Positive projections of von Neumann algebras onto JW-algebras

Uffe Haagerup
Department of Mathematics, Odense University, DK-5230 Odense M, Denmark Erling Størmer
Department of Mathematics, University of Oslo, 0316 Oslo, Norway

1 Introduction

Let N be a von Neumann algebra and $E: N \rightarrow N$ a positive linear unital map. We say E is a projection (or positive projection) if E is idempotent, $E=E^{2}$. If E is faithful and normal the image of E is a Jordan algebra [3], in particular its self-adjoint part $A=E\left(N_{\mathrm{sa}}\right)$ is a JW-subalgebra of N_{sa} with the usual Jordan product $a \circ b=\frac{1}{2}(a b+b a)$. It was shown in [1] that E is completely positive if and only if $E(N)$ is a von Neumann algebra, and it was shown in [7] that E is decomposable, i.e. the sum of a completely positive and co-positive map, if and only if A is a reversible JW-algebra. Recall that A is called reversible if $A=R(A)_{\mathrm{sa}}$, where $R(A)$ denotes the weakly closed real *-algebra generated by A. Let M denote the von Neumann algebra generated by A, or equivalently by $E(N)$. Then it is natural to ask 1) whether there exists a faithful normal conditional expectation of N onto M, and 2) if it does, will E factor through M, i.e. if there exists a faithful normal conditional expectation $F: N \rightarrow M$ and a (possibly canonical) projection $P: M \rightarrow A+i A$ such that $E=P \circ F$.

In the present paper we shall present answers to the above questions, the results varying with the kind of JW-algebra A is. We shall also in the last section prove a theorem on the existence of positive projections, the result being an extension of Takesaki's existence theorem for conditional expectations [9] to Jordan algebras.

We shall mainly concentrate our attention to faithful projections. There are two technical reasons for this. The first is that then $A=E\left(N_{\mathrm{sa}}\right)$ is a JW-subalgebra of N_{sa}. Secondly, we can always restrict attention to this situation. Indeed, let e be the support of E in N. By [3, Lem. 1.2] $e \in A^{\prime} \cup N$, and from the proof of [7, Lem. 1.2] the map $E_{e}: N_{e} \rightarrow N_{e}$ defined by

$$
E_{e}(e x e)=\lambda^{-1} E(e x e) e, \quad x \in N, \lambda=E(e) \in A \cup A^{\prime},
$$

is a faithful normal projection onto $E(N) e$. (We should remark that in [7] A is assumed to be a JW-factor, but the result extends easily to the general case by a modification of the proof of Proposition 3.1 below).

We refer the reader to the book [5] for the theory of JW-algebras.

2 Projections from the enveloping von Neumann algebra

In this section we study the existence problem for positive normal projections of the enveloping von Neumann algebra onto the JW-algebra. To be specific let A be a JW-algebra and $M=A^{\prime \prime}$ the von Neumann algebra generated by A. From the structure theory of JW-algebras, see [5] there exist projections e, f, g, h in the center $Z(A)$ of A with sum 1 such that the following hold:
(i) $e A=e M_{\text {sa }}$,
(ii) $(f+g) A$ is reversible, $R(A)+i R(A)=M, R(A) \cap i R(A)=\{0\}$. The $\operatorname{map} \alpha(x+i y)=x^{*}+i y^{*}, x, y \in R(A)$ is an involutive $*$-antiautomorphism of M such that $A=\left\{x \in(f+g) M_{\text {sa }}: \alpha(x)=x\right\}, R(A)=\{x \in$ $\left.(f+g) M: \alpha(x)=x^{*}\right\} . f A$ and $g A$ have the following further properties:
(iia) There exist two projections p, g in the center $Z(M)$ of M with $p+g=f$ such that $\alpha(p)=q . p A=p M_{\mathrm{sa}}, q A=q M_{\mathrm{sa}}$.
(iib) $Z(g A)=Z(g M)_{\text {sa }}$
(iii) $h A$ is of type I_{2}.

Note that a positive projection P of $M_{\text {sa }}$ onto A leaves the projections e, f, g, h invariant, hence the different cases (i)-(iii) invariant, so they can
be studied separately. For simplicity of notation we shall say P is a projection of M onto A instead of $M_{\text {sa }}$ onto A. Then in case (i) the identity map is a projection of M onto A. In case (ii) the map $P(x)=\frac{1}{2}(x+\alpha(x))$ is a projection of M onto A which we shall call the canonical projection. Thus the existence problem is reduced to the I_{2}-case. For a discussion of JW-algebras of type I_{2} see [5, §6.3], and in particular the definition of JW-algebra of type $I_{2, k}, k \in \mathbb{N}$. For us all we need to know is that such a JW-algebra is of the form $C\left(X, V_{k}\right)$, where $Z(A) \cong C(X), X$ compact Hausdorff, and V_{k} is the spin factor generated by a spin system of k symmetries [5, Prop. 6.3.13].

Theorem 2.1 Let A be a JW-algebra of type I_{2} and M the von Neumann algebra generated by A. Then there exists a faithful normal projection P of M onto A if and only if M is finite. If P exists and τ is a normal trace on A then $\tau \circ P$ is a trace on M. If A has no direct summand of type $I_{2, k}$ with k an odd integer then P is unique.

The proof will be divided into some lemmas. The necessity part of the theorem follows from the following more general result. For a discussion of traces on JW-algebras see [6].

Lemma 2.2 Let N be a von Neumann algebra, A a JW-subalgebra and $E: N \rightarrow A$ a faithful normal projection. Suppose τ is a faithful normal semifinite trace on A such that $\tau \circ E$ is a semifinite weight on N. Then there exists a faithful normal conditional expectation F of N onto the centralizer $N_{\tau \circ E}$ of $\tau \circ E$ in N such that $E=E / N_{\tau \circ E} \circ F$. Furthermore, if M denotes the von Neumann algebra generated by A, then $M \subset N_{\tau \circ E}$, so in particular $\tau \circ E$ restricts to a trace on M.

