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THE STOCHASTIC WICK-TYPE BURGERS EQUATION 

H. Holden1l, T. Lindstr¢m2l, B. 0ksendal3l, J. Ub¢e4l and T.-S. Zhang4l 

Abstract 

We study the multidimensional stochastic (Wick-type) Burgers equation 

{ 
OUk + A .;:.... u . <> auk = ZJ .6. Uk + Wk (t x) . t > 0 X E R n ot 0 J ox· ' ' ' j=1 J 

uk(O, x) = 9k(x) ; 1::; k::; n 

where <> denotes the Wick product, A and v are constants (v > 0, A # 0), .6. denotes 
the Laplacian and {wk(t,x)}k=1 are (n + 1)-parameter stochastic processes (noise). We 
prove an existence and uniqueness result for the solution u( t, x) = { uk ( t, x) }k=1 , regarded 
as an (n + 1)-parameter stochastic process with values in the Kondratiev space (S)-1 of 
stochastic distributions. 
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§0. INTRODUCTION 

The purpose of this paper is to continue the work done in [HL0UZ 2] regarding the 
stochastic multidimensional Burgers equation in { Uk ( t, x)} k=l: 

(0.1) 
uk(O, x) = 9k(x); 1:::; k:::; n 

where <> denotes the Wick product, ). and v are constants (v > 0, ). =I 0), ..6. denotes 
the Laplacian and Wk ( t, x) = Wk ( t, x) are ( n + 1 )-parameter generalized stochastic pro­
cesses; 1 :::; k :::; n. (See details below). The use of the Wick product corresponds to an 
Ito/Skorohod interpretation of the equation (see e.g. [B1], [L0U 2] and also [HL0UZ 3]). 
We may regard u = ( u1 , · · · , un) as the velocity field of a vorticity free fluid with viscosity 
v, being exposed to the stochastic force w = (wr, · · ·, wn)· 

In [HL0UZ 2] the following was proved: (For definition of functional processes etc. see 
§1). (Here- and in the following- all gradients are taken w.r.t. x). 

A. Let N = N(¢, t,x,w) be a functional process and define w =-\IN. Assume that (0.1) 
has a solution of the form 

u =-\IX 

for some functional process X 
processes 

X ( ¢, t, x, w). Moreover, assume that the functional 

(0.2) 
). 

Y :=Exp(-X) 
2v 

as well as Y oX and Y <> X 02 exist in V (J-L) for some p 2: 1. Then Y solves the stochastic 
heat equation 

(0.3) { ~~ = v..6.Y + 2: Y <> (N +C); t > 0, X ERn 
Y(O, x) = Exp( 2:x(o, x)) 

for some C(t, w) not depending on x. (For simplicity we have written Y(t, x) for 
Y(¢,x,x,w) etc.) 

Furthermore, we proved the following: 

B. Let either N = W(¢, t, x, w) ((n + 1)-parameter white noise) or N = ExpW(¢, t, x, w) 
((n + 1)-parameter positive noise), and assume that both f(x) := Y(O,x) and C(t,w) = 
C ( t) are bounded and deterministic (do not depend on w). 

Then (0.3) has a unique L 2 (J-L) (respectively L 1 (J-L)) functional process solution Y(t, x) given 
by 

t 

(0.4) Y(t, x) = Ex[f(bat)Exp(J H(s, bas)ds)], 
0 
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where a = .J'iV, (bt, f>x) is standard Brownian motion in Rn (Ex denotes expectation w.r.t. 
f>x) and 

(0.5) 
A 

H(t, x) = H(t,x,w) = 2z; (N(¢, t,x,w) + C(t)). 

Thus we see that if u is a gradient solution of (0.1) then we can use it to construct an 
explicit solution of the stochastic heat equation (0.3). Moreover, by other methods the 
unique solution of (0.3) can be found explicitly. In particular, this proves that under the 
given assumptions there exists at most one functional process solution (of gradient form) 
of the stochastic Burgers equation (0.1). 

