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1 Introduction

Let N be a von Neumann algebra and E : N — N a positive linear unital
map. We say E is a projection (or positive projection) if E is idempotent,
E = E2. If E is faithful and normal the image of E is a Jordan algebra [3],
in particular its self-adjoint part A = E(Ng,) is a JW-subalgebra of Ng, with
the usual Jordan product a o b = 1(ab + ba). It was shown in [1] that E is
completely positive if and only if E(NN) is a von Neumann algebra, and it was
shown in [7] that E is decomposable, i.e. the sum of a completely positive
and co-positive map, if and only if A is a reversible JW-algebra. Recall that
A is called reversible if A = R(A)s,, where R(A) denotes the weakly closed
real x-algebra generated by A. Let M denote the von Neumann algebra
generated by A, or equivalently by E(N). Then it is natural to ask 1)
whether there exists a faithful normal conditional expectation of N onto M,
and 2) if it does, will E factor through M, i.e. if there exists a faithful normal
conditional expectation F' : N — M and a (possibly canonical) projection
P:M — A+iAsuchthat E= PoF.

In the present paper we shall present answers to the above questions,
the results varying with the kind of JW-algebra A is. We shall also in the
last section prove a theorem on the existence of positive projections, the
result being an extension of Takesaki’s existence theorem for conditional
expectations [9] to Jordan algebras.




We shall mainly concentrate our attention to faithful projections. There
are two technical reasons for this. The first is that then A = E(Ng,) is
a JW-subalgebra of Ng,. Secondly, we can always restrict attention to this
situation. Indeed, let e be the support of E in N. By [3, Lem. 1.2] e € A'UN,
and from the proof of [7, Lem. 1.2] the map E, : N, — N, defined by

E.(exe) = \"'E(exze)le, x€N, A\=FE(e)c AUA,

is a faithful normal projection onto E(N)e. (We should remark that in [7]
A is assumed to be a JW-factor, but the result extends easily to the general
case by a modification of the proof of Proposition 3.1 below).

We refer the reader to the book [5] for the theory of JW-algebras.

2 Projections from the enveloping von Neu-

“mann algebra

In this section we study the existence problem for positive normal projections
of the enveloping von Neumann algebra onto the JW-algebra. To be specific
let A be a JW-algebra and M = A” the von Neumann algebra generated by
A. From the structure theory of JW-algebras, see [5] there exist projections
e, f,g,h in the center Z(A) of A with sum 1 such that the following hold:

(i) eA=eMs,,

(ii) (f + 9)A is reversible, R(A) +i R(A) = M, R(A) Ni R(A) = {0}. The
map a(z+iy) = z*+iy*, z,y € R(A) is an involutive *-antiautomorphism
of M such that A = {z € (f + 9)Ms : a(z) = z}, R(A) = {z €
(f+9M :a(x)=z*}. fA and gA have the following further proper-
ties:

(ila) There exist two projections p, g in the center Z(M) of M with
p+ g = f such that a(p) = q. pA = pMs,, qA = gM,.

(iib) Z(gA) = Z(gM)ea
(iii) hA is of type Ip.

Note that a positive projection P of Mg, onto A leaves the projections
e, f, g9, h invariant, hence the different cases (i)-(iii) invariant, so they can




be studied separately. For simplicity of notation we shall say P is a projec-
tion of M onto A instead of Mg, onto A. Then in case (i) the identity map
is a projection of M onto A. In case (ii) the map P(z) = 3(z + a(z)) is a
projection of M onto A which we shall call the canonical projection. Thus the
existence problem is reduced to the I>-case. For a discussion of JW-algebras
of type I see [5, §6.3], and in particular the definition of JW-algebra of type
Lk, k € N. For us all we need to know is that such a JW-algebra is of the
form C(X, V), where Z(A) = C(X), X compact Hausdorf, and V, is the
spin factor generated by a spin system of k symmetries [5, Prop. 6.3.13].

Theorem 2.1 Let A be a JW-algebra of type I and M the von Neumann
algebra generated by A. Then there exists a faithful normal projection P of
M onto A if and only if M is finite. If P exists and 7 is a normal trace on A
then 7 o P is a trace on M. If A has no direct summand of type I with k

an odd integer then P is unique.