Proof If s is a symmetry in A and $x \in N$ then by [7, Lem. 4.1] $E(s x s)=$ $s E(x) s$, hence

$$
\tau \circ E(s x s)=\tau(s E(x) s)=\tau(E(x)) .
$$

Replacing x by $x s$ we obtain $\tau \circ E(s x)=\tau \circ E(x s)$. Since the symmetries span a dense subset of $A, A \subset N_{\tau \circ E}$. Since $N_{\tau \circ E}$ is a von Neumann subalgebra of N, and $A \subset N_{\tau \circ E}, M \subset N_{\tau \circ E}$. Since τ is semifinite on $A, \tau \circ E$ is semifinite on M, hence $\tau \circ E$ restricts to a semifinite trace on M.

Let $a \in A$ and p be a finite projection in A, i.e. $\tau(p)<\infty$. Then for each finite projection q in $A, p \vee q$ is finite, and the restriction of τ to $p \vee q A p \vee q$
is a finite trace. From the identity $\tau(y x y)=\tau\left(y^{2} \circ x\right)$ for a $x, y \in p \vee q A p \vee q$ [6], it follows that

$$
\tau(p q a q p)=\tau(p \circ q a q)
$$

Since the functional $x \rightarrow \tau(p \circ x)$ is normal, letting $q \rightarrow 1$ we obtain the identity

$$
\begin{equation*}
\tau(p a p)=\tau(p \circ a), \quad a \in A \tag{*}
\end{equation*}
$$

Note that the states $\rho(a)=\tau(h \circ a)$ with $h \in A^{+}, \tau(h)=1$ form a separating family of states on A. Indeed, if $a=a^{+}-a^{-}, a^{+} a^{-}=0, a^{+}, a^{-} \in A^{+}$, and $\tau(h \circ a)=0$ for all h as above, then if p is a finite projection in A with $p \leq$ support $\left(a^{+}\right)$then by (*)

$$
\tau\left(p a^{+} p\right)=\tau(p a p)=\tau(p \circ a)=0
$$

Since τ is faithful $p a^{+} p=0$. Letting $p \nearrow \operatorname{support}\left(a^{+}\right)$we obtain $a^{+}=0$, and similarly $a^{-}=0$. Thus $a=0$.

Let σ_{t} denote the modular group of the weight $\tau \circ E$ on N, and let $\rho(a)=\tau(h \circ a)$ be a state as above. Then for $x \in N$

$$
\begin{aligned}
\rho \circ E\left(\sigma_{t}(x)\right) & =\tau\left(h \circ E\left(\sigma_{t}(x)\right)\right) & & \\
& =\tau\left(E\left(h \circ \sigma_{t}(x)\right)\right) & & \text { by }[7, \text { lem.4.1] } \\
& =\tau\left(E\left(\sigma_{t}(h x)\right)\right) & & \text { since } h \in N_{\tau \circ E} \\
& =\tau \circ E(h \circ x) & & \\
& =\rho(E(x)) . & &
\end{aligned}
$$

By the previous paragraph $E\left(\sigma_{t}(x)\right)=E(x)$ for all $t \in \mathbf{R}$, hence E factors through $N_{\tau \circ E}$.

QED

Lemma 2.3. Let A be a spin factor and B the C^{*}-algebra generated by A. Then there exists a positive projection of $E: B \rightarrow A$. E is unique if $A \cong V_{k}$ with k even or ∞. If $A \cong V_{k}$ with k odd then there is a 1-parameter family of positive projections of B onto A.

Proof From [3] there exists a positive projection $E: B \rightarrow A$. Let τ denote the trace on A see [5, 6.1.7]. By the argument of Lemma 2.2, $\operatorname{Tr}=\tau \circ E$ is a trace on B. By [3] E is the orthogonal projection of B onto A with respect to the inner product $\langle x, y\rangle=\operatorname{Tr}(x y)=\operatorname{Tr}(x \circ y)$. Let \mathcal{A} denote the

CAR-algebra. Then by [5, 6.2.2] we have

$$
B \cong \begin{cases}M_{2^{n-1}}(\mathbb{C}) \oplus M_{2^{n-1}}(\mathbb{C}) & \text { if } k=2 n-1 \\ M_{2^{n}}(\mathbb{C}) & \text { if } k=2 n \\ \mathcal{A} & \text { if } k=\infty .\end{cases}
$$

If $k=2 n$ or ∞ there exists a unique trace on B, so $\operatorname{Tr}=\tau \circ E$ determines E uniquely. If k is odd there is a 1-parameter family of positive projections of B onto A, as each trace Tr on B defines a projection by the formula $\operatorname{Tr}(E(x) y)=\operatorname{Tr}(x y)$ for $x \in B, y \in A$.

QED

Lemma 2.4 Let A be a JW-algebra and M the von Neumann algebra generated by A. If M is finite there exists a faithful normal projection P : $M \rightarrow A$. If moreover $Z(A)=Z(M)$ then P is unique.

