Positive projections of von Neumann algebras onto JW-algebras

Uffe Haagerup

Department of Mathematics, Odense University, DK–5230 Odense M, Denmark Erling Størmer

Department of Mathematics, University of Oslo, 0316 Oslo, Norway

1 Introduction

Let N be a von Neumann algebra and $E: N \to N$ a positive linear unital map. We say E is a projection (or positive projection) if E is idempotent, $E = E^2$. If E is faithful and normal the image of E is a Jordan algebra [3], in particular its self-adjoint part $A = E(N_{sa})$ is a JW-subalgebra of N_{sa} with the usual Jordan product $a \circ b = \frac{1}{2}(ab + ba)$. It was shown in [1] that E is completely positive if and only if E(N) is a von Neumann algebra, and it was shown in [7] that E is decomposable, i.e. the sum of a completely positive and co-positive map, if and only if A is a reversible JW-algebra. Recall that A is called reversible if $A = R(A)_{sa}$, where R(A) denotes the weakly closed real *-algebra generated by A. Let M denote the von Neumann algebra generated by A, or equivalently by E(N). Then it is natural to ask 1) whether there exists a faithful normal conditional expectation of N onto M, and 2) if it does, will E factor through M, i.e. if there exists a faithful normal conditional expectation $F: N \to M$ and a (possibly canonical) projection $P: M \to A + iA$ such that $E = P \circ F$.

In the present paper we shall present answers to the above questions, the results varying with the kind of JW-algebra A is. We shall also in the last section prove a theorem on the existence of positive projections, the result being an extension of Takesaki's existence theorem for conditional expectations [9] to Jordan algebras. We shall mainly concentrate our attention to faithful projections. There are two technical reasons for this. The first is that then $A = E(N_{sa})$ is a JW-subalgebra of N_{sa} . Secondly, we can always restrict attention to this situation. Indeed, let e be the support of E in N. By [3, Lem. 1.2] $e \in A' \cup N$, and from the proof of [7, Lem. 1.2] the map $E_e : N_e \to N_e$ defined by

$$E_e(exe) = \lambda^{-1}E(exe)e, \qquad x \in N, \ \lambda = E(e) \in A \cup A',$$

is a faithful normal projection onto E(N)e. (We should remark that in [7] A is assumed to be a JW-factor, but the result extends easily to the general case by a modification of the proof of Proposition 3.1 below).

We refer the reader to the book [5] for the theory of JW-algebras.

2 Projections from the enveloping von Neumann algebra

In this section we study the existence problem for positive normal projections of the enveloping von Neumann algebra onto the JW-algebra. To be specific let A be a JW-algebra and M = A'' the von Neumann algebra generated by A. From the structure theory of JW-algebras, see [5] there exist projections e, f, g, h in the center Z(A) of A with sum 1 such that the following hold:

(i) $eA = eM_{sa}$,

- (ii) (f + g)A is reversible, R(A) + i R(A) = M, R(A) ∩ i R(A) = {0}. The map α(x+iy) = x*+iy*, x, y ∈ R(A) is an involutive *-antiautomorphism of M such that A = {x ∈ (f + g)M_{sa} : α(x) = x}, R(A) = {x ∈ (f + g)M : α(x) = x*}. fA and gA have the following further properties:
 - (iia) There exist two projections p, g in the center Z(M) of M with p+g=f such that $\alpha(p)=q$. $pA=pM_{\rm sa}$, $qA=qM_{\rm sa}$.

(iib) $Z(gA) = Z(gM)_{sa}$

(iii) hA is of type I_2 .

Note that a positive projection P of M_{sa} onto A leaves the projections e, f, g, h invariant, hence the different cases (i)–(iii) invariant, so they can

be studied separately. For simplicity of notation we shall say P is a projection of M onto A instead of M_{sa} onto A. Then in case (i) the identity map is a projection of M onto A. In case (ii) the map $P(x) = \frac{1}{2}(x + \alpha(x))$ is a projection of M onto A which we shall call the *canonical projection*. Thus the existence problem is reduced to the I_2 -case. For a discussion of JW-algebras of type I_2 see [5, §6.3], and in particular the definition of JW-algebra of type $I_{2,k}, k \in \mathbb{N}$. For us all we need to know is that such a JW-algebra is of the form $C(X, V_k)$, where $Z(A) \cong C(X)$, X compact Hausdorff, and V_k is the spin factor generated by a spin system of k symmetries [5, Prop. 6.3.13].

Theorem 2.1 Let A be a JW-algebra of type I_2 and M the von Neumann algebra generated by A. Then there exists a faithful normal projection P of M onto A if and only if M is finite. If P exists and τ is a normal trace on A then $\tau \circ P$ is a trace on M. If A has no direct summand of type $I_{2,k}$ with k an odd integer then P is unique.

The proof will be divided into some lemmas. The necessity part of the theorem follows from the following more general result. For a discussion of traces on JW-algebras see [6].