The proof will be divided into some lemmas. The necessity part of the
theorem follows from the following more general result. For a discussion of
traces on JW-algebras see [6].

Lemma 2.2 Let N be a von Neumann algebra, A a JW-subalgebra and
E : N — A a faithful normal projection. Suppose 7 is a faithful normal
semifinite trace on A such that 7o E is a semifinite weight on N. Then there
exists a faithful normal conditional expectation F' of N onto the centralizer
N;op of 7o E in N such that E = E/N,.g o F. Furthermore, if M denotes
the von Neumann algebra generated by A, then M C N,.g, so in particular
7 o F restricts to a trace on M.

Proof 1If sis a symmetry in A and z € N then by [7, Lem. 4.1] E(szs) =
sE(x)s, hence
7o E(szs) = 7(sE(x)s) = 7(E(z)).

Replacing z by zs we obtain 7o E(sz) = ToE(zs). Since the symmetries span
a dense subset of A, A C N,og. Since N, g is a von Neumann subalgebra of
N, and A C Nyog, M C N og. Since 7 is semifinite on A, 7o E is semifinite
on M, hence 7 o E restricts to a semifinite trace on M. _

Let a € A and p be a finite projection in A, i.e. 7(p) < oo. Then for each
finite projection ¢ in A, pV q is finite, and the restriction of 7 to pVq¢ApVygq




is a finite trace. From the identity 7(yzy) = 7(y?0x) foraz,y € pVqgApVyq
[6], it follows that

7(pgagp) = 7(p o qaq).
Since the functional z — 7(p o z) is normal, letting ¢ — 1 we obtain the

identity
(x) T(pap) =7(poa), acA.

Note that the states p(a) = 7(hoa) with h € A*, 7(h) = 1 form a separating
family of states on A. Indeed, if a =a* —a~, ata™ =0, a*t,a” € AT, and
7(hoa) =0 for all h as above, then if p is a finite projection in A with p <
support(a™) then by (*)

T(pa*p) = r(pap) = 7(poa) = 0.

Since 7 is faithful pa*p = 0. Letting p " support(at) we obtain a* = 0,
and similarly a= = 0. Thus a = 0.

Let o; denote the modular group of the weight 7 o E on N, and let
p(a) = 7(hoa) be a state as above. Then for z € N

poE(o(z)) = 7(ho E(o(z)))
= 7(E(hoayx))) by[7,lem.4.1]
= 7(E(0i(hx))) since h € Nyok
= 7ToFE(hox)
= p(E(z)).

By the previous paragraph F(o;(z)) = E(z) for all t € R, hence E factors
through N;.g. QED

Lemma 2.3. Let A be a spin factor and B the C*-algebra generated by A.
Then there exists a positive projection of £ : B — A. F is unique if A =V}
with k even or oco. If A = V), with k odd then there is a 1-parameter family
of positive projections of B onto A.

Proof From [3] there exists a positive projection F : B — A. Let 7 denote
the trace on A see [5, 6.1.7]. By the argument of Lemma 2.2, Tr = 70 E
is a trace on B. By [3] E is the orthogonal projection of B onto A with
respect to the inner product (z,y) = Tr(zy) = Tr(z o y). Let A denote the




CAR-algebra. Then by [5, 6.2.2] we have

Man—1 ((C) @D Mon—1 ((C) if k=2n-1
B =< Mx(C) if k=2n
A if k=o00.
If k = 2n or oo there exists a unique trace on B, so Tr = 7 o E determines
FE uniquely. If k is odd there is a 1-parameter family of positive projections

of B onto A, as each trace Tr on B defines a projection by the formula
Tr(E(z)y) = Tr(zy) for z € B, y € A. QED

Lemma 2.4 Let A be a JW-algebra and M the von Neumann algebra
generated by A. If M is finite there exists a faithful normal projection P :
M — A. If moreover Z(A) = Z(M) then P is unique.