Proof Cutting down by central projections if necessary we may assume M has a faithful normal tracial state tr. As for von Neumann algebras for each $x \in M_{\text {sa }}$ there is $P(x) \in A$ such that

$$
\operatorname{tr}(x \circ a)=\operatorname{tr}(x a)=\operatorname{tr}(P(x) a)=\operatorname{tr}(P(x) \circ a), \quad a \in A
$$

P so defined is a faithful normal projection of M onto A.
Assume $Z(A)=Z(M)$, and let $\psi: M \rightarrow Z(A)$ be the unique center valued trace on M with $\psi(1)=1$. Let $\Phi=\left.\psi\right|_{A} \circ P$. If $z \in Z(A)$ then for $x \in M, \Phi(z x)=\psi(P(z x))=\psi(z P(x))=z \psi P(x)=z \Phi(x)$, so Φ is also a faithful normal center valued trace, hence $\Phi=\psi$. If Q is another faithful normal projection $M \rightarrow A$ then similarly $\left.\psi\right|_{A} \circ Q=\psi$, hence

$$
\left.\psi\right|_{A}(P(x)-Q(x))=0, \quad x \in M .
$$

If $a \in A$ then

$$
0=\left.\psi\right|_{A}(P(a \circ x)-Q(a \circ x))=\left.\psi\right|_{A}(a \circ(P(x)-Q(x))) .
$$

In particular this holds when x is self-adjoint and $a=P(x)-Q(x)$, hence by faithfulness of $\psi, P(x)=Q(x)$. Thus P is unique.

QED

Proof of Theorem 2.1

Assume A is of type I_{2} and M is finite. By Lemma 2.4 there exists a faithful normal projection $P: M \rightarrow A$ and if P exists then M is finite by Lemma 2.2. Since by $[5,6.3 .14] A$ is a direct sum of JW-algebras of type $I_{2, k}$, and if A is of type $I_{2, k}$ then $M \cong C\left(X, V_{k}\right)$ with $Z(A) \cong C(X)$, so the uniqueness statement follows from Lemma 2.4 and Lemma 2.3.

3 Conditional expectations onto the generated von Neumann algebra

In this section we study the following problem. Suppose N is a von Neumann algebra, A a JW-subalgebra, and M the von Neumann algebra generated by A. Suppose $E: N \rightarrow A$ is a faithful normal projection. Then
(i) Does there exist a faithful normal conditional expectation $F: N \rightarrow M$?
(ii) If F exists can it be chosen so that $E=\left.E\right|_{M} \circ F$?

Note that if A has a faithful normal semifinite trace τ such that $\tau \circ E$ is semifinite, then the answer to both questions is affirmative by Lemma 2.2.

The following proposition is used in the proof of [8, Thm]. However, in that proof we refer to [7, Lem. 4.2], which is only proved for JW-factors. For completeness we include a proof. We use the notation N_{p} for the von Neumann algebra $\{p x p: x \in N\}$ when p is a projection in N.

Proposition 3.1 Let N be a von Neumann algebra, A a JW-subalgebra and $E: N \rightarrow A$ a faithful normal projection. In the notation of $\S 2$ assume A is of type (iia) with $p+q=1$. Then there exist faithful normal conditional expectations $F_{p}: N_{p} \rightarrow p A=p M_{\text {sa }}$ and $F_{q}: N_{q} \rightarrow q M_{\text {sa }}$ such that

$$
F(x)=F_{p}(p x p)+F_{p}(q x q), \quad x \in N,
$$

defines a faithful normal conditional expection $N \rightarrow M$.

Proof For $a \in A^{+}$and e a central projection in M, by [7, Lem. 4.1] $a \circ E(e)=$ $E(a \circ e)=E(a e) \geq 0$, hence by [7, Lem. 3.1] $E(e) \in Z(A)$. In particular if $0 \neq e \in Z(A)$ then $e p \neq 0$, hence $E(p) e=E(p e) \neq 0$. By spectral theory there is a largest projection $e_{n} \in Z(A)$ such that $e_{n} E(p) \geq \frac{1}{n} e_{n}$ for each $n \in \mathbb{N}$. Then $e_{n} \geq e_{m}$ if $n \geq m$, so the sequence (e_{n}) is increasing and converges by the above strongly to 1 . Let $a_{n} \in A$ be the inverse of the operator $e_{n} E(p)$ considered as acting on $e_{n} H$, where H is the underlying Hilbert space. Define

$$
E_{n}: N_{p} \rightarrow A e_{n} p
$$

by

$$
E_{n}(p x p)=a_{n} E(p x p) e_{n} p .
$$

Clearly E_{n} is normal and positive. Furthermore, if $x \in N^{+}$then

$$
E_{n}\left(p e_{n} x e_{n} p\right)=a_{n} E\left(p e_{n} x e_{n} p\right) e_{n} p=a_{n} E(p x p) e_{n} p
$$

Thus if $E_{n}\left(p e_{n} x e_{n} p\right)=0$ then $0=E(p x p) e_{n} p=E\left(p e_{n} x e_{n} p\right) e_{n}$, so $E\left(p e_{n} x e_{n} p\right)=0$. Since E is faithful, $p e_{n} x e_{n} p=0$. Thus the restriction $\left.E_{n}\right|_{N_{p e n}}$ is faithful. If $a \in A$ then

$$
\begin{aligned}
E_{n}\left(p\left(e_{n} a\right) p\right) & =a_{n} E\left(p e_{n} a e_{n} p\right) e_{n} p \\
& =a_{n}\left(e_{n} a E(p) e_{n} p\right. \\
& =a e_{n} p
\end{aligned}
$$

Thus $\left.E_{n}\right|_{N_{p e_{n}}}$ is a projection of $N_{p e_{n}}$ onto $A e_{n} p$. Since $a_{n} e_{m}=a_{m}$ if $n \geq m$ a straightforward computation shows

$$
\left.E_{n}\right|_{N_{e_{m} p}}=\left.E_{m}\right|_{N_{e_{m} p}}, \quad n \geq m
$$