Lemma 2.2 Let N be a von Neumann algebra, A a JW-subalgebra and $E: N \to A$ a faithful normal projection. Suppose τ is a faithful normal semifinite trace on A such that $\tau \circ E$ is a semifinite weight on N. Then there exists a faithful normal conditional expectation F of N onto the centralizer $N_{\tau \circ E}$ of $\tau \circ E$ in N such that $E = E/N_{\tau \circ E} \circ F$. Furthermore, if M denotes the von Neumann algebra generated by A, then $M \subset N_{\tau \circ E}$, so in particular $\tau \circ E$ restricts to a trace on M.

Proof If s is a symmetry in A and $x \in N$ then by [7, Lem. 4.1] E(sxs) = sE(x)s, hence

$$\tau \circ E(sxs) = \tau(sE(x)s) = \tau(E(x)).$$

Replacing x by xs we obtain $\tau \circ E(sx) = \tau \circ E(xs)$. Since the symmetries span a dense subset of A, $A \subset N_{\tau \circ E}$. Since $N_{\tau \circ E}$ is a von Neumann subalgebra of N, and $A \subset N_{\tau \circ E}$, $M \subset N_{\tau \circ E}$. Since τ is semifinite on A, $\tau \circ E$ is semifinite on M, hence $\tau \circ E$ restricts to a semifinite trace on M.

Let $a \in A$ and p be a finite projection in A, i.e. $\tau(p) < \infty$. Then for each finite projection q in A, $p \lor q$ is finite, and the restriction of τ to $p \lor q \land p \lor q$

is a finite trace. From the identity $\tau(yxy) = \tau(y^2 \circ x)$ for a $x, y \in p \lor q \land p \lor q$ [6], it follows that

$$\tau(p\,qaq\,p)=\tau(p\circ qaq)\,.$$

Since the functional $x \to \tau(p \circ x)$ is normal, letting $q \to 1$ we obtain the identity

(*)
$$\tau(pap) = \tau(p \circ a), \quad a \in A.$$

Note that the states $\rho(a) = \tau(h \circ a)$ with $h \in A^+$, $\tau(h) = 1$ form a separating family of states on A. Indeed, if $a = a^+ - a^-$, $a^+a^- = 0$, $a^+, a^- \in A^+$, and $\tau(h \circ a) = 0$ for all h as above, then if p is a finite projection in A with $p \leq \text{support}(a^+)$ then by (*)

$$\tau(pa^+p) = \tau(pap) = \tau(p \circ a) = 0.$$

Since τ is faithful $pa^+p = 0$. Letting $p \nearrow \operatorname{support}(a^+)$ we obtain $a^+ = 0$, and similarly $a^- = 0$. Thus a = 0.

Let σ_t denote the modular group of the weight $\tau \circ E$ on N, and let $\rho(a) = \tau(h \circ a)$ be a state as above. Then for $x \in N$

$$\rho \circ E(\sigma_t(x)) = \tau(h \circ E(\sigma_t(x)))$$

= $\tau(E(h \circ \sigma_t(x)))$ by[7, lem.4.1]
= $\tau(E(\sigma_t(hx)))$ since $h \in N_{\tau \circ E}$
= $\tau \circ E(h \circ x)$
= $\rho(E(x))$.

By the previous paragraph $E(\sigma_t(x)) = E(x)$ for all $t \in \mathbf{R}$, hence E factors through $N_{\tau \circ E}$. QED

Lemma 2.3. Let A be a spin factor and B the C*-algebra generated by A. Then there exists a positive projection of $E: B \to A$. E is unique if $A \cong V_k$ with k even or ∞ . If $A \cong V_k$ with k odd then there is a 1-parameter family of positive projections of B onto A.

Proof From [3] there exists a positive projection $E: B \to A$. Let τ denote the trace on A see [5, 6.1.7]. By the argument of Lemma 2.2, $\text{Tr} = \tau \circ E$ is a trace on B. By [3] E is the orthogonal projection of B onto A with respect to the inner product $\langle x, y \rangle = \text{Tr}(xy) = \text{Tr}(x \circ y)$. Let \mathcal{A} denote the CAR-algebra. Then by [5, 6.2.2] we have

$$B \cong \begin{cases} M_{2^{n-1}}(\mathbb{C}) \oplus M_{2^{n-1}}(\mathbb{C}) & \text{if } k = 2n-1 \\ M_{2^n}(\mathbb{C}) & \text{if } k = 2n \\ \mathcal{A} & \text{if } k = \infty \,. \end{cases}$$

If k = 2n or ∞ there exists a unique trace on B, so $\text{Tr} = \tau \circ E$ determines E uniquely. If k is odd there is a 1-parameter family of positive projections of B onto A, as each trace Tr on B defines a projection by the formula Tr(E(x)y) = Tr(xy) for $x \in B, y \in A$. QED

Lemma 2.4 Let A be a JW-algebra and M the von Neumann algebra generated by A. If M is finite there exists a faithful normal projection $P: M \to A$. If moreover Z(A) = Z(M) then P is unique.

Proof Cutting down by central projections if necessary we may assume M has a faithful normal tracial state tr. As for von Neumann algebras for each $x \in M_{sa}$ there is $P(x) \in A$ such that

$$\operatorname{tr}(x \circ a) = \operatorname{tr}(xa) = \operatorname{tr}(P(x)a) = \operatorname{tr}(P(x) \circ a), \qquad a \in A$$

P so defined is a faithful normal projection of M onto A.