The purpose of the present paper is to complete the analysis by proving that one can 
reverse the Wick-Cole-Hopf transformation (0.2) to construct a solution of the stochastic 
Burgers equation from the stochastic heat equation and hence obtain a uniqueness and 
existence result for equation (0.1). In order to accomplish this we consider processes and 
operations in the Kondratiev space (S)-1 of stochastic distributions. This space has already 
found several applications in stochastic partial (and ordinary) differential equations. See 
e.g. [B 2], [HL0UZ 4] and [0]. For the stochastic Burgers equation this approach has the 
following advantages: 

a) The transformation from the stochastic Burgers equation to the stochastic heat 
equation can be performed with fewer assumptions than given above if done in the 
space (S)-1 . (See Theorem 2.1). 

b) The stochastic heat equation can be solved explicitly in (S)-1 for a general (S)-1 

potential (Theorem 3.1). 

c) Most importantly, in (S)-1 one can also construct the converse transformation from 
the stochastic heat equation to the stochastic Burgers equation. (See Theorem 4.1). 

By combining a), b) and c) we obtain a uniqueness and existence result (Theorem 5.1) for 
the stochastic Burgers equation (0.1). Moreover, we obtain this under weaker assumptions 
than what was needed for the uniqueness result in [HL0UZ 2]. 

One-dimensional Burgers equations with ordinary product instead of Wick product have 
been studied in [BCJ-L], [DDT] and [DG]. 

§1. WHITE NOISE, WICK PRODUCTS AND STOCHASTIC DISTRIBU­
TIONS 

Here we briefly recall some of the basic definitions and results that we need from white 
noise calculus. For more information the reader is referred to [HKPS] and [KLS]. 

In the following we fix the parameter dimension d and let S = S (R d) denote the Schwartz 
space of rapidly decreasing smooth (C00 ) functions on Rd. The dual S' = S'(Rd) is 

2 



the space of tempered distributions. By the Bochner-Minlos theorem [GV] there exists a 
probability measure J.L on the Borel subsets B of S' with the property that 

(1.1) j ei(w,</>)dJ.L(w) = e-~114>11 2 ;V¢> E S 

S' 

where (w, ¢>) denotes the action of w E S' on¢> E Sand 11¢>11 2 = J l¢>(x)l 2dx. The triple 
Rd 

(S', B, J.L) is called the white noise probability space. 

The white noise process is the map W : S x S' -+ R defined by 

(1.2) W(¢>, w) = Wq,(w) = (w, ¢>); wE S', ¢> E S 

Expressed in terms of Ito integrals with respect to d-parameter Brownian motion B we 
have 

(1.3) Wq,(w) = j ¢>(x)dBx(w) 

Rd 

The Hermite polynomials are defined by 

(1.4) 

and the Hermite functions are defined by 

(1.5) n?.1 

In the following we let {e1,e2, · · ·} C S denote a fixed orthonormal basis for L2(Rd). For 
many purposes the basis can be arbitrary, but for us it is convenient to assume that the 
en's are obtained by taking tensor products of 6,(x). Define 

(1.6) ()j(w) := Wei(w) = j ej(x)dBx(w) j = 1,2, ... 

Rd 

If a= (a1, ···,am) is a multi-index of non-negative integers we put 

(1. 7) 
m 

Ha(w) = IJ hai(()j) 
j=l 

The Wiener-Ito chaos expansion theorem says that any X E L 2(J.L) can be (uniquely) 
written 

(1.8) 

3 



Moreover, 

(1.9) 

The Hida test function space ( S) and the Hida distribution space ( S) * can be given the 
following characterization, due to T.-S. Zhang [Z]: 

THEOREM 1.1 ([Z]) 

Part a): A function f = ~caHa E L2 (J.L) belongs to (S) if and only if 

(1.10) 

where 

(1.11) 

a 

sup c;a! (2N)ak < oo Vk < oo 
a 

m 

(2N)a :=IT (2d/3P) · · · /3Y))ai if a= (a1, ···,am) 
j=l 

Here f3U) = (f3ii), · · ·, !3Y)) is multi-index nr. j in the fixed ordering of all d-dimensional 
multi-indices /3 = (/31 , · · · , /3d), related to the basis { ei} by 

(1.12) 

Part b): A formal series F = ~baHa belongs to (S)* if and only if 
a 

(1.13) sup b;a!(2N)-aq < oo for some q < oo 
a 

The action ofF=~ baHa E (S)* on f = ~ caHa E (S) is given by 
a a 

(1.14) 

EXAMPLE The pointwise (or singular) white noise Wx is defined by 

00 00 

(1.15) Wx(w) = .2::: e1c(x )HEk (w) = .2::: ek(x )h1 ((h) 
k=l k=l 

where Ek = (0, 0, · · ·, 0, 1) with 1 on k'th place. 