We also find

$$
E_{n}(p x p) e_{m}=E_{m}(p x p)
$$

Thus for $x \in N^{+}$the sequence $\left(E_{n}(p x p)\right)$ is increasing and bounded in norm by $\|p x p\|$. Let $F_{p}(p x p)$ be its strong limit. Then

$$
F_{p}(p x p) e_{n}=E_{n}(p x p), \quad n \in \mathbb{N}
$$

Thus $F_{p}: N_{p} \rightarrow A p=M p$ is positive, $F_{p}(p)=p$, and if $a \in A, F_{p}(p a p)=$ pap. Since we have $1=e_{1}+\sum_{1}^{\infty}\left(e_{n+1}-e_{n}\right)$,

$$
\begin{aligned}
F_{p}(p x p) & =F_{p}(p x p) e_{1}+\sum_{1}^{\infty} F_{p}(p x p)\left(e_{n+1}-e_{n}\right) \\
& =E_{1}(p x p)+\sum_{1}^{\infty} E_{n+1}(p x p)\left(e_{n+1}-e_{n}\right)
\end{aligned}
$$

is an orthogonal sum of normal maps, so is normal. Thus $F_{p}: N_{p} \rightarrow M_{p}$ is a positive normal conditional expectation. Finally, if $x \in N^{+}$and $F_{p}(p x p)=0$ then $E_{n}\left(p e_{n} x e_{n} p\right)=0$ for all n, hence $p e_{n} x e_{n} p=0$ for all n, and so $p x p=0$. Thus F_{p} is also faithful.

Similarly we can define $F_{q}: N_{q} \rightarrow M_{q}$ and show it is a faithful normal conditional expectation. Thus the map $F: N \rightarrow M$ defined by

$$
F(x)=F_{p}(p x p)+F_{q}(q x q)
$$

is a faithful normal conditional expections.

In the above situation F is not necessarily unique, see [7, Prop. 6.4].
In [8] it was shown that if N is a von Neumann algebra, A a reversible JWsubalgebra and E a faithful normal projection of N onto A such that $\alpha \circ E=$ E for an involution α of N, then there exists a faithful normal conditional expectation F of M onto A, where as before M is the von Neumann algebra generated by A. We now show that we can get rid of the hypothesis on the existence of α and thus answer questions (i) and (ii) affirmatively when A is of type (iib) in $\S 2$.

Theorem 3.2 Let N be a von Neumann algebra and A a reversible JWsubalgebra such that $R(A) \cap i R(A)=(0)$, and $Z(A)=Z(M)_{\text {sa }}$, where $M=R(A)+i R(A)$ is the von Neumann algebra generated by A. Suppose $E: N \rightarrow A$ is a faithful normal projection. Then there exists a unique conditional expectation $F: N \rightarrow M$ such that if $P: M \rightarrow A$ is the canonical projection, then $E=P \circ F$.

Proof Let α be the canonical involution of $M, \alpha(x+i y)=x^{*}+i y^{*}$. Denote by N^{op} the opposite algebra of N, and put

$$
\widetilde{N}=N \oplus N^{\mathrm{op}}
$$

N is imbedded in \widetilde{N} by $x \rightarrow(x, 0)$. We define an involution σ of \widetilde{N} by

$$
\sigma(x, y)=(y, x)
$$

Let

$$
\widetilde{M}=\{(x, \alpha(x)): x \in M\}
$$

and imbed M in \widetilde{M} by $x \rightarrow(x, 0)$. Define an involution $\widetilde{\alpha}$ on \widetilde{M} by

$$
\widetilde{\alpha}(x, \alpha(x))=(\alpha(x), x)=(\alpha(x), \alpha(\alpha(x))) .
$$

Then $\widetilde{\alpha}=\left.\sigma\right|_{\tilde{M}}$. Let

$$
\widetilde{A}=\{(x, x): x=\alpha(x) \in A\}
$$

and imbed $A \tilde{A}$ by $x \rightarrow(x, 0)$. The canonical projection $P: M \rightarrow A$ satisfies $P(x)=\frac{1}{2}(x+\alpha(x))$. Define

$$
\widetilde{P}: \widetilde{M} \rightarrow \widetilde{A}
$$

by $\widetilde{P}(x, \alpha(x))=\left(\frac{1}{2}(x+\alpha(x)), \frac{1}{2}(x+\alpha(x))=(P(x), P(x))\right.$. Define

$$
\tilde{E}: \widetilde{N} \rightarrow \tilde{A}
$$

by $\widetilde{E}(x, y)=\left(\frac{1}{2} E(x+y), \frac{1}{2} E(x+y)\right)$. Then \widetilde{E} is a faithful normal projection, and

$$
\tilde{E} \circ \sigma=\sigma \circ \tilde{E}=\tilde{E}
$$

From the definition of α it follows that \widetilde{M} is the von Neumann algebra generated by \widetilde{A}. Thus by [$8, \mathrm{Thm}$. and comments following it] there exists a faithful normal conditional expectation $\widetilde{F}: \widetilde{N} \rightarrow \widetilde{M}$ such that

$$
\tilde{E}=\left.\widetilde{E}\right|_{\tilde{M}} \circ \tilde{F}
$$

If $x \in M$ then

$$
\begin{aligned}
\tilde{E}(x, \alpha(x)) & =\left(\frac{1}{2} E(x+\alpha(x)), \frac{1}{2} E(x+\alpha(x))\right)=(E P(x), E P(x)) \\
& =(P(x), P(x))=\tilde{P}(x, \alpha(x))
\end{aligned}
$$

Thus $\tilde{E}=\tilde{P} \circ \tilde{F}$.
Define $F_{i}: N \rightarrow M, i=1,2$, by

$$
\begin{array}{cll}
\widetilde{F}(x, 0) & =\left(F_{1}(x), \alpha F_{1}(x)\right), & x \in N . \\
\widetilde{F}(0, y) & =\left(\alpha F_{2}(y), F_{2}(y)\right), & y \in N .
\end{array}
$$

Since \tilde{F} is a conditional expectation, if $z \in M, x \in N$,

$$
\begin{aligned}
\left(z F_{1}(x), \alpha\left(z F_{1}(x)\right)\right. & =(z, \alpha(z))\left(F_{1}(x), \alpha F_{1}(x)\right) \\
& =(z, \alpha(z)) \widetilde{F}(x, 0) \\
& =\widetilde{F}((z, \alpha(z))(x, 0)) \\
& =\widetilde{F}(z x, 0) \\
& =\left(F_{1}(z x), \alpha F_{1}(z x)\right)
\end{aligned}
$$

Thus $z F_{1}(x)=F_{1}(z x)$, and by symmetry $F_{1}(x z)=F_{1}(x) z$. In particular $F_{1}(z)=z F_{1}(1)=F_{1}(1) z$, so $F_{1}(1) \in Z(M)=Z(A)$.