Proof Cutting down by central projections if necessary we may assume M
has a faithful normal tracial state tr. As for von Neumann algebras for each
T € Mg, there is P(z) € A such that

tr(z o a) = tr(za) = tr(P(z)a) = tr(P(z) o a), ac A

P 50 defined is a faithful normal projection of M onto A.

Assume Z(A) = Z(M), and let ¥ : M — Z(A) be the unique center
valued trace on M with (1) = 1. Let ® = ¢|sa 0 P. If z € Z(A) then for
x € M, ®(zx) = Y(P(2x)) = ¥(2P(x)) = 2¢pP(z) = 2®(z), so P is also a
faithful normal center valued trace, hence ® = 9. If @ is another faithful
normal projection M — A then similarly ¥|4 0 @ = 1, hence

PYla(P(z) —Q(z)) =0, =zeM.
If a € A then
0 =9|a(Plaoz) — Qaox)) =1lalac (P(z) — Qz))).

In particular this holds when z is self-adjoint and a = P(z) — Q(z), hence
by faithfulness of ¢, P(z) = @(x). Thus P is unique. QED

Proof of Theorem 2.1

Assume A is of type I; and M is finite. By Lemma 2.4 there exists a faithful
- normal projection P : M — A and if P exists then M is finite by Lemma 2.2.
Since by [5, 6.3.14] A is a direct sum of JW-algebras of type I, and if A
is of type I then M = C(X, Vi) with Z(A) = C(X), so the uniqueness
statement follows from Lemma 2.4 and Lemma, 2.3.
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3 Conditional expectations onto the gener-

ated von Neumann algebra

In this section we study the following problem. Suppose N is a von Neumann
algebra, A a JW-subalgebra, and M the von Neumann algebra generated by
A. Suppose E : N — A is a faithful normal projection. Then

(i) Does there exist a faithful normal conditional expectation F': N — M?

(ii) If F exists can it be chosen so that £ = E|p o F?

Note that if A has a faithful normal semifinite trace 7 such that 7o E is
semifinite, then the answer to both questions is affirmative by Lemma 2.2.

The following proposition is used in the proof of [8, Thm]. However, in
that proof we refer to [7, Lem. 4.2], which is only proved for JW-factors.
For completeness we include a proof. We use the notation N, for the von
Neumann algebra {pzp: x € N} when p is a projection in N.

Proposition 3.1 Let N be a von Neumann algebra, A a JW-subalgebra
and F : N — A a faithful normal projection. In the notation of §2 assume A
is of type (iia) with p 4+ ¢ = 1. Then there exist faithful normal conditional
expectations Fp, : N, — pA = pMg, and F; : N; — gMg, such that

F(z) = Fp(pzp) + Fplqzq), z€N,
defines a faithful normal conditional expection N — M.

Proof Fora € A% and e a central projection in M, by [7, Lem. 4.1] acE(e) =
E(aoce) = E(ae) > 0, hence by [7, Lem. 3.1] E(e) € Z(A). In particular
if 0 # e € Z(A) then ep # 0, hence E(p)e = E(pe) # 0. By spectral
theory there is a largest projection e, € Z(A) such that e, E(p) > %en for
each n € N. Then e, > e, if n > m, so the sequence (ey) is increasing
and converges by the above strongly to 1. Let a, € A be the inverse of the
operator e,F(p) considered as acting on e, H, where H is the underlying
Hilbert space. Define
E,:N,— Aenp

by
E.,.(pzp) = anE(prp)e,p.




Clearly E, is normal and positive. Furthermore, if z € Nt then
E.(penzenp) = anE(penzenp)enp = anE(prp)enp.

Thus if E,(pe,ze,p) = 0 then 0 = E(pzp)e,p = E(pe,xenp)en, 0
E(penzenp) = 0. Since E is faithful, pe,xe,p = 0. Thus the restriction
Eny|nN,., is faithful. If @ € A then

E'n, (p(ena)p) = anE (penaenp)enp
= an(enaE(p)e,p
= aenp.

Thus Ey|n,., is a projection of Npe, onto Aenp. Since anem = am if n > m
a straightforward computation shows

EnlNemp = EmlNemp7 n>m.