Assume Z(A) = Z(M), and let $\psi : M \to Z(A)$ be the unique center valued trace on M with $\psi(1) = 1$. Let $\Phi = \psi|_A \circ P$. If $z \in Z(A)$ then for $x \in M$, $\Phi(zx) = \psi(P(zx)) = \psi(zP(x)) = z\psi P(x) = z\Phi(x)$, so Φ is also a faithful normal center valued trace, hence $\Phi = \psi$. If Q is another faithful normal projection $M \to A$ then similarly $\psi|_A \circ Q = \psi$, hence

$$\psi|_A(P(x)-Q(x))=0, \qquad x\in M.$$

If $a \in A$ then

$$0 = \psi|_A(P(a \circ x) - Q(a \circ x)) = \psi|_A(a \circ (P(x) - Q(x))).$$

In particular this holds when x is self-adjoint and a = P(x) - Q(x), hence by faithfulness of ψ , P(x) = Q(x). Thus P is unique. QED

Proof of Theorem 2.1

Assume A is of type I_2 and M is finite. By Lemma 2.4 there exists a faithful normal projection $P: M \to A$ and if P exists then M is finite by Lemma 2.2. Since by [5, 6.3.14] A is a direct sum of JW-algebras of type $I_{2,k}$, and if A is of type $I_{2,k}$ then $M \cong C(X, V_k)$ with $Z(A) \cong C(X)$, so the uniqueness statement follows from Lemma 2.4 and Lemma 2.3.

3 Conditional expectations onto the generated von Neumann algebra

In this section we study the following problem. Suppose N is a von Neumann algebra, A a JW-subalgebra, and M the von Neumann algebra generated by A. Suppose $E: N \to A$ is a faithful normal projection. Then

- (i) Does there exist a faithful normal conditional expectation $F: N \to M$?
- (ii) If F exists can it be chosen so that $E = E|_M \circ F$?

Note that if A has a faithful normal semifinite trace τ such that $\tau \circ E$ is semifinite, then the answer to both questions is affirmative by Lemma 2.2.

The following proposition is used in the proof of [8, Thm]. However, in that proof we refer to [7, Lem. 4.2], which is only proved for JW-factors. For completeness we include a proof. We use the notation N_p for the von Neumann algebra $\{pxp : x \in N\}$ when p is a projection in N.

Proposition 3.1 Let N be a von Neumann algebra, A a JW-subalgebra and $E: N \to A$ a faithful normal projection. In the notation of §2 assume A is of type (iia) with p + q = 1. Then there exist faithful normal conditional expectations $F_p: N_p \to pA = pM_{sa}$ and $F_q: N_q \to qM_{sa}$ such that

$$F(x) = F_{p}(pxp) + F_{p}(qxq), \qquad x \in N,$$

defines a faithful normal conditional expection $N \rightarrow M$.

Proof For $a \in A^+$ and e a central projection in M, by [7, Lem. 4.1] $a \circ E(e) = E(a \circ e) = E(ae) \ge 0$, hence by [7, Lem. 3.1] $E(e) \in Z(A)$. In particular if $0 \ne e \in Z(A)$ then $ep \ne 0$, hence $E(p)e = E(pe) \ne 0$. By spectral theory there is a largest projection $e_n \in Z(A)$ such that $e_n E(p) \ge \frac{1}{n}e_n$ for each $n \in \mathbb{N}$. Then $e_n \ge e_m$ if $n \ge m$, so the sequence (e_n) is increasing and converges by the above strongly to 1. Let $a_n \in A$ be the inverse of the operator $e_n E(p)$ considered as acting on $e_n H$, where H is the underlying Hilbert space. Define

$$E_n: N_p \to A e_n p$$

by

$$E_n(pxp) = a_n E(pxp)e_n p$$

Clearly E_n is normal and positive. Furthermore, if $x \in N^+$ then

$$E_n(pe_nxe_np) = a_nE(pe_nxe_np)e_np = a_nE(pxp)e_np.$$

Thus if $E_n(pe_nxe_np) = 0$ then $0 = E(pxp)e_np = E(pe_nxe_np)e_n$, so $E(pe_nxe_np) = 0$. Since E is faithful, $pe_nxe_np = 0$. Thus the restriction $E_n|_{N_{pe_n}}$ is faithful. If $a \in A$ then

$$E_n(p(e_na)p) = a_n E(pe_nae_np)e_np$$

= $a_n(e_naE(p)e_np$
= ae_np .

Thus $E_n|_{N_{pe_n}}$ is a projection of N_{pe_n} onto Ae_np . Since $a_ne_m = a_m$ if $n \ge m$ a straightforward computation shows

$$E_n|_{N_{e_mp}} = E_m|_{N_{e_mp}}, \qquad n \ge m.$$

We also find

$$E_n(pxp)e_m = E_m(pxp)$$
.