Similarly $F_{2}(1) \in Z(M)=Z(A)$, and $F_{2}(z x)=z F_{2}(x), F_{2}(x z)=F_{2}(x) z$. If $x \in N$ then

$$
\begin{aligned}
\widetilde{E}(x, 0) & =\widetilde{P} \widetilde{F}(x, 0)=\widetilde{P}\left(F_{1}(x), \alpha F_{1}(x)\right) \\
& =\left(\frac{1}{2}\left(F_{1}(x)+\alpha F_{1}(x)\right), \frac{1}{2}\left(F_{1}(x)+\alpha F_{1}(x)\right)\right)
\end{aligned}
$$

However, $\widetilde{E}(x, 0)=\left(\frac{1}{2} E(x), \frac{1}{2} E(x)\right)$. Therefore we have

$$
F_{1}(x)+\alpha F_{1}(x)=E(x) .
$$

In particular since $F_{1}(1) \in Z(A)$,

$$
2 F_{1}(1)=F_{1}(1)+\alpha F_{1}(1)=E(1)=1 .
$$

Thus $F_{1}(1)=\frac{1}{2} 1$, so from the above $F=2 F_{1}$ is a conditional expectation of N onto M. Furthermore if $x \in N, P \circ F(x)=\alpha P \circ F(x)$, so that

$$
\begin{aligned}
E(x) & =F_{1}(x)+\alpha F_{1}(x)= \\
& =2 P\left(F_{1}(x)\right) \\
& =P \circ F(x) .
\end{aligned}
$$

Similarly we obtain $E=P \circ 2 F_{2}$.
It remains to show uniqueness, hence in particular $F_{1}=F_{2}$. Suppose $G: N \rightarrow M$ is a conditional expectation such that $P \circ G=E$. Let $x \in N_{\text {sa }}$. Then we have

$$
\begin{aligned}
P\left((F-G)(x)^{2}\right) & =P\left(F(x)^{2}-F(x) G(x)-G(x) F(x)+G(x)^{2}\right) \\
& =P(F(x F(x))-F(x G(x))-F(G(x) x)+G(x G(x))) \\
& =E(x F(x)-x G(x)-G(x) x+x G(x)) \\
& =P \circ G(x F(x))-P \circ F(G(x) x) \\
& =P(G(x) F(x)-G(x) F(x)) \\
& =0 .
\end{aligned}
$$

Since P is faithful $F(x)=G(x)$, so $F=G$.

Corollary 3.3 Let A be a reversible JW-algebra and M the von Neumann algebra generated by A. If $Z(A)=Z(M)_{\text {sa }}$ then there exists a unique faithful normal projection of M onto A.

Proof If $A=M_{\text {sa }}$ the result is obvious. Otherwise it suffices to look at the case $M=R(A)+i R(A), R(A) \cap i R(A)=(0)$. If $Z(A)=Z(M)_{\text {sa }}$ then by Theorem 3.2 applied to $N=M$, it follows that every faithful normal projection of M onto A must be equal to the canonical projection P.

4 The Jordan analogue of Takesaki's theorem

In the present section we shall study the existence problem for faithful normal projections of a von Neumann algebra N, or more generally JW-algebra,
onto a JW-subalgebra. The theorem will be a generalization of Takesaki's theorem for von Neumann algebras [9], which in the case of states says that if $M \subset N$ are von Neumann algebras, and φ is a faithful normal state on N with modular group σ_{t}^{φ}, then there exists a φ-invariant faithful normal conditional expectation of N onto M if and only if $\sigma_{t}^{\varphi}(M)=M$ for all $t \in \mathbb{R}$. In the JW-algebra case σ_{t}^{φ} is replaced by a 1-parameter family $\left(\rho_{t}^{\varphi}\right)$ of operators on N, which in the von Neumann algebra case are given by $\rho_{t}^{\varphi}(a)=\frac{1}{2}\left(\sigma_{t}^{\varphi}(a)+\sigma_{-t}^{\varphi}(a)\right)$. The extension of the Tomita-Takesaki theorem to JW-algebras, or rather JBW-algebras is as follows [4, Thm. 3.3].

Theorem 4.1 (Haagerup and Hanche-Olsen) Let N be a JBW-algebra with a faithful normal state φ. Then there is a unique 1-parameter family $\left(\rho_{t}^{\varphi}\right)_{t \in \mathbb{B}}$ of operators on N, satisfying
(i) The map $t \rightarrow \rho_{t}^{\varphi}(x)$ in w^{*}-continuous for all $x \in N$.
(ii) Each ρ_{t}^{φ} is unital, positive, normal.
(iii) $\rho_{0}^{\varphi}=\mathrm{id}_{N}, \rho_{s}^{\varphi} \rho_{t}^{\varphi}=\frac{1}{2}\left(\rho_{s+t}^{\varphi}+\rho_{s-t}^{\varphi}\right), s, t \in \mathbb{R}$.
(iv) $\varphi\left(\rho_{t}^{\varphi}(a) \circ b\right)=\varphi\left(a \circ \rho_{t}^{\varphi}(b)\right), a, b \in N$.
(v) The bilinear form on N defined by $s_{\varphi}(a, b)=\int_{-\infty}^{\infty} \varphi\left(\rho_{t}^{\varphi}(a) \circ b\right) \cosh (\pi t)^{-1} d t$, $a, b \in N$, is a self-polar form on N.