In this case 
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bo. = bEk = ek(x) if a = Ek for some k 
bo. = 0 if a =I Ek for all k 

Moreover, if a = Ek we have 

So in this case we get 

sup b;a!(2N)-o.q =sup ek(x) (2df3ik) · · · f)~k))-q < oo 
0. k 

for all q > 0, since 
1 

sup l~k(t)l = O(k-n) ([HiP]) 
tER 

We conclude that Wx(w) E (S)*. 

Note that if 1 < p < oo we have 

(1.16) (S) c LP(Jl) c (S)* 

However, 

(1.17) L1 (11) cj_ (S)* (see e.g. [HL0UZ 1]) 

For our purposes it turns out to be convenient to work with the Kondratiev spaces (S)1 

and (S)-1 which are related to (S) and (S)* as follows: 

(1.18) (S) 1 c (S) c (S)* c (S)-1 

The spaces (S) and (S)-1 were originally constructed on spaces of sequences by Kondratiev 
[K] and later extended by him and several other authors. See [KLS] and the references 
there. We recall here their basic properties, stated in forms which are convenient for our 
purposes. For details and proofs we refer to [KLS]. 

DEFINITION 1.2 [KLS] 

Part a): For 0 ~ p ~ 1let (S)P (the Kondratiev space of stochastic test functions) consist 
of all 

(1.19) 

Part b): The Kondratiev space of stochastic distributions, (s)-P, consists of all formal 
expansions 

5 



such that 

(1.20) Lb~(ad) 1 -P(2N)-aq < oo for some q < oo 
a 

The family of seminorms //f/l~,k; k = 1, 2, ···gives rise to a topology on (S)P and we can 
then regard (s)-P as the dual of (S)P by the action 

(1.21) 

REMARKS. 
1) Regarding (1.21), note that 

< oo for k large enough. 

2) Putting p = 0 we see by comparing (1.19), (1.20) with (1.10), (1.13) that (S) = (S)0 

and (S)* = (S)-0 . So for general p E [0, 1] we have 

(1.22) (S)1 c (S)P c (S) 0 = (S) c (S)* = (S)-0 c (S)-P c (S)-1 

(Observe that with this notation (S) 0 and (S)-0 are different spaces). 

DEFINITION 1.3 

The Wick product F <> G of two elements 

F = L aaHw G = L bf3Hf3 in (S)-1 is defined by 

(1.23) 
a f3 

F <> G = L aabf3Ha+f3 
a,f3 

From Def. 1.2 we get 

LEMMA 1.4 

(i) F, G E (S)-1 ::::;. F <> G E (S)-1 

(ii) j, g E (S) 1 ::::;. f <> g E (S) 1 
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The Hermite transform [L0U 1-3] has a natural extension to (S)-1: 

DEFINITION 1.5 IfF = 2: baHa E (S)-1 then the Hermite transform ofF, HF = F, 
a 

is defined by 

(1.24) F(z) = HF(z) = L baza (whenever convergent) 

where z = (z1, z2, · · ·) E eN (the space of all sequences of complex numbers) and 

If F E ( S) -p for p < 1 then it is easy to see that (HF) (z1, z2, · · ·) converges for all finite 
sequences (z1, · · ·, Zm) of complex numbers. 

IfF E (s)-1, however, we can only obtain convergence of HF(z1, z2, · · ·) in a neighbour­
hood of the origin: We have 

where the first factor on the right hand side converges for q large enough. For such a value 
of q we have convergence of the second factor if 

(1.25) z E Bq(8) := {( = ((1, (2, .. ·) E eN; L l(ai2(2N)aq < 82} 
a#O 

for some 8 < oo. 

The next result is an immediate consequence of Def. 1.3 and Def. 1.5: 

LEMMA 1.6 IfF, G E (S)-1 then 

H(F <> G)(z) = HF(z) ·HG(z) 

for all z such that HF(z) and HG(z) exist. 

