k(x0 ) = ¢1B(x0 ). 

o In that case the auxiliary equation again splits into a number of abelian equations, the coefficients of 
which depend rationally on the roots of a new auxiliary equation (which may or may not be of the same 
kind). 

o There is one simple case where the given equation can be completely reduced to abelian equations: 
When every root of an irreducible equation can be rationally expressed by one of them, xo, and in such 
a way that if() and ()1 are two of these functions, then ()()1(xo) = B1B(xo). Then the given equation 
splits into only abelian equations, and hence is solvable by radicals. 

o This reasoning can be used to solve abelian equations of composite degree: 
An abelian equation of degree n = m · m' splits into m' abelian equations of degree m, with coefficients 
dependent on a root of an abelian equation of degree m'. Since all roots can be expressed rationally by 
x0 , it is sufficient to know one root of the first equation and one root of one of the m th degree equations. 

o If m or m' are composite, the reduction can be continued: If n = a 01 bf3 ... z>-, where a, b, . . . l are 
different primes, then the solution of the given abelian equation can be reduced to solving a equations 
of degree a, (3 equations of degree b, ... A equations of degree l. 

o If we apply this to the equation x2:~11- 1 = 0, we find Gauss' theorem on the division of circles. 

o In view of an earlier result (Sheet 8), these considerations imply the following theorem: 
Let an irreducible equation be of degree n = a01 bf3cl ... z>-, where a, b, c, .. . l are primes, and suppose 
that every root can be rationally expressed by one of them, xo, in such a way that if() and B1 are two 
of these functions, then ()()1(x0 ) = B1B(x0 ). Then the equation may be solved by solving a equations 
of degree a, (3 equations of degree b, ... , A equations of degree l, each of which is abelian and hence 
sovable by radicals. 

o Abelian equations whose degree is composite and contains different primes, can be solved in yet another 
way. Write n = m 1m 2 ... mp = m 1J.L1 = m 2J.L2 = ... = mpf.Lp, and let x 0 be one of the roots. We have 
seen that x 0 is root in one equation F1 (x, yl) = 0 of degree J.L 1 with coefficients depending on the root 
y1 of an auxiliary equation ¢1(y) = 0 of degree m1; and it is also root in an equation F2(x,y2) = 0 of 
degree J.L 2 , with coefficients depending on the root y2 of an auxiliary equation ¢2(Y) = 0 of degree m2, 
etc. If the m 1, m2 etc are relatively prime, these equations F1(x,y1) = 0, F2(x,y2) = 0 etc have xo as 
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their only common root, and hence the common factor (x- xo). The coefficients of this factor, i. e. x 0 , 

then is a rational function of Yl, Y2, ... yp, and the solution of the given equation is reduced to solving 
the equations ¢1(y) = 0. 

o Several examples are given, with computations carried out in great detail; as follows. 

o [ On end of Sheet 11 and beginning of Sheet 12.] The binomial equation xn - 1 = 0 is discussed. 
Primitive roots of unity are defined, their number is shown to be equal to the number of integers p, 
1 < p < n, which are relatively prime to n. 

o The equation x:~} = x 6 + x 5 + ... + x + 1 = 0 is solved by radicals, in three different ways: by reduction 
to two cubic equations, to three quadratic equations, and by combining these two. [Not all of the 
computations have been transcribed.} 

o The equation z3 + z2 - 2z - 1 = 0 has the roots 2 cos 2:; , 2 cos 6:; 2 cos 4.; . The preceding theory is used 
to obtain alternative expressions for them. 

{Sheet 12 a.] 
o Now suppose that the degree of the given equation is composite, but one of the roots can be expressed 

rationally by one of the others, x1 = O(xo). Then there is a number m such that for 1 ::; j < m, all 
OJ ( x 0 ) are different roots, and om ( x 0 ) = x0 . Then this m is a factor of n, say n = m · m', and the roots 
may be placed in m' disjoint cycles, each containing m roots, in such a way that every substitution in 
the group either exchanges the roots in each cycle among themselves, or else exchanges the whole cycles 
among themselves. 

o The equation then can be split into m' equations of degree m, whose roots are the roots of the given 
equation, and where the coefficients of each of them depend rationally on one of the roots of an auxiliary 
equation of degree m' (with rationally known coefficients). This root is a symmetric function of the 
roots in the corresponding cycle. 

o Two examples are considered in much detail. The first is reciprocal equations: f(x) = 0 where the 
polynomial f satisfies the equation f(x) = xn f(1jx). {Three explicit equations of this kind are treated, 
only one has been transcribed.] The second is a modular equation from the theory of elliptic functions. 
{The computations here are rather heavy, and have not been transcribed.] 