We can now state our generalization of Takesaki's theorem. The result also extends [2].

Theorem 4.2 Let N be a JBW-algebra and $A \subset N$ a JBW-subalgebra. Suppose ψ is a faithful normal state on N, and let $\varphi=\left.\psi\right|_{A}$. Then the following three conditions are equivalent:
(i) There exists a faithful normal projection $E: N \rightarrow A$ such that $\varphi \circ E=\psi$.
(ii) $s_{\varphi}=\left.s_{\psi}\right|_{A \times A}$.
(iii) $\rho_{t}^{\varphi}(a)=\rho_{t}^{\psi}(a), a \in A, t \in \mathbb{R}$.

Proof We shall show (i) \Leftrightarrow (ii) \Leftrightarrow (iii).
(i) \Rightarrow (ii) Put $s_{1}(x, y)=s_{\psi}(E(x), E(y)), x, y \in N$. Then $s_{1}(x, x) \geq 0, x \in N$, and $s_{1}(x, y) \geq 0$ if $x, y \in N^{+}$. In the notation of [4], if s is a bilinear form on $N \times N$ then $s^{*}: N \rightarrow N^{*}$ is given by $\left(s^{*}(x), y\right)=s(x, y)$. Thus we have

$$
\begin{aligned}
\left(s_{1}^{*}(1), y\right) & =s_{\psi}(1, E(y))=\psi(E(y))=\varphi \circ E(y)= \\
& =\psi(y)=\left(s_{\psi}^{*}(1), y\right)
\end{aligned}
$$

Therefore $s_{1}^{*}(1)=s_{\psi}^{*}(1)$. By [10, Thm. 1.1]

$$
s_{1}(x, x) \leq s_{\psi}(x, x), \quad x \in N
$$

or

$$
s_{\psi}(E(x), E(x)) \leq s_{\psi}(x, x) .
$$

Therefore E can be extended to a contractive idempotent \widetilde{E} on the real Hilbert space obtained by completing N in the norm induced by the inner product s_{ψ}. But contractive idempotents on a Hilbert space are automatically self-adjoint, i.e. $\widetilde{E}=\widetilde{E}^{*}=\widetilde{E}^{*} \widetilde{E}$. Therefore

$$
s_{\psi}(E(x), E(y))=s_{\psi}(E(x), y)=s_{\psi}(x, E(y)) .
$$

for all $x, y \in N$. In particular we have

$$
s_{\psi}(E(x), x)=s_{\psi}(x, E(x))=s_{\psi}(E(x), E(x)) \leq s_{\psi}(x, x), \quad x \in N
$$

Let

$$
s_{2}=\left.s_{\psi}\right|_{A \times A} .
$$

Then $s_{2}(x, y)=s_{\psi}(E(x), E(y)), x, y \in A$. We assert that s_{2} is a self-polar form on $A \times A$. The only nontrivial property to be shown is that

$$
s_{2}^{*}([0,1])=\left[0, s_{2}^{*}(1)\right],
$$

where $[0,1]=\{x \in A: 0 \leq x \leq 1\},\left[0, s_{2}^{*}(1)\right]=\left\{\omega \in A^{*}: 0 \leq \omega \leq s_{2}^{*}(1)\right\}$. Indeed, let $0 \leq x \leq 1$ in A. Then for $y \in A^{+}$,

$$
\begin{aligned}
\left(s_{2}^{*}(x), y\right) & =s_{2}(x, y)=s_{\psi}(E(x), E(y)) \\
& =s_{\psi}(x, E(y)) \\
& \leq s_{\psi}(1, E(y)) \\
& =\psi(E(y)) \\
& =\left(s_{2}^{*}(1), y\right)
\end{aligned}
$$

Thus $s_{2}^{*}(x) \in\left[0, s_{2}^{*}(1)\right]$.

Suppose $\rho \in A^{*}, 0 \leq \rho \leq s_{2}^{*}(1)$. Then $0 \leq \rho \circ E \leq s_{\psi}^{*}(1)$, because if $y \in N^{+}$

$$
\begin{aligned}
\rho \circ E(y) & \leq\left(s_{2}^{*}(1), E(y)\right) \\
& =s_{\psi}(1, E(y)) \\
& =s_{\psi}(E(1), y) \\
& =\left(s_{\psi}^{*}(1), y\right) .
\end{aligned}
$$

Since s_{ψ} is a self-polar form $s_{\psi}^{*}([0,1])=\left[0, s_{\psi}^{*}(1)\right]$, hence there exists $x \in N$, $0 \leq x \leq 1$, such that for $y \in N$,

$$
\begin{aligned}
\rho \circ E(y) & =\left(s_{\psi}^{*}(x), E(y)\right) \\
& =s_{\psi}(x, E(y)) \\
& =s_{\psi}(E(x), y) \\
& =\left(s_{2}(E(x)), E(y)\right) .
\end{aligned}
$$

In particular, if $y \in A$, then $\rho(y)=\left(s_{2}^{*}(E(x)), y\right)$. Since $s_{2}^{*}(E(x)) \in\left[0, s_{2}^{*}(1)\right]$, we have shown that $\left[0, s_{2}^{*}(1)\right] \subset s_{2}^{*}([0,1])$, hence they are equal, and s_{2} is a self-polar form on $A \times A$ as asserted. If $y \in A$ we have

$$
\left(s_{2}^{*}(1), y\right)=s_{\psi}(1, E(x))=\psi(E(y))=\varphi(y)=\left(s_{\varphi}^{*}(1), y\right) .
$$