The topology on (S)-1 can conveniently be expressed in terms of Hermite transforms as 
follows: 

LEMMA 1. 7 [KLS] 

The following are equivalent 
(i) Xn--+ X in (s)-1 

(ii) 38 > 0, q < oo, M < oo such that 

HXn(z) --+ HX(z) as n--+ oo for z E Bq(8) 
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and 
IHXn(z)l::; M for all n = 1, 2, · · ·; z E Bq(8). 

THEOREM 1.8 [KLS] (Characterization theorem for ( S) - 1) 

Suppose g(z1 , z2, ···)is a bounded analytic function on Bq(8) for some 8 > 0, q < oo. Then 
there exists X E (s)-1 such that 

HX=g 

From this we deduce the following useful result: 

COROLLARY 1.9 

Suppose g = HX for some X E ( S) - 1. Let f be an analytic function in a neighbour hood 
of (0 = g(O) in C. Then there exists Y E (St1 such that 

HY=fog 

Proof. Let r > 0 be such that f is bounded analytic on { ( E C; I ( - (o I < r}. Then choose 
8 > 0 and q < oo such that the function z --+ g( z) is bounded analytic on Bq ( 8) and such 
that lg(z)- (ol < r for z E Bq(8). Then fog is bounded analytic in Bq(8), so the result 
follows from Theorem 1.8. 

EXAMPLE 1.10 

a) Let X E (S)-1 . Then X<> X= X 02 E (S)-1 and more generally xon E (S)-1 for all 
natural numbers n. Define the Wick exponential of X, Exp X, by 

00 1 
Exp X = ""' - xon 

~n! 
n=O 

Then by Corollary 1.9 applied to f(z) = ez we see that Exp X E (S)-1 also. 

b) In particular, if we choose X= Wx (the singular white noise) then K 0 := ExpWx is 
in fact in (S)*. As suggested in [L0U 1], [L0U 3] the process K 0 (x,w) is a natural 
model for stochastic permeability in connection with fluid flow in porous media. 

c) Other useful applications of Lemma 1.9 include the Wick logarithm Y = Log X, 
which is defined (in (S)-1) for all X E (S)-1 with X(O) =/= 0. For such X we have 

Exp(Log X) = X 

and for all Z E (S)-1 we have 

Log(Exp Z) = Z 
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d) Similarly we note that the Wick-inverse xo(-1) and more generally the Wick powers 
XO!('y E R) exist in (S)-1 for all X E (S)-1 with X(O) =1= 0. 

REMARK. 

The connection between the H-transform and the S-transform [HKPS] is 

(1.26) 

(see e.g. [L0U 1]) 

REMARK. We can define what we could call the generalized expectation of an arbitrary 
FE (S)-1, in spite of the fact that such an F need not even be in I}(f-L): If FoE V(f-L) 
for p > 1 then the action of F0 on an element 'l/J E ( S) 1 is given by 

(1.27) (Fo, '!j;) = E[Fo'l/J] = j Fo(w)'!j;(w)df-L(w), 
S' 

so if 'l/J _ 1 then (F0 , '!j;) = (Fo, 1) gives us the expectation of Fo. On the other hand, if a 
general FE (S)-1 has the chaos expansion 

a 

then by (1.21) we have (F, 1) = bo = F(O). Hence we define 

(1.28) F(O) = bo = (F, 1) 

to be the generalized expectation ofF E (S)-1. 

From now on we will use the notation 

(1.29) E[F] = Ett[F] := F(O) 

for the generalized expectation ofF E (S)-1. Note that with this definition we have 

(1.30) E[F <> G] = E[F] · E[G] for all F, G E (S)-1. 

and 

(1.31) E[Exp(X)] = expE[X] for all X E (s)-1. 

More generally, from the chaos expansion of F we see that the Hermite transform gives us 
all the actions 
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ofF E (S)-1 on(-, ¢)<>n E (S)1. Therefore, although F need not exist as a random variable, 
it exists as a stochastic distribution: Given a stochastic test function we can compute its 
associated average. 