Thus for $x \in N^+$ the sequence $(E_n(pxp))$ is increasing and bounded in norm by $\|pxp\|$. Let $F_p(pxp)$ be its strong limit. Then

$$F_p(pxp)e_n = E_n(pxp), \qquad n \in \mathbb{N}.$$

Thus $F_p: N_p \to Ap = Mp$ is positive, $F_p(p) = p$, and if $a \in A$, $F_p(pap) = pap$. Since we have $1 = e_1 + \sum_{1}^{\infty} (e_{n+1} - e_n)$,

$$F_{p}(pxp) = F_{p}(pxp)e_{1} + \sum_{1}^{\infty} F_{p}(pxp)(e_{n+1} - e_{n})$$

= $E_{1}(pxp) + \sum_{1}^{\infty} E_{n+1}(pxp)(e_{n+1} - e_{n}),$

is an orthogonal sum of normal maps, so is normal. Thus $F_p: N_p \to M_p$ is a positive normal conditional expectation. Finally, if $x \in N^+$ and $F_p(pxp) = 0$ then $E_n(pe_nxe_np) = 0$ for all n, hence $pe_nxe_np = 0$ for all n, and so pxp = 0. Thus F_p is also faithful.

Similarly we can define $F_q: N_q \to M_q$ and show it is a faithful normal conditional expectation. Thus the map $F: N \to M$ defined by

$$F(x) = F_p(pxp) + F_q(qxq)$$

is a faithful normal conditional expections.

QED

In the above situation F is not necessarily unique, see [7, Prop. 6.4].

In [8] it was shown that if N is a von Neumann algebra, A a reversible JWsubalgebra and E a faithful normal projection of N onto A such that $\alpha \circ E = E$ for an involution α of N, then there exists a faithful normal conditional expectation F of M onto A, where as before M is the von Neumann algebra generated by A. We now show that we can get rid of the hypothesis on the existence of α and thus answer questions (i) and (ii) affirmatively when A is of type (iib) in §2.

Theorem 3.2 Let N be a von Neumann algebra and A a reversible JWsubalgebra such that $R(A) \cap i R(A) = (0)$, and $Z(A) = Z(M)_{sa}$, where M = R(A) + i R(A) is the von Neumann algebra generated by A. Suppose $E : N \to A$ is a faithful normal projection. Then there exists a unique conditional expectation $F : N \to M$ such that if $P : M \to A$ is the canonical projection, then $E = P \circ F$.

Proof Let α be the canonical involution of M, $\alpha(x+iy) = x^* + iy^*$. Denote by N^{op} the opposite algebra of N, and put

$$\widetilde{N} = N \oplus N^{\mathrm{op}}.$$

N is imbedded in \widetilde{N} by $x \to (x, 0)$. We define an involution σ of \widetilde{N} by

$$\sigma(x,y) = (y,x).$$

Let

$$\widetilde{M} = \{(x, lpha(x)) : x \in M\}$$

and imbed M in \widetilde{M} by $x \to (x, 0)$. Define an involution $\widetilde{\alpha}$ on \widetilde{M} by

$$\widetilde{lpha}(x, lpha(x)) = (lpha(x), x) = (lpha(x), lpha(lpha(x)))$$
.

Then $\widetilde{\alpha} = \sigma|_{\widetilde{M}}$. Let

$$\widetilde{A} = \{(x, x) : x = \alpha(x) \in A\}$$

and imbed $A \ \widetilde{A}$ by $x \to (x, 0)$. The canonical projection $P: M \to A$ satisfies $P(x) = \frac{1}{2}(x + \alpha(x))$. Define

 $\widetilde{P}:\widetilde{M}\to\widetilde{A}$

by $\widetilde{P}(x, \alpha(x)) = \left(\frac{1}{2}(x + \alpha(x)), \frac{1}{2}(x + \alpha(x)) = (P(x), P(x))\right)$. Define $\widetilde{E}: \widetilde{N} \to \widetilde{A}$ by $\tilde{E}(x,y) = \left(\frac{1}{2}E(x+y), \frac{1}{2}E(x+y)\right)$. Then \tilde{E} is a faithful normal projection, and

$$\widetilde{E} \circ \sigma = \sigma \circ \widetilde{E} = \widetilde{E}$$
 .

From the definition of α it follows that \widetilde{M} is the von Neumann algebra generated by \widetilde{A} . Thus by [8, Thm. and comments following it] there exists a faithful normal conditional expectation $\widetilde{F}: \widetilde{N} \to \widetilde{M}$ such that

$$\widetilde{E} = \widetilde{E}|_{\widetilde{M}} \circ \widetilde{F}.$$

If $x \in M$ then

$$\begin{split} \widetilde{E}(x,\alpha(x)) &= \left(\frac{1}{2}E(x+\alpha(x)), \frac{1}{2}E(x+\alpha(x))\right) = (EP(x), EP(x)) \\ &= \left(P(x), P(x)\right) = \widetilde{P}(x,\alpha(x)) \,. \end{split}$$

Thus $\tilde{E} = \tilde{P} \circ \tilde{F}$.