Thus by [10, Thm. 1.2], $s_{2}=s_{\varphi}$, i.e. $s_{\varphi}=\left.s_{\psi}\right|_{A \times A}$, proving (ii).
(ii) \Rightarrow (i) Let $x \in N, 0 \leq x \leq 1$. The function

$$
a \rightarrow s_{\psi}(a, x), \quad a \in A
$$

defines a functional φ_{x} on A such that $0 \leq \varphi_{x} \leq\left.\psi\right|_{A}=\varphi$. Since s_{φ} is a self-polar form $s_{\varphi}^{*}\left([0,1]=\left[0, s_{\varphi}^{*}(1)\right]\right.$, hence there is $y \in A, 0 \leq y \leq 1$, such that

$$
\varphi_{x}(a)=s_{\varphi}(a, y)
$$

y is unique since s_{φ} is an inner product on A, φ being faithful. Put $E(x)=y$. We thus get a map

$$
\{x \in N: 0 \leq x \leq 1\} \rightarrow\{y \in A: 0 \leq y \leq 1\}
$$

By definition of y

$$
s_{\psi}(a, x)=s_{\varphi}(a, E(x)), \quad a \in A, x \in N, 0 \leq i \leq 1 .
$$

As $N=\operatorname{span}\{x \in N: 0 \leq x \leq 1\}, E$ has a unique extension to a linear map $N \rightarrow A$ such that $s_{\psi}(a, x)=s_{\varphi}(a, E(x))$ for all $a \in A, x \in N$. By (ii) it follows that for $x \in A$

$$
s_{\varphi}(a, x)=s_{\psi}(a, x)=s_{\varphi}(a, E(x)), \quad a \in A .
$$

Thus $E(x)=x$, and $E: N \rightarrow A$ is a positive projection. Furthermore, for $x \in N$,

$$
\varphi(E(x))=s_{\varphi}(1, E(x))=s_{\psi}(1, x)=\psi(x) .
$$

Thus (i) follows, since the identity $\varphi \circ E=\psi$ shows that E is normal and faithful.
(ii) \Rightarrow (iii). \quad Since (i) \Leftrightarrow (ii) there is a faithful normal projection $E: N \rightarrow A$ such that $\varphi \circ E=\psi$, and $s_{\varphi}=\left.s_{\psi}\right|_{A \times A}$. Let $H_{\varphi}^{\#}$ denote the completion of A with respect to the norm $\|x\|_{\varphi}^{\#}=\varphi(x \circ x)^{1 / 2}$. Similarly define $H_{\psi}^{\#}$. Then there is a natural inclusion $H_{\varphi}^{\#} \subset H_{\psi}^{\#}$.

We assert that the orthogonal projection $p: H_{\psi}^{\#} \rightarrow H_{\varphi}^{\#}$ is an extension of E. For this we must show that for $x, y \in N$, with obvious notation,

$$
(E(x), y)_{\psi}^{\#}=\left(x, E(y)_{\psi}^{\#}=(E(x), E(y))_{\varphi}^{\#} .\right.
$$

But, by an application of [7, Lem 4.1] we have

$$
\begin{aligned}
(E(x), y)_{\psi}^{\#} & =\psi(E(x) \circ y)= \\
& =\psi(E(E(x) \circ y)) \\
& =\psi(E(x) \circ E(y))) \\
& =\varphi(E(x) \circ E(y)) \\
& =(E(x), E(y))_{\varphi}^{\#}
\end{aligned}
$$

and similarly for $(x, E(y))_{\psi}^{\#}$. Thus the assertion follows. From the proof of [4, Thm. 3.3] ρ_{t}^{φ} extends to a self-adjoint operator u_{t} on $H_{\varphi}^{\#}$ and ρ_{t}^{ψ} to a self-adjoint operator v_{t} on $H_{\psi}^{\#}$, satisfying $\left\|u_{t}\right\| \leq 1,\left\|v_{t}\right\| \leq 1$, and

$$
u_{s} u_{t}=\frac{1}{2}\left(u_{s+t}+u_{s-t}\right), \quad u_{0}=1
$$

and similarly for v_{t}. Furthermore there exist, possibly unbounded, positive self-adjoint operators D and D^{\prime} on $H_{\varphi}^{\#}$ and $H_{\psi}^{\#}$ respectively such that

$$
u_{s}=\cos (s D), \quad v_{s}=\cos \left(s D^{\prime}\right), \quad s \in \mathbb{R}
$$

Thus by the proof of [4, Thm. 3.3]

$$
\begin{array}{ll}
s_{\varphi}(x, y)=\left(\cosh \left(\frac{D}{2}\right)^{-1} x, y\right)_{\varphi}^{\#}, & x, y \in A \\
s_{\psi}(x, y)=\left(\cosh \left(\frac{D^{\prime}}{2}\right)^{-1} x, y\right)_{\psi}^{\#}, & x, y \in N
\end{array}
$$

Let $C=\cosh \left(\frac{D}{2}\right)^{-1}, C^{\prime}=\cosh \left(\frac{D^{\prime}}{2}\right)^{-1}$. Then C and C^{\prime} are bounded selfadjoint operators. We assert that $C=\left.C^{\prime}\right|_{H_{\varphi}^{\#}}$. For this it suffices to show that for $a \in A, y \in N$

$$
(C a, y)_{\psi}^{\#}=\left(C^{\prime} a, y\right)_{\psi}^{\#}
$$

However, from the above $p: H_{\psi}^{\#} \rightarrow H_{\varphi}^{\#}$ extends E, so that

$$
\begin{aligned}
(C a, y)_{\psi}^{\#} & =(p(C a), y)_{\psi}^{\#}=(C a, p y)_{\psi}^{\#} \\
& =(C a, E(y))_{\psi}^{\#}=(C a, E(y))_{\varphi}^{\#}
\end{aligned}
$$

Therefore it remains to be shown that

$$
\left(C^{\prime} a, y\right)_{\psi}^{\#}=(C a, E(y))_{\varphi}^{\#},
$$

or rather

$$
s_{\psi}(a, y)=s_{\varphi}(a, E(y)) .
$$

But this was shown in the proof of $(\mathrm{i}) \Rightarrow(\mathrm{ii})$. It follows that $H_{\varphi}^{\#}$ is C^{\prime}-invariant, and $C=\left.C^{\prime}\right|_{H_{\varphi}^{\#}}$ as asserted.