(S)-1 processes 
The Kondratiev space (S)-1 of stochastic distributions turns out to be the right space to 
work in, not just for the Burgers equation discussed in this paper, but for several stochastic 
(partial or ordinary) differential equations. See e.g. [B 3], [HL0UZ 4]. Therefore, the 
solution we seek will be a function 

u = u(t, x) : R 1+n-)- (S)-1, 

which may be regarded as a (stochastic) distribution valued stochastic process. We call 
such functions (S)-1 processes. 

The derivative of an (S)-1 process f(t) w.r.t. tat t =to E R will then (if it exists) be the 
element 'TJ = ry(to) E (s)-1 with the property that 

(1.31) !(to+ h~- f(to) -)- ry(to) in (s)-1 as h-)- 0. 

If this holds we write ry(to) = *(to) (or %f(to)). By the characterization of the topology of 
(S)-1 in terms of the Hermite transform (Lemma 1.7) this is equivalent to 

(1.32) 
](to+ h; z)- ](to; z) _( ) 

h -)-'TJto;z 

pointwise boundedly for z E Bq(8); for some q < oo, 8 > 0. 

For this it suffices that 

(1.33) 
d -
dtf(t; z) = fJ(t; z) fort= to 

pointwise for each z E Bq(8), if we also have that 

is continuous and uniformly bounded, for z E Bq(8) and tin a neighbourhood of to. For if 
this holds, we can write 

- - ~+h 

!(to+ h; z~- f(to; z) = ~ j !J(s; z)ds for small h 

to 

and therefore this expression is uniformly bounded for z E Bq(8) as h -)- 0. If * exists 
and is t-continuous, we say that the (S)-1 process J(t) is C 1. A similar notation, Ck, is 
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used for higher order derivatives, k = 2, 3, · · · (and for continuity if k = 0) and for several 
variables, Ck1,k2,···,km. 

In [HL0UZ 1-2] a different kind of solution concept is studied: An V functional process 
(p 2: 1) is a map 

X : s X R d X S' ---;. R 

such that 

(i) x---;. X(¢,x,w) is (Borel) measurable for all¢ E S, wE S' 
and 

(ii) w---;. X(¢,x,w) belongs to V(J.L) for all¢ E S, x E Rd. 

Intuitively, X ( ¢, x, w) is the result of measuring the quantity X using the test function 
("window") ¢shifted to the point x and in the "experiment" w. 

EXAMPLE. White noise W may be regarded as an V functional process (for any p < oo) 
by putting 

W(p,x,w) = W.p"'(w), 

where 
cPx(Y) = c/J(y- x). 

REMARK For L1 functional processes the definition of Wick product must be extended, 
since L1 (J.L) is not contained in (S)-1. See [HL0UZ 1]. 

§2. FROM THE STOCHASTIC BURGERS EQUATION 
TO THE STOCHASTIC HEAT EQUATION. 

This transformation was performed in [HL0UZ 2], but only in the context of functional 
processes and hence with more assumptions than will be needed within (s)-1: 

THEOREM 2.1 (The Wick-Cole-Hopf transformation (I)) 

Let N = N(t,x) be an (S)-1-valued C 0,1-process and define 

(2.1) w = -V'N. 

Assume that there exists an (S)-1-valued C 1,3-process X(t, x) such that 

(2.2) u = -V'X 

solves the multidimensional Burgers equation 

(2.3) &t .L.... J OXj 
j=1 { 

OUk + A ;... u. 0 ~ = vD..uk + Wk(t,x); t > 0; x ERn 

Uk(O,x) = 9k(x); 1::; k::; n 
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Then the Wick-Cole-Hop[ transform Y of u defined by 

(2.4) 
.A 

Y :=Exp(-X) 
2v 

solves the stochastic heat equation 

(2.4) { 
ay = v.6.Y + .l Y <> [N + C] · t > 0· x E R n at 2v ' ' 
Y(O, x) = Exp( 2:x(o, x)) 

for some t-continuous (St1-valued process C(t) (independent of x). 

Proof. The proof in the present (s)-1-case follows the proof in [HL0UZ 2] with only minor 
modifications. For completeness we give the argument: 

Substituting (2.1) and (2.3) in (2.2) we get 

(2.5) 

or 

(2.6) ax = ~ ""(ax )02 .6.X N c 
at 2 ~ ax· + v + + ' 

j J 

where C = C(t) is at-continuous, x-independent (S)-1-process. 