Define $F_i: N \to M, i = 1, 2$, by

$$\widetilde{F}(x,0) = (F_1(x), \alpha F_1(x)), \quad x \in N.$$

$$\widetilde{F}(0,y) = (\alpha F_2(y), F_2(y)), \quad y \in N.$$

Since \tilde{F} is a conditional expectation, if $z \in M, x \in N$,

$$(zF_{1}(x), \alpha(zF_{1}(x)) = (z, \alpha(z))(F_{1}(x), \alpha F_{1}(x))$$

= $(z, \alpha(z))\widetilde{F}(x, 0)$
= $\widetilde{F}((z, \alpha(z))(x, 0))$
= $\widetilde{F}(zx, 0)$
= $(F_{1}(zx), \alpha F_{1}(zx)).$

Thus $zF_1(x) = F_1(zx)$, and by symmetry $F_1(xz) = F_1(x)z$. In particular $F_1(z) = zF_1(1) = F_1(1)z$, so $F_1(1) \in Z(M) = Z(A)$.

Similarly $F_2(1) \in Z(M) = Z(A)$, and $F_2(zx) = zF_2(x)$, $F_2(xz) = F_2(x)z$. If $x \in N$ then

$$\begin{split} \widetilde{E}(x,0) &= \widetilde{P}\widetilde{F}(x,0) = \widetilde{P}(F_1(x), \alpha F_1(x)) \\ &= \left(\frac{1}{2}(F_1(x) + \alpha F_1(x)), \frac{1}{2}(F_1(x) + \alpha F_1(x))\right) \end{split}$$

However, $\tilde{E}(x,0) = \left(\frac{1}{2}E(x), \frac{1}{2}E(x)\right)$. Therefore we have

$$F_1(x) + \alpha F_1(x) = E(x) \,.$$

In particular since $F_1(1) \in Z(A)$,

$$2F_1(1) = F_1(1) + \alpha F_1(1) = E(1) = 1.$$

Thus $F_1(1) = \frac{1}{2}1$, so from the above $F = 2F_1$ is a conditional expectation of N onto M. Furthermore if $x \in N$, $P \circ F(x) = \alpha P \circ F(x)$, so that

$$E(x) = F_1(x) + \alpha F_1(x) =$$

= $2P(F_1(x))$
= $P \circ F(x)$.

Similarly we obtain $E = P \circ 2F_2$.

It remains to show uniqueness, hence in particular $F_1 = F_2$. Suppose $G: N \to M$ is a conditional expectation such that $P \circ G = E$. Let $x \in N_{sa}$. Then we have

$$P((F - G)(x)^2) = P(F(x)^2 - F(x)G(x) - G(x)F(x) + G(x)^2)$$

= $P(F(xF(x)) - F(xG(x)) - F(G(x)x) + G(xG(x)))$
= $E(xF(x) - xG(x) - G(x)x + xG(x))$
= $P \circ G(xF(x)) - P \circ F(G(x)x)$
= $P(G(x)F(x) - G(x)F(x))$
= $0.$

Since P is faithful F(x) = G(x), so F = G. QED

Corollary 3.3 Let A be a reversible JW-algebra and M the von Neumann algebra generated by A. If $Z(A) = Z(M)_{sa}$ then there exists a unique faithful normal projection of M onto A.

Proof If $A = M_{sa}$ the result is obvious. Otherwise it suffices to look at the case M = R(A) + iR(A), $R(A) \cap iR(A) = (0)$. If $Z(A) = Z(M)_{sa}$ then by Theorem 3.2 applied to N = M, it follows that every faithful normal projection of M onto A must be equal to the canonical projection P.

4 The Jordan analogue of Takesaki's theorem

In the present section we shall study the existence problem for faithful normal projections of a von Neumann algebra N, or more generally JW-algebra,

onto a JW-subalgebra. The theorem will be a generalization of Takesaki's theorem for von Neumann algebras [9], which in the case of states says that if $M \subset N$ are von Neumann algebras, and φ is a faithful normal state on N with modular group σ_t^{φ} , then there exists a φ -invariant faithful normal conditional expectation of N onto M if and only if $\sigma_t^{\varphi}(M) = M$ for all $t \in \mathbb{R}$. In the JW-algebra case σ_t^{φ} is replaced by a 1-parameter family (ρ_t^{φ}) of operators on N, which in the von Neumann algebra case are given by $\rho_t^{\varphi}(a) = \frac{1}{2} \left(\sigma_t^{\varphi}(a) + \sigma_{-t}^{\varphi}(a) \right)$. The extension of the Tomita-Takesaki theorem to JW-algebras, or rather JBW-algebras is as follows [4, Thm. 3.3].

Theorem 4.1 (Haagerup and Hanche-Olsen) Let N be a JBW-algebra with a faithful normal state φ . Then there is a unique 1-parameter family $(\rho_t^{\varphi})_{t \in \mathbb{R}}$ of operators on N, satisfying

- (i) The map $t \to \rho_t^{\varphi}(x)$ in w^* -continuous for all $x \in N$.
- (ii) Each ρ_t^{φ} is unital, positive, normal.
- (iii) $\rho_0^{\varphi} = \mathrm{id}_N, \ \rho_s^{\varphi} \rho_t^{\varphi} = \frac{1}{2} (\rho_{s+t}^{\varphi} + \rho_{s-t}^{\varphi}), \ s, t \in \mathbb{R}.$
- (iv) $\varphi(\rho_t^{\varphi}(a) \circ b) = \varphi(a \circ \rho_t^{\varphi}(b)), \ a, b \in N.$
- (v) The bilinear form on N defined by $s_{\varphi}(a, b) = \int_{-\infty}^{\infty} \varphi(\rho_t^{\varphi}(a) \circ b) \cosh(\pi t)^{-1} dt$, $a, b \in N$, is a self-polar form on N.