We also find
E.(pxp)em = En(pzp) .

Thus for z € Nt the sequence (E,(pzp)) is increasing and bounded in norm
by |lpzp|. Let F,(pzp) be its strong limit. Then

Fy(pzp)en = En(pzp), nEN.

Thus Fp, : N, — Ap = Mp is positive, Fp(p) = p, and if a € A, F,(pap) =
o0

pap. Since we have 1 =e; + Y (ept1 — €n),
1

Fp(pzp) = Fy(pzp)er+ Y Fp(pzp)(ent1 — €n)
o1

= Ei(pzp) + Y Eny1(pzp)(€nt1 — €n),
1

is an orthogonal sum of normal maps, so is normal. Thus F, : N, = M, is a
positive normal conditional expectation. Finally, if z € N* and F,(pzp) = 0
then E,(peqze,p) = 0 for all n, hence penze,p = 0 for all n, and so pxp = 0.
Thus Fp is also faithful.

Similarly we can define F, : N, — M, and show it is a faithful normal
conditional expectation. Thus the map F : N — M defined by

F(z) = Fy(pzp) + Fy(qzq)
is a faithful normal conditional expections. QED
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In the above situation F is not necessarily unique, see [7, Prop. 6.4].

In [8] it was shown that if NV is a von Neumann algebra, A a reversible JW-
subalgebra and E a faithful normal projection of N onto A such that aoF =
E for an involution o of N, then there exists a faithful normal conditional
expectation F' of M onto A, where as before M is the von Neumann algebra
generated by A. We now show that we can get rid of the hypothesis on the
existence of a and thus answer questions (i) and (ii) affirmatively when A is
of type (iib) in §2.

Theorem 3.2 Let N be a von Neumann algebra and A a reversible JW-
subalgebra such that R(A) NiR(A) = (0), and Z(A) = Z(M)s,, where
M = R(A) + i R(A) is the von Neumann algebra generated by A. Suppose
E : N — A is a faithful normal projection. Then there exists a unique
conditional expectation F': N — M such that if P : M — A is the canonical
projection, then £ = Po F.

Proof Let a be the canonical involution of M, a(x +iy) = z* + iy*. Denote
by N°P the opposite algebra of N, and put

N=N@N>.
N is imbedded in N by z — (z,0). We define an involution o of N by

o(z,y) = (v, ).

Let
M ={(z,a(z)) : z € M},

and imbed M in M by z — (z,0). Define an involution & on M by
a(z, o(z)) = (o(z), z) = (a(z), () -

Then & = ;. Let
A={(z,z): z=a(z) € A}

and imbed A A by z — (z,0). The canonical projection P : M — A satisfies
P(z) = 1(z + a(z)). Define

P:M—A
by Pz, a(2)) = (3(z + a(®)), 3@ + a(2) = (P(¢), P()) . Define

E:N—A
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by E(z,y) = (%E(J:+y), %E(m+y)) Then E is a faithful normal projection,
and
Eooc=0o0E=E.

From the definition of « it follows that M is the von Neumann algebra
generated by A. Thus by [8, Thm. and comments following it] there exists a
faithful normal conditional expectation F : N — M such that

E= EI}\? oF.
If x € M then
B, o) = (%E(w +a(@)), 5B + o(a))) = (EP(@), EP@))
= (P(z), P(@)) = P, o(x)).

Thus E= Po F.
Define F; : N - M,i=1,2, by
F(z,0) = (Fi(z),aF(z)), z€N.
F(0,9) = (eF(), Fay)), ye€N.