Basic Wick calculus rules give that 

(2.7) aY = ~Y<> ax 
at 2v at ' 

(2.8) 

Hence 

(2.9) 
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Now apply (2.7), (2.6) and (2.9) to get 

8Y A [A"'( oX )<>2 ] - = -Y <> - L.t - + v~X + N + C at 2v 2 . OXj 
J 

A A oX A . 
= -Y <> [-2 L(£l t 2 + ~X]v + -Y <> [N + C] 

2v v . uXj 2v 
J 

A 
= v~Y + -Y <> [N + C], as claimed. 

2v 

§3. (s)-1 - SOLUTION OF THE STOCHASTIC HEAT EQUATION 

We now consider the stochastic heat equation (2.4) obtained by performing the Wick-Cole­
Hopf transformation: 

THEOREM 3.1 
Suppose that H(t, x) and f(x) are continuous (S)-1-processes. Then the stochastic heat 
equation 

(3.1) { ay = v~Y + H <> Y · t > 0 X ERn at , ' 
Y(O,x) = f(x); x ERn 

has the unique (St1-solution 

t 

(3.2) Y(t, x) = Ex[f(bat) <> Exp(J H(s, bas)ds)] 

0 

where a=$, h(bt, f>x) is standard Brownian motion in Rn and Ex denotes expectation 
with respect to px. 

Proof Taking Hermite transforms of (3.1) we get the equation 

(3.3) {
afr - --gt = v~Y_+ H · Y ; t > 0, X ERn, z E Bq(8) 
Y(O,x) = f(x) ; x ERn, z E Bq(8) 

where 
Y = Y(t, x) = Y(t, x; z1, z2 , · · ·) 

denotes the Hermite transform of Y etc. and Bq(8) is some neighbourhood of 0 in eN, as 
defined in §1. Fix z E Bq(8). Then by the complex version of the Feynman-Kac formula 
the solution Y(t, x, z) of (3.3) can be written 

t 

(3.4) Y(t, x; z) = Ex[}(bati z) exp[J H(s, basi z)ds]] 
0 
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with (bt, .f>x) as described above. 

This is the Hermite transform of the (S)-1 process 

t 

Y(t, x) = Ex[f(bat) <> Exp(J H(s, bas)ds]], 
0 

and the proof is complete. 

REMARK. The equation 

fJu 
fJt = ~u + W <> u, where W is white noise, 

has been studied in [NZ]. They prove the existence of a solution of a type they call gener­
alized Wiener functionals. 

§4. FROM THE STOCHASTIC HEAT EQUATION TO THE 

STOCHASTIC BURGERS EQUATION 

Using the fact that an analytic function composed with a Hermite transform (of an (S)-1-

element) is again the Hermite transform (Corollary 1.9), we can now construct the inverse 
of the transformation in §2: 

THEOREM 4.1 (The Wick-Cole-Hopf transformation (II)) 

Suppose that Y(t, x) is an (S)-1-process which solves the stochastic heat equation 

( 4.1) { 
BY = l/ ~Y + H <> Y · t > 0 X E Rn 
8t ' ' 
Y(O,x)=f(x) ; xERn 

where f(x), H(t,x) are given (S)-1-processes, continuously differentiable w.r.t x, H(t,x) 
continuous w.r.t. t and (see (1.29)) 

(4.2) Et-t[f(x)] > 0 for all x ERn 

Then 

(4.3) 
2v 

u(t,x) := --:\V(Log Y(t,x)) E (S)-1 for all t :=::: O,x ERn, 

where Log denotes "Wick-log" (Example l.lOd)) and the gradient is taken with respect to 
x (in (S)-1). 
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Moreover, u = ( u1, · · · , un) solves the stochastic Burgers equation 

(4.4) { 
ft!!± + A ~ U · <> !l!!Js. = V f::.. Uk + Wk · t > 0 X E R n at L. J ax . ' ' 

j=1 J 

uk(O, x) = 9k(x); x ERn, · 

where 

(4.5) 
2v fJH 

wk(t, x) = -T · oxk (t, x), 

and 

(4.6) 9k(x) =- 2v f(xt(- 1) <> of (x); 1::; k::; n 
A OXk 

Proof. By Theorem 3.1 the solution Y of (4.1) is given by 

t 

(4.7) Y(t, x) = ftx[f(bat) <> Exp(J H(s, bas)ds )] a= .J2V. 
0 

Therefore, by (1.30) 

t 

EJ.£[Y(t, x)] = Ex[EJ.£[f(bat)]· exp(J EJ.£[H(s, bas)]ds)] > 0 

0 

for all t, x. 