We can now state our generalization of Takesaki's theorem. The result also extends [2].

Theorem 4.2 Let N be a JBW-algebra and $A \subset N$ a JBW-subalgebra. Suppose ψ is a faithful normal state on N, and let $\varphi = \psi|_A$. Then the following three conditions are equivalent:

- (i) There exists a faithful normal projection $E: N \to A$ such that $\varphi \circ E = \psi$.
- (ii) $s_{\varphi} = s_{\psi}|_{A \times A}$.
- (iii) $\rho_t^{\varphi}(a) = \rho_t^{\psi}(a), a \in A, t \in \mathbb{R}.$

Proof We shall show (i) \Leftrightarrow (ii) \Leftrightarrow (iii).

(i) \Rightarrow (ii) Put $s_1(x, y) = s_{\psi}(E(x), E(y)), x, y \in N$. Then $s_1(x, x) \ge 0, x \in N$, and $s_1(x, y) \ge 0$ if $x, y \in N^+$. In the notation of [4], if s is a bilinear form on $N \times N$ then $s^* : N \to N^*$ is given by $(s^*(x), y) = s(x, y)$. Thus we have

$$(s_1^*(1), y) = s_{\psi}(1, E(y)) = \psi(E(y)) = \varphi \circ E(y) =$$

= $\psi(y) = (s_{\psi}^*(1), y).$

Therefore $s_1^*(1) = s_{\psi}^*(1)$. By [10, Thm. 1.1]

$$s_1(x,x) \leq s_{\psi}(x,x), \qquad x \in N,$$

or

$$s_{oldsymbol{\psi}}(E(x),E(x))\leq s_{oldsymbol{\psi}}(x,x)$$
 .

Therefore E can be extended to a contractive idempotent \tilde{E} on the real Hilbert space obtained by completing N in the norm induced by the inner product s_{ψ} . But contractive idempotents on a Hilbert space are automatically self-adjoint, i.e. $\tilde{E} = \tilde{E}^* = \tilde{E}^*\tilde{E}$. Therefore

$$s_{\psi}(E(x), E(y)) = s_{\psi}(E(x), y) = s_{\psi}(x, E(y)).$$

for all $x, y \in N$. In particular we have

 $s_{\psi}(E(x),x) = s_{\psi}(x,E(x)) = s_{\psi}(E(x),E(x)) \leq s_{\psi}(x,x), \qquad x \in \mathbb{N}.$

Let

$$s_2 = s_{\psi}|_{A \times A} \,.$$

Then $s_2(x, y) = s_{\psi}(E(x), E(y))$, $x, y \in A$. We assert that s_2 is a self-polar form on $A \times A$. The only nontrivial property to be shown is that

$$s_2^*([0,1]) = [0, s_2^*(1)],$$

where $[0,1] = \{x \in A : 0 \le x \le 1\}, [0,s_2^*(1)] = \{\omega \in A^* : 0 \le \omega \le s_2^*(1)\}.$ Indeed, let $0 \le x \le 1$ in A. Then for $y \in A^+$,

$$(s_{2}^{*}(x), y) = s_{2}(x, y) = s_{\psi}(E(x), E(y))$$

= $s_{\psi}(x, E(y))$
 $\leq s_{\psi}(1, E(y))$
= $\psi(E(y))$
= $(s_{2}^{*}(1), y)$

Thus $s_2^*(x) \in [0, s_2^*(1)].$

Suppose $\rho \in A^*$, $0 \le \rho \le s_2^*(1)$. Then $0 \le \rho \circ E \le s_{\psi}^*(1)$, because if $y \in N^+$

$$\rho \circ E(y) \leq (s_2^*(1), E(y)) \\
= s_{\psi}(1, E(y)) \\
= s_{\psi}(E(1), y) \\
= (s_{\psi}^*(1), y).$$

Since s_{ψ} is a self-polar form $s_{\psi}^*([0,1]) = [0, s_{\psi}^*(1)]$, hence there exists $x \in N$, $0 \le x \le 1$, such that for $y \in N$,

$$\rho \circ E(y) = (s_{\psi}^{*}(x), E(y))
= s_{\psi}(x, E(y))
= s_{\psi}(E(x), y)
= (s_{2}(E(x)), E(y)).$$

In particular, if $y \in A$, then $\rho(y) = (s_2^*(E(x)), y)$. Since $s_2^*(E(x)) \in [0, s_2^*(1)]$, we have shown that $[0, s_2^*(1)] \subset s_2^*([0, 1])$, hence they are equal, and s_2 is a self-polar form on $A \times A$ as asserted. If $y \in A$ we have

$$(s_2^*(1), y) = s_{\psi}(1, E(x)) = \psi(E(y)) = \varphi(y) = (s_{\varphi}^*(1), y).$$

Thus by [10, Thm. 1.2], $s_2 = s_{\varphi}$, i.e. $s_{\varphi} = s_{\psi}|_{A \times A}$, proving (ii).