Adjunction of new known quantities. 

o When the roots of some irreducible auxiliary equation are considered known, the equation will either 
remain irreducible, or it will split into a number of equations, all of the same degree. Each of these 
equations is obtained from one of them by substitutions belonging to the group of the given equation. 

o The same reduction is obtained by adjoining a quantity which is a rational function of the roots in the 
given equation, it is also a symmetric function of the roots in one of the factors. 

o If the given equation is of prime degree, it can not be made reducible without being split into only linear 
equations. 

o Definition: An equation is called primitive if whenever it is made reducible by adjunction of some new 
known quantity, it splits into only linear equations. 

{Sheet 13.} 

o An equation is primitive if and only if its roots can be arranged in v' cycles, each having v roots, and 
such that by any substitution belonging to the group of the equation, either the roots are exchanged 
only within each cycle, or whole cycles are exchanged. 

o The general equation of degree 4 is primitive. 

o When the roots of some irreducible auxiliary equation are counted among the known quantities, the 
group of the given equation will either remain unchanged, or it will split into several partial groups, 
each having the same number of substitutions. Each of these partial groups is the group of the given 
equation when the new quantity has been adjoined. They all have the same substitutions, and the 
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permutations in one of them are moved to the permutations in each of the others by use of one and the 
same substitution from the group. 

o Conversely, let the group of the given equation split into v' partial groups, each having v permutations, 
and having the properties described. Then there is an auxiliary equation whose group has v' permuta­
tions, such that if the roots of that equation are adjoined to the known quantities, the group is reduced 
to one having just v permutations. 

{Sheets 14 and 15.} 
On equations solvable by radicals 

and of prime degree. 

o To solve an irreducible equation by radicals means that one successively adjoins roots of irreducible 
equations xm- a= 0, xm1 - a 1 = 0 etc to the known quantities. Herem, m1, ... are prime numbers, a 
is rational, and each following ai is rational in terms of the previous adjunctions. This is repeated until 
the given irreducible equation becomes reducible. In this process it can be assumed that the necessary 
roots of unity are known. 

o Let the given equation become reducible when a root of the equation xP - r = 0 is adjoined. Then p 
is equal to the degree n of the given equation, and since that is a prime, the equation can be reduced 
only by splitting into n factors of the first degree. 

o Before this last adjunction the group of the given equation must have been reduced to a cyclic group of 
order n. 

o Working backwards from this, it is found that all the substitutions belonging to the original group must 
have been of the form ¢>(k) = ak + b (mod n), where a and bare constants. Here b will take on all 
values 0, 1, ... n -1, and a takes values 1, fa, t:2a, ... f(a'-l), where f is a primitive root of unity, and 
a· a'= n -1. 

o The proof of the converse, that if the group admits substitutions of this form only, then the equation 
is solvable by radicals, is rather long. It uses the quantity s1 = (xo +wx1 +w2x2 + ... +wn-lXn-lr, 
where w is an nth root of 1. We have seen (in our work with abelian equations) that s1 is invariant 
under substitutions of the form ¢(k) = k + b, now it is shown that it takes on a' different values under 
the substitutions ¢>(k) = ak. Then two pages of computation lead to formulae expressing the roots as 
linear combinations of the nth roots of s1, with coefficients which are rational in s1 and w. 

o For an irreducible equation of prime degree to be solvable by radicals it is necessary and sufficient that 
its group contains only substitutions of the form (k, ak+b). (That is, Xk --> xq,(k)• where ¢>(k) = ak+b 
(mod n).) 

o This criterium can be expressed in another way: For an irreducible equation of prime degree to be 
solvable by radicals it is necessary and sufficient that all its roots can be expressed rationally by two of 
them. 

o An irreducible equation of prime degree is solvable by radicals or not, according to whether its group 
contains n or more cyclic substitutions of all roots. 

o Application to general equations. The general cubic equation is solved by radicals. General equations 
of degree higher than the fifth are not solvable by radicals, because it has been proved earlier that the 
general quintic equation is not solvable. 
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