Since F is a conditional expectation, if z € M, x € N,
(2F1(z), a(zF1(z)) = (2,0(2))(Fi(z), aFi(z))

= (za(2))F(z,0)

= F((z,a(2))(z,0))
= F(z2z,0)
= (F(zz), qF 1(22)) -

Thus 2Fi(z) = Fi(zz), and by symmetry F(zz) = Fi(z)z. In particular
Fi(z) = zF1(1) = Fi(1)z, so Fi(1) € Z(M) = Z(A).
Similarly F2(1) € Z(M) = Z(A), and F>(2z) = zFs(x), Fao(x2) = F>(z)z.
If x € N then

B(z,0) = PF(z,0) = P(F\(z),aFi(z))
~ ((R@ +aR@), 5(R@) + aR)

However, E(z,0) = (%E(x), 1E(z)). Therefore we have
Fi(z) + oFi(z) = E(x) .
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In particular since Fi(1) € Z(A),

Thus Fi(1) = 31, so from the above F' = 2F is a conditional expectation of
N onto M. Furthermore if z € N, P o F(z) = aP o F(z), so that

E(z) = F(z)+aFk(z)=
= 2P(Fi(z))
= PoF(z).

Similarly we obtain E = P o 2F.

It remains to show uniqueness, hence in particular F; = F5>. Suppose
G : N — M is a conditional expectation such that Po G = E. Let x € Ng,.
Then we have

P((F-G)()’) = P(F(z)’ - F(z)G(z) - G(z)F(z) + G(z)*)
= P(F(zF(z)) — F(zG(z)) — F(G(z)z) + G(zG(z)))
= E(zF(z) — zG(z) — G(z)z + zG(x))
= PoG(zF(z)) — Po F(G(z)x)
= P(G(z)F(z) — G(z)F(z))
= 0.

Since P is faithful F(z) = G(z), so F = G. QED

Corollary 3.3 Let A be a reversible JW-algebra and M the von Neumann
algebra generated by A. If Z(A) = Z(M)s, then there exists a unique faithful

normal projection of M onto A.

Proof If A = Mg, the result is obvious. Otherwise it suffices to look at
the case M = R(A) + iR(A), R(A) NiR(A) = (0). If Z(A) = Z(M)s, then
by Theorem 3.2 applied to N = M, it follows that every faithful normal
projection of M onto A must be equal to the canonical projection P.

4 The Jordan analogue of Takesaki’s

theorem

In the present section we shall study the existence problem for faithful normal
projections of a von Neumann algebra N, or more generally JW-algebra,
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onto a JW-subalgebra. The theorem will be a generalization of Takesaki’s
theorem for von Neumann algebras [9], which in the case of states says that
if M C N are von Neumann algebras, and ¢ is a faithful normal state on
N with modular group of, then there exists a ¢-invariant faithful normal
conditional expectation of N onto M if and only if of (M) = M for all
t € R. In the JW-algebra case of is replaced by a 1-parameter family (pf)
of operators on N, which in the von Neumann algebra case are given by
pf(a) = %(af (a) + crft(a)). The extension of the Tomita-Takesaki theorem
to JW-algebras, or rather JBW-algebras is as follows [4, Thm. 3.3].

Theorem 4.1 (Haagerup and Hanche-Olsen) Let N be a JBW-algebra
with a faithful normal state ¢. Then there is a unique 1-parameter family
(pf)¢en of operators on N, satisfying

(i) The map t — pf(z) in w*-continuous for all z € N.
(ii) Each pf is unital, positive, normal.
(iit) pf =idw, pfpf = 5(p%y: +pE4), st ER.
(iv) @(p;(a) 0 b) = p(ac p{(b), a,b€ N.

(v) The bilinear form on N defined by s,(a, b) = ?fo ©(pf (a)ob) cosh(mt)~dt,

a,b € N, is a self-polar form on N.

We can now state our generalization of Takesaki’s theorem. The result also
extends [2].

Theorem 4.2 Let N be a JBW-algebra and A ¢ N a JBW-subalgebra.
Suppose 1 is a faithful normal state on N, and let ¢ = 1|4. Then the
following three conditions are equivalent:

(i) There exists a faithful normal projection E: N — A such that o E=1.
(i) sp = splaxa.
(ili) pf(a) =pf(a),ac A tem

Proof We shall show (i) (ii) < (iii).
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()=(@1) Put si(z,y)=sy(E(z), E(y)), z,y € N. Then s;(z,z) >0, z€ N,
and s;(z,y) > 0if z,y € N*. In the notation of [4], if s is a bilinear form
on N x N then s* : N — N* is given by (s*(z),y) = s(z,y). Thus we have

(s1(1),y) = syp(L,E®y)) =¢(E(y) =po E(y) =
= Y(y) = (s;(1),9).