(ii) \Rightarrow (i) Let $x \in N$, $0 \le x \le 1$. The function

$$a \to s_{\psi}(a, x), \qquad a \in A,$$

defines a functional φ_x on A such that $0 \leq \varphi_x \leq \psi|_A = \varphi$. Since s_{φ} is a self-polar form $s_{\varphi}^*([0,1] = [0, s_{\varphi}^*(1)]$, hence there is $y \in A$, $0 \leq y \leq 1$, such that

$$\varphi_x(a) = s_\varphi(a, y) \, .$$

y is unique since s_{φ} is an inner product on A, φ being faithful. Put E(x) = y. We thus get a map

$$\{x \in N : 0 \le x \le 1\} \to \{y \in A : 0 \le y \le 1\}.$$

By definition of y

$$s_{\psi}(a,x) = s_{\varphi}(a,E(x)), \qquad a \in A, \ x \in N, \ 0 \le i \le 1.$$

As $N = \text{span}\{x \in N : 0 \le x \le 1\}$, E has a unique extension to a linear map $N \to A$ such that $s_{\psi}(a, x) = s_{\varphi}(a, E(x))$ for all $a \in A, x \in N$. By (ii) it follows that for $x \in A$

$$s_{\varphi}(a,x) = s_{\psi}(a,x) = s_{\varphi}(a,E(x)), \qquad a \in A.$$

Thus E(x) = x, and $E: N \to A$ is a positive projection. Furthermore, for $x \in N$,

$$\varphi(E(x)) = s_{\varphi}(1, E(x)) = s_{\psi}(1, x) = \psi(x).$$

Thus (i) follows, since the identity $\varphi \circ E = \psi$ shows that E is normal and faithful.

(ii) \Rightarrow (iii). Since (i) \Leftrightarrow (ii) there is a faithful normal projection $E: N \to A$ such that $\varphi \circ E = \psi$, and $s_{\varphi} = s_{\psi}|_{A \times A}$. Let $H_{\varphi}^{\#}$ denote the completion of A with respect to the norm $||x||_{\varphi}^{\#} = \varphi(x \circ x)^{1/2}$. Similarly define $H_{\psi}^{\#}$. Then there is a natural inclusion $H_{\varphi}^{\#} \subset H_{\psi}^{\#}$.

We assert that the orthogonal projection $p: H_{\psi}^{\#} \to H_{\varphi}^{\#}$ is an extension of E. For this we must show that for $x, y \in N$, with obvious notation,

$$(E(x), y)_{\psi}^{\#} = (x, E(y)_{\psi}^{\#} = (E(x), E(y))_{\varphi}^{\#}.$$

But, by an application of [7, Lem 4.1] we have

$$(E(x), y)_{\psi}^{\#} = \psi(E(x) \circ y) =$$

$$= \psi(E(E(x) \circ y))$$

$$= \psi(E(x) \circ E(y)))$$

$$= \varphi(E(x) \circ E(y))$$

$$= (E(x), E(y))_{\varphi}^{\#},$$

and similarly for $(x, E(y))_{\psi}^{\#}$. Thus the assertion follows. From the proof of [4, Thm. 3.3] ρ_t^{φ} extends to a self-adjoint operator u_t on $H_{\varphi}^{\#}$ and ρ_t^{ψ} to a self-adjoint operator v_t on $H_{\psi}^{\#}$, satisfying $||u_t|| \leq 1$, $||v_t|| \leq 1$, and

$$u_s u_t = \frac{1}{2} (u_{s+t} + u_{s-t}), \qquad u_0 = 1,$$

and similarly for v_t . Furthermore there exist, possibly unbounded, positive self-adjoint operators D and D' on $H_{\varphi}^{\#}$ and $H_{\psi}^{\#}$ respectively such that

$$u_s = \cos(sD), \quad v_s = \cos(sD'), \qquad s \in \mathbb{R}.$$

Thus by the proof of [4, Thm. 3.3]

$$s_{\varphi}(x,y) = \left(\cosh\left(\frac{D}{2}\right)^{-1}x,y\right)_{\varphi}^{\#}, \quad x,y \in A.$$

$$s_{\psi}(x,y) = \left(\cosh\left(\frac{D'}{2}\right)^{-1}x,y\right)_{\psi}^{\#}, \quad x,y \in N.$$

Let $C = \cosh\left(\frac{D}{2}\right)^{-1}$, $C' = \cosh\left(\frac{D'}{2}\right)^{-1}$. Then C and C' are bounded selfadjoint operators. We assert that $C = C'|_{H_{\varphi}^{\#}}$. For this it suffices to show that for $a \in A, y \in N$

$$(Ca, y)_{\psi}^{\#} = (C'a, y)_{\psi}^{\#}.$$

However, from the above $p: H_{\psi}^{\#} \to H_{\varphi}^{\#}$ extends E, so that

$$(Ca, y)_{\psi}^{\#} = (p(Ca), y)_{\psi}^{\#} = (Ca, py)_{\psi}^{\#}$$
$$= (Ca, E(y))_{\psi}^{\#} = (Ca, E(y))_{\varphi}^{\#}.$$

Therefore it remains to be shown that

$$(C'a, y)_{\psi}^{\#} = (Ca, E(y))_{\varphi}^{\#},$$

or rather

$$s_{\psi}(a,y) = s_{\varphi}(a,E(y))$$

But this was shown in the proof of (i) \Rightarrow (ii). It follows that $H_{\varphi}^{\#}$ is C'-invariant, and $C = C'|_{H_{\varphi}^{\#}}$ as asserted.