We conclude that the Wick-log of Y, X= LogY, exists in (S)-1 , by Example 1.10d. We 
can therefore reverse the argument in the proof of Theorem 2.1: 

Put 

(4.8) 

and 

(4.9) 

Then 

(4.10) 

2v 
X(t,x) = TLogY(t,x) 

u(t,x) = -VX(t,x) (gradient w.r.t. x) 

A 
Y(t, x) = Exp(-X(t, x)), 

2v 
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namely 

(5.3) 
2v 

u(t,x) = -TV'Log Y(t,x), 

where Y is given by (4.7), i.e. 

t 

(5.4) ~ ), ). J Y(t, x) = Ex[h(batt2; o Exp(- N(s, bas)ds)], 
2v 

a=~. 
0 

b) (Uniqueness): Moreover, this process u in (5.3)-(5.4) is the only solution of (5.2) of 
gradient form, i.e. which is the gradient w.r.t. x of some continuously x-differentiable 
(S)-1 process. 

Proof. 
a) Apply Theorem 4.1 to the case when 

(5.5) 
). ), 

H(t,x) = 2vN(t,x) , f(x) = h(xt2; 

b) If u solves (5.2) and 
u(t,x) = -V'X(t,x) 

then by Theorem 2.1 the process Y = Exp( 2:X) solves (3.1) with H = 2>-v [N + C] 
for some x-independent C(t) E (S)-1, and with 

). 
f(x) = Exp( 2vX(O,x)). 

By Theorem 3.1 Y is unique. Then X = 2{Log Y is unique up to a constant and 
therefore u is unique. That completes the proof. 

Acknowledgements 

We are grateful toY. Kondratiev and G. Vage for valuable comments. 

This work is partially supported by VISTA, a research cooperation between The Norwegian 
Academy of Science and Letters and Den Norske Stats Oljeselskap A.S. (Statoil). 

REFERENCES 

[AKS] S. Albeverio, J. Kondratiev and L. Streit: Spaces of white noise distributions: 
Constructions, Descriptions, Applications II. Manuscript 1993. 

[B 1] F .E. Benth: Integrals in the Hida distribution space ( S) *. In T. Lindstr¢m, 
B. 0ksendal and A. S. Ustunel (editors): Stochastic Analysis and Related Topics. 
Gordon & Breach 1993, 89-99. 

17 



[B 2] F.E. Benth: A note on population growth in a crowded stochastic environment. 
Manuscript, University of Oslo 1993. 

[BCJ-L] L. Bertini, N. Cancrini and G. Jona-Lasinio: The stochastic Burgers equation. 
Manuscript 1993. 

[DDT] G. DaPrato, A. Debussche and R. Ternan: Stochastic Burgers equation. 
Preprint, Scuola Normale Superiore Pisa 1993. 

[DG] G. DaPrato and D. Gatarek: Stochastic Burgers equation with correlated noise. 
Preprint, Scuola Normale Superiore Pisa 1994. 

[GHL0UZ] H. Gjessing, H. Holden, T. Lindstr¢m, J. Ub¢e and T.-S. Zhang: The Wick 
product. In H. Niemi, G. Hognas, A.N. Shiryaev and A. Melnikov (editors): 
"Frontiers in Pure and Applied Probability", Vol. 1. TVP Publishers, Moscow, 
1993, pp. 29-67. 

[GjH0UZ] J. Gjerde, H. Holden, B. 0ksendal, J. Ub¢e and T.-S. Zhang: An equation 
modelling transport of a substance in a stochastic medium. Manuscript 1993. 