Therefore s3(1) = s3,(1). By [10, Thm. 1.1]
s1(z,z) < sy(x,z), TEN,
or v
sy(E(z), E(z)) < sy(z,2) .

Therefore E can be extended to a contractive idempotent E on the real
Hilbert space obtained by completing N in the norm induced by the inner
product sy. But contractive idempotents on a Hilbert space are automati-
cally self-adjoint, i.e. E = E* = E*E. Therefore

sy(E(z), E(y)) = sy (E(z),y) = sy(z, E(y)) -
for all z,y € N. In particular we have
sy(E(x),x) = sy(z, E(z)) = sy(E(z), E(z)) < sy(z,x), x€EN.
Let
Sg = 3¢|AxA .

Then sy(z,y) = sy(E(x), E(y)), z,y € A. We assert that s, is a self-polar
form on A x A. The only nontrivial property to be shown is that

53([0,1]) = [0, 52(1)],

where [0,1]={z € A:0<2<1},[0,s5(1)] = {we A*: 0 <w < s3(1)}.
Indeed, let 0 <z < 1in A. Then for y € At,

(55(),y) = s2(z,y) = sy(E(x), E(y))
sy(z, E(y))

sy(1, E(y))

Y(E(y))

(s2(1),9)

Al

Thus s3(z) € [0, s3(1)].
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Suppose p € A*, 0 < p < s5(1). Then 0 < po E < sj(1), because if
ye Nt
poE(y) < (s3(1), E(y))
= S¢(17E(y))
= S¢(E(1)7y)
= (sy(1),9)-

Since sy is a self-polar form s} ([0, 1]) = [0, s} (1)], hence there exists z € N,
0 <z <1, such that fory € N,

poE(y) = (sy(z), E(y))
= sy(z, E(y))
= sy(E(z),y)
= (s2(E(2)), E(y))-

In particular, if y € A, then p(y) = (s3(E(z)),y). Since s3(E(z)) € [0,s5(1)],
we have shown that [0, s3(1)] C s5([0,1]), hence they are equal, and s; is a
self-polar form on A x A as asserted. If y € A we have

(s3(1),9) = sp(1, E(z)) = Y(E(y)) = ¢(y) = (s5(1),v) -
Thus by [10, Thm. 1.2], sp = Sy, i.e. S, = Sy|axa, proving (ii).
(ii))=() Letz e N,0 <z <1. The function
a — sy(a, ), a€A,

defines a functional ¢, on A such that 0 < ¢, < 9|4 = . Since s, is a
self-polar form s3,([0,1] = [0, s},(1)], hence there is y € A, 0 <y < 1, such
that

(px(a) = s¢(a, y) .

y is unique since s, is an inner product on A, ¢ being faithful. Put E(z) = y.
We thus get a map

{xeN:0<z<1} —>{ye A:0<y<1}.
By definition of y

sy(a, z) = sy(a, E(x)), acA, zeN, 0<i<1.
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As N = span{z € N : 0 < z < 1}, E has a unique extension to a linear map
N — A such that sy(a,z) = sy(a, E(z)) for all a € A, z € N. By (ii) it
follows that for x € A

8,(a,7) = sy(a,z) = 5,(a, E(z)), a€A.

Thus E(z) = z, and E : N — A is a positive projection. Furthermore, for
€N,

W(E(z)) = so(1, E(z)) = sy(1,z) = ¥(z).
Thus (i) follows, since the identity ¢ o E = 9 shows that E is normal and
faithful.

(i))=-(iii). Since (i)<>(ii) there is a faithful normal projection £ : N — A
such that ¢ o E = 9, and s, = sy|axa. Let Hﬁf denote the completion of
A with respect to the norm ||z||# = ¢(z o z)*/2. Similarly define Hf . Then
there is a natural inclusion H¥ C Hf .