Now the functions $C \to D \to \cos(sD) \to u_s$, and similarly for $C' \to v_s$, are Borel functions of C and C' respectively. Thus $u_s = v_s|_{H^{\#}_{\varphi}}$, and we can conclude that $\rho_s^{\varphi} = \rho_s^{\psi}|_A$.

(iii) \Rightarrow (ii) By Theorem 4.1, for all $x, y \in A$

ł

$$s_{\varphi}(x,y) = \int_{-\infty}^{\infty} \varphi(\rho_t^{\varphi}(x) \circ y) \cosh(\pi t)^{-1} dt$$
$$= \int_{-\infty}^{\infty} \psi(\rho_t^{\psi}(x) \circ y) \cosh(\pi t)^{-1} dt$$
$$= s_{\psi}(x,y),$$

proving (ii). This completes the proof of the theorem.

Corollary 4.3 Let N be a von Neumann algebra and A a reversible JWsubalgebra of N_{sa} such that $Z(A) = Z(M)_{sa}$, where M is the von Neumann algebra generated by A. Suppose ψ is a faithful normal state of N such that

$$\sigma_t^{\psi}(a) + \sigma_{-t}^{\psi}(a) \in A \ \forall t \in \mathbf{R}, \ a \in A.$$

Then $\sigma_t^{\psi}(M) = M \ \forall t \in \mathbf{R}.$

Proof Since $\rho_t^{\psi}(x) = \frac{1}{2}(\sigma_t^{\psi}(x) + \sigma_{-t}^{\psi}(x)), x \in N_{sa}$, by Theorem 4.2 there exists a faithful normal projection $E: N \to A$ such that $\varphi \circ E = \psi$, where $\varphi = \psi|_A$. From our assumptions on A and the classification of JW-algebras there exist two central projections e and f in A with sum 1 such that $eA = eM_{sa}$, $(R(A) + iR(A))f = Mf, (R(A) \cap iR(A))f = \{0\}$. We have E(exe) =eE(x)e = E(x)e = eE(x) for $x \in N$, and similarly for f. Thus E(x) =E(exe) + E(fxf), so that E(xe) = E(exe) = E(x)e. It follows that

$$\psi(xe) = \varphi(E(xe)) = \varphi(E(x)e) = \varphi(eE(x)) = \psi(ex) \,.$$

Thus e and $f \in M_{\psi}$ – the centralizer of ψ . In particular $\sigma_t^{\psi}(e) = e$, $\sigma_t^{\psi}(f) = f$. It thus suffices to consider the two cases e = 1 and f = 1 separately. If $A = M_{sa}$ then E is a conditional expectation, so the conclusion follows from Takesaki's theorem [9].

Assume $R(A) \cap iR(A) = \{0\}$ and $Z(A) = Z(M)_{sa}$. By Theorem 3.2 there exists a faithful normal conditional expectation $F: N \to M$ such that $E = P \circ F$ where $P: M \to A$ is the canonical projection. Since $P = E|_M$, $\varphi \circ P = \psi|_M$. Thus

$$\psi = \varphi \circ E = \varphi \circ P \circ F = \psi|_M \circ F,$$

QED

so F is ψ -invariant. Again it follows from Takesaki's theorem that $\sigma_t^{\psi}(M) = M, t \in \mathbf{R}.$

References

- Choi, M-D., and Effros, E., Injectivity and operator spaces, J. Functional Anal. 24 (1974), 156–209.
- [2] Edwards, C. M., Conditional expectations on Jordan algebras, Fund. Aspects of Quantum Theory, Nato ASI Series, Plenum Press (1985), 75-81.

- [3] Effros, E., and Størmer, E., Positive projections and Jordan structure in operator algebras, *Math. Scand.* **45** (1979), 127–138.
- [4] Haagerup, U., and Hanche-Olsen, H., Tomita-Takesaki theory for Jordan algebras, J. Operator Theory 11 (1984), 343–364.
- [5] Hanche-Olsen, H., and Størmer, E., Jordan opereator algebras, Monographs and Studies in Math. 21, Pitman 1984.
- [6] Pedersen, G. K., and Størmer, E., Traces on Jordan algebras, Can. J. Math. 34 (1982), 370–373.
- [7] Størmer, E., Decomposition of positive projections on C*-algebras, Math. Ann. 247 (1980), 21-41.
- [8] Størmer, E., Positive projections onto Jordan algebras and their enveloping von Neumann algebras. Ideas and Methods in Math. Anal., Stochastics and Applic., Cambridge Univ. Press (1992), 389–393.
- [9] Takesaki, M., Conditional expectation in von Neumann algebra, J. Functional Anal. 9 (1972), 306–321.
- [10] Woronowicz, S. L., Self-polar forms and their applications to the C^{*}algebra theory, Rep. Math. Phys. 6 (1974), 487–495.