[GV] I.M. Gelfand and N.Y. Vilenkin: Generalized Functions, Vol. 4: Applications of 
Harmonic Analysis. Academic Press 1964 (English translation). 

[H] T. Hida: Brownian Motion. Springer-Verlag 1980. 

[HI] T. Hida and N. Ikeda: Analysis on Hilbert space with reproducing kernel arising 
from multiple Wiener integral. Proc. Fifth Berkeley Symp. Math.Stat.Probab. 
II, part 1 (1965), 117-143. 

[HKPS] T. Hida, H.-H. Kuo, J. Potthoff and L. Streit: White Noise Analysis. Kluwer 
1993. 

[HL0U 1] H. Holden, T. Lindstr¢m, B. 0ksendal and J. Ub¢e: Discrete Wick calculus and 
stochastic functional equations. Potential Analysis 1 (1992), 291-306. 

[HL0U 2] H. Holden, T. Lindstr¢m, B. 0ksendal and J. Ub¢e: Discrete Wick products. In 
T. Lindstr¢m, B. 0ksendal and A.S. Ustunel (editors): Stochastic Analysis and 
Related Topics. Gordon & Breach 1993, pp. 123-148. 

[HL0UZ 1] H. Holden, T. Lindstr¢m, B. 0ksendal, J. Ub¢e and T.-S. Zhang: Stochastic 
boundary value problems: A white noise functional approach. Probab. Th. Rel. 
Fields 95 (1993), 391-419. 

[HL0UZ 2] H. Holden, T. Lindstr¢m, B. 0ksendal, J. Ub¢e and T.-S. Zhang: The Burgers 
equation with a noisy force. Comm. PDE 19 (1994), 119-141. 

[HL0UZ 3] H. Holden, T. Lindstr¢m, B. 0ksendal, J. Ub¢e and T.-S. Zhang: A comparison 
experiment for Wick multiplication and ordinary multiplication. In T. Lind-

18 



str¢m, B. 0ksendal and A.S. Ustunel (editors): Stochastic Analysis and Related 
Topics. Gordon and Breach 1993, pp. 149-159. 

[HL0UZ 4] H. Holden, T. Lindstr¢m, B. 0ksendal, J. Ub¢e and T.-S .. Zhang: The pressure 
equation for fluid flow in a stochastic medium. Potential Analysis (to appear). 

[HiP] E. Hille and R.S. Phillips: Functional Analysis and Semigroups. Amer. Math. 
Soc. Colloq. Publ. 31 (1957). 

[K] Y. Kondratiev: Generalized functions in problems of infinite dimensional analy­
sis. Ph.D. thesis, Kiev University 1978. 

[KLS] Y. Kondratiev, P. Leukert and L. Streit: Wick calculus in Gaussian analysis. 
Manuscript 1994. 

[L0U 1] T. Lindstr¢m, B. 0ksendal and J. Ub¢e: Stochastic differential equations involv­
ing positive noise. In M. Barlow and N. Bingham (editors): Stochastic Analysis. 
Cambridge Univ. Press 1991, pp. 261-303. 

[L0U 2] T. Lindstr¢m, B. 0ksendal and J. Ub¢e: Wick multiplication and Ito-Skorohod 
stochastic differential equations. In S. Albeverio et al (editors): Ideas and Meth­
ods in Mathematical Analysis, Stochastics, and Applications. Cambridge Univ. 
Press 1992, pp. 183-206. 

[L0U 3] T. Lindstr¢m, B. 0ksendal and J. Ub¢e: Stochastic II).odelling of fluid flow in 
porous media. In S. Chen and J. Yong (editors): Control Theory, Stochastic 
Analysis and Applications. World Scient.ific 1991, pp. 156-172. 

[NZ] D. N ualart and M. Zakai: Generalized Brownian functionals and the solution to 
a stochastic partial differential equation. J. Functional Anal. 84 (1989), 279-296. 

[0] B. 0ksendal: Stochastic partial differential equations and applications to hydro­
dynamics. Submitted to L. Streit (editor): Stochastic Analysis and Applications 
in Physics (to appear). 

[Z] T.-S. Zhang: Characterizations of white noise test functions and Hida distribu­
tions. Stochastics 41 (1992), 71-87. 

19 