We assert that the orthogonal projection p : Hf — Hf is an extension
of E. For this we must show that for z,y € N, with obvious notation,

(B@),9)§ = (=, E@)§ = (E(z), E@))} -

But, by an application of [7, Lem 4.1] we have

(B@),9)f = $(BE)oy) =
Y(B(E() 01))

— W(B() ° B))

o(E(@) 0 E))

~ (B@), B,

and similarly for (z, E(y))ZZé . Thus the assertion follows. From the proof of
[4, Thm. 3.3] pf extends to a self-adjoint operator u; on Hf and pf to a
self-adjoint operator v; on Hf , satisfying |u|| <1, |lwe]| <1, and

UsUp = %(us+t + Us—t), u =1,

and similarly for v;. Furthermore there exist, possibly unbounded, positive
self-adjoint operators D and D’ on Hf and H,f respectively such that

us = cos(sD), ws= cos(sD’), S ER.
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Thus by the proof of [4, Thm. 3.3]

D -1 7

S‘P(x7y) = <COSh (5) -T,y) ) x,yeA.
7]
o\ N\

sy(z,y) = (cosh (7> x,y) , z,y € N.
¥

Let C = cosh (g)—l,C' = cosh (%,)—1. Then C and C' are bounded self-
adjoint operators. We assert that C = C’| HE- For this it suffices to show
that fora € A,y e N

(Ca,y)§ = (C'la,y)} .

However, from the above p : Hf — H f extends FE, so that

(Can)} = (©(Ca),v)] = (Ca,pv)}
= (Co,EW))} = (Ca, E@))} -

Therefore it remains to be shown that
(C'a,y)% = (Ca, E))%,
or rather

s¢(a, y) = Scp(a7 E(y)) .

But this was shown in the proof of (i)=>(ii). It follows that H¥ is C'-invariant,
and C = C'| Hf 83 asserted.

Now the functions C — D — cos(sD) — us, and similarly for ¢’ — wv;,
are Borel functions of C and C’ respectively. Thus us = v;| HE and we can
conclude that p¢ = p?|4.

(iii))=>(ii) By Theorem 4.1, for all z,y € A

(o0}

se(2,y) = [ w(pt(@) oy) cosh(rt)dt

— [ w(pt (@) o) cosh(mt)dt
= 3¢($,y),

proving (ii). This completes the proof of the theorem.
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Corollary 4.3 Let N be a von Neumann algebra and A a reversible JW-
subalgebra of Ng, such that Z(A) = Z(M)s,, where M is the von Neumann
algebra generated by A. Suppose % is a faithful normal state of N such that

o¥(a) + 0% () c AVteR, ac A.
Then of (M) = M Vt € R.

Proof Since p¥ (z) = %(aip (z)+0¥,(z)), z € Ng, by Theorem 4.2 there exists
a faithful normal projection E : N — A such that po E = 1, where ¢ = 9|4.
From our assumptions on A and the classification of JW-algebras there exist
two central projections e and f in A with sum 1 such that eA = eMg,,
(R(A) + iR(A))f = Mf, (R(A) NiR(A))f = {0}. We have E(exe) =
eE(zx)e = E(x)e = eE(x) for z € N, and similarly for f. Thus E(z) =
E(exe) + E(fxf), so that E(ze) = E(exe) = E(x)e. It follows that

Y(ze) = p(E(ze)) = p(E(z)e) = ¢(eE(z)) = P(ex) .

Thus e and f € My, - the centralizer of 1. In particular o} (¢) = e, o7 (f) = f.
It thus suffices to consider the two cases e = 1 and f = 1 separately. If
A= Mg, then F is a conditional expectation, so the conclusion follows from
Takesaki’s theorem [9].

Assume R(A) NiR(A) = {0} and Z(A) = Z(M)sa. By Theorem 3.2
there exists a faithful normal conditional expectation F' : N — M such that
E = Po F where P: M — A is the canonical projection. Since P = E|y,
@ o P=1)|p. Thus

Y=poE=poPoF=1|yoF,
so F' is 1-invariant. Again it follows from Takesaki’s theorem that
o (M)=M,teR. QED
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