Now the functions $C \rightarrow D \rightarrow \cos (s D) \rightarrow u_{s}$, and similarly for $C^{\prime} \rightarrow v_{s}$, are Borel functions of C and C^{\prime} respectively. Thus $u_{s}=\left.v_{s}\right|_{H_{\varphi}^{\#}}$, and we can conclude that $\rho_{s}^{\varphi}=\left.\rho_{s}^{\psi}\right|_{A}$.
(iii) \Rightarrow (ii) By Theorem 4.1, for all $x, y \in A$

$$
\begin{aligned}
s_{\varphi}(x, y) & =\int_{-\infty}^{\infty} \varphi\left(\rho_{t}^{\varphi}(x) \circ y\right) \cosh (\pi t)^{-1} d t \\
& =\int_{-\infty}^{\infty} \psi\left(\rho_{t}^{\psi}(x) \circ y\right) \cosh (\pi t)^{-1} d t \\
& =s_{\psi}(x, y),
\end{aligned}
$$

proving (ii). This completes the proof of the theorem.

Corollary 4.3 Let N be a von Neumann algebra and A a reversible JWsubalgebra of N_{sa} such that $Z(A)=Z(M)_{\mathrm{s} a}$, where M is the von Neumann algebra generated by A. Suppose ψ is a faithful normal state of N such that

$$
\sigma_{t}^{\psi}(a)+\sigma_{-t}^{\psi}(a) \in A \forall t \in \mathbf{R}, a \in A
$$

Then $\sigma_{t}^{\psi}(M)=M \forall t \in \mathbf{R}$.
Proof Since $\rho_{t}^{\psi}(x)=\frac{1}{2}\left(\sigma_{t}^{\psi}(x)+\sigma_{-t}^{\psi}(x)\right), x \in N_{\text {sa }}$, by Theorem 4.2 there exists a faithful normal projection $E: N \rightarrow A$ such that $\varphi \circ E=\psi$, where $\varphi=\left.\psi\right|_{A}$. From our assumptions on A and the classification of JW-algebras there exist two central projections e and f in A with sum 1 such that $e A=e M_{\text {sa }}$, $(R(A)+i R(A)) f=M f,(R(A) \cap i R(A)) f=\{0\}$. We have $E(e x e)=$ $e E(x) e=E(x) e=e E(x)$ for $x \in N$, and similarly for f. Thus $E(x)=$ $E(e x e)+E(f x f)$, so that $E(x e)=E(e x e)=E(x) e$. It follows that

$$
\psi(x e)=\varphi(E(x e))=\varphi(E(x) e)=\varphi(e E(x))=\psi(e x)
$$

Thus e and $f \in M_{\psi}$ - the centralizer of ψ. In particular $\sigma_{t}^{\psi}(e)=e, \sigma_{t}^{\psi}(f)=f$. It thus suffices to consider the two cases $e=1$ and $f=1$ separately. If $A=M_{\text {sa }}$ then E is a conditional expectation, so the conclusion follows from Takesaki's theorem [9].

Assume $R(A) \cap i R(A)=\{0\}$ and $Z(A)=Z(M)_{\text {sa }}$. By Theorem 3.2 there exists a faithful normal conditional expectation $F: N \rightarrow M$ such that $E=P \circ F$ where $P: M \rightarrow A$ is the canonical projection. Since $P=\left.E\right|_{M}$, $\varphi \circ P=\left.\psi\right|_{M}$. Thus

$$
\psi=\varphi \circ E=\varphi \circ P \circ F=\left.\psi\right|_{M} \circ F
$$

so F is ψ-invariant. Again it follows from Takesaki's theorem that $\sigma_{t}^{\psi}(M)=M, t \in \mathbf{R}$.

References

[1] Choi, M-D., and Effros, E., Injectivity and operator spaces, J. Functional Anal. 24 (1974), 156-209.
[2] Edwards, C. M., Conditional expectations on Jordan algebras, Fund. Aspects of Quantum Theory, Nato ASI Series, Plenum Press (1985), 75-81.
[3] Effros, E., and Størmer, E., Positive projections and Jordan structure in operator algebras, Math. Scand. 45 (1979), 127-138.
[4] Haagerup, U., and Hanche-Olsen, H., Tomita-Takesaki theory for Jordan algebras, J. Operator Theory 11 (1984), 343-364.
[5] Hanche-Olsen, H., and Størmer, E., Jordan opereator algebras, Monographs and Studies in Math. 21, Pitman 1984.
[6] Pedersen, G. K., and Størmer, E., Traces on Jordan algebras, Can. J. Math. 34 (1982), 370-373.
[7] Størmer, E., Decomposition of positive projections on C^{*}-algebras, Math. Ann. 247 (1980), 21-41.
[8] Størmer, E., Positive projections onto Jordan algebras and their enveloping von Neumann algebras. Ideas and Methods in Math. Anal., Stochastics and Applic., Cambridge Univ. Press (1992), 389-393.
[9] Takesaki, M., Conditional expectation in von Neumann algebra, J. Functional Anal. 9 (1972), 306-321.
[10] Woronowicz, S. L., Self-polar forms and their applications to the C^{*} algebra theory, Rep. Math. Phys. 6 (1974), 487-